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Abstract

Investigating a conjecture of Zannier, we study irreducible subvarieties of abelian
schemes that dominate the base and contain a Zariski dense set of torsion points that
lie on pairwise isogenous fibers. If everything is defined over the algebraic numbers and
the abelian scheme has maximal variation, we prove that the geometric generic fiber
of such a subvariety is a union of torsion cosets. We go on to prove fully or partially
explicit versions of this result in fibered powers of the Legendre family of elliptic curves.
Finally, we apply a recent result of Galateau and Mart́ınez to obtain uniform bounds on
the number of maximal torsion cosets in the Manin–Mumford problem across a given
isogeny class. For the proofs, we adapt the strategy, due to Lang, Serre, Tate, and
Hindry, of using Galois automorphisms that act on the torsion as homotheties to the
family setting.
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1. Introduction

The Manin–Mumford conjecture predicted that at most finitely many points on a curve of
genus g ≥ 2 become torsion when the curve is embedded in its Jacobian (in characteristic 0).
The conjecture was generalized to a statement about subvarieties of arbitrary dimension of a
given abelian variety by Lang in [Lan83] (see also [Lan65]) and was proven in this more general
form in [Ray83b] by Raynaud, who had already proven it in the case of curves in [Ray83a].
The analogous statement for linear tori, also conjectured to hold by Lang, was then proven by
Laurent in [Lau84]. Finally, Hindry proved the analogous statement for arbitrary commutative
algebraic groups in [Hin88]. In this paper, subvarieties will always be closed. Varieties will be
reduced, but not necessarily irreducible. Fields will always be of characteristic 0.
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Torsion points on isogenous abelian varieties

More recently, Masser and Zannier have studied and proven a relative version of the
Manin–Mumford conjecture for curves in families of abelian varieties over Q̄ in a series of papers
culminating in [MZ20]. Unlike the classical conjecture, this relative version, conjectured by Pink
in [Pin05b], is naturally concerned with unlikely intersections with positive-dimensional sub-
varieties rather than points. In a slightly different direction, Zannier proposed the following
conjecture that again concerns unlikely intersections with points [Gao17a, Conjecture 1.4].

Conjecture 1.1 (Zannier). Let π : Ag,l → Ag,l denote the universal family of complex
principally polarized abelian varieties of dimension g with symplectic level l-structure and let
A0 be a fixed complex abelian variety. Let V ⊂ Ag,l be an irreducible subvariety that contains a
Zariski dense set of points p ∈ Ag,l(C) such that the fiber (Ag,l)π(p) is isogenous to A0 and p is
torsion on (Ag,l)π(p). Then π(V) is a totally geodesic subvariety of Ag,l and V is an irreducible
component of a subgroup scheme of Ag,l ×Ag,l

π(V)→ π(V).

Gao has proven in [Gao17a] that Conjecture 1.1 holds if dimπ(V) ≤ 1. Orr had previously
shown in [Orr15] that any curve in the moduli space of complex principally polarized abelian
varieties of dimension g that contains infinitely many points corresponding to pairwise isoge-
nous abelian varieties is totally geodesic. The use of isogenies also allows the formulation of a
relative version of the Mordell–Lang conjecture, known as the André–Pink–Zannier conjecture
[Gao17a, Conjecture 1.2]. It is a consequence of Pink’s more general Conjecture 1.6 in [Pin05a]
on intersections of subvarieties of mixed Shimura varieties with generalized Hecke orbits. Special
cases of (variants of) the André–Pink–Zannier conjecture and Conjecture 1.1 have been proven
by Habegger in [Hab13], by Pila in [Pil14], by Lin and Wang in [LW15], by Gao in [Gao17a],
and by the author in [Dil20, Dil21].

Most of these results concern families of abelian varieties whose base variety is a curve and
most of them are proven via the Pila–Zannier strategy of o-minimal point counting that goes back
to Pila and Zannier’s new proof of the Manin–Mumford conjecture in [PZ08]. Consequently, the
effectivity of these results is sometimes unclear. However, Binyamini’s results in [Bin19, Bin22]
suggest that at least the o-minimal point counting could in principle be made effective. For the
Pila–Zannier strategy and unlikely intersections in general, see Zannier’s book [Zan12].

The purpose of this paper is to apply another classical method to this problem: we adapt
the use of the Galois operation on the torsion points of an abelian variety, due to Lang, Serre,
Tate, and Hindry (see [Lan65, Hin88]), to the family setting. The fundamental observation that
makes this approach work is the following: if A0 is an abelian variety over a number field K with
fixed algebraic closure K̄ and σ ∈ Gal(K̄/K) acts on the torsion of (A0)K̄ as a homothety, then
σ fixes every finite subgroup of (A0)K̄ . Hence, for any quotient A of (A0)K̄ by a finite subgroup,
that is, for any abelian variety isogenous to (A0)K̄ , the conjugate of A by σ is isomorphic to A.
The existence of enough such σ acting on the torsion of (A0)K̄ as homotheties is guaranteed by
a theorem of Serre [Ser00, No. 136, Théorème 2′].

Applying this approach in a family setting seems to be new and yields both qualitatively
and quantitatively new results.

Qualitatively, we essentially prove the ‘vertical’ half of the conclusion in Zannier’s conjecture
in § 3 in the case where everything is defined over Q̄, allowing the base variety to be of arbitrary
dimension.

Theorem 1.2. Let S be an irreducible variety, defined over Q̄. Fix an algebraic closure Q̄(S) of

Q̄(S) and let ξ denote the geometric generic point of S with residue field Q̄(S). Let π : A → S
be a principally polarized abelian scheme of relative dimension g over S, also defined over Q̄.
Let η denote the generic point of S and suppose that the natural morphism ρ : S → Ag to the
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coarse moduli space Ag of principally polarized abelian varieties of dimension g over Q̄ satisfies
|ρ−1(ρ(η))| <∞.

Let V ⊂ A be an irreducible subvariety such that π(V) = S. Fix an abelian variety A0, defined
over Q̄. Suppose that the set of x ∈ V(Q̄) such that x is a torsion point of the fiber Aπ(x) and
Aπ(x) is isogenous to A0 is Zariski dense in V. Then Vξ is equal to a union of translates of abelian
subvarieties of Aξ by torsion points of Aξ.

Note, however, that the conclusion in Theorem 1.2 concerns irreducible components of
algebraic subgroups of the geometric generic fiber instead of irreducible components of sub-
group schemes, and an abelian subvariety of the generic fiber is not always the generic fiber of
an abelian subscheme (see Lemma 2.9 and the following counterexample in [BD22]). Neverthe-
less, one can use ‘spreading out’ to show that the conclusion in Theorem 1.2 is optimal if A
contains a Zariski dense set of fibers that are isogenous to A0.

The condition on the morphism ρ is satisfied, for example, if ρ is quasi-finite. For Theorem 1.2
to hold, some condition on ρ is clearly necessary. For example, if A → S is an abelian scheme of
positive relative dimension with a Zariski dense set of pairwise isogenous fibers, then the image
of the diagonal section of the abelian scheme A×S A → A contains a Zariski dense set of torsion
points that lie on pairwise isogenous fibers. However, the geometric generic fiber of the diagonal
section is not a torsion point.

Quantitatively, we can apply the method to prove fully or partially explicit results. For
this, we turn to a concrete example in § 4: let Y (2) = A1

Q\{0, 1} and let E ↪→ Y (2)×Q P2
Q ⊂

P1
Q ×Q P2

Q be the Legendre family of elliptic curves over Y (2), defined by the equation Y 2Z =
X(X − Z)(X − λZ), where λ is the affine coordinate on Y (2) and [X : Y : Z] are homogeneous
projective coordinates on P2

Q. Both Y (2) and E are varieties over Q. For g ∈ N = {1, 2, . . .}, we
denote the g-fold fibered power E ×Y (2) · · · ×Y (2) E by E(g). The structural morphism is again
denoted by π : E(g) → Y (2).

If everything is defined over Q̄, then the purely qualitative statement of ‘Manin–Mumford
with isogenies’ is known in this case by [Hab13]. Furthermore, if the subvariety is a curve or the
fixed abelian variety is a power of an elliptic curve without complex multiplication (CM), then
the qualitative statement of ‘Mordell–Lang with isogenies’ is also known by [Dil20, Dil21]. The
new features of the results we present here are their full or partial explicitness and sometimes
their effectivity.

We say that a multihomogeneous polynomial of multidegree (d1, . . . , dk) has multidegree at
most (D1, . . . , Dk) if di ≤ Di (i = 1, . . . , k). The following theorem for curves in the Legendre
family is completely explicit.

Theorem 1.3. Let K be a number field with a fixed algebraic closure K̄. Let C ⊂ EK be a
(possibly reducible) curve such that each of its irreducible components surjects onto Y (2)K .
Suppose that C is defined in EK ⊂ P1

K ×K P2
K by bihomogeneous polynomials of bidegree at

most (D1, D2) ∈ N2 with coefficients in K. Let E0 be an elliptic curve, defined over K, let
j(E0) ∈ K denote its j-invariant, and let h(E0) denote its stable Faltings height.

Suppose that p ∈ C(K̄) is torsion on Eπ(p) and Eπ(p) is isogenous to (E0)K̄ . Then the order
of p is bounded by

max{(3CD2)4, exp(218/5)},
where

C =

{
exp(1.9× 1010)([K : Q] max{1, h(E0), log[K : Q]})12 395 if E0 does not have CM,

6[K : Q(j(E0))] if E0 has CM.
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The two cases correspond to E0 having CM or not, that is, the endomorphism ring of (E0)K̄
being larger than or isomorphic to Z. The stable Faltings height that we use is normalized so
that it is equal to the height hF in [GR14]. However, the choice of normalization is relevant only
for Theorems 1.3 and 1.4 and their proofs. By an easy modification of our proof, the exponent
of 3CD2 in the upper bound can be improved to any κ > 1 at the expense of worsening the
exponent 18

5 . The good quality of the upper bound in the CM case allows us to recover and make
explicit (over Q̄) a result of André from Lecture IV in [And01] in the case of the Legendre family:
any non-torsion (multi)section of the Legendre family takes at most finitely many torsion values
at CM arguments.

In § 4, we also obtain a result of Mordell–Lang type. In order to formulate it, we define the
height of a polynomial with algebraic coefficients as the (absolute logarithmic) height of the
vector of its coefficients, seen as a point in projective space. See Definition 1.5.4 in [BG06] for a
definition of the height on projective space.

Theorem 1.4. Let Q̄ denote a fixed algebraic closure of Q. Let C ⊂ E be a (possibly reducible)
curve such that each of its irreducible components surjects onto Y (2). Suppose that C is defined
in E ⊂ P1

Q ×Q P2
Q by bihomogeneous polynomials with coefficients in Q of bidegree at most

(D1, D2) ∈ N2 and height at most H. Let E0 be an elliptic curve, defined over Q, and let h(E0)
denote its stable Faltings height.

Set γ1 = 12 698, γ2 = 2.2× 1010, and γ3 = 26 471. Suppose that p ∈ C(Q̄) satisfies p = ϕ(q)
for some isogeny ϕ : (E0)Q̄ → Eπ(p) with cyclic kernel and a non-torsion point q ∈ E0(Q̄) in the
divisible hull of E0(Q). Then

degϕ ≤ max{2, h(E0)}γ1 max{D1, D2,H}6

and there exists a natural number N such that Nq ∈ E0(Q) and

N ≤ exp(γ2) max{1, h(E0)}γ3 max{D1, D2,H}9.

Here we have to assume that the base field is Q. All of our results for the Legendre family
hinge on an effective version of Serre’s open image theorem for elliptic curves without CM, due
to Lombardo in [Lom15], as well as on an effective version of the analogous result for elliptic
curves with CM, due to Bourdon and Clark in [BC20] (see Theorem 4.2 below). As remarked
by Bourdon and Clark, the latter result is a consequence of earlier work of Stevenhagen [Ste01].
Weaker results had been obtained earlier in the CM case by Lombardo in [Lom17] and by Eckstein
in [Eck05].

The proof of Theorem 1.4 follows the strategy used in [LW15] of obtaining an upper and
a lower bound for the height of a certain point such that the two bounds are incompatible for
degϕ large enough. In [LW15], this strategy was applied to isogeny orbits of finitely generated
groups. In order to be able to apply the same strategy to isogeny orbits of (certain) groups of
finite rank, we use an explicit and uniform Kummer-theoretic result of Lombardo and Tronto
in [LT21b], which is the reason for the restriction on the base field.

In § 5 we turn to higher-dimensional subvarieties of fibered powers of the Legendre family
and obtain the following result. See § 2 for our conventions concerning degrees. Unless explicitly
stated otherwise, degrees of subvarieties of (base changes of) E(g) are always taken with respect
to (base changes of) its natural immersion in P1

Q ×Q (P2
Q)g.

Theorem 1.5. Let K be a number field with a fixed algebraic closure K̄. Let g ∈ N and let

V ⊂ E(g)
K be a subvariety. Let E0 be an elliptic curve, defined over K, and let h(E0) denote
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its stable Faltings height. Fix an algebraic closure K(Y (2)) of K̄(Y (2)) and let ξ denote the
geometric generic point of Y (2)K̄ with residue field K(Y (2)).

Suppose that p ∈ V(K̄) is torsion on Egπ(p) and Eπ(p) is isogenous to (E0)K̄ . There exists an

effective constant γ(g), depending only on g, such that one of the following assertions holds.

(1) There exist a torsion point q ∈ Egξ and an abelian subvariety B of Egξ such that p ∈ q +B(K̄)

and q +B ⊂ V, where q +B denotes the Zariski closure in E(g)
K of the image of q +B

under the natural morphism Egξ → E
(g)
K . The order of q is bounded by max{2,degV}γ(g) and

degB ≤ max{2,degV}γ(g).
(2) There exists an isogeny ϕ : (E0)K̄ → Eπ(p) with

degϕ ≤ 2max{2,h(E0),[K:Q]}γ(g)
max{2, h(E0),degV}γ(g).

If E0 has CM, the dependency on h(E0) can be omitted in the exponent.

Note that q and B in case (1) in Theorem 1.5 are controlled by g and degV alone; there
is no dependency on the field of definition K. Recall that a subvariety of an abelian variety is
called a torsion coset if it is a translate of an abelian subvariety by a torsion point. In order to
bound the order of q in terms of only g and degV, we apply an upper bound for the number of
maximal torsion cosets contained in Vξ, due to David and Philippon in [DP07], together with
lower bounds for the degree of a torsion point of Egξ over K̄(Y (2)) in terms of its order.

On the other hand, the bound for the degree of the isogeny in case (2) must clearly involve
[K : Q]. It is not clear whether the dependency on h(E0) here and in the bound for the order
of p in Theorem 1.3 is also necessary; Coleman’s conjecture with an upper bound that is poly-
nomial in the degree of the number field would yield a bound that is independent of h(E0) (see
Proposition 2.13 in [Rém18], § 2 of [Lom15], and Théorème 1.2 in [Rém20]). In order to bound
the degree of the isogeny, we use a result of Gaudron and Rémond in [GR14], which improves and
makes explicit earlier results of Masser and Wüstholz in [MW90, MW93a]. The above-mentioned
results of Lombardo in [Lom15] and Bourdon and Clark in [BC20] are again essential for the
proof in case (2).

Let us call a fiber Vπ(p) for a point p that does not fall under case (1) an exceptional fiber. One
can then try to bound, independently of the field of definition of V, the number of exceptional
fibers as well as the number of maximal torsion cosets in each exceptional fiber. Note that the
degree of such a maximal coset can be bounded in terms of only g and degV thanks to Theorem 1
in [Bog80].

Combining Pila’s results in [Pil14] with automatic uniformity in the form of Theorem 2.4
in [Sca04] (see also Corollary 3.5.9 in [Hru01]) seems to yield such bounds that depend only on g,
(E0)K̄ , and degV (in an unspecified way). Using the homothety approach, we have not been able
to prove such a bound for the number of exceptional fibers. We can, however, establish bounds
for the number of maximal torsion cosets in each exceptional fiber that depend on the field of
definition of E0 and its stable Faltings height, but are independent of the field of definition of
V. For this, we combine our observations in § 6 with the work of Galateau and Mart́ınez [GM17]
to make their result uniform across isogeny classes. We obtain the following theorem.

Theorem 1.6. Let K be a number field with a fixed algebraic closure K̄ and let A0 denote an
abelian variety of dimension g defined over K. There exists a constant C = C(A0,K) such that
the following assertion holds.
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Let A be an abelian variety, defined over K̄, that is isogenous to (A0)K̄ . Suppose that A is
embedded in some PN

K̄
as a projectively normal subvariety by means of the third tensor power of

a symmetric ample line bundle. Let V ⊂ A be a positive-dimensional subvariety. Let δ(V ) denote
the smallest natural number d such that V is the intersection of hypersurfaces of A which have
degree at most d. For j = 0, . . . ,dimV , let V j

tors denote the union of all j-dimensional components
of the Zariski closure of the set of torsion points of A that lie on V . Then

deg(V j
tors) ≤ CN (g−j) dimV deg(A)δ(V )g−j .

After the completion of this paper, the uniform Manin–Mumford conjecture was proved for
curves by Kühne in [Küh21] and in general by Gao, Ge, and Kühne in [GGK21], both building on
earlier work by Dimitrov, Gao, and Habegger [DGH21]; however, these results are not explicit.
See [DKY20] for another recent uniform Manin–Mumford result, where the subvariety is a curve,
but the abelian variety is not restricted to a fixed isogeny class. If A0 = Eg0 for some elliptic curve
E0 over K, then it follows from our proof of Theorem 1.6 together with the results in [Lom15,
BC20] (see Theorem 4.2 below) that C(A0,K) in Theorem 1.6 can be bounded effectively in
terms of only g, [K : Q], and h(E0) and that the dependency on h(E0) can be omitted if E0

has CM. Again, Coleman’s conjecture with an upper bound that is polynomial in the degree of
the number field would yield a bound that is independent of h(E0) also if E0 does not have CM
(see Proposition 2.13 in [Rém18] and § 2 of [Lom15]). The recent work [GM20] by Galateau and
Mart́ınez surveys what is known in general about the constant C(A0,K).

2. Preliminaries

Euler’s phi function and the function counting the number of prime divisors will be denoted by
φ and ω, respectively. We will use the profinite integers Ẑ = lim←−Z/nZ.

If A is an abelian variety, then 0A denotes its neutral element, Ators denotes the set of
its torsion points (over a fixed algebraic closure of its field of definition), A[N ] denotes the
set of elements of Ators of order dividing N ∈ N, and Â denotes the dual abelian variety. Let
ι : A→ A denote the inversion morphism; a line bundle L on A is called symmetric if ι∗L 	 L and
antisymmetric if ι∗L 	 L⊗(−1). For each N ∈ N, we can multiply elements of A[N ] by elements
of Z/NZ and thus we can multiply elements of Ators and lim←−A[N ] by elements of Ẑ. If V ⊂ A is
a subvariety, then Stab(V,A) denotes the stabilizer of V in A; it is an algebraic subgroup of A.
The j-invariant of an elliptic curve E will be denoted by j(E).

We use the (absolute logarithmic) height h : Pn(Q̄)→ [0,∞) (n ∈ N) as defined in
Definition 1.5.4 in [BG06]. Via the Segre embedding, this induces a height on any multipro-
jective space and on any open subset of a multiprojective variety over Q̄. The height, however,
depends on the (multi)projective embedding. The height h(P ) of a polynomial P with algebraic
coefficients is the height of the vector of its coefficients, seen as a point in projective space. We
refer to § 1.5 of [BG06] for fundamental properties of the height.

If A is an abelian variety over Q̄, embedded in some projective space through use of a sym-
metric line bundle, one can define a canonical (logarithmic) height ĥA : A(Q̄)→ [0,∞) associated
to the embedding. In particular, this applies if A is an elliptic curve embedded in P2

Q̄
by means of

a Weierstrass model. For the definition and properties of the canonical height, we refer to §§ 9.2
and 9.3 of [BG06].

Let K be a field (as always, of characteristic 0). The Zariski closure of a subset Σ of a variety
V over K is denoted by Σ̄. We use the following general convention: let n1, . . . , nk ∈ N. If U is an
open Zariski dense subset of a subvariety V = Ū of the multiprojective space Pn1

K ×K · · · ×K Pnk
K ,
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then degU denotes the degree of the image of V under the Segre embedding

Pn1
K ×K · · · ×K Pnk

K ↪→ P(n1+1)···(nk+1)−1
K .

If several immersions of U as an open Zariski dense subset of a multiprojective variety are in play,
we will always specify with respect to which one we take the degree. The degree of an arbitrary
subvariety is the sum of the degrees of its irreducible components; consequently, the degree of
the empty set is defined to be 0. Furthermore, the degree of a subvariety, defined over K, is
equal to the degree of its base change to any algebraic closure of K. The degree of a subvariety
of an abelian variety with respect to some projective embedding is invariant under translation
by rational points of the abelian variety as the corresponding cycles are algebraically equivalent.

In what follows, we record some results about degrees of multiprojective varieties that we
will use several times in this paper.

Theorem 2.1 (Bézout). Let K be a field, let n1, . . . , nk ∈ N, let U ⊂ Pn1
K ×K · · · ×K Pnk

K be an
open subset, and let V,W be subvarieties of U . Then deg(V ∩W ) ≤ (deg V )(degW ).

Proof. By our definition of the degree, we have deg(V ∩W ) = deg(V ∩W ), deg V = deg V̄ , and
degW = deg W̄ . As V = V̄ ∩ U and W = W̄ ∩ U , we find that V ∩W = V̄ ∩ W̄ ∩ U . It follows
that the irreducible components of V ∩W are precisely the irreducible components of V̄ ∩ W̄
that have non-empty intersection with U . We deduce that deg(V ∩W ) ≤ deg(V̄ ∩ W̄ ), so it
suffices to prove the theorem for U = Pn1

K ×K · · · ×K Pnk
K , V = V̄ , and W = W̄ .

In the case where k = 1 and V and W are irreducible, this then follows from Example 8.4.6
in [Ful98]. Using the Segre embedding, we directly deduce the general case. �
Theorem 2.2 (Bézout, second version). Let K be a field, let d, n1, . . . , nk ∈ N, and let V ⊂
Pn1
K ×K · · · ×K Pnk

K be a subvariety. Let W be an irreducible component of the intersection of V
with the common zero locus of a finite set of multihomogeneous polynomials of multidegree at
most (d, d, . . . , d). Then

degW ≤ (deg V )ddimV−dimW .

Proof. We identify subvarieties of Pn1
K ×K · · · ×K Pnk

K with their images under the Segre embed-
ding and iterate the following step: we first choose an irreducible component V0 of V that contains
W . If V0 = W , we stop. If V0 �= W , our hypothesis on W implies that we can find a hypersur-

face of degree at most d in P
∏k

i=1 (ni+1)−1
K that contains W , but not V0. We then replace V by

the intersection of V0 with such a hypersurface. After at most dimV − dimW steps, we end up
with a variety that contains W as an irreducible component. The theorem then follows from
Theorem 2.1. �
Theorem 2.3. Let K be a field, let n1, . . . , nk ∈ N, and let V ⊂ Pn1

K ×K · · · ×K Pnk
K be a subva-

riety. Then V is defined in Pn1
K ×K · · · ×K Pnk

K by multihomogeneous polynomials of multidegree
at most (deg V, deg V, . . . ,deg V ).

Proof. In the case where k = 1 and V is equidimensional, this follows from Proposition 2.1
in [Fal91]. Using the Segre embedding, we then directly deduce the general case. �
Lemma 2.4. Let K be a field, let n1, . . . , nk ∈ N, and let U be an open Zariski dense subset of
a subvariety V ⊂ Pn1

K ×K · · · ×K Pnk
K . Let π be a projection to some collection of factors of the

product. Then deg π(U) ≤ degU .
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Proof. First of all, we have π(U) = π(V ) since π is closed. Since degU = deg V by our definition,
we can assume without loss of generality that U = V . We can also assume that K is algebraically
closed and V is irreducible.

We use the following fact: for a linear projection p : PnK\L→ Pn−lK with center L ⊂ PnK
of dimension l − 1 and an irreducible subvariety X ⊂ PnK , let Y denote the Zariski closure of
p((PnK\L) ∩X). Then deg Y ≤ degX. For a proof of this fact, see [Hru01, p. 55]. Note that there
L̄ should be chosen such that L̄ ∩ V̄ ⊂ θ(V \C).

Let S ⊂ {1, . . . , k} be such that π :
∏k
i=1 Pni

K →
∏
i∈S Pni

K . The lemma now follows from the
above fact together with the commutative diagram

where the horizontal arrows are Segre embeddings and the right vertical arrow is a suitable
linear coordinate projection, chosen such that the image of V under the Segre embedding is not
contained in its center. �

3. Manin–Mumford with isogenies

In this section, we prove Theorem 1.2. We recall the setting and set up some notation: we have
a principally polarized abelian scheme π : A → S of relative dimension g over an irreducible
variety S over Q̄. In order to prove the theorem, we may replace S by an open Zariski dense
subset. Hence, we can and will assume without loss of generality that S is affine. We have fixed
an algebraic closure Q̄(S) of Q̄(S) and ξ is the geometric generic point of S with residue field
Q̄(S). We denote the zero section of A by ε. We are also given a fixed abelian variety A0 over Q̄.

We fix a number field K over which S, A (together with its polarization), and A0 are defined.
In this section we identify all varieties over K with their base changes to Q̄, and ‘irreducible’ will
always mean ‘geometrically irreducible’ when the base field is contained in Q̄ (unless explicitly
specified otherwise). In particular, a homomorphism between two abelian varieties, both defined
over some number field, is not assumed to be defined over the ground field and two abelian
varieties, both defined over some number field, are called isogenous if they are isogenous over Q̄.

The natural morphism ρ : S → Ag to the coarse moduli space of principally polarized abelian
varieties of dimension g, which is defined over K, satisfies |ρ−1(ρ(η))| <∞, where η is the generic
point of S. After possibly replacing S by an open Zariski dense subset, we can and will assume
without loss of generality that ρ is quasi-finite with fibers of cardinality at most M1 ∈ N.

Let λ denote the principal polarization on A → S, let Â denote the dual abelian scheme
of A, and let P denote the Poincaré line bundle on A×S Â. By Proposition 6.10 in [MFK94],
the polarization 2λ is induced by the line bundle L = (idA, λ)∗P on A. In Proposition 6.10
in [MFK94], the abelian scheme A is assumed to be projective over S; this assumption is,
however, unnecessary as it is only used to ensure that the dual abelian scheme Â exists, which
is guaranteed by Theorem 1.9 in Chapter I of [FC90].

The restriction of L to each fiber of A → S is symmetric by Theorem 8.8.4 in [BG06].
The restrictions are also ample as 2λ is a polarization and ampleness of a line bundle on an
abelian variety is preserved under algebraic equivalence. By Théorème 4.7.1 in [EGA3] and
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Proposition 13.63 in [GW10], the line bundle L is relatively ample for π as defined in
Definition 13.60 in [GW10].

Since S is affine, the line bundle L is ample. Thanks to Theorem II.7.6 in [Har77], there
exists an immersion A ↪→ PR2

Q̄
×Q̄ S associated to the lth tensor power of L, all defined over K,

for some l ∈ N large enough and some R2 ∈ N. As this immersion is proper, it is actually a closed
embedding by [Sta20, Tag 01IQ]. In particular, A is projective over S. For s ∈ S, we denote by
As the fiber of A over s and by Ls the restriction of L to As.

Since S is affine, there is a closed embedding S ↪→ AR1

Q̄
, defined over K, for some R1 ∈ N.

By composing with the open immersion AR1

Q̄
↪→ PR1

Q̄
and the Segre embedding, we obtain an

immersion A ↪→ PR1R2+R1+R2

Q̄
, also defined over K. The degree deg of a subvariety of A is

defined to be the projective degree of the Zariski closure of its image under this immersion.
We include the immersion and the morphism ρ : S → Ag in the data associated to A so that

constants depending on A are also allowed to depend on the choice of immersion and on M1.
Theorem 1.2 will follow from the following proposition together with Lemma 3.4. The method

of the proof of the proposition is the same as in the paper [Hin88] by Hindry. This method is
based on work of Lang, Serre, and Tate [Lan65].

Proposition 3.1. Let V ⊂ A be a subvariety, defined over K. Suppose that x ∈ V(Q̄) is a
torsion point of the fiber Aπ(x) and that Aπ(x) is isogenous to A0. Then one of the following two
possibilities holds:

(1) x lies in a translate of a positive-dimensional abelian subvariety of Aπ(x) that is contained
in Vπ(x); or

(2) the order of x is bounded by a constant that depends only on A0, K, A, and degV.

We will use the following lemma to prove Proposition 3.1. It can be regarded as a uniform
version within an isogeny class of a theorem of Serre [Ser00, No. 136, Théorème 2′]. In the proof
of this lemma, we crucially use that ρ is quasi-finite.

Lemma 3.2. There exists a constant B ∈ N, depending only on A0, K, and A, such that, for
all a,M ∈ N with gcd(a,M) = 1, there exists σ ∈ Gal(Q̄/K) with the following property: for all
torsion points x ∈ A(Q̄) of order M such that Aπ(x) is isogenous to A0, we have σ(π(x)) = π(x)
and σ(x) = aBx.

Proof. Let a,M ∈ N with gcd(a,M) = 1 be given and fix â ∈ Ẑ∗ such that â ≡ a mod M . By
Théorème 3 in [Win02], due to Serre [Ser00, No. 136, Théorème 2′], there exists a constant c =
c(A0,K) ∈ N such that there exists σa ∈ Gal(Q̄/K) acting on lim←−A0[n] 	 Ẑ2g as multiplication
by âc.

Let x ∈ A(Q̄) be a torsion point of order M such that the fiber Aπ(x) is isogenous to A0. Let
ϕ : A0 → Aπ(x) be an isogeny and let y ∈ A0(Q̄) be a torsion point such that ϕ(y) = x. Choose
N ∈ N large enough so that y belongs to A0[N ] and kerϕ ⊂ A0[N ]. The order M of x is equal
to the greatest common divisor of all n ∈ N with ny ∈ kerϕ. In particular, M divides N .

We now choose ã ∈ N such that ã ≡ â mod N and replace a by ã. The Galois automorphism
σ will not depend on the choice of ã, but only on σa and A. We deduce that σa(y) = ac(A0,K)y.

If λs : As → Âs denotes the principal polarization on As (s ∈ S), then we have that
ϕ̂ ◦ λπ(x) ◦ ϕ is a polarization of A0. By Théorème 1.2 in [Rém20], which improves and opti-
mizes earlier results by Silverberg in [Sil92] and by Masser and Wüstholz in [MW93b], every
homomorphism between A0 and Â0 is defined over a Galois extension of K of degree at
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most F (g) = 4β(g)62(g−1)(g!)2, where β(g) = 3 if g �∈ {2, 4, 6}, while β(2) = 8, β(4) = 75, and
β(6) = 49

12 . Hence, the polarization ϕ̂ ◦ λπ(x) ◦ ϕ of A0 is fixed by σ◦F (g)!
a .

Since σa acts on A0[N ] ⊃ kerϕ as multiplication by a natural number that is coprime to N ,
we know that σ◦F (g)!

a (kerϕ) = kerϕ. Therefore, there is an isomorphism ι : Aπ(x) → Aσ◦F (g)!
a (π(x))

such that σ◦F (g)!
a (ϕ) = ι ◦ ϕ (see Theorem 5.13 in [Mil17]).

Since ϕ̂ ◦ λπ(x) ◦ ϕ is fixed by σ◦F (g)!
a and the polarization λ of A is defined over K, we deduce

that

ϕ̂ ◦ λπ(x) ◦ ϕ =
̂

σ
◦F (g)!
a (ϕ) ◦ λ

σ
◦F (g)!
a (π(x))

◦ σ◦F (g)!
a (ϕ) = ϕ̂ ◦ ι̂ ◦ λ

σ
◦F (g)!
a (π(x))

◦ ι ◦ ϕ.

Note that
̂

σ
◦F (g)!
a (ϕ) = σ

◦F (g)!
a (ϕ̂) since dualizing commutes with extending the base field. As

ϕ and ϕ̂ are isogenies, it follows that λπ(x) = ι̂ ◦ λ
σ
◦F (g)!
a (π(x))

◦ ι, so Aπ(x) and A
σ
◦F (g)!
a (π(x))

are
isomorphic as polarized abelian varieties.

Hence, the point ρ(π(x)) is fixed by σ
◦F (g)!
a . It follows that the finite set ρ−1(ρ(π(x))) of

cardinality at most M1 is permuted by σ◦F (g)!
a and therefore the Galois automorphism σ

◦F (g)!M1!
a

fixes π(x).
By Théorème 1.2 in [Rém20], the isogeny ϕ is defined over a Galois extension of K(π(x)) of

degree at most F (g) with F (g) as above. We deduce that σ = σ
◦M1!(F (g)!)2

a fixes ϕ and

aBx = ϕ(aBy) = ϕ(σ(y)) = σ(ϕ(y)) = σ(x)

with B = c(A0,K)M1!(F (g)!)2. �
The other ingredient in the proof of Proposition 3.1 is the following proposition, whose proof

follows the proofs of Théorème 1 and Proposition 2 in [Hin88].

Proposition 3.3. Let F be a field with a fixed algebraic closure F̄ . Let A be an abelian variety
over F of dimension g, embedded in some projective space through use of a symmetric very
ample line bundle L. Suppose that there exists c ∈ N with the following property: for all a,N ∈ N
with gcd(a,N) = 1, there exists σa,N ∈ Gal(F̄ /F ) such that σa,N (q) = acq for all torsion points
q ∈ A(F̄ ) of order N .

There exists an effective constant γ(g), depending only on g, such that the following holds:
let V ⊂ A be a subvariety and let p ∈ V (F̄ ) be a torsion point that is not contained in any
translate of a positive-dimensional abelian subvariety of AF̄ that is contained in VF̄ . Then the
order of p is bounded by

max{exp(γ(g)c2), (deg V )γ(g)}.
Proof. Let p ∈ V (F̄ ) be a torsion point that is not contained in any translate of a positive-
dimensional abelian subvariety of AF̄ that is contained in VF̄ , and let N denote the order of p.
We want to show that N is bounded from above as in the proposition.

Let Y ⊂ V be an equidimensional subvariety such that p ∈ Y (F̄ ) and Y is a union of
irreducible components of V . For d ∈ N fixed and t ∈ Z, t ≥ 0, set (as in [Hin88])

Yt =
t⋂

j=0

[dj ]−1(Y ),

where [dj ] denotes the multiplication-by-dj morphism on A.
Suppose that d = ac for some a ∈ N that is coprime to N . Our hypothesis then implies that

there exists σa,N ∈ Gal(F̄ /F ) such that σa,N (q) = dq for all torsion points q ∈ A(F̄ ) of order N .
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Hence, we have that djp = σ◦ja,N (p) ∈ Y (F̄ ) for all j ∈ Z, j ≥ 0, and therefore p ∈ Yt(F̄ ) for all
t ∈ Z, t ≥ 0.

Suppose, furthermore, that dimp(Ys)F̄ = · · · = dimp(Ys+k)F̄ = m′ for some integers s ≥ 1,
k ≥ 0, and m′ ≥ 1. It follows that there exists an irreducible component C of (Ys)F̄ that contains
p, has dimension m′, and is contained in (Ys+k)F̄ . Hence, we have C ′ = [dk](C) ⊂ (Ys)F̄ . Since
p′ = dkp = σ◦ka,N (p) is a Galois conjugate of p over F , we have that dimp′(Ys)F̄ = dimp(Ys)F̄ .
Therefore C ′ is an irreducible component of (Ys)F̄ . We deduce from Theorems 2.2 and 2.3 that

deg[dk](C) = degC ′ ≤ (deg Y )
(

max
j=1,...,s

deg[dj ]−1(Y )
)dimY−m′

. (3.1)

Recall that Stab(C,AF̄ ) denotes the stabilizer of C in AF̄ . As p is not contained in a
translate of a positive-dimensional abelian subvariety of AF̄ that is contained in YF̄ , we have
dim Stab(C,AF̄ ) = 0. Since L is symmetric, we have [d]∗L 	 L⊗d2 by Proposition 8.7.1 in [BG06].
Hence, we can deduce from the projection formula that

deg[dj ](C) = d2jm′ |Stab(C,AF̄ ) ∩ ker[dj ]|−1(degC)

as well as

deg[dj ]−1(Y ) = (deg Y )d2j(g−dimY ) (3.2)

for j ∈ Z, j ≥ 0.
Combining these two equations with (3.1), we deduce that

d2km′ |Stab(C,AF̄ )|−1(degC) ≤ (deg Y )dimY−m′+1d2s(g−dimY )(dimY−m′). (3.3)

Since C is an irreducible component of
⋂s
j=0 ([dj ]−1(Y ))F̄ , Theorems 2.2 and 2.3 then imply

together with (3.2) that

degC ≤ (deg Y )
(

max
j=1,...,s

deg[dj ]−1(Y )
)dimY−m′

= (deg Y )dimY−m′+1d2s(g−dimY )(dimY−m′). (3.4)

Now Stab(C,AF̄ ) is a union of irreducible components of

(C − x1) ∩ · · · ∩ (C − xm′+1)

for well-chosen x1, . . . , xm′+1 ∈ C(F̄ ). Theorem 2.1 implies that

|Stab(C,AF̄ )| = deg Stab(C,AF̄ ) ≤ (degC)m
′+1.

We deduce from this together with (3.3) and (3.4) that

d2km′ ≤ (degC)m
′
(deg Y )dimY−m′+1d2s(g−dimY )(dimY−m′)

≤ (deg Y )(dimY−m′+1)(m′+1)d2s(g−dimY )(dimY−m′)(m′+1).

We now assume that

d2(g−dimY ) ≥ deg Y. (3.5)

Note that g − dimY > 0 as otherwise p would be contained in a translate of a positive-
dimensional abelian subvariety of AF̄ that is contained in YF̄ .
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It then follows that

k ≤ (s+ 1)(dimY −m′ + 1)(m′ + 1)(g − dimY )
m′ ≤ (s+ 1)Ξ

m′ ,

where

Ξ =
(

(dimY + 2)2(g − dimY )
4

)
.

Induction now shows that dimp(Yt)F̄ = 0 for some t ≤ t0, where t0 is effective and depends only
on g and dimY .

The same holds for any conjugate of p over F . By our hypothesis, there are at least
φ(N)/(2cω(N)) such conjugates. We therefore get a lower bound

deg Yt ≥
φ(N)
2cω(N)

. (3.6)

Applying (3.2) together with Theorem 2.1 and t ≤ t0 to bound the degree of Yt =⋂t
j=0 [dj ]−1(Y ), we obtain an upper bound

deg Yt ≤ (deg Y )t0+1d(g−dimY )t0(t0+1) ≤ d(g−dimY )(t0+1)(t0+2). (3.7)

By Théorème 11 in [Rob83], we have ω(N) ≤ (7 logN)/(5 log logN) if N ≥ 3. We can also
estimate

φ(N) = N
∏
p′|N

p′ − 1
p′

≥ N
ω(N)+1∏
j=2

j − 1
j

=
N

ω(N) + 1
≥ N

2 logN + 1
,

where the product runs over all primes p′ ∈ N that divide N . For N ≥ 3, it then follows from
combining this with (3.6) and (3.7) that

N1−(7 log c)/(5 log logN)

2(2 logN + 1)
≤ d(g−dimY )(t0+1)(t0+2).

If N > exp(c8/5) ≥ 2, which we will assume from now on, this implies that

N1/8

2(2 logN + 1)
≤ d(g−dimY )(t0+1)(t0+2).

As the function x �→ x1/16 · (2(2 log x+ 1))−1 (x ≥ 1) attains its minimum at x = exp(31/2), we
deduce that

exp(31/32)
64

N1/16 ≤ d(g−dimY )(t0+1)(t0+2).

We want to obtain a contradiction for N large enough, but we have to make sure that (3.5) is
satisfied. Recall that d = ac for a ∈ N coprime to N and set b = c(g − dimY ) > 0. In order to
obtain a contradiction, it suffices to find a ∈ N, coprime to N , such that

(deg Y )(t0+1)(t0+2)/2 ≤ ab(t0+1)(t0+2) <
N1/16

25
.

Simplifying the problem, we may look for a prime number a that does not divide N and satisfies

(deg Y )1/(2b) ≤ a <
(
N1/16

25

)1/(b(t0+1)(t0+2))

.
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By Corollary 1 of Theorem 2 in [RS62], this is possible if N ≥ (25× 17b(t0+1)(t0+2))16, which we
will assume from now on, and

ω(N) + (deg Y )1/(2b) <
(
N1/16

25

)1/(b(t0+1)(t0+2)) b(t0 + 1)(t0 + 2)
(logN)/16− log 25

,

which is a consequence of the simpler inequality

logN
16

(ω(N) + (deg Y )1/(2b)) <
(
N1/16

25

)1/(b(t0+1)(t0+2))

.

Thanks to the above bound for ω(N) and N ≥ 2516 ≥ ee, this inequality in turn follows from

(logN)2(deg Y )1/(2b) <
(
N1/16

25

)1/(b(t0+1)(t0+2))

.

Recall that Y is a union of irreducible components of V and therefore deg Y ≤ deg V .
Furthermore, if ε ∈ (0, 1) and N ≥ exp(1/ε2) ≥ ε−(1/ε), then we have

logN ≤ N ε

ε
≤ N2ε.

This implies that we get a contradiction as soon as N ≥ exp((128b(t0 + 1)(t0 + 2))2) and

N1/(32b(t0+1)(t0+2))(deg V )1/(2b) <
(
N1/16

25

)1/(b(t0+1)(t0+2))

.

This last inequality is equivalent to N > 2532(deg V )16(t0+1)(t0+2).
Since dimY ∈ {0, . . . , g}, all this together implies that there exists an effective constant γ(g),

depending only on g, such that we get a contradiction if N > max{exp(γ(g)c2), (deg V )γ(g)}.
Thus, we have established the proposition. �

We can now prove Proposition 3.1.

Proof of Proposition 3.1. Let x ∈ V(Q̄) be a torsion point such that the fiber Aπ(x) is isogenous
to A0. By Theorem 2.3, the Zariski closure of V in PR1R2+R1+R2

Q̄
is cut out by homogeneous forms

of degree at most degV with coefficients in K. By specialization, it follows that Vπ(x) is cut out
in PR2

Q̄
by forms of degree at most degV with coefficients in K(π(x)). We can find X ⊂ Vπ(x)

equal to a union of irreducible components of Vπ(x) such that x ∈ X(Q̄) and X is defined over
K(π(x)) and irreducible as a variety over K(π(x)). By Theorem 2.2 (over the field K(π(x))),
the degree degX of X as a subvariety of PR2

Q̄
is bounded from above by (degV)R2 .

Suppose now that x does not satisfy condition (1) in Proposition 3.1. Let B ∈ N be the
constant provided by Lemma 3.2. We apply Proposition 3.3 with F = K(π(x)), F̄ = Q̄, A =
Aπ(x), c = B, and V = X. It follows that x satisfies condition (2) in Proposition 3.1. �

The next lemma will give us everything we need to prove Theorem 1.2.

Lemma 3.4. Let V ⊂ A be an irreducible subvariety that dominates S. Suppose that all abelian
subvarieties of Aξ are defined over Q̄(S) and that the stabilizer Stab(Vξ,Aξ) is finite. Then the
union of all translates of positive-dimensional abelian subvarieties of As that are contained in
Vs for some s ∈ S(Q̄) is contained in a proper subvariety of V.

The proof of Lemma 3.4 runs along similar lines to the proof of Lemma 3.4 in [Dil20]. The
difference is that the base variety S is now allowed to have dimension greater than 1. Note that
Lemma 3.4 could also be obtained as a consequence of the much more general Theorem 12.2
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in [Gao17b], at least for A contained in a suitable universal family and then for arbitrary A as
well. However, we prefer to give a direct proof that does not make use of the language of mixed
Shimura varieties.

Proof. We first perform a quasi-finite dominant base change S′ → S such that S′ is smooth
and irreducible and every irreducible component of Vξ is defined over Q̄(S′) ⊂ Q̄(S). Set A′ =
A×S S′. Let V ′ be an irreducible component of V ×S S′ ↪→ A′ that dominates S′ (and hence
dominates V).

If ζ is a geometric generic point of S′, then Stab(V ′ζ ,A′
ζ) must be finite. Otherwise it would

contain a positive-dimensional abelian subvariety of A′
ζ , which we identify with Aξ, but as

all abelian subvarieties of A′
ζ are defined over Q̄(S), this abelian subvariety would be contained

in the stabilizer of Vξ, which could therefore not be finite. Furthermore, the generic fiber of V ′
is irreducible by § 2.1.8 of Chapter 0 of [EGA1] and hence also V ′ζ is irreducible by our choice
of S′.

If the union of all translates of positive-dimensional abelian subvarieties of As that are
contained in Vs for some s ∈ S(Q̄) is Zariski dense in V, then the union of all translates of
positive-dimensional abelian subvarieties of A′

s′ that are contained in V ′s′ for some s′ ∈ S′(Q̄)
is Zariski dense in V ′. So we can replace A and V by A′ and V ′ and assume without loss of
generality that Vξ is irreducible.

LetN ∈ N be a natural number that is larger than the order of Stab(Vξ,Aξ). There are finitely
many irreducible subvarieties T1, . . . , TR ⊂ A such that each Ti dominates S and the union of the
Ti (i = 1, . . . , R) is equal to the set of torsion points of order N on A: first of all, every irreducible
component of the pre-image of ε(S) under the multiplication-by-N morphism [N ] dominates S
by Proposition 2.3.4(iii) in [EGA4] since [N ] is étale, so flat (see [Mil86, Proposition 20.7]).
Therefore, every irreducible component of [N ]−1(ε(S)) is of dimension dimS. The same holds
for any M ∈ N that divides N . Furthermore, [N ]−1(ε(S)) is smooth as [N ] is étale and S is
smooth. Hence, no two distinct irreducible components of [N ]−1(ε(S)) intersect each other. So
every irreducible component of [N ]−1(ε(S)) is either contained in

⋃
M |N,M �=N [M ]−1(ε(S)) or

disjoint from it and our claim follows.
We now consider Wi = V ∩ (V + Ti) for i ∈ {1, . . . , R}. If this variety were equal to V, then

we would have V ⊂ V + Ti and so Vξ ⊂ Vξ + (Ti)ξ. For dimension reasons and thanks to the
irreducibility of Vξ, we would get that Vξ = t+ Vξ for a torsion point t ∈ Aξ(Q̄(S)) of order N .
This contradicts our choice of N . So Wi � V.

On the other hand, each positive-dimensional abelian variety contains a point of order N , so
the union of all translates of positive-dimensional abelian subvarieties of As that are contained
in Vs for some s ∈ S(Q̄) is contained in

⋃R
i=1Wi. As every Wi is a proper closed subset of V and

V is irreducible, the lemma follows. �
We now prove Theorem 1.2.

Proof of Theorem 1.2. Recall that we can and do assume without loss of generality that S is
affine and ρ is quasi-finite. After a quasi-finite dominant base change S′ → S with S′ affine and
irreducible and after replacing A by A×S S′ and V by an irreducible component of V ×S S′ that
dominates S′ (and hence V), we can furthermore assume that all abelian subvarieties of Aξ are
defined over Q̄(S). Here and in what follows, it might sometimes be necessary to replace the field
of definition K by a finite extension of K, and we will do this without further comment. Note
that the principal polarization of A yields a principal polarization of A×S S′, that the morphism
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S′ → Ag factors through S → Ag, and that we can construct a quasi-projective immersion of
A×S S′ with the same properties as that of A.

Let A′ be the irreducible component of Stab(Vξ,Aξ) that contains 0Aξ
. Then A′ is an abelian

subvariety of Aξ. We can now use the Poincaré reducibility theorem to deduce that there exists
another abelian subvariety A′′ of Aξ such that the natural morphism A′ ×

Q̄(S)
A′′ → Aξ given

by restricting the addition morphism Aξ ×Q̄(S)
Aξ → Aξ is an isogeny. Note that this morphism

as well as A′ and A′′ are defined over Q̄(S).
By ‘spreading out’ (see Theorem 3.2.1 and Table 1 on pp. 306–307 in [Poo17]), we can find

abelian schemes A′ and A′′ over an open Zariski dense subset U of S with geometric generic fibers
A′ and A′′ and a morphism α : A′ ×U A′′ → A×S U that extends the isogeny A′ ×

Q̄(S)
A′′ → Aξ.

We can assume without loss of generality that S = U .
As α is dominant, proper, and maps the image of the zero section to the image of the zero

section, it follows that α restricts to an isogeny on each fiber. It suffices to prove that the
conclusion of the theorem holds for one of the irreducible components of α−1(V) that dominate
V, which we call V ′, inside the family A′ ×S A′′.

By construction, the geometric generic fiber V ′ξ is equal to A′
ξ ×Q̄(S)

V ′′ξ , where V ′′ is the image
of V ′ under the projection to A′′, and hence V ′ = A′ ×S V ′′. Note that the projection morphism
is proper, so V ′′ is closed in A′′.

Let ε′ : S → A′ denote the zero section of A′ and set V ′′′ = α(ε′(S)×S V ′′) ⊂ A. By construc-
tion, the stabilizer Stab(V ′′′ξ ,Aξ) is finite and the set of torsion points x ∈ V ′′′(Q̄) such that Aπ(x)

is isogenous to A0 is Zariski dense in V ′′′.
Combining Proposition 3.1 with Lemma 3.4 shows that V ′′′ must be equal to an irreducible

component of [M ]−1(ε(S)) for someM ∈ N, where [M ] : A → A denotes the multiplication-by-M
morphism. The theorem follows. �

4. Explicit results in the Legendre family: curves

Recall that Y (2) = A1
Q\{0, 1} and that E ↪→ Y (2)×Q P2

Q ⊂ P1
Q ×Q P2

Q is the Legendre family of
elliptic curves over Y (2) defined by the equation Y 2Z = X(X − Z)(X − λZ), where λ is the
affine coordinate on Y (2) and [X : Y : Z] are homogeneous projective coordinates on P2

Q. Both
Y (2) and E are varieties over Q. There is a natural surjective morphism π : E → Y (2). The
j-invariant defines a morphism j : Y (2)→ A1

Q.
In this section we will prove fully explicit results on ‘Manin–Mumford with isogenies’ and

‘Mordell–Lang with isogenies’ for a curve in the Legendre family in the case where everything is
defined over a number field (or over Q) and every irreducible component of the curve dominates
Y (2). Our results also have implications for the case of a curve in an arbitrary fibered power of
the Legendre family since we can project onto each factor of the fibered power. We first prove
the following useful lemma, a more explicit and precise version of Lemma 3.2.

Lemma 4.1. Let K be a number field with a fixed algebraic closure K̄. Let E0 be an elliptic
curve, defined over K. Let c = c(E0/K) be the ‘Serre constant’, that is, the smallest natural
number c such that, for any a ∈ Ẑ∗, there is a τa ∈ Gal(K̄/K) that acts on the torsion of (E0)K̄
as multiplication by ac. Then for any a ∈ Ẑ∗, there is a σa ∈ Gal(K̄/K) such that, for every
s ∈ Y (2)(K̄) such that Es is isogenous to (E0)K̄ , σa fixes s, fixes every isogeny from (E0)K̄ to
Es, and acts on the torsion of Es as multiplication by a2c. More precisely, if σ ∈ Gal(K̄/K) acts
on the torsion of (E0)K̄ as multiplication by b ∈ Ẑ∗, then, for every s ∈ Y (2)(K̄) such that Es is
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isogenous to (E0)K̄ , σ◦2 fixes s, fixes every isogeny from (E0)K̄ to Es, and acts on the torsion of
Es as multiplication by b2.

Proof. Suppose that σ ∈ Gal(K̄/K) acts as a homothety on the torsion of (E0)K̄ and let s ∈
Y (2)(K̄) be such that Es is isogenous to (E0)K̄ . Let ϕ : (E0)K̄ → Es be any isogeny.

Since σ acts as a homothety on the torsion of (E0)K̄ , it fixes kerϕ. By Theorem 5.13 in [Mil17],
there exists an isomorphism ψ : Es → Eσ(s) such that σ(ϕ) = ψ ◦ ϕ. Let p0 ∈ (Es)tors be a point
of order 2 and let q0 ∈ (E0)tors be a pre-image of p0 under ϕ. Since σ acts as a homothety on the
torsion of (E0)K̄ , we have σ(q0) = b0q0 for some odd b0 ∈ N. Since p0 has order 2, it follows that

ψ(p0) = ψ(b0p0) = (ψ ◦ ϕ)(b0q0) = σ(ϕ)(σ(q0)) = σ(p0).

Because of the nature of the Legendre family, we deduce that σ(s) = s, which implies that ψ
is an automorphism of Es that restricts to the identity on the 2-torsion of Es. It follows that
ψ = ± idEs and σ◦2(ϕ) = ϕ.

Suppose now that σ acts on the torsion of (E0)K̄ as multiplication by b ∈ Ẑ∗ and let p ∈
(Es)tors. There exists q ∈ (E0)tors such that ϕ(q) = p. By the above, we know that σ◦2(s) = s,
σ◦2(ϕ) = ϕ, and

σ◦2(p) = σ◦2(ϕ)(σ◦2(q))

= ϕ(b2q) = b2ϕ(q) = b2p.

The lemma follows. �
The following theorem is due to Lombardo in the non-CM case and Bourdon and Clark in

the CM case:

Theorem 4.2 (Lombardo, Bourdon–Clark). Let K be a number field with a fixed algebraic
closure K̄. Let E0 be an elliptic curve, defined over K, let j(E0) ∈ K denote its j-invariant,
and let h(E0) denote its stable Faltings height. The Serre constant c = c(E0/K) as defined in
Lemma 4.1 satisfies c ≤ C, where

C =

{
exp(1.9× 1010)([K : Q] max{1, h(E0), log[K : Q]})12 395 if E0 does not have CM,

6[K : Q(j(E0))] if E0 has CM.

More precisely, there is a subgroup G ⊂ Ẑ∗ of index at most C such that for every a ∈ G, there
exists a σ ∈ Gal(K̄/K) that acts on the torsion of (E0)K̄ as multiplication by a.

In the CM case, Eckstein had earlier obtained the weaker bound 48[K : Q] for the Serre
constant (Théorème 7 in [Eck05]), which Lombardo improved to 6[K : Q] in Theorem 6.6
in [Lom17]. As Bourdon and Clark remark, their result is a consequence of earlier work of
Stevenhagen [Ste01].

Proof. In the non-CM case, the theorem follows from the improved version of Corollary 9.3
in [Lom15] that is mentioned in Remark 9.4 in the same paper. The result by Gaudron and
Rémond that is needed for this improvement and that was still unpublished when [Lom15]
appeared is Corollaire 17.5 in [GR20].

In the CM case, let L ⊂ K̄ denote the imaginary quadratic field such that (End(E0)K̄)⊗Z

Q 	 L. Since [KL : L(j(E0))] ≤ [K : Q(j(E0))], the theorem follows from Corollary 1.5 in [BC20].
�

We can now prove Theorem 1.3, an explicit instance of Theorem 1.2.
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Proof of Theorem 1.3. Let p ∈ C(K̄) be torsion on Eπ(p) such that Eπ(p) is isogenous to (E0)K̄ .
Note that K(π(p)) ⊂ K(p) ⊂ K̄. We will obtain a lower and an upper bound for the degree
[K(p) : K(π(p))] that are incompatible with each other if the order of p is sufficiently large.

For the upper bound, note that by our hypothesis {p} ⊂ Eπ(p) ⊂ {π(p)} ×K̄ P2
K̄

is an irre-
ducible component of the intersection of the zero loci of Y 2Z −X(X − Z)(X − π(p)Z) and some
homogeneous polynomial of degree at most D2 in X,Y, Z with coefficients in K(π(p)). It follows
from Theorem 2.1 that

[K(p) : K(π(p))] ≤ 3D2. (4.1)

For the lower bound, let G ⊂ Ẑ∗ be the subgroup furnished by Theorem 4.2. By Theorem 4.2,
the index of G in Ẑ∗ is less than or equal to C for C as in Theorem 1.3. By Theorem 4.2 together
with Lemma 4.1, for any a ∈ G, there is a σa ∈ Gal(K̄/K) that fixes π(p) and acts on the torsion
of Eπ(p) as multiplication by a2.

Let N be the order of p. We can suppose that N ≥ 3. We obtain a first lower bound

[K(p) : K(π(p))] ≥ |Gp| ≥ φ(N)
2ω(N)(2C)

.

By Théorème 11 in [Rob83], we have ω(N) ≤ (7 logN)/(5 log logN). We can also estimate

φ(N) = N
∏
p′|N

p′ − 1
p′

≥ N
ω(N)+1∏
j=2

j − 1
j

=
N

ω(N) + 1
≥ N

2 logN + 1
,

where the product runs over all primes p′ ∈ N that divide N . It follows that

[K(p) : K(π(p))] ≥ N1−(7 log 2)/(5 log logN)

2C(2 logN + 1)
. (4.2)

We now assume that N ≥ exp(218/5) ≥ exp(12). The function x �→ x13/36 · (2(2 log x+ 1))−1

is monotonically increasing for x ≥ exp(59/26). It follows that

N13/36

2(2 logN + 1)
≥ exp(13/3)

50
> 1.

Together with N ≥ exp(218/5) and (4.2), this implies that

[K(p) : K(π(p))] ≥ N11/18

2C(2 logN + 1)
> C−1N1/4.

Combining this bound with (4.1), we deduce that

N ≤ (3CD2)4. �
We next prove Theorem 1.4.

Proof of Theorem 1.4. Let p ∈ C(Q̄) such that p = ϕ(q) for some isogeny ϕ : (E0)Q̄ → Eπ(p) with
cyclic kernel and a non-torsion point q ∈ E0(Q̄) in the divisible hull of E0(Q). Let N be the
smallest natural number such that Nq ∈ E0(Q) and let N1 be the smallest natural number such
that N1q ∈ E0(Q) + (E0)tors. Let qr ∈ E0(Q) and qt ∈ (E0)tors be such that N1q = qr + qt. Let
N2 denote the order of qt. Since N divides N1N2, it suffices to bound N1 as well as degϕ and N2.

Set E0(Q)tors = E0(Q) ∩ (E0)tors. Let m be the largest natural number such that the
class of qr in E0(Q)/E0(Q)tors is divisible by m. Let q̃r ∈ E0(Q) satisfy mq̃r − qr ∈
E0(Q)tors. If gcd(m,N1) > 1, then (N1 gcd(m,N1)−1)q ∈ E0(Q) + (E0)tors, a contradiction.
So gcd(m,N1) = 1.
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We choose q̃ ∈ E0(Q̄) such that N1q̃ = q̃r. It follows that q̃t := mq̃ − q lies in (E0)tors. By
Theorem 6.5 in [LT21b], an explicit version of Theorem 1.2 in [LT21a], we have

[Q(q̃, E0[M1]) : Q(E0[M1])] ≥ 2−126N2
1

for every natural number M1 that is divisible by N1. We can choose M1 so that it is divisible by
N1N2 as well as by 2 degϕ and the order of q̃t.

We then have Q(q̃, E0[M1]) ⊃ Q(q, E0[M1]) since mq̃ = q + q̃t and q̃t ∈ E0[M1]. But since
m and N1 are coprime and N1q̃ = q̃r ∈ E0(Q), the two fields are equal. We deduce that the
extension Q(q, E0[M1])/Q(E0[M1]) is Galois and that

[Q(q, E0[M1]) : Q(E0[M1])] ≥ 2−126N2
1 . (4.3)

There is an injective group homomorphism ρ : Gal(Q(q, E0[M1])/Q(E0[M1])) ↪→ E0[N ] 	
(Z/NZ)2 given by σ �→ σ(q)− q. Therefore, the Galois group Gal(Q(q, E0[M1])/Q(E0[M1])) is
isomorphic to a product of two cyclic groups. Its image under ρ is even contained in E0[N1] since
qt ∈ E0[M1] and therefore

N1(σ(q)− q) = σ(N1q)−N1q = σ(qr + qt)−N1q = qr + qt −N1q = 0E0

for all σ ∈ Gal(Q(q, E0[M1])/Q(E0[M1])).
Any σ ∈ Gal(Q̄/Q(E0[M1])) fixes the set {u ∈ E0(Q̄); 2ϕ(u) = 0Eπ(p)

} pointwise and hence
τ = σ◦2 fixes π(p) as well as ϕ (cf. the proof of Lemma 4.1). Furthermore, we have τ(p) = p if
and only if ϕ(τ(q)) = ϕ(q) if and only if τ |Q(q,E0[M1]) is mapped into kerϕ ∩ E0[N1] by ρ. Since
kerϕ is cyclic, we find that

[Q(p) : Q(π(p))] ≥ 2−22−126|kerϕ ∩ E0[N1]|−1N2
1

≥ 2−128N1.

On the other hand, we have

[Q(p) : Q(π(p))] ≤ 3D2 (4.4)

as in the proof of Theorem 1.3. This yields that

N1 ≤ 3× 2128 ×D2 ≤ 2130D2. (4.5)

We proceed with bounding degϕ. Since each fiber Es (s ∈ Y (2)(Q̄)) is canonically embedded
in P2

Q̄
by means of a Weierstrass model, we get an associated canonical height ĥEs : Es(Q̄)→

[0,∞) on each fiber. We define a canonical height ĥE : E(Q̄)→ [0,∞) by ĥE(p′) = ĥEπ(p′)(p
′) for

p′ ∈ E(Q̄).
We will bound degϕ by obtaining a lower and an upper bound for ĥE(p) that are incompatible

with each other for degϕ large enough. Let ĥE0 denote the canonical height on E0(Q̄) induced
by some Weierstrass model. The lower bound is easy: it follows from standard properties of the
canonical height that

ĥE(p) = (degϕ)ĥE0(q) = N−2
1 (degϕ)ĥE0(N1q) = N−2

1 (degϕ)ĥE0(qr) ≥ N−2
1 (degϕ)h0, (4.6)

where

h0 = min
q′∈E0(Q)\E0(Q)tors

ĥE0(q
′) > 0.

For the upper bound, suppose that p maps to [x : y : z] ∈ P2(Q̄) under the composition ι of
the immersion E ↪→ P1

Q ×Q P2
Q with the projection to the second factor. Since p is non-torsion,
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we have z �= 0 and can assume without loss of generality that z = 1. Set λ = π(p) ∈ Y (2)(Q̄) and
ιλ = ιQ̄|Eλ

.
It follows from the proof of Lemma 4.4 in [Hab13] that

h(ιλ(2p′)) ≤ 4h(ιλ(p′)) + 3h(λ) + log 72

for every p′ ∈ Eλ(Q̄), where h denotes the height on P2(Q̄) and P1(Q̄) ⊃ Y (2)(Q̄). This implies
that

ĥE(p) = lim
n→∞

h(ιλ(2np))
4n

≤ h([x : y : 1]) +
1
3
(3h(λ) + log 72) ≤ h([x : y : 1]) + 3 max{1, h(λ)}.

(4.7)
Let P ((U, V ), (X,Y, Z)) ∈ Q[U, V,X, Y, Z] be one of the bihomogeneous polynomials of bide-

gree at most (D1, D2) and height at most H defining C. Set Q(X,Y, Z) = P ((λ, 1), (X,Y, Z)),
a homogeneous polynomial of degree at most D2. By hypothesis, we can choose P such that
Q(X,Y, Z) and F (X,Y, Z) = Y 2Z −X(X − Z)(X − λZ) have at most finitely many common
zeros in P2(Q̄), among them [x : y : 1].

In [Phi95], Philippon defines the (non-negative) height h(V ) of an irreducible subvariety V of
projective space over Q̄ (by Proposition 1.28 in [DKS13], the height is independent of the choice
of number field over which V is defined). If hRém denotes the height of a multihomogeneous form
with coefficients in Q̄ as defined in [Rém01], then it follows from the arithmetic Bézout theorem
in the form of Théorème 3.4 and Corollaire 3.6 in [Rém01] that

h({[x : y : 1]}) ≤ D2

(
hRém(F ) +

3
2

)
+ 3

(
hRém(Q) +

D2

2
+
D2

2
log 2

)
.

Since hRém(G) ≤ h(G) + log
(
deg(G)+2

2

)
+ 3

4 deg(G) ≤ h(G) + 9
4 deg(G) forG ∈ {F,Q}, where deg

denotes the degree of a homogeneous form, we deduce that

h({[x : y : 1]}) ≤ 3h(Q) +D2h(F ) + 18D2.

The height of Q is bounded from above by log(D1 + 1) +H+D1h(λ), while the height of F
is bounded from above by 2 max{1, h(λ)}. Using that h(p′) ≤ h({p′}) for any Q̄-point p′ of
projective space by the computation at the bottom of p. 96 of [Rém01], we deduce that

h([x : y : 1]) ≤ 3h(Q) +D2h(F ) + 18D2 ≤ 20((D1 +D2) max{1, h(λ)}+H). (4.8)

We proceed with bounding h(λ). Set j = j(Eλ). From the equality

λ6 = 1
256jλ

2(λ− 1)2 + 3λ5 − 6λ4 + 7λ3 − 6λ2 + 3λ− 1

we can deduce the rather crude bound

h(λ) ≤ h(j) + log 256 + log 30.

It then follows from Theorem 1.1 in [Paz19] that

h(λ) ≤ h(j(E0)) + 19 + 12 log degϕ. (4.9)

Combining (4.8) and (4.9) yields

h([x : y : 1]) ≤ 400((D1 +D2) max{1, h(j(E0))}+H+ (D1 +D2) log degϕ). (4.10)

Combining (4.6), (4.7), (4.9), and (4.10) and using D1 +D2 ≥ 2 yields

N−2
1 (degϕ)h0 ≤ 430((D1 +D2) max{1, h(j(E0))}+H+ (D1 +D2) log degϕ). (4.11)
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Note that the inequality A3 degϕ ≤ A1 +A2 log degϕ (with A1, A2, A3 > 0) implies that

degϕ ≤ max
{

2A1

A3
,
4A2

2

A2
3

}
.

In order to show this, we may assume A3 = 1. Then if degϕ ≥ 2A1 we have degϕ ≤
2A2 log degϕ ≤ 2A2(degϕ)1/e and hence 2A2 ≥ 1 and degϕ ≤ (2A2)e/(e−1) ≤ 4A2

2.
We therefore obtain from (4.11) that

degϕ ≤ 222 max{D1, D2,H}2 max{1, h(j(E0))}max{1, h−1
0 }2N4

1 . (4.12)

It follows from Lemmas 2.6 and 3.2 in [Paz19] that

h(j(E0)) ≤ 12h(E0) + 25 + 6 log(1 + h(j(E0))).

Since 12 log(1 + u) ≤ u for u ∈ [50,∞), this implies that

max{1, h(j(E0))} ≤ 74 max{1, h(E0)}.
We deduce from this together with the upper bound for h−1

0 in terms of h(E0) from Théorème 1.3
in [BG19], (4.5), and (4.12) that

degϕ ≤ max{2, h(E0)}12 698 max{D1, D2,H}6. (4.13)

It remains to bound N2. Recall that N1q = qr + qt with qr ∈ E0(Q) and qt ∈ (E0)tors of order
N2. Let G ⊂ Ẑ∗ be the subgroup furnished by Theorem 4.2 and let C be as in Theorem 4.2. By
Theorem 4.2, the index of G in Ẑ∗ is bounded by C. We deduce from Theorem 4.2 together with
Lemma 4.1 that for each a ∈ G, there is σ ∈ Gal(Q̄/Q) such that σ(π(p)) = π(p) and

σ(N1p) = σ(ϕ(qr + qt)) = ϕ(qr + σ(qt))

= ϕ(qr) + σ(ϕ(qt)) = ϕ(qr) + a2ϕ(qt).

Let N3 denote the order of ϕ(qt). It follows that

[Q(N1p) : Q(π(p))] ≥ φ(N3)
2ω(N3)(2C)

.

If N3 ≥ 3, then this implies, as in the proof of Theorem 1.3, that

[Q(N1p) : Q(π(p))] ≥ N
1−(7 log 2)/(5 log logN3)
3

2C(2 logN3 + 1)
.

On the other hand, we have

[Q(N1p) : Q(π(p))] ≤ [Q(p) : Q(π(p))] ≤ 3D2

by (4.4). Suppose that N3 ≥ exp(1.9× 1010). It follows that

3D2 ≥
N

1−(7 log 2)/(5 log(1.9×1010))
3

2C(2 logN3 + 1)
≥ N

19/20
3

2C(2 logN3 + 1)
.

The function x �→ x1/20 · (2(2 log x+ 1))−1 is monotonically increasing for x ≥ exp(39/2) and its
value at exp(1.9× 1010) is greater than 1. We deduce that

N
19/20
3

2C(2 logN3 + 1)
≥ N

9/10
3

C
,

which implies together with the above that

N3 ≤ max{(3CD2)10/9, exp(1.9× 1010)}.
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Thanks to Theorem 4.2, we obtain that

N3 ≤ exp(2.12× 1010) max{1, h(E0)}13 773D2
2.

Since N ≤ N1N2 and N2 ≤ N3(degϕ), we now obtain the desired bound for N from (4.5) and
(4.13). �

5. Explicit results in the Legendre family: varieties

In this section we will prove Theorem 1.5. Recall that E(g) denotes the g-fold fibered power
of the Legendre family, which admits a natural immersion into P1

Q ×Q (P2
Q)g (g ∈ N). Unless

explicitly stated otherwise, degrees of subvarieties of (base changes of) E(g) will always be taken
with respect to (base changes of) this immersion. The structural morphism of E(g) is denoted by
π : E(g) → Y (2) = A1

Q\{0, 1}. By abuse of notation, we denote the base change of π to a number
field K by π as well.

First, we prove a series of preliminary lemmas about elliptic curves and the Legendre family,
concerning the degree of abelian subvarieties of powers of elliptic curves and the behaviour of
the degree under homomorphisms.

Lemma 5.1. Let K be a field with a fixed algebraic closure K̄ and let E ⊂ P2
K be a Weierstrass

model of an elliptic curve with EndEK̄ 	 Z. Let g ∈ N and let B be an algebraic subgroup of
Eg ⊂ (P2

K)g of codimension k > 0. Then there exists an effective constant c(g), depending only
on g, such that the following hold:

(1) if B is the kernel of a homomorphism from Eg to Ek induced by a k × g matrix MB with
integer entries, then

degB = (g − k)!3g−k
∑
Δ

Δ2,

where the sum runs over the maximal minors of MB;
(2) if B is irreducible, then B is the kernel of a homomorphism from Eg to Ek induced by a

k × g matrix MB with integer entries whose absolute value is bounded by c(g)
√

degB.

Proof. For (1), let li denote the class modulo rational equivalence of the pull-back of a line in
P2
K to (P2

K)g under projection to the ith factor (i = 1, . . . , g). If [B] denotes the class modulo
rational equivalence of B ⊂ (P2

K)g, then [B] · l·2i = 0 for all i and so

degB = [B] · (l1 + · · ·+ lg)·(g−k) = (g − k)!
∑

I⊂{1,...,g},|I|=g−k
[B] ·

∏
i∈I

li.

If πI : Eg → Eg−k denotes the projection associated to I ⊂ {1, . . . , g}, then the projection
formula implies that

[B] ·
∏
i∈I

li =

{
3g−k#(kerπI |B) if πI |B is finite,
0 otherwise.

The formula from the lemma now follows.
For (2), set

Λ = {(a1, . . . , ag) ∈ Zg; a1x1 + · · ·+ agxg = 0E for all (x1, . . . , xg) ∈ B(K̄)}.

Since EndEK̄ 	 Z, the free abelian group Λ has rank k. Since B is irreducible, we have
(Q · Λ) ∩ Zg = Λ. Choosing a basis of Λ yields the rows of a k × g matrix MB such that B
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is an irreducible component of the kernel of the homomorphism from Eg to Ek induced by MB.
Since (Q · Λ) ∩ Zg = Λ, the rows of MB can be completed to a basis of Zg. It follows that the
kernel of the homomorphism induced by MB is isomorphic to Eg−k and hence equal to B.

Let D denote the (k-dimensional) volume of the parallelotope spanned in R · Λ by the rows
of MB. Let M t

B denote the transpose of MB. Then D2 is equal to the Gram determinant
det(MBM

t
B). The Cauchy–Binet formula then implies together with part (1) that

D =
√∑

Δ

Δ2 ≤
√

degB,

where the sum runs over the maximal minors of MB.
Let λi denote the ith successive minimum of Λ in R · Λ with respect to the distance function

induced by the Euclidean distance on Rg (i = 1, . . . , k). We have λi ≥ 1 for all i and therefore
Theorem V in § VIII.4.3 of [Cas97] implies that λi ≤ 2kν−1

k D for all i, where νk denotes the
volume of the unit ball in Rk.

By the corollary in § VIII.5.2 of [Cas97], we can then find a basis {v1, . . . , vk} of Λ such that
the Euclidean norm ‖vi‖ of vi satisfies

‖vi‖ ≤ k2kν−1
k D, i = 1, . . . , k.

Thus, we can choose MB such that all its entries are at most c(g)
√

degB in absolute value. The
lemma follows. �

The next lemma will be used to control the behaviour of the degree of subvarieties of fibered
powers of the Legendre family under homomorphisms.

Lemma 5.2. Let K be a field and let n ∈ Z. Then the following assertions hold.

(1) Let pi : E(3)
K → EK denote the canonical projections (i = 1, 2, 3) and let Γ ⊂ E(3)

K be the graph
of addition on EK such that (p1 + p2)|Γ = (p3)|Γ. Then Γ is an irreducible component of the

intersection in P1
K ×K (P2

K)3 of E(3)
K with the zero locus of a multihomogeneous polynomial

of multidegree (0, 1, 1, 1) with integer coefficients.

(2) Let pi : E(2)
K → EK denote the canonical projections (i = 1, 2), let [n] : EK → EK denote the

multiplication-by-n morphism, and let Γn ⊂ E(2)
K be the graph of [n] such that ([n] ◦ p1)|Γn =

(p2)|Γn . Then Γn is an irreducible component of the intersection in P1
K ×K (P2

K)2 of E(2)
K

with the zero locus of a multihomogeneous polynomial of multidegree (e, n2, 1) with rational
coefficients, where e ≤ n2.

Proof. We fix an algebraic closure K̄ of K.
For (1), if [Xi : Yi : Zi] are projective coordinates on the ith P2

K-factor (i = 1, 2, 3), then the
polynomial is equal to∣∣∣∣∣∣

X1 Y1 Z1

X2 Y2 Z2

X3 −Y3 Z3

∣∣∣∣∣∣ = X1Y2Z3 − Y1X2Z3 +X1Z2Y3 − Z1X2Y3 + Y1Z2X3 − Z1Y2X3.

For (2), let [Λ : M ] be projective coordinates on P1
K and let [Xi : Yi : Zi] be projective coordinates

on the ith P2
K-factor (i = 1, 2). If n = 0, the polynomial Z2 has the desired property. Hence, we

can assume without loss of generality that n �= 0. Since changing the sign of Y2 sends Γn to Γ−n,
we can even assume that n > 0.

We know that there exist polynomials An, Bn ∈ Q[X,Λ] such that for (λ, [x : y : 1]) ∈ E(K̄) ⊂
A1(K̄)× P2(K̄), we have Bn(x, λ) = 0 if and only if x is the abscissa of a non-zero torsion point
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of Eλ of order dividing n, and

[n](λ, [x : y : 1]) = (λ, [An(x, λ)/Bn(x, λ) : ∗ : 1])

if Bn(x, λ) �= 0. Furthermore, we have degX An = n2, degX Bn = n2 − 1, and An is monic as a
polynomial in X. For all of this, see [MZ13].

It follows that Γn is an irreducible component of the intersection in P1
K ×K (P2

K)2 of E(2)
K

with the zero locus of

Z2Ãn(X1, Z1,Λ,M)−X2B̃n(X1, Z1,Λ,M),

where

Ãn(X1, Z1,Λ,M) = Zd1M
eAn

(
X1

Z1
,

Λ
M

)
and

B̃n(X1, Z1,Λ,M) = Zd1M
eBn

(
X1

Z1
,

Λ
M

)
for d = max{degX An,degX Bn} = n2 and e = max{degΛAn,degΛBn}.

By Lemma 2.2 in [MZ13], we have Λn
2
An(Λ−1X,Λ−1) = An(X,Λ) and Λn

2−1Bn(Λ−1X,
Λ−1) = Bn(X,Λ). This implies that e ≤ n2. The lemma follows. �

The next lemma gives the promised control over the degree of images and pre-images of
subvarieties under homomorphisms between fibered powers of the Legendre family.

Lemma 5.3. Let K be a field and let g, k ∈ N. Let ψ : E(g)
K → E(k)

K be a homomorphism of abelian
schemes, defined by a k × g matrix

M =

⎛⎜⎝a1,1 · · · a1,g
...

...
ak,1 · · · ak,g

⎞⎟⎠
with integer coefficients.

Set

Π(M) =
k∏
i=1

g∏
j=1

max{1, |ai,j |}.

There exists an effective constant C(k, g), depending only on k and g, such that the following
assertions hold.

(1) Let V ⊂ E(g)
K be a subvariety. Then

degψ(V) ≤ C(k, g)Π(M)2(degV).

(2) Let W ⊂ E(k)
K be a subvariety. Then

degψ−1(W) ≤ C(k, g)Π(M)2(degW).

Proof. Let Γψ ⊂ E(g+k)
K ⊂ P1

K ×K (P2
K)g+k denote the graph of ψ. We first estimate deg Γψ.

Constants c1, c2, . . . will be effective and depend only on k and g.
For m ∈ N and an m-tuple I of distinct elements of {1, . . . , g + k(2g − 1)}, let pI :

E(g+k(2g−1))
K → E(m)

K denote the corresponding projection, where the order of the factors is given
by the order of I. As in Lemma 5.2, we write Γ for the graph of addition on EK and Γn for the
graph of multiplication by n on EK (n ∈ Z).
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If g ≥ 3, set

Γ̃ψ =
k⋂
i=1

g⋂
j=1

p−1
(j,k+gi+j)(Γai,j ) ∩

k⋂
i=1

p−1
(k+gi+1,k+gi+2,k+kg+(g−2)i+3)(Γ)

∩
k⋂
i=1

g−1⋂
j=3

p−1
(k+gi+j,k+kg+(g−2)i+j,k+kg+(g−2)i+j+1)(Γ) ∩

k⋂
i=1

p−1
(k+g(i+1),k+kg+(g−2)i+g,g+i)(Γ).

(5.1)

Then we have
Γψ = p(1,...,g+k)(Γ̃ψ). (5.2)

If g ∈ {1, 2}, then the same equality holds, but the definition of Γ̃ψ has to be slightly modified.
The degree of the zero locus in P1

K ×K (P2
K)g+k(2g−1) of a multihomogeneous polynomial of

multidegree (d0, d1, . . . , dg+k(2g−1)) is bounded from above by

c1(d0 + d1 + · · ·+ dg+k(2g−1)).

It then follows from Theorem 2.1 and Lemma 5.2 that the degree of the pre-image of Γai,j

under some projection is bounded by c2 max{1, a2
i,j}, whereas the degree of the pre-image of Γ

under some projection is bounded by c3. Together with (5.1) and Theorem 2.1, this implies that
deg Γ̃ψ ≤ c4Π(M)2. We deduce from (5.2) together with Lemma 2.4 that also deg Γψ ≤ c4Π(M)2.

We can assume without loss of generality that V and W are irreducible. We consider V ×K
(P2
K)k ⊂ P1

K ×K (P2
K)g+k and W ×K (P2

K)g ⊂ P1
K ×K (P2

K)g+k (with the appropriate ordering of
the factors). These varieties have degrees(

dimV + 2k
dimV, 2, 2, . . . , 2

)
degV ≤ c5 degV

and (
dimW + 2g

dimW, 2, 2, . . . , 2

)
degW ≤ c6 degW,

respectively. To obtain ψ(V) and ψ−1(W) respectively, we intersect those varieties with Γψ
and project to certain factors of the product. The lemma then follows from Theorem 2.1 and
Lemma 2.4. �

In the next lemma, we apply Lemma 5.3 to the special case of the addition morphism.

Lemma 5.4. Let K be a field and let g ∈ N. There exists an effective constant C(g), depending

only on g, such that the following holds: let V,W ⊂ E(g)
K be two subvarieties. Then

deg(V +W) ≤ C(g)(degV)(degW).

Proof. Let ψ : E(2g)
K → E(g)

K denote the addition morphism of E(g)
K . We have V +W = ψ(V ×Y (2)K

W), where we consider V ×Y (2)K
W ⊂ E(2g)

K with its reduced subscheme structure. We can assume
without loss of generality that V and W are irreducible. Now

V ×Y (2)K
W ↪→ V ×K W ⊂ E(g)

K ×K E
(g)
K ⊂ (P1

K ×K (P2
K)g)2.

The degree of V ×Y (2)K
W as a subvariety of E(2g)

K ⊂ P1
K ×K (P2

K)2g is bounded from above by
its degree as a subvariety of V ×K W ⊂ (P1

K ×K (P2
K)g)2 by Lemma 2.4.

Let Δ denote the pre-image in (P1
K ×K (P2

K)g)2 of the diagonal in (P1
K)2. Then V ×Y (2)K

W
is equal to the intersection (V ×K W) ∩Δ inside (P1

K ×K (P2
K)g)2. It follows from Theorem 2.1
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that the degree of V ×Y (2)K
W with respect to its immersion into (P1

K ×K (P2
K)g)2 is bounded

from above by

deg(V ×K W) · deg(Δ) =
(

dimV + dimW
dimV

)
(degV)(degW)(deg Δ).

The lemma now follows from V +W = ψ(V ×Y (2)K
W) and Lemma 5.3. �

We can now prove Theorem 1.5.

Proof of Theorem 1.5. Throughout the proof, we use constants c1, c2, . . . that are effective and
depend only on g. We induct on (g,dimV) with respect to the lexicographic order. We can
assume without loss of generality that V is irreducible (although not necessarily geometrically
irreducible). We proceed by distinguishing various cases.

Case 1: dimπ(V) = 0. Let p ∈ V(K̄) be torsion on Egπ(p) such that Eπ(p) is isogenous to (E0)K̄ .
Since V is defined over K and irreducible, we have

[K(π(p)) : K] = |π(V(K̄))| ≤ degV.
We now deduce from Théorème 1.4 in [GR14] that conclusion (2) of the theorem is satisfied for
a suitable choice of γ(g).

Case 2: π(V) = Y (2)K . By Theorem 2.3, the Zariski closure of V in P1
K ×K (P2

K)g is defined by
multihomogeneous polynomials of multidegree at most (degV, . . . ,degV). Hence, V is defined in
E(g)
K ⊂ P1

K ×K (P2
K)g by multihomogeneous polynomials of degree at most degV in each set of pro-

jective coordinates. The same then holds for Vξ in Egξ ⊂ (P2
K(Y (2))

)g. It follows from Theorem 2.2
that

degVξ ≤ c1(degV)g−dimVξ = c1(degV)g+1−dimV . (5.3)

Case 2.1: the stabilizer Stab(Vξ, Egξ ) of Vξ is positive-dimensional. Let k < g be the codimension
of Stab(Vξ, Egξ ) and let A be the identity component of Stab(Vξ, Egξ ). We can assume without loss
of generality that k > 0. Starting with an irreducible component of Vξ − x0 that contains A (for
an arbitrary x0 ∈ Vξ(K(Y (2)))), we successively intersect with Vξ − x for some x ∈ Vξ(K(Y (2)))
and take an irreducible component of the intersection that contains A. After doing this at most
dimVξ − dimA times and choosing x sufficiently general in each step, we obtain A itself. It
follows from Theorem 2.1 and (5.3) that

degA ≤ (degVξ)dimVξ−dimA+1 ≤ c2(degV)(g+1−dimV) dimVξ . (5.4)

By Lemma 5.1(2), the identity component A is equal to the kernel of a homomorphism from
Egξ to Ekξ induced by a k × g matrix MA with integer entries of absolute value at most c3

√
degA.

Now MA induces a homomorphism ψA : E(g)
K → E(k)

K . By abuse of notation, we also write ψA for
the induced homomorphism from Egξ to Ekξ . We write π′ for the structural morphism E(k) → Y (2).

Set V ′ = ψA(V). We have V = ψ−1
A (V ′) by construction. By Lemma 5.3, the above bound for

the absolute value of the entries of MA, and (5.4), we have

degV ′ ≤ c4(degA)kg(degV) ≤ c5(degV)kg(g+1−dimV) dimVξ+1. (5.5)

Now let p ∈ V(K̄) be torsion on Egπ(p) such that Eπ(p) is isogenous to (E0)K̄ . Then p′ :=
ψA(p) ∈ V ′(K̄) is torsion on Ekπ′(p′) and Eπ′(p′) is isogenous to (E0)K̄ . We apply induction on

(g,dimV) and use that the theorem holds for p′, V ′, and E(k)
K .
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If conclusion (2) of the theorem holds for p′, then we are done thanks to π′(p′) = π(p) and
(5.5).

If conclusion (1) of the theorem holds for p′, we find that there exist a torsion point q′ ∈ Ekξ
and an abelian subvariety B′ of Ekξ such that p′ ∈ q′ +B′(K̄) and q′ +B′ ⊂ V ′, where q′ +B′

denotes the Zariski closure in E(k)
K of the image of q′ +B′ under the natural morphism Ekξ → E

(k)
K .

Furthermore, the order of q′ and the degree of B′ are bounded as in the theorem in terms of k
and degV ′.

Set B = ψ−1
A (B′). Then B is an abelian subvariety of Egξ . There exists a torsion point

q ∈ Egξ of order dividing the order of q′ such that q +B = ψ−1
A (q′ +B′). Let q +B denote the

Zariski closure in E(g)
K of the image of q +B under the natural morphism Egξ → E

(g)
K . We have

q +B ⊂ ψ−1
A (q′ +B′), but actually equality holds since both varieties are irreducible of the same

dimension. Since p′ = ψA(p) and V = ψ−1
A (V ′), it follows that p ∈ q +B(K̄) and q +B ⊂ V.

We are now again done thanks to (5.5), provided that we can bound the degree of B in the
required way. Let k′ denote the codimension of B′. We have k′ > 0 since k > 0. By Lemma 5.1(2),
B′ is the kernel of a homomorphism from Ekξ to Ek′ξ induced by a k′ × k matrix with integer entries
of absolute value at most c6

√
degB′. Together with the above bound for the absolute value of

the entries of MA, this implies that B = ψ−1
A (B′) is the kernel of a homomorphism from Egξ to

Ek′ξ induced by a k′ × g matrix with integer entries of absolute value at most c7
√

degAdegB′.
We then deduce from Lemma 5.1(1) and Hadamard’s determinant inequality that

degB ≤ c8((degA)(degB′))k
′
.

Together with (5.4), (5.5), and the bound for degB′ furnished by the inductive hypothesis, this
completes the proof of the theorem in Case 2.1.

Case 2.2: the stabilizer of Vξ is finite. Let p ∈ V(K̄) be torsion on Egπ(p) such that Eπ(p) is
isogenous to (E0)K̄ .

Case 2.2.1: the point p lies in a translate of a positive-dimensional abelian subvariety of Egπ(p)
that is contained in V. Let Z be an irreducible component of Vξ. As every abelian subvariety
of Egξ is defined over K(Y (2)), the stabilizer of Z is finite as well. Hence, there exist points
x1, . . . , xdimZ+1 ∈ Z(K(Y (2))) such that

(Z − x1) ∩ · · · ∩ (Z − xdimZ+1)

is a finite set. By Theorem 2.1 and (5.3), the number of t such that t+ Z = Z is then bounded
by (degZ)dimZ+1 ≤ c9(degV)(g+1−dimV) dimV .

Let K denote the set of pairs (Z1, Z2) of irreducible components of Vξ such that there exists
t ∈ (Egξ )tors with Z1 = t+ Z2. For example, K contains all pairs (Z,Z), where Z is an irreducible
component of Vξ. The cardinality of K is at most equal to (degVξ)2, which is at most equal to
c10(degV)2(g+1−dimV) by (5.3). If (Z1, Z2) ∈ K, let t(Z1, Z2) be an arbitrary torsion point such
that Z1 = t(Z1, Z2) + Z2. The set of torsion points t such that Z1 = t+ Z2 for some irreducible
components Z1, Z2 of Vξ is then equal to

{t(Z1, Z2) + t′; (Z1, Z2) ∈ K, t′ ∈ Stab(Z2, Egξ )}.

The cardinality of this set is at most equal to c11(degV)(dimV+2)(g+1−dimV), so there exists a
natural number N ≤ c12(degV)(dimV+2)(g+1−dimV) with the property that no torsion point t of
order N satisfies Z1 = t+ Z2 for some irreducible components Z1, Z2 of Vξ. Let T ⊂ E(g)

K be the

1045

https://doi.org/10.1112/S0010437X22007400 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007400


G. A. Dill

Zariski closure of the image of the set of all torsion points of order N of Egξ under the natural

morphism Egξ → E
(g)
K . Then T contains the torsion points of order N of all fibers of E(g)

K (cf. the
proof of Lemma 3.4).

Since every positive-dimensional abelian variety contains a torsion point of order N , we find
that p ∈ (V ∩ (T + V))(K̄). At the same time, looking at the geometric generic fiber, we see
that V ∩ (T + V) � V by our choice of N . If [N ] : E(g)

K → E(g)
K denotes the multiplication-by-

N morphism and ε : Y (2)K → E(g)
K denotes the zero section, then T is a union of irreducible

components of [N ]−1(ε(Y (2)K)). Hence Lemma 5.3(2) implies that

deg T ≤ deg[N ]−1(ε(Y (2)K)) ≤ c13N2g.

By Lemma 5.4, we can then estimate

deg(T + V) ≤ c14N2g(degV).

It follows from this together with Theorem 2.1 that

deg(V ∩ (T + V)) ≤ (degV) deg(T + V) ≤ c14N2g(degV)2.

We are now again done by the above bound on N and induction on (g,dimV).

Case 2.2.2: the point p does not lie in any translate of a positive-dimensional abelian subvariety
of Egπ(p) that is contained in V. In this case, we can apply Proposition 3.3 to bound the order Np

of p. By Lemma 4.1, there exists for any a ∈ Ẑ∗ some σa ∈ Gal(K̄/K) that fixes π(p) and acts
on the torsion of Eπ(p) as multiplication by a2c(E0/K), where c(E0/K) is the Serre constant as
defined in Lemma 4.1. Proposition 3.3, applied to p inside Vπ(p) ⊂ Egπ(p) ↪→ P3g−1

Q̄
over the field

of definition K(π(p)), then implies together with the bound for c(E0/K) in Theorem 4.2 that
Np can be bounded by

max{exp(max{2, h(E0), [K : Q]}c15), (degVπ(p))
c15}, (5.6)

where the dependency on h(E0) can be dropped if E0 has CM.
We get the bound

degVπ(p) ≤ c16(degV)g+1−dimV (5.7)

for degVπ(p) in the same way as the bound (5.3) for degVξ.
Case 2.2.2.1: there exists q ∈ (Egξ )tors such that p ∈ q̄ ⊂ V, where q̄ denotes the Zariski closure of

the image of q in E(g)
K under the natural morphism Egξ → E

(g)
K . As p does not lie in any translate

of a positive-dimensional abelian subvariety of Egπ(p) that is contained in V, we know that q and
all of its Galois conjugates over K̄(Y (2)) are maximal torsion cosets in Vξ. The order of q is Np.
It follows from Corollary 2 on p. 69 of [Lan87] that there are at least cNp Galois conjugates of
q over K̄(Y (2)) for an effective absolute constant c > 0 (note that Eξ is isomorphic to the base
change of an elliptic curve defined over K̄(j(Eξ)) and that the isomorphism is defined over a field
extension of K̄(Y (2)) of degree at most 12 by Théorème 1.2 in [Rém20]). But by Théorème 1.13
in [DP07], the number of maximal torsion cosets contained in Vξ is bounded from above by
max{2,degVξ}c17 . Thanks to (5.3), the order of q is then bounded as in conclusion (1) of the
theorem and we are done.
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Case 2.2.2.2: there exists no q ∈ (Egξ )tors as in Case 2.2.2.1. The singleton {p} is then an irre-

ducible component of [Np]−1(ε(Y (2)K)) ∩ V, where [Np] : E(g)
K → E(g)

K denotes the multiplication-
by-Np morphism. It follows that

[K(p) : K] ≤ deg([Np]−1(ε(Y (2)K)) ∩ V).

Together with Theorem 2.1 and Lemma 5.3(2), this implies that

[K(π(p)) : K] ≤ [K(p) : K] ≤ c18N2g
p (degV).

The existence of an isogeny between (E0)K̄ and Eπ(p) of degree bounded as in conclusion (2)
of the theorem now follows from this inequality together with (5.6), (5.7), and Théorème 1.4
in [GR14]. �

6. Uniform bounds on the number of maximal torsion cosets

In this section we prove Theorem 1.6. Its proof hinges on the work [GM17] of Galateau and
Mart́ınez.

Proof of Theorem 1.6. Theorem 1.6 will follow from Theorem 4.5 in [GM17] once we have shown
that the constant c used there can be bounded in terms of only A0 and K. Here, c ∈ N satisfies:
there is some number field L ⊂ K̄ over which A and its embedding into PN

K̄
can be defined (up to

K̄-isomorphism) such that for all a,N ∈ N with gcd(a,N) = 1, there exists σ ∈ Gal(K̄/L) such
that σ acts on the N -torsion of A as multiplication by ac.

If we forget for the moment the projective embedding, then the existence of such a constant
c = c(A0,K) for A0 (with L = K) is guaranteed by a theorem of Serre (Théorème 3 in [Win02];
see also [Ser00, No. 136, Théorème 2′]). We will show that the same constant c works not only
for A, but also for any quotient B of (A0)K̄ by an algebraic subgroup (that could be of positive
dimension) and therefore also for quotients of these quotients, etc. Furthermore, the number
field L can be chosen so that not only B can be defined over it, but also the homomorphism
(A0)K̄ → B (and the same for quotients of B, etc., to any finite ‘depth’). In fact, it seems that
this strengthening is already used implicitly in [GM17] when passing from A to A/Stab(V ).

Let ψ : (A0)K̄ → B be a surjective homomorphism. Let L ⊂ K̄ be the smallest field contain-
ing K over which the algebraic subgroup kerψ of (A0)K̄ is defined. Then B is isomorphic to
B ′̄
K

, where B′ is an abelian variety defined over L, and there exists a surjective homomorphism
χ : (A0)L → B′ such that (kerχ)K̄ = kerψ.

Suppose that σ ∈ Gal(K̄/K) acts as multiplication by a ∈ Ẑ∗ on the torsion of (A0)K̄ . For
every torsion point t ∈ (kerψ)(K̄), we therefore have σ(t) = at ∈ (kerψ)(K̄). As the torsion
points in kerψ lie dense in kerψ, we deduce that σ(kerψ) ⊂ kerψ and hence σ(kerψ) = kerψ.
It follows that σ ∈ Gal(K̄/L).

If we identify B with B ′̄
K

, then ψ : (A0)K̄ → B is the base change of χ : (A0)L → B′ and σ
fixes ψ. Since σ acts as multiplication by a on the torsion of (A0)K̄ , this implies that σ also acts
as multiplication by a on the torsion of B. It is clear that this can be iterated now for quotients
of B, etc.

We still have to take care of the projective embedding B ↪→ PN
K̄

that we had momentarily
forgotten; for this we might have to replace σ by some fixed iterate, depending only on g. The
projective embedding is associated to a symmetric very ample line bundle L on B. Up to an
isomorphism of PN

K̄
, the embedding can be defined over any field of definition of L since it is

projectively, so in particular linearly, normal. Let λ : B → B̂ be the homomorphism induced
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by L. By Théorème 1.2 in [Rém20], it is defined over a field extension L′ of L of degree bounded
in terms of g.

Let P denote the Poincaré line bundle on B ×K̄ B̂. The line bundle M = (idB, λ)∗P is
symmetric by Theorem 8.8.4 in [BG06] and defined over L′. By Proposition 6.10 in [MFK94],
L⊗2 and M are algebraically equivalent. Since both L and M are symmetric, L⊗2 ⊗M⊗(−1)

is both symmetric and antisymmetric by Theorem 8.8.3 in [BG06]. Therefore, L⊗4 ⊗M⊗(−2) is
trivial. It follows that for any conjugate L′ of L over L′, L⊗4 ⊗ L′⊗(−4) is trivial. This implies
that L ⊗ L′⊗(−1) corresponds to a torsion point of B̂ of order dividing 4 and hence there are
at most 42g possibilities for L′ (up to isomorphism). Since the relative Picard functor PicB′/L
is representable by a scheme that is locally of finite type over L thanks to Théorème 3.1 and
the following paragraph in [Gro95], this implies that L is defined over a field extension of L′ of
degree bounded in terms of g and we are done.

As explained at the beginning of the proof, Theorem 1.6 now follows from Theorem 4.5
in [GM17]. �
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Rém01 G. Rémond, Géométrie diophantienne multiprojective, in Introduction to algebraic independence
theory, Lecture Notes in Mathematics, vol. 1752 (Springer, Berlin, 2001), 95–131.
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Soc. (JEMS) 22 (2020), 3059–3099.
Rob83 G. Robin, Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes

valeurs de la fonction ω(n) nombre de diviseurs premiers de n, Acta Arith. 42 (1983), 367–389.
RS62 J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers,

Illinois J. Math. 6 (1962), 64–94.
Sca04 T. Scanlon, Automatic uniformity, Int. Math. Res. Not. IMRN 2004 (2004), 3317–3326.
Ser00 J.-P. Serre, Œuvres – Collected papers IV: 1985–1998 (Springer, Berlin, 2000).
Sil92 A. Silverberg, Fields of definition for homomorphisms of abelian varieties, J. Pure Appl. Algebra

77 (1992), 253–262.
Sta20 The Stacks Project Authors, Stacks Project (2020), https://stacks.math.columbia.edu.
Ste01 P. Stevenhagen, Hilbert’s 12th problem, complex multiplication and Shimura reciprocity, in Class

field theory—its centenary and prospect (Tokyo, 1998), Advanced Studies in Pure Mathematics,
vol. 30 (Mathematical Society of Japan, Tokyo, 2001), 161–176.

Win02 J.-P. Wintenberger, Démonstration d’une conjecture de Lang dans des cas particuliers, J. Reine
Angew. Math. 553 (2002), 1–16.

Zan12 U. Zannier, Some problems of unlikely intersections in arithmetic and geometry, Annals of Math-
ematics Studies, vol. 181 (Princeton University Press, Princeton, NJ, 2012), with appendixes by
D. W. Masser.

Gabriel A. Dill dill@math.uni-hannover.de

Leibniz Universität Hannover, Institut für Algebra, Zahlentheorie und Diskrete Mathematik,
Welfengarten 1, 30167 Hannover, Germany

1051

https://doi.org/10.1112/S0010437X22007400 Published online by Cambridge University Press

https://people.math.ethz.ch/~pink/ftp/AOMMML.pdf
https://stacks.math.columbia.edu
https://doi.org/10.1112/S0010437X22007400

	1 Introduction
	2 Preliminaries
	3 Manin–Mumford with isogenies
	4 Explicit results in the Legendre family: curves
	5 Explicit results in the Legendre family: varieties
	6 Uniform bounds on the number of maximal torsion cosets
	Acknowledgements
	References

