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Abstract

Background. Depression is a clinically heterogeneous disorder. Previous large-scale genetic
studies of depression have explored genetic risk factors of depression case–control status or
aggregated sums of depressive symptoms, ignoring possible clinical or genetic heterogeneity.
Methods. We analyse data from 148 752 subjects of white British ancestry in the UK Biobank
who completed nine items of a self-rated measure of current depressive symptoms: the Patient
Health Questionnaire (PHQ-9). Genome-Wide Association analyses were conducted for nine
symptoms and two composite measures. LD Score Regression was used to calculate SNP-
based heritability (h2 SNP) and genetic correlations (rg) across symptoms and to investigate
genetic correlations with 25 external phenotypes. Genomic structural equation modelling
was used to test the genetic factor structure across the nine symptoms.
Results. We identified nine genome-wide significant genomic loci (8 novel), with no overlap
in loci across symptoms. h2 SNP ranged from 6% (concentration problems) to 9% (appetite
changes). Genetic correlations ranged from 0.54 to 0.96 (all p < 1.39 × 10−3) with 30 of 36 cor-
relations being significantly smaller than one. A two-factor model provided the best fit to the
genetic covariance matrix, with factors representing ‘psychological’ and ‘somatic’ symptoms.
The genetic correlations with external phenotypes showed large variation across the nine
symptoms.
Conclusions. Patterns of SNP associations and genetic correlations differ across the nine
symptoms, suggesting that current depressive symptoms are genetically heterogeneous. Our
study highlights the value of symptom-level analyses in understanding the genetic architecture
of a psychiatric trait. Future studies should investigate whether genetic heterogeneity is reca-
pitulated in clinical symptoms of major depression.

Introduction

Clinical depression is a markedly complex and debilitating mental disorder characterised by
sad, irritable or empty mood, diminished pleasure, and cognitive and somatic impairment
(Christian et al., 2016). The heritability of major depression is estimated to be ∼37% from
twin studies (Sullivan et al., 2000) with common single nucleotide polymorphisms (SNPs)
explaining around 9% of the variation in liability (Wray et al., 2018; Howard et al., 2019).
Depression has substantial comorbidity with other psychiatric and substance use disorders
and is related to a wide range of personality, socioeconomic and human traits (Lee et al.,
2013). There is substantial overlap in the genetic risk factors of major depression and
other psychiatric disorders (Wray et al., 2018), including significant genetic correlations (rg)
with anxiety disorders (rg = 0.80), schizophrenia (rg = 0.34), bipolar disorder (rg = 0.32),
autism spectrum disorders (rg = 0.44) and attention-deficit/hyperactivity disorder (ADHD)
(rg = 0.42).

Initial efforts to identify genetic variants associated with major depression were unsuccess-
ful, despite successes with other psychiatric diseases and traits. While a Genome-Wide
Association Study (GWAS) of schizophrenia (9394 cases), for example, detected seven
genome-wide significant associations (Ripke et al., 2011), a mega-analysis of major depression
(9240 cases) (Ripke et al., 2013) and a meta-analysis of depressive symptoms (N = 34 549)
(Hek et al., 2013) found no significant associations. By 2014, 108 independent genetic loci
for schizophrenia had been identified (Ripke et al., 2014), and not a single one for depression.
The struggle to identify significant genetic variants was likely related to low statistical power
due to the clinical heterogeneity of major depression, although other factors are also involved
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(e.g. high polygenicity, high disease prevalence and low heritabil-
ity of depression) (Levinson et al., 2014).

The Diagnostic and Statistical Manual of Mental Disorders 5th
edition (DSM-5) defines major depressive disorder (MDD) based
on nine symptoms (American Psychiatric Association, 2013). For
a diagnosis of MDD, five or more of these symptoms need to be
present during a 2-week period, with at least one symptom being
depressed mood or anhedonia. Østergaard et al. (2011) high-
lighted that there are 227 possible combinations of symptoms
meeting DSM-5 criteria, indicating MDD is an extremely hetero-
geneous disorder. Further, individual symptoms have been found
to differ substantially in their association with psychosocial
impairment, influence from environmental and personality risk
factors, and biological correlates (Fried and Nesse, 2015).

Two broad GWAS approaches have been utilised to discover
risk loci for depression: (1) maximising sample size by combining
different and often broad measures such as questionnaire data,
with the view that the increase in sample size overcomes pheno-
typic heterogeneity; and (2) reducing clinical heterogeneity
by analysing homogenous MDD phenotypes (e.g. recurrent,
clinically-diagnosed MDD). In the last few years, increasing sam-
ple size has proved to be effective with the number of genome-
wide significant variants increasing steadily with sample size.
Hyde et al. (2016) identified 15 genome-wide significant loci asso-
ciated with self-reported depression (N = 307 354). In 2018,
another 17 loci were identified across three broad depression phe-
notypes (N = 322 580) (Howard et al., 2018), and 44 loci in a
GWA meta-analysis of major depression (N = 480 359) (Wray
et al., 2018). The largest GWAS of depression to date (N = 807
553) identified 101 significant loci (Howard et al., 2019).

In the present study, we combine these two approaches by
conducting genetic analyses on individual depressive symptoms
using large-scale population questionnaire data. Previous
GWASs of depression have typically focused on MDD case–con-
trol status or aggregated sums of depressive symptoms. By com-
bining different symptoms into a single clinical measure, it is
implicitly assumed that individual symptoms of depression are
genetically similar. However, the extreme heterogeneity of depres-
sion and numerous clinical presentations of the disorder suggest
that different biological mechanisms could underlie the diverse
subtypes of depression. Supporting this notion, symptoms of
depression have been found to differ substantially in heritability
(twin-based h2 range, 0–35%); with somatic and cognitive symp-
toms being most heritable (Jang et al., 2004). Further, the diag-
nostic criteria of MDD were found to reflect three underlying
genetic factors (cognitive/psychomotor symptoms, mood symp-
toms and neurovegetative symptoms) rather than a single factor
of genetic risk in a twin study (Kendler et al., 2013). Nagel
et al. (2018b) found substantial genetic heterogeneity in neuroti-
cism, a personality trait with extensive phenotypic and genetic
overlap with major depression (Hettema et al., 2006), by conduct-
ing genetic analyses on the individual items used to measure
neuroticism.

To date, the extent to which common genetic risk factors over-
lap in individual symptoms of depression is not known. The aim
of the present study is to examine and assess the extent of genetic
heterogeneity in self-rated depressive symptoms as measured by
the nine items of the Patient Health Questionnaire (PHQ-9)
(Kroenke et al., 2001a), a depression measure which directly
maps onto the DSM-5 criteria. Although endorsement of these
symptoms may not necessarily be occurring within an episode
of major depression, they may possess a similar underlying

genetic basis and therefore provide insight into the genetic archi-
tecture of major depression. We conduct genetic analyses in 148
752 participants within the UK Biobank (UKBB). In order to
examine genetic heterogeneity, we (a) conduct symptom-level
GWA analyses and then compare genetic associations and
SNP-based heritability across symptoms; (b) calculate phenotypic
and genetic correlations across symptoms and determine their
underlying genetic factor structure; and (c) calculate genetic cor-
relations between individual symptoms and a range of psychiatric
disorders and human complex traits.

Methods

UKBB cohort

UKBB is a major health data resource containing phenotypic
information on a wide range of health-related measures and char-
acteristics in over 500 000 participants from the UK general popu-
lation (Bycroft et al., 2018). Participants were recruited between
2006 and 2010 and provided written informed consent. A total
of 157 365 participants completed the PHQ-9, as part of a UKBB
mental health follow-up questionnaire administered online in 2016.

Sample selection

First, participants were included in the present study if they were
of white British ancestry, identified through self-reported ethni-
city and genetic principal components. Participants who self-
reported as not white British, but for whom the first two genetic
principal components indicated them to be genetically similar to
those of white British ancestry were also included in order to
maximise sample size (these commonly were participants who
reported to be of Irish ancestry). Second, participants were
excluded if they were identified with schizophrenia and/or other
psychotic disorders, bipolar disorder, cyclothymic disorder or dis-
sociative identity disorder, based on self-reported symptoms or
diagnosis, reported prescription of an antipsychotic medication
and/or ICD-10 codes from linked hospital admission records.
Third, only participants who provided a response for all nine
items of the PHQ-9 were included (list-wise deletion represented
a <2% reduction in sample size). This resulted in a final sample
size of 148 752 (see online Supplementary Fig. S1 for a flow dia-
gram of sample selection).

PHQ-9

The PHQ-9 is a commonly used self-administered measure of
depression containing nine items that map directly onto the
nine DSM diagnostic criteria for major depression (Kroenke
et al., 2001a). Each PHQ-9 item assesses the frequency of that
symptom over the past 2 weeks, rated on a four-point ordinal
scale: (0) Not at all, (1) Several days, (2) More than half the
days, (3) Nearly every day (see online Supplementary Table S1
for the nine symptoms of major depression, PHQ-9 items and
DSM-5 diagnostic criteria).

The PHQ-9 is a psychometrically valid and reliable measure of
depression (Kroenke et al., 2001b). Test-retest reliability was high
(r = 0.84, over a span of 48 h) and internal consistency was excel-
lent with Cronbach’s α of 0.89 and 0.86 in primary care and
obstetrics–gynaecology samples, respectively. The authors also
reported good criterion and construct validity. The PHQ-9 was
validated against professional diagnoses of MDD, resulting in
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88% sensitivity and 88% specificity (at a PHQ-9 sum-score of
⩾10); and scores correlated highly with similar constructs, such
as the 20-item Short-Form General Health Survey (SF-20)
(Stewart et al., 1988) mental health scale (r = 0.73). Internal con-
sistency of the PHQ-9 in the UKBB sample in the current study
was high (Cronbach’s α = 0.83).

Depression item phenotypes

Each of the nine PHQ-9 items is considered a separate phenotype
in the genetic analyses. The ordinal scale of measurement of these
items complicates interpretation of the SNP-based heritability (h2

SNP) estimates. In order to interpret h2 SNP of each of the PHQ-9
items, each ordinal phenotype was transformed into a binary
phenotype. The nine items were dichotomised such that an
item was considered to be endorsed if the item score was one
or greater (several days, more than half the days or nearly every
day), and not endorsed if the score was zero (not at all). A cut-off
score of one was used in order to maximise the number of
subjects who endorsed an item and hence statistical power, a strat-
egy that has provided greater benefit in GWASs of depression
over ensuring a seamless phenotype (Wray et al., 2012; Hall
et al., 2018; Howard et al., 2018; Wray et al., 2018; Howard et al.,
2019). In addition to the nine ordinal items and nine binary
items, a sum-score (sum of all ordinal item scores; ranging from 0
to 27) and binary sum-score (number of binary items endorsed; ran-
ging from 0 to 9) were included as phenotypes. We will present the
results from the binary items and the two sum-scores while results
for ordinal items are provided in online Supplementary material.

GWA analyses

A total of 20 GWA analyses were conducted (nine ordinal scale
depression items, nine binary items, plus the sum-score and bin-
ary sum-score phenotypes) using BOLT-LMM (Loh et al., 2015).
Associations between SNPs and a phenotype are tested using a
linear mixed model in order to correct for population structure
and cryptic relatedness. While BOLT-LMM is based on a quanti-
tative trait model, it can be used to analyse binary traits by treat-
ing them as continuous and applying a transformation. Ordinal
items are treated as continuous. An issue when analysing binary
traits in BOLT-LMM is the inflated type 1 error rates for rare
SNPs when the number of cases and controls are very unbalanced
(Zhou et al., 2018). In practice, all of the traits we consider here

have a case proportion which is large enough (>3%) for this
not to be a problem (Loh et al., 2018).

Analyses were limited to autosomal SNPs with high imput-
ation quality score (INFO score ⩾ 0.80) and a minor allele fre-
quency of 1% or higher, resulting in 9 413 637 SNPs being
tested for association. Sex, age at baseline and batch were included
as covariates. GWAS results were annotated using FUMA GWAS
(Watanabe et al., 2017). The conventional genome-wide signifi-
cance threshold of p < 5 × 10−8 was applied. Given the exploratory
nature of the analyses and identifying causal variants is not the pri-
mary interest of this paper, plus the high correlation between the 20
phenotypes, we did not correct for multiple testing of the 20 phe-
notypes as this would lead to increased type-II error rate.

Significant SNPs were clumped into blocks high in linkage dis-
equilibrium (the non-random association of alleles at a specific
locus; LD) using a threshold of r2 < 0.10 [correlation between
allele frequencies of two SNPs; as calculated by PLINK (Purcell
et al., 2007)]. Independent significant SNPs were defined as the
SNP with the lowest p value within an LD block. Genomic risk
loci (distinct, fixed positions on a chromosome) were identified
by merging independent SNPs if r2⩾ 0.10 and their LD blocks
are physically close to each other at a distance of 1000 kb.

LDSC analyses

Estimates of the variance in each phenotype attributable to the
additive effects of all SNPs (SNP-based heritability; h2 SNP) were
calculated via single-trait LD Score Regression using GWAS sum-
mary statistics from our analyses (Bulik-Sullivan et al., 2015b) (see
online Supplementary methods). To interpret h2 SNP for binary
items, estimates were converted to the liability scale, where the
population prevalence of PHQ-9 items was estimated from our
UKBB sample (population prevalence = sample prevalence; see
Table 1). We applied a Bonferroni-corrected significance thresh-
old for the 11 h2 SNP estimates ( p < 4.55 × 10−3).

Cross-trait LD Score Regression was used to estimate genetic
correlations (rg) between each of the nine binary items. These esti-
mates are not biased by sample overlap (even with complete sam-
ple overlap) (Bulik-Sullivan et al., 2015a). We applied a
Bonferroni-corrected significance threshold for these 36 rg tests
( p < 1.39 × 10−3). Additionally, we also calculated pairwise gen-
etic correlations between our phenotypes (nine items and sum-
scores) and 25 other psychiatric, substance use, socioeconomic
and human traits with publicly available GWAS summary

Table 1. Sample sizes, prevalence rates and SNP-based heritability estimates of all binary PHQ-9 items

Item N endorsed N not endorsed Prevalence % h2 SNP (S.E.)

Anhedonia 27 288 121 464 18.3 0.081 (0.0082)

Depressed mood 32 263 116 489 21.7 0.067 (0.0076)

Sleep problems 72 302 76 450 48.6 0.068 (0.0065)

Fatigue 73 924 74 828 49.7 0.079 (0.0070)

Appetite changes 26 757 121 995 18.0 0.091 (0.0087)

Low self-esteem 28 206 120 546 19.0 0.063 (0.0076)

Concentration problems 26 229 122 523 17.6 0.060 (0.0086)

Psychomotor changes 7914 140 838 5.3 0.066 (0.0154)

Suicidal ideation 6064 142 688 4.1 0.068 (0.0150)

Heritability (on the liability scale) estimated via single-trait LD Score Regression. All estimates are significant after multiple testing correction ( p < 4.55 × 10−3).
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Table 2. GWAS Results for binary PHQ-9 items and sum-score phenotypes

Gen.
locus SNP id Chr BP A1 A2

Freq
A1 Phenotype β S.E. p value nSNPs Nearest gene eQTL genes

1 rs2279681 1 201861016 C G 0.657 Sum-score 0.093 0.014 5.60 × 10−11 25 SHISA4 SHISA4, LMOD1

Binary
sum-score

0.023 0.004 8.60 × 10−09 6 SHISA4

2 rs62158169 2 114081827 C T 0.784 Sleep
problems

0.015 0.002 1.40 × 10−10 22 PAX8 FOXD4L1, CBWD2

3 rs137997194 3 48824937 A G 0.955 Depressed
mood

−0.023 0.004 7.70 × 10−10 15 PRKAR2A AMT, KLHDC8B

rs143756010 3 49312248 C T 0.956 Binary
sum-score

−0.053 0.009 7.40 × 10−9 15 C3orf62 AMT, NICN1, RNF123

4 rs12492113 3 50521402 G A 0.875 Binary
sum-score

−0.037 0.006 1.20 × 10−10 114 CACNA2D2 C3orf18, CACNA2D2,
CYB561D2, DOCK3, HEMK1,
HYAL1, LSMEM2, RBM6,
MANF, MAPKAPK3Sum-score −0.124 0.020 1.30 × 10−09 76 CACNA2D2

Appetite
changes

−0.013 0.002 8.80 × 10−09 28 CACNA2D2

5 rs13127129 4 30501860 A G 0.499 Sleep
problems

0.010 0.002 4.90 × 10−08 1 PCDH7 –

6 rs7073667 10 107809043 T C 0.452 Sleep
problems

0.010 0.002 4.30 × 10−08 12 RP11-298H24.1 –

7 rs140920627 11 41577268 C A 0.988 Anhedonia −0.037 0.007 3.70 × 10−08 1 RP11-124G5.3 –

8 rs840161 12 57323523 A G 0.366 Binary
sum-score

−0.021 0.004 3.90 × 10−08 1 SDR9C7 –

9 rs2335859 19 7871837 T G 0.602 Anhedonia −0.009 0.001 9.80 × 10−09 10 EXOSC3P2 –

Table displays SNPs significant at p < 5 × 10−8 and independent at r2 < 0.10. Genomic risk loci (Gen. locus) are defined by r2 < 0.10, window size 1000 kb. Chromosome (Chr), location in base pairs (BP) on Hg19, effect allele (A1), allele 2 (A2), frequency of
effect allele (Freq A1), effect size β, standard error of β (S.E.), p value and number of SNPs clumped under lead SNP (nSNPs) are shown. Proximity (nearest gene) and eQTL (eQTL genes) mapping results are given. eQTL mapping limited to significant
(FDR < 0.05) cis-eQTLs from GTEx v7 (Lonsdale et al., 2013) and the CommonMind Consortium (CMC) (Fromer et al., 2016). SNP rs137997194 and rs143756010 are tagging the same signal, but was the SNP with lowest p value in ‘depressed mood’ and
‘binary sum-score’, respectively.
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statistics. Multiple testing was corrected for by adjusting p values
based on false discovery rate (FDR) across all tests.

We calculated I2 heterogeneity statistics for each external trait
(across the nine symptoms) to quantify the amount of variation in
genetic correlations that is due to heterogeneity and not chance
(Higgins and Thompson, 2002). I2 values range from 0% to
100% with higher values indicating a greater amount of variation
is attributable to heterogeneity.

Confirmatory factor analyses

Confirmatory factor analyses (CFAs) were conducted using gen-
omic structural equation modelling (genomic SEM) (Grotzinger
et al., 2019) with a weighted least squares (WLS) estimator, in
order to assess the genetic factor structure of the PHQ-9. The
fit of three different factor structures commonly identified in
phenotypic factor analyses was compared, including a one-factor
model, a two-factor model containing ‘psychological’ and ‘somatic’
factors (Elhai et al., 2012; Petersen et al., 2015; Beard et al., 2016),
and a two-factor model containing ‘psychological/cognitive’ and
‘neurovegetative’ factors (Krause et al., 2008; Krause et al., 2010).

Model fit was evaluated with the following fit indices (and
their commonly used thresholds for acceptable model fit): CFI
(⩾0.95) and SRMR (⩽0.06) (Kline, 2005). Models were compared
using AIC indices, which take into account both model fit and
complexity. The most parsimonious model is the model with
the lowest AIC value.

Results

Descriptive statistics

The final sample (N = 148 752) was 56% female, ranging in age
from 46 to 80 years old (M = 63.88, S.D. = 7.72). The distribution
of responses to all PHQ-9 items (on the ordinal scale) is displayed
in online Supplementary Table S2. The distribution of item scores
varied considerably across items; sleep problems and fatigue had
the highest endorsement rates while suicidal ideation and psycho-
motor changes had the lowest rates. Sum-scores ranged from 0 to
27, with a mean of 2.71 (S.D. = 3.61). Endorsement rates of binary
items are shown in Table 1. The number of symptoms endorsed
ranged from zero to nine, with a mean of 2.02 (S.D. = 2.20).

GWA analyses

GWA analyses of the nine binary items plus sum-score pheno-
types identified a total of 326 genome-wide significant SNPs
( p < 5 × 10−8), tagged by 13 independent SNPs. Two lead SNPs
were significant in more than one phenotype, such that across
all phenotypes there are 11 unique, independent genome-wide
significant SNPs. These SNPs mapped onto nine genomic risk
loci (see Table 2 for results, online Supplementary Figs S2–S11
for QQ plots and Manhattan plots of all phenotypes; and online
Supplementary Table S3 for the ordinal item GWAS results).

Heritability estimates

The amount of variance explained by common SNPs (SNP-based
heritability; h2 SNP) ranged from 6% of the variance in concentra-
tion problems up to 9% of the variance in appetite changes (mean
h2 SNP across the nine items was 7%; see Table 1). h2 SNP estimates
for the sum-score and binary sum-score phenotypes were 6% and

7%, respectively. All estimates were significant after Bonferroni
correction ( p < 4.55 × 10−3; see online Supplementary Table S4).

Inter-item phenotypic and genetic correlations

Tetrachoric correlations between all pairs of PHQ-9 binary items
showed that all items were significantly and positively correlated
with each other phenotypically. Coefficients ranged from 0.44
(S.E. = 0.007) to 0.90 (S.E. = 0.002), with the strongest association
between anhedonia and depressed mood, the two core depressive
symptoms (see Fig. 1).

Summary statistics from the GWASs of the nine binary items
were used to calculate genetic correlations (rg) between items. All
correlations were significant after correcting for multiple testing
( p < 1.39 × 10−3) (see Fig. 1). Estimated rg’s ranged from 0.54
(suicidal ideation/psychomotor changes; S.E. = 0.15) to 0.96 (psy-
chomotor changes/concentration problems; S.E. = 0.11), with a
mean rg of 0.77. Thirty out of the 36 genetic correlations were sig-
nificantly less than one (95% CI did not include one), indicating
genetic heterogeneity across the PHQ-9 items (see Fig. 1 and
online Supplementary Table S5). Some of the genetic correlations
that were not significantly different from 1 were relatively low, but
have large standard errors which explain their overlap with 1.

A very similar pattern of genetic correlations emerged for the
ordinal items (Pearson correlation between the set of binary item
rg’s and ordinal item rg’s of r = 0.90, p < 0.001; see online
Supplementary Fig. S12). The Pearson correlation between the
genetic correlations and phenotypic correlations was moderate,
r = 0.68, p < 0.001 (see online Supplementary Fig. S13).

Confirmatory factor analyses

CFAs of the genetic factor structure found that all three models
provided an adequate fit to the data (see online Supplementary
Table S6). Comparison of models based on AIC values revealed
that the two-factor model containing a ‘psychological’ factor
and a ‘somatic’ factor’ provided the best fit (see Fig. 2).

Fig. 1. Inter-item genetic and phenotypic correlations. Note: Genetic correlations (rg)
above diagonal and phenotypic correlations (rtet) below diagonal. Genetic correla-
tions estimated using cross-trait LD Score Regression. All correlations are significantly
different from zero at p < 1.39 × 10−3. Black squares indicate correlation is not signifi-
cantly different from one (95% CI includes 1).
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Genetic correlations with external traits

Genetic correlations of the nine PHQ-9 items, sum-score and bin-
ary sum-score with 25 other psychiatric, substance use, socio-
economic and human traits are displayed in Fig. 3 (and online
Supplementary Table S7). Individual items correlated as expected
with closely related traits, supporting the validity of the individual
symptom phenotypes in the present study. For example, appetite
changes had a substantially stronger positive genetic correlation
with body mass index (rg = 0.61, S.E. = 0.03) than the other eight
depression symptoms (rg’s range between 0.10 and 0.29); and
sleep problems had a strong, positive correlation with insomnia
(rg = 0.71, S.E. = 0.06). All symptoms were negatively correlated
with subjective well-being (rg range = −0.54 to −0.91), with sui-
cidal ideation having the strongest association. Furthermore, all
items positively correlated (and showed a similar pattern) with
the other major depression and overall depression phenotypes.

The pattern of genetic correlations with other psychiatric dis-
orders and traits showed substantial variation across symptoms,
such as with neuroticism (rg range = 0.49–0.85; I2 = 92%), schizo-
phrenia (rg range = 0.09–0.32, I2 = 64%) and insomnia (rg range =
0.31–0.71, I2 = 72%). I2 values indicate this variation is largely due
to heterogeneity and not error. Bipolar disorder was significantly
correlated with only four out of nine depression items (sleep
problems, low self-esteem, concentration problems and psycho-
motor changes; I2 = 59%). Anorexia nervosa significantly
overlapped with just three items (I2 = 68%), with genetic correla-
tions even being in different directions (low self-esteem rg = 0.28,
S.E. = 0.09; psychomotor changes rg = 0.27, S.E. = 0.13; appetite
change rg =−0.26, S.E. = 0.08).

Discussion

In the present study, we investigated genetic heterogeneity in
depressive symptoms by conducting genetic analyses on individ-
ual items of the PHQ-9 in 148 752 participants from the UKBB.

We identified nine genomic risk loci across the nine depressive
symptoms and sum-score phenotypes. One locus (locus 3, tagged
by lead SNP rs143756010) was identified in a recent GWAS of
depression (Howard et al., 2019). The other eight loci have not
been associated with depression in previous GWASs (Kohli
et al., 2011; Hek et al., 2013; Cai et al., 2015; Hyde et al., 2016;
Okbay et al., 2016; Direk et al., 2017; Power et al., 2017; Hall
et al., 2018; Howard et al., 2018; Li et al., 2018; Wray et al.,
2018; Howard et al., 2019), illustrating the importance of explor-
ing genetic associations for specific symptoms. Our results
revealed genetic heterogeneity in depressive symptoms with no
overlap in significant loci across PHQ items. Though we acknow-
ledge that the lack of overlap may be due to low statistical power
to detect all true associations, we highlight some notable examples
where a specific depressive symptom is linked to a gene that was
previously found to be associated with a strongly related pheno-
type. For the item ‘sleep problems’, we found SNPs that implicate
PAX8 (based on proximity), a transcription factor related to thy-
roid follicular cell development and expression of thyroid-specific
genes, replicating previous studies linking this gene to sleep dur-
ation (Gottlieb et al., 2015; Jones et al., 2016; Lane et al., 2017). In
addition, SNPs associated with ‘depressed mood’ influenced the
expression of KLHDC8B (protein coding gene involved in cyto-
kinesis). This gene has been previously linked to depressed affect,
a sub-cluster of neuroticism that is strongly related to depression
(Nagel et al., 2018a).

Genetic correlations between depressive symptoms ranged
from moderate (rg < 0.60) to high (rg > 0.90), suggesting that
while some symptoms have high genetic overlap, a considerable
amount of genetic variation is not shared between symptoms.
This suggests genetic heterogeneity in symptoms of depression,
in line with the finding that depression represents multiple
dimensions of genetic risk (Kendler et al., 2013) and previous
associations between individual symptoms and specific poly-
morphisms (Myung et al., 2012).

Fig. 2. Factor loadings for a genetic two-factor model of the PHQ-9. Note: Standardised loadings estimated in Genomic SEM (using a WLS estimator) are presented
for the best-fitting model.
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Fig. 3. Genetic correlations between PHQ-9 items and a range of other complex traits (psychiatric, substance use and socioeconomic phenotypes). Note: White
squares indicate correlations do not meet significance after correcting for FDR. I2 values represent the amount of variation in genetic correlations across the
nine symptoms attributable to heterogeneity and not chance.

Psychological Medicine 2391

https://doi.org/10.1017/S0033291719002526 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291719002526


The underlying genetic structure between symptoms was best
explained by two genetic factors. While these factors were highly
correlated, this suggests there are risk factors specific to clusters
which could indicate underlying biology specific to either ‘psy-
chological’ or ‘somatic’ symptoms of depression. This is consist-
ent with symptoms differing in their biological correlates, with
somatic symptoms such as weight gain, increased appetite and
sleep problems being associated with higher levels of inflamma-
tion markers (Motivala et al., 2005; Lamers et al., 2013). These
clusters were not in full agreement with the three genetic factors
found by Kendler et al. (2013) based on an analysis of twin data.
As an example, in Kendler et al.’s study, suicidal ideation loaded
onto the same factor as psychomotor changes and concentration
problems, while we find that suicidal ideation clusters with symp-
toms of depressed mood, anhedonia and low self-esteem that
together form a ‘psychological symptoms’ factor. However, results
are not easily comparable given that they derived factors from a
twin study (and therefore captured rare genetic variants as well
as common SNPs), used a subset of eight symptoms (appetite
changes did not load onto any factor) and symptom phenotypes
came from structured clinical interview of lifetime major depres-
sion rather than a self-report measure such as the PHQ-9.

Results from genetic correlations between items and a range of
external traits lead us to note three general observations. First,
genetic correlations with external traits differed substantially
between symptoms (with I2 statistics suggesting this is largely
due to heterogeneity), providing evidence for genetic heterogen-
eity in depressive symptoms. In agreement with previous findings
for major depression (Howard et al., 2018; Wray et al., 2018), all
symptoms overlapped with anxiety, schizophrenia, ADHD,
insomnia, neuroticism and subjective well-being; however, the
proportion of overlap varied considerably across symptoms.
Second, some traits (such as bipolar disorder, cannabis lifetime
use and intelligence) were significantly genetically correlated
with a subset of items only. Bipolar disorder, for example, was sig-
nificantly correlated with only four items (low self-esteem, con-
centration, psychomotor changes and sleep problems),
suggesting that the moderate genetic overlap between bipolar
and depression (Wray et al., 2018) may be predominately driven
by these selected symptoms. This highlights how insight into the
genetic architecture of complex traits can be gained from con-
ducting symptom-level analyses. Third, we found traits that
were genetically correlated with individual items, but not with
the sum-score phenotypes. Anorexia nervosa did not overlap
with aggregate measures of depression symptoms as operationa-
lised in the sum-score phenotypes, in agreement with Howard
et al. (2018) who similarly found no genetic overlap between
anorexia and their three overall depression phenotypes. Yet, anor-
exia nervosa was genetically correlated with appetite change, low
self-esteem and psychomotor changes. Interestingly, the overlap
with appetite change was in the opposite direction than the
other two items, again emphasising the importance of analysing
individual symptoms of a disorder, as important information is
ignored by relying on sum-scores or overall phenotypes.

Limitations

The findings and conclusions of this study should be interpreted
in view of some key limitations. First, despite having the largest
sample available to date, the current study is still underpowered
to detect significant SNPs. Given the relatively high prevalence
of depression, much larger sample sizes are needed compared

to other psychiatric disorders (Wray et al., 2012). To not reduce
power further we did not correct for multiple testing (of 11
GWA analyses) and hence our GWAS results require independent
replication. Second, depression items were analysed in isolation,
regardless of the overall MDD status of the participant. For
example, a participant could strongly endorse the symptom
fatigue, yet have no other signs of depression and hence the
endorsement of fatigue is unrelated to major depression.
Nevertheless, it is possible that fatigue, regardless of the context
it occurs in, possesses the same underlying genetic basis. Third,
we used a PHQ-9 cut-off score of 1 to dichotomise items in
order to maximise the number of cases and improve statistical
power. A PHQ-9 item score of one does not meet the diagnostic
criteria for endorsement, hence the phenotypes may represent a
predisposition rather than full endorsement of the particular
symptom. Fourth, our results may be affected by ascertainment
bias due to healthy volunteerism within the UKBB. As such our
sample could represent a truncated version of the population’s
genetic distribution for symptoms (people on the far end of liabil-
ity scale may be less likely to participate), hence resulting in
reduced number of cases for some symptoms or reduced variation
between cases and controls.

Implications

The recent success in the discovery of genetic variants associated
with depression has been driven by ever increasing sample sizes,
an approach that has been favoured over reducing phenotypic
heterogeneity. Consequently, GWASs have been conducted on a
diverse range of depression-related phenotypes that often include
a small subset of symptoms, generally with the view that the
increase in sample size can overcome the lack of clinical precision.
While this has indeed been proven to be effective at increasing the
number of significant variants identified, our finding of
symptom-level genetic heterogeneity raises questions about this
approach. Using broad diagnostic phenotypes ignores the unique
genetic factors associated with specific symptoms of depression
that would likely provide useful information to further unravel
the genetic architecture of depression. Further, our finding of gen-
etic heterogeneity across depressive symptoms implicates that
individuals with depression may show variation in disease patho-
genesis. This variation may be linked to response to clinical inter-
ventions, such that patients presenting with specific symptom
patterns (e.g. characterised primarily by somatic symptoms)
may be expected to respond differently.

Conclusion

Our results provide evidence that current self-reported depressive
symptoms are genetically heterogeneous, and highlight the utility
of analysing the genetics of individual items or symptoms.
Insights into the genetic aetiology and underlying biology of
depression will be maximised by combining large-scale genetic
studies of broad clinical definitions with follow-up studies of
more refined phenotypic measures of specific diagnostic subtypes.
Future studies should investigate to what extent genetic hetero-
geneity in depressive symptoms is recapitulated in clinical symp-
toms of depression.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291719002526
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