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It is demonstrated that the azimuthal magnetorotational instability (AMRI) also works
with radially increasing rotation rates contrary to the standard magnetorotational
instability for axial fields which requires negative shear. The stability against
non-axisymmetric perturbations of a conducting Taylor–Couette flow with positive
shear under the influence of a toroidal magnetic field is considered if the background
field between the cylinders is current free. For small magnetic Prandtl number Pm→0
the curves of neutral stability converge in the (Hartmann number,Reynolds number)
plane approximating the stability curve obtained in the inductionless limit Pm = 0.
The numerical solutions for Pm = 0 indicate the existence of a lower limit of the
shear rate. For large Pm the curves scale with the magnetic Reynolds number of the
outer cylinder but the flow is always stable for magnetic Prandtl number unity as is
typical for double-diffusive instabilities. We are particularly interested to know the
minimum Hartmann number for neutral stability. For models with resting or almost
resting inner cylinder and with perfectly conducting cylinder material the minimum
Hartmann number occurs for a radius ratio of rin = 0.9. The corresponding critical
Reynolds numbers are smaller than 104.
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1. Introduction

In recent years instabilities in rotating conducting fluids under the influence of
magnetic fields have become of high interest. Especially in view of astrophysical
applications, the consideration of non-uniform rotational rates Ω with Ω = Ω(R)
is relevant with R the distance from the rotation axis. It has been known for a
long time that differential rotation with negative shear (dΩ/dR < 0, ‘sub-rotation’)
becomes unstable under the influence of an axial field (Velikhov 1959; Balbus &
Hawley 1991). When considered separately, both ingredients of this magnetorotational
instability (MRI), i.e. the axial field and also the rotation, are stable. The full system
proves to be unstable if and only if the fluid is sub-rotating. For ideal fluids the
criterion of stability against axisymmetric perturbations of differential rotation under

† Email address for correspondence: gruediger@aip.de

https://doi.org/10.1017/S0022377818000065 Published online by Cambridge University Press

mailto:gruediger@aip.de
https://doi.org/10.1017/S0022377818000065


2 G. Rüdiger, M. Schultz, M. Gellert and F. Stefani

the presence of toroidal fields Bφ reads

1
R3

d
dR
(R2Ω)2 − R

µ0ρ

d
dR

(
Bφ
R

)2

> 0, (1.1)

where µ0 is the magnetic permeability and ρ the mass density (Michael 1954).
The stability problem of toroidal fields plus differential rotation in a cylindrical

geometry has been studied by several authors often considering the fluid as ideal
and/or the perturbations as axisymmetric (Chandrasekhar 1961; Gotoh 1962; Howard
& Gupta 1962; Chanmugam 1979; Fearn 1984; Balbus & Hawley 1992; Knobloch
1992; Dubrulle & Knobloch 1993; Ogilvie & Pringle 1996; Terquem & Papaloizou
1996; Pessah & Psaltis 2005; Shalybkov 2006). In view of possible experiments, in
the present paper the perturbations are considered as non-axisymmetric, existing in a
diffusive fluid under the influence of a current-free toroidal magnetic field.

After (1.1), solid-body rotation and rotation laws with positive shear (dΩ/dR > 0,
‘super-rotation’) are stabilized by the magnetic field unless the field strongly
increases outwards. The profiles Bφ ∝ 1/R (current free between the cylinders)
and Bφ ∝ R (z-pinch, homogeneous axial electric current) cannot destabilize rotation
increasing radially if only axisymmetric perturbations are considered. It has even
been demonstrated that for fields with Bφ ∝ 1/R all Taylor–Couette flows are
stable against axisymmetric perturbations (Herron & Soliman 2006). The azimuthal
magnetorotational instability (AMRI) of differential rotation plus azimuthal fields that
are current free between the cylinders is thus basically non-axisymmetric. Standard
MRI and AMRI have in common that, in both cases, the magnetic background fields
are force free and the combination of two stable components leads to instability. If
the azimuthal magnetic field is not current free and axial electric background currents
exist, we speak about Tayler instability (TI), which even exists without any rotation.

Taylor–Couette flows with positive shear are the prototype hydrodynamic stability
for moderate Reynolds numbers (Wendt 1933; Schultz-Grunow 1959). For finite, but
very large, Reynolds numbers, the existence of a linear instability for super-rotating
Taylor–Couette flow has been reported recently (Deguchi 2017). All the more
surprising is the finding that weak and stable magnetic azimuthal fields can also
destabilize flows with radially increasing Ω of rather low Reynolds number if
non-axisymmetric perturbations are taken into account (Stefani & Kirillov 2015;
Rüdiger et al. 2016). Even in this particular combination of two highly stable
ingredients the resulting MHD flow becomes unstable. We shall also demonstrate that
the radial profile of the fields – if not too steep – does not play an important role
for the question of stability or instability. On the other hand, the new instability is a
double-diffusive phenomenon as it does not appear if the molecular viscosity and the
molecular magnetic resistivity are equal. Contrary to AMRI, the standard MRI with
axial magnetic fields and differential rotation with negative shear has no counterpart
for positive shear.

The equations of the problem are

∂U
∂t
+ (U · ∇)U =− 1

ρ
∇P+ ν1U + 1

µ0ρ
curl B× B, (1.2)

∂B
∂t
= curl(U × B)+ η1B, (1.3)

with div U = div B = 0 for an incompressible fluid. U is the velocity, B the
magnetic field vector, P the pressure, ν the kinematic viscosity and η is the magnetic
resistivity. The basic state in the cylindrical system with the coordinates (R, φ, z) is
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UR = Uz = BR = Bz = 0 for the poloidal components and Ω = aΩ + bΩ/R2 for the
rotation law with the constants

aΩ = µ− r2
in

1− r2
in
Ωin, bΩ = 1−µ

1− r2
in
ΩinR2

in. (1.4a,b)

Here rin = Rin/Rout is the ratio of the inner cylinder radius Rin and the outer cylinder
radius Rout. Ωin and Ωout are the angular velocities of the inner and outer cylinders,
respectively. With the definition

µ= Ωout

Ωin
(1.5)

super-rotation is represented by µ> 1.
For the magnetic field the stationary solution is

Bφ = aBR+ bB

R
. (1.6)

The radial magnetic profile Bφ ∝ R is due to an applied homogeneous axial electric
current while Bφ ∝ 1/R is current free in the fluid. We define µB = Bout/Bin. The
current-free field is then given by µB = rin and the field in the z-pinch is µB = 1/rin.
Almost always in the present paper a narrow gap with rin = 0.9 is considered.

The dimensionless physical parameters of the system are the magnetic Prandtl
number Pm, the Hartmann number Ha and the Reynolds number Re, i.e.

Pm= ν
η
, Ha= BinD√

µ0ρνη
, Re= ΩoutD2

ν
. (1.7a−c)

The magnetic Reynolds number is Rm = Pm · Re. The parameters combine to the
magnetic Mach number

Mm= Rout

D

√
PmRe
Ha

, (1.8)

indicating whether the rotation energy dominates the magnetic energy or not. The
parameter D = Rout − Rin is the gap width. The Hartmann number is defined by the
magnetic field on the inner wall where it is maximal. If the Reynolds number is
defined with the rotation rate of the outer cylinder, then Re/µ describes the Reynolds
number of the inner cylinder. µ=∞ gives a model where the inner cylinder rests.

The variables U, B and P are split into mean and fluctuating components, i.e. U =
Ū + u, B = B̄ + b and P = P̄ + p. The bars from the variables are immediately
dropped, so that the uppercase letters U, B and P represent the background quantities.
By developing the disturbances u, p and b into normal modes the solutions of the
linearized magnetohydrodynamics (MHD) equations

[u, b, p] = [u(R), b(R), p(R)]ei(ωt+kz+mφ), (1.9)

are considered for axially unbounded cylinders. Here k is the axial wavenumber
of the perturbation, m its azimuthal wavenumber and ω the complex frequency
including growth rate as its imaginary part and a drift frequency ωdr as its real
part. A linear code is used to solve the resulting set of linearized ordinary differential
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FIGURE 1. Instability cones for two rotation profiles with µ= 1.9 and µ= 2.3. By the
vertical dotted lines the minimum Hartmann numbers Hamin are defined. µB = rin = 0.9,
m = ±1, Pm = 10−5. The stability lines are also valid for Pm = 0. Perfectly conducting
cylinders.

equations for the radial functions of flow, field and pressure fluctuations. The solutions
are optimized with respect to the Reynolds number for given Hartmann number
by varying the wavenumber. Only solutions for m = 1 are here discussed. The
hydrodynamic boundary conditions at the cylinder walls are the rigid ones, i.e.
uR = uφ = uz = 0. The cylinders are assumed to be perfectly conducting or – in
a few cases – insulating. For the conducting walls the fluctuations b must fulfil
dbφ/dR+ bφ/R= bR = 0 at Rin and Rout so that ten boundary conditions exist for the
set of ten differential equations. For Bz = 0 one can easily show that the system is
degenerate under the transformation m→−m so that all eigenvalues (for specific Re
and Ha) are valid for each pair m=±1.

2. Azimuthal magnetorotational instability
Consider rotation laws where the outer cylinder rotates with higher frequency than

the inner cylinder. For the small magnetic Prandtl number of Pm = 10−5 figure 1
presents the lines of marginal instability (i.e. for vanishing growth rate) for the two
rotation profiles with µ = 1.9 and µ = 2.3 for a narrow gap with rin = 0.9. The
magnetic field between the perfectly conducting cylinders is fixed to the vacuum
type, Bφ ∝ 1/R. The form of the resulting neutral lines corresponds to the well-known
form for sub-rotation as a tilted cone with both branches having a positive slope
(Hollerbach, Teeluck & Rüdiger 2010; Rüdiger, Kitchatinov & Hollerbach 2013).
Absolute minima of the Hartmann number and the Reynolds number exist, below
which the rotation law is stable. Above the minima the instability domain is always
limited by two critical values of the Hartmann number or the Reynolds number. For
a given supercritical Reynolds number there is a minimum magnetic field for the
instability and there is a maximum magnetic field destructing the instability. Also the
Reynolds number can be too small or too large for a given Hartmann number. Above
the upper branch of the instability curve the rotational shear is too strong to support
non-axisymmetric perturbations. Here we are in particular interested in the values of
the absolute minimum Hamin of the Hartmann number for neutral stability in order to
discuss the possibility of laboratory experiments. Without magnetic field the flow is
stable while the vertical dotted lines in figure 1 characterize the minimum magnetic
field via Hamin.

Figure 2(a) gives the optimized axial wavenumbers of the instability normalized
with the gap width D along the two branches of instability for small and large Pm.
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(a) (b)

FIGURE 2. The axial wavenumber kD (a) and the drift frequency ωdr/Ωout (b) along the
lines of marginal instability for Pm= 10−5 (µ= 5, 2.3, 1.9, from left to right) and Pm= 10
(µ= 5). µB = rin = 0.9, m=±1. Perfectly conducting cylinders.

The axial cell size is δz' πD/k. Cells with k < π are thus prolate while cells with
k>π are oblate with respect to the rotation axis. The limit k=π for nearly circular
cells is marked by a horizontal dotted line. The plot demonstrates that the cell
geometry strongly depends on the magnetic Prandtl number. For small Pm also the
wavenumbers are small hence the cells are prolate or circular in the (R, z) plane.
Along the strong-field (lower) branch of the instability cone the axial wavenumbers
exceed those of the low-field (upper) branch where the cells are rather long in axial
direction. For Pm� 1, however, the wavenumbers at both branches of the cone are
larger than π so that the cells are always very flat.

Also the drift rates possess a strong Pm-dependence. The drift values as given in
figure 2(b) are the real parts ωdr of the frequency ω of the Fourier mode of the
instability normalized with the rotation rate of the outer cylinder. Because of

φ̇

Ωout
=− ωdr

mΩout
(2.1)

the azimuthal migration φ̇ has the opposite sign of ωdr. For AMRI with negative shear
we always found that the pattern migrates for all Pm in positive φ-direction (Rüdiger
et al. 2014). For Tayler instability under the influence of radially increasing rotation
the situation is more complicated as the pattern counter-rotates for small Pm while it
co-rotates for Pm> 1. Figure 2 shows similar results. For small Pm positive ωdr occur
and the perturbation pattern indeed rotates retrograde. Large Pm provide negative drift
values hence the pattern migrates in the direction of the rotation. For ωdr/Ωout =−1
the pattern rotates just as the outer cylinder.

To see the influence of the boundary condition figure 3(a) gives the stability map
for µ= 5 for the two cases with perfectly conducting walls and insulating boundary
conditions. The small magnetic Prandtl number of Pm = 10−5 characterizes liquid
sodium. For vacuum boundaries the rotation laws are much more stable than for
perfectly conducting conditions. Note that Hamin for insulating cylinders exceed the
values of Hamin for perfectly conducting cylinders by a factor of 4. Also for AMRI
with negative shear the critical Hartmann numbers and the Reynolds numbers for
vacuum conditions strictly lie above the values for perfectly conducting conditions.
One finds from figures 1–3 the expected trend with µ for the minimum Hartmann
number. For perfectly conducting boundaries and Pm = 10−5 it decreases from
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(a) (b)

FIGURE 3. Stability maps for µ = 5 for perfectly conducting cylinders for Pm = 10−5

(a) and Pm� 1 (b). The lines for Pm= 100 and Pm= 1000 are almost indistinguishable.
Panel (a) also contains the line of neutral stability for insulating cylinders; the curve for
Pm= 10 (b) holds for insulating and perfectly conducting boundary conditions. Solutions
for Pm= 1 do not exist. Mm< 1 for all curves. µB = rin = 0.9.

Hamin ' 700 for the flat rotation law with µ = 1.9 to Hamin ' 200 for the steeper
rotation law with µ = 5. Below we shall discuss whether the reduction of Hamin by
growing rotation ratio µ is continued or not for µ→ ∞, i.e. for stationary inner
cylinder.

Figure 3(b) demonstrates instability also for Pm � 1. The stability curves for
Pm = 10, Pm = 100 and Pm = 1000 are given for perfectly conducting boundary
conditions in the Ha, Rm plane with Rm as the magnetic Reynolds number. Note
that in this representation the minimum values for Hartmann number and magnetic
Reynolds number hardly depend on Pm. For Pm→∞ the critical rotation rate appears
to scale with Rm. The curve for Pm = 10 simultaneously holds for the boundary
conditions of both perfectly conducting and insulating cylinders. For Pm> 1 the large
gaps between these curves known for Pm < 1 disappear. The role of the boundary
conditions for the excitation of the instability strongly depends on the choice of the
magnetic Prandtl number.

3. Role of the magnetic Prandtl number
We should also be interested to model containers with resting inner cylinder

described by µ → ∞ which our code approximates for very high µ-values. One
finds that already µ = 128 gives an excellent approximation of this rotation law.
Figure 4(a) presents essential parts of the instability cones for µ= 128 for decreasing
magnetic Prandtl numbers in the (Ha, Re) plane. For small Pm the curves perfectly
coincide. The eigensolutions for neutral stability, therefore, scale with Re and Ha for
Pm→ 0. Hence, the numerical values of Ha and Re calculated with the inductionless
approximation Pm = 0 can also be used for the small magnetic Prandtl numbers of
gallium (Pm ' 10−6) or even liquid sodium (Pm ' 10−5). This approximation only
models the relation ν � η, it does not mean that ν = 0 (Roberts 1967). Below we
shall demonstrate that the curves of neutral stability always scale with Ha and Re
within this approximation. Note also how clear in figure 4(a) the minimum Hartmann
number Hamin stands at a constant value for the various small Pm.

For applications also the growth rates of the instability as the negative imaginary
part of the Fourier frequency are relevant. They are normalized with the rotation rate
Ωout of the outer cylinder for a fixed Reynolds number and for almost-stationary inner
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(a) (b)

FIGURE 4. (a) Lines of neutral stability in the (Ha,Re) plane for various magnetic Prandtl
numbers (marked) for almost stationary inner cylinder. For small Pm the lines coincide.
Their minimum Hartmann number is Hamin ' 147. Stars denote the Hamin. (b) Growth
rate normalized with Ωout for Re= 1000 and three magnetic Prandtl numbers as indicated.
µB = rin = 0.9, µ= 128. Perfectly conducting cylinders.

FIGURE 5. Minimum Hartmann number Hamin and the corresponding Reynolds numbers
(Pm < 1) and magnetic Reynolds numbers (Pm > 1) dependence on Pm for µ = 128.
For Pm = 1 solutions with positive growth rates do not exist. µB = rin = 0.9. Perfectly
conducting cylinders.

cylinder by figure 4(b). The common Reynolds number Re = 1000 is the maximal
value in (a). By definition the growth rates vanish for the marginal values of the
Hartmann number. For ωgr/Ωout = 1 the growth time relative to the rotation time (of
the outer cylinder) is τgr/τrot = 1/2π. We find for supercritical magnetic fields finite
values of order 0.2 leading to the typical relation τgr' τrot. The Pm-dependence is only
weak and disappears for Pm→ 0. The lines converge for sufficiently small magnetic
Prandtl number. Rotation with radially increasing frequency, therefore, magnetically
decays and grows with the time scale of rotation itself – similar to the other forms
of magnetorotational instability.

Figure 5 gives the minimum Hartmann number Hamin together with the associated
Reynolds numbers for strong (µ=128) positive shear in dependence on Pm. One finds
convergence for both eigenvalues for Pm→ 0. The curves basically scale with Ha and
Re for Pm→ 0 in both cases.
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For Pm < 1 the Reynolds number takes a minimum at Pm ' 0.1. For even larger
Pm it grows to infinity if Pm→ 1. No solution for Pm= 1 exists. For even larger Pm,
however, the instability is reanimated with Hartmann numbers of the same order as for
Pm< 1 and rather low magnetic Reynolds numbers. Even for large magnetic Prandtl
numbers the magnetic Mach number remains smaller than unity. Instabilities which
only exist for ν 6= η belong to the class of double-diffusive instabilities (Acheson
1978). They do not appear for Pm = 1 what possibly means that they do not exist
in ideal fluids. Stefani & Kirillov (2015) derived eigenvalues for rotation laws with
positive shear and for Pm = 0 in a short-wave approximation without boundary
conditions, demonstrating the local character of the instability.

In figure 5 the eigenvalues Re and Ha do not depend on Pm if Pm → 0. The
question is whether the global equation system for the perturbations also possesses
solutions for Pm = 0 for all µ > 1 or not. We already know that AMRI solutions
with negative shear do exist for Pm= 0 but only for flows close to the Rayleigh line
with µ 6 0.3 (Hollerbach et al. 2010). We ask whether such a limit also exists for
super-rotation. The standard MRI (with axial fields) for all (negative) shear values
does not exist for Pm = 0 (Chandrasekhar 1961). For Pm → 0 it scales with the
magnetic Reynolds number Rm leading for small Pm to very large Reynolds numbers.
This is the explanation that the experimental realization of the standard MRI is still
an existing challenge.

The dimensionless and linearized equations for the evolution of the flow, field and
pressure perturbations in the inductionless (or ‘quasistationary’) approximation for
Pm= 0 are

Re
(
∂u
∂t
+ (U · ∇)u+ (u · ∇)U

)
=−∇p+1u+Ha2(curl b× B+ curl B× b) (3.1)

and
curl(u× B)+1b= 0, (3.2)

together with div u = div b = 0. The fluctuating and mean magnetic fields are
normalized with a characteristic scale B0 of the background field. The background
flow U is normalized with a characteristic flow amplitude U0, the flow perturbations
with η/D and the time with D/U0. Obviously, the eigenvalues of the system are Re
and Ha.

The equation system (3.1) and (3.2) is numerically solved with the boundary
conditions as described above. Figure 6 shows that for rotation with sufficiently
large positive shear µ> µcrit > 1 solutions for Pm= 0 indeed exist for both sorts of
boundary conditions. For perfectly conducting boundaries the dotted vertical line at
µcrit = 1.8 appears as a lower bound for the eigensolutions. As indicated by black
dots, for Pm= 10−5 solutions also exist for µ<µcrit but only for very large Reynolds
and Hartmann numbers. It is a similar situation as for negative shear where solutions
for µ& 0.3 only exist for finite Pm with very large Reynolds numbers. Note that the
lower bounds µcrit are much harder to extrapolate for insulating boundary conditions
than for perfectly conducting ones.

After figure 1 the global solution with µ = 1.9 and for Pm = 10−5 requires much
higher Hartmann numbers and Reynolds numbers than the steeper rotation law with
µ = 2.3. Formally, the critical values for µ = 1 (rigid rotation) are infinite. It is
not surprising that both Reynolds numbers and Hartmann numbers are growing for
µ→ 1. For Pm= 0, however, no solution for µ< 1.9 has been found. The curves for
Pm= 0 indeed suggest the existence of the lower limit µcrit> 1 where the eigenvalues
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(a) (b)

FIGURE 6. Hamin (a), the corresponding Reynolds numbers (b) versus the shear number
µ for insulating cylinders (blue, Pm= 0) and perfectly conducting cylinders (red, Pm= 0,
Pm= 10−5). The vertical dotted lines mark shear of µcrit = 1.8. For Pm= 0 no solution
for µ< 1.9 (red dot) has been found. The dark dot represents the last known solution at
µ= 1.7 for Pm= 10−5. Note the crossing of the Reynolds number lines for µ≈ 8. m=±1,
rin = 0.9.

become infinite. Obviously, finite values of the magnetic resistivity stabilize too flat
rotation laws with positive shear in the sense as Liu et al. (2006) found for the
axisymmetric modes of helical magnetorotational instability within the inductionless
short-wave approximation.

For conducting boundaries also the curves for Pm = 10−5 in figure 6 are given
showing nearly perfect coincidence with the curve for Pm = 0. The two lines
hardly can be distinguished by eyes. The results of calculations in the inductionless
approximation can thus be assumed as valid for liquid metals with their small Pm.
Note also that for perfectly conducting cylinders much weaker magnetic fields than
for insulating cylinders are needed for the instability onset. For large values of µ the
ratio of the Hamin for insulating and perfectly conducting boundaries is approximately
2.5. The same is true with respect to the Reynolds number but only for small µ (flat
rotation laws) while for large µ (steep rotation laws) the critical Reynolds numbers
for vacuum conditions are smaller than for conducting boundary conditions. This
behaviour of the eigenvalues is already known from standard MRI of quasi-Keplerian
rotation laws with axial fields for different boundary conditions.

We seek the azimuthal drift rates ωdr/Ωout of the solution with the lowest Hartmann
number. In figure 2(b) these values for Pm= 10−5 only slightly vary with µ for µ6 5.
Figure 7 also shows the azimuthal drift measured in terms of the outer rotation rate
which hardly depends on the shear or the magnetic Prandtl number but its numerical
value basically depends on the boundary condition. For both boundary conditions and
for small Pm the instability pattern rotates retrograde. The amount of this migration
basically depends on the material of the cylinders. The rotation rate of the inner
cylinder does not at all influence the azimuthal migration of the pattern.

4. Electric currents
It remains to discuss the influence of the size of the gap between the cylinders on

the excitation conditions and the axial electric current which produces the minimum
Hartmann numbers.

A Taylor–Couette flow with resting inner cylinder is clearly the most simple model
for super-rotating fluids. As it also forms the steepest radial profile one expects for this
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FIGURE 7. Same as in figure 6 but for the drift rate ωdr/Ωout.

FIGURE 8. Hamin (thick solid line) and corresponding Reynolds number (thin solid line)
versus rin. The necessary axial electric current Iaxis (thick dashed line, in kA) and rotation
frequency f of the outer cylinder (thin dashed line, in Hz) are also given for sodium as the
conducting fluid. Rout = 5 cm, µ= 128, m=±1, Pm= 0. Perfectly conducting cylinders.

configuration the lowest Hartmann numbers. From figure 6 we find, however, that both
Reynolds and Hartmann numbers for µ→∞ are well represented by the solutions
already for µ= 128 and that perfectly conducting boundaries always lead to the least
numerical values. Figure 8 provides the results for variation of the gap width for
Pm = 0 and for 0.7 6 rin < 1. The Hartmann number for perfectly conducting
boundaries has a minimum close to rin = 0.9. In order to transform the values to the
axial electric current within the inner cylinder the relation Iaxis= 5RinBin (see Rüdiger
et al. 2013) can be written as

Iaxis = 5
Rin

D
Ha
√
µ0ρνη, (4.1)

where the axial currents are measured in ampere. The numerical values are given as
the thick dashed line in figure 8. The result is that the minimum electric current is
26.1 kA for liquid sodium as the conducting fluid1 with a gap width of 0.25.

The Reynolds numbers associated with the minimal Hartmann numbers given in
figure 8 are moderate enough to ensure laminar flows in non-magnetic experiments
(see Balbus 2011). For stationary inner cylinders with rin = 0.92 Schultz-Grunow

1√µ0ρνη' 8.2 in c.g.s.
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(a) (b)

FIGURE 9. Same as in figure 8 but for the axial wavenumber kD (a) and the azimuthal
drift rate ωdr/Ωout (b).

(1959) found stable solutions for Reynolds numbers not exceeding 40.000, in
agreement with the data of Taylor (1936). Burin & Czarnocki (2012) discussed
in detail the phenomena of subcritical transition to turbulence in Taylor–Couette
flows by finite disturbances. The experiment described by Seilmayer et al. (2014) to
realize the current-free AMRI for negative shear worked with rin = 0.5 (with outer
radius 8 cm) and a Reynolds number of 2956 without indication of any non-magnetic
instability within the container. Flows with positive shears are even more stable.

For increasing gap width the Reynolds number continuously grows. However, the
rotation frequency f =Ωout/2π possesses a minimum at rin = 0.8. For liquid sodium
(ν = 7.1 · 10−3 cm2 s−1) and (say) Rout = 5 cm one obtains f = 9.3 Hz. For wider
gaps both the critical Reynolds number and Hartmann number rapidly increase. For
rin = 0.66 we did not find any instability assuming Re < 15.000. Note that the size
of the container does not influence the needed electric current for instability but the
fractional gap width does.

The eigenvalues given in figure 8 are also characterized by associated axial
wavenumbers and azimuthal drift rates. The dependencies of these values on rin are
not strong. For not too narrow gaps the cells are hardly elongated with the rotation
axis and the azimuthal migration (2.1) of the instability pattern is always negative,
becoming (slightly) slower for wider gaps (figure 9). With the used normalizations
both the axial wavenumber and the drift rates linearly grow with the value of rin;
they are maximal for rin→ 1.

For the container with rin = 0.75, which after figure 8 requires the minimum axial
electric current for excitation, the figure 10 again demonstrates the independence of
Hartmann number and Reynolds number of the magnetic Prandtl number. Neither
value depend on Pm for Pm. 10−5. It is indeed allowed to use for the critical values
of Hamin and Re the results of the inductionless approximation for liquid metals such
as mercury, gallium and sodium as the conducting fluids. The magnetic Mach number
(1.8) for the largest Pm in figure 10 is of order unity but for smaller Pm – as for all
instabilities which scale with Ha and Re for Pm→ 0 – the magnetic Mach number
is much smaller than unity.

After (4.1) the electric currents needed for neutral stability behave like the
numerical values of the material expression

√
µ0ρνη which mainly runs with

√
ρ as

for the mentioned liquid metals the averaged diffusivity
√
νη≈ const. It is thus clear

that experiments for liquid sodium require the weakest electric currents.
So far we did not vary the radial profile of the magnetic background field. One

of the questions is how sensitively the described instability reacts in the presence
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FIGURE 10. Same as in figure 5 but for rin= 0.75. For Pm= 10−5 the Hartmann number
is Hamin= 211.8 and the Reynolds number is Re= 5360. Between Pm' 10−3 and Pm= 1
the values rapidly grow to ∞. µ= 128, µB = rin = 0.75. Perfectly conducting cylinders.

FIGURE 11. Stability map for resting inner cylinder. The radial profiles of the background
fields vary from µB = 1/rin (TI, thick lines) to µB = rin (AMRI, thin lines) and for Pm=
0.02 (blue) and Pm= 10−5 (red). Ha0= 332 for all Pm. Note the coincidence of the upper
branches for large Reynolds numbers. rin = 0.9, perfectly conducting boundaries.

of axial electric currents within the fluid. The Tayler instability of the z-pinch with
Bφ ∝ R – which for Ha=Ha0 is unstable against non-axisymmetric perturbations for
all Pm even without rotation – is supported by super-rotation unless Pm= 1 so that
even subcritical Hartmann numbers Ha<Ha0 exist (Rüdiger et al. 2016). Similar to
our above results, the azimuthal migration of the non-axisymmetric instability pattern
depends on Pm. Also here the pattern counter-rotates for Pm� 1 and it co-rotates for
Pm� 1.

In addition for the current-free field Bφ ∝ 1/R figure 11 also yields the stability
lines for the field Bφ ∝ R for two different magnetic Prandtl numbers. The instability
for Re = 0 appears at Ha0 (Tayler 1957, 1973; Vandakurov 1972; Seilmayer et al.
2012) which does not depend on Pm (Rüdiger & Schultz 2010). For large Reynolds
numbers only small differences of the lines of marginal instability exist for the two
radial profiles. The minimum Hartmann numbers for instability are slightly reduced
by the electric currents, Hamin<Ha0, but the differences are small. The main result is
that the magnetically induced instability of super-rotating Taylor–Couette flows with
narrow gaps is only slightly influenced by the applied radial field profile. The upper
branches in figure 11 demonstrate this phenomenon for two different magnetic Prandtl
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FIGURE 12. Isolines of the radial magnetic field component for instability without axial
electric current between the cylinders (µB = rin, a) and with axial electric current (µB =
1/rin, b). Resting inner cylinder. Ha = 300, rin = 0.9, Re = 155, Pm = 0.02, perfectly
conducting boundaries.

numbers. One can even consider the field as uniform between the cylinders (Edmonds
1958). The magnetic field only acts as a catalyst for the instability.

To visualize the shape of the instability pattern a nonlinear spectral code is used
which has been developed from the hydrodynamic code of described by Fournier et al.
(2004) and which works with the expansion of the solution after azimuthal Fourier
modes. Figure 12 demonstrates that the resulting patterns of the instabilities for resting
inner cylinder and for Pm=0.02 only slightly differ in dependence on the existence of
axial electric background currents. The isolines of the radial magnetic field component
are given showing different helicities of the two cases (for the given sign of the
electric current) and the axial wavelength in (a) exceeds that of the instability model
in panel (b).

The two examples in figure 12 have identical supercritical Reynolds number and
Hartmann number. In panel (b) a uniform axial electric current exists in the fluid
between the cylinders so that the pattern belongs to the Tayler instability (under the
influence of differential rotation). The electric current is missing in (a) but the cell
structure is very similar. For strong super-rotation the two instabilities appear to fuse
and both instabilities are hard to distinguish unless Pm= 1.

5. Conclusions
In an earlier paper we have shown that Taylor–Couette flows with radially

increasing rotation can become unstable against non-axisymmetric perturbations
in the presence of sufficiently strong azimuthal magnetic fields which are due to a
homogeneous electric current (Rüdiger et al. 2016). The present paper leads to the
conclusion that such instability also exists if the field between the cylinders is current
free. At least for small Pm under the influence of differential rotation the differences
between both instabilities become very small. Both instabilities appear for Pm 6= 1
while the sign of the azimuthal pattern drift strongly differs for Pm� 1 and Pm� 1.
For Pm = 1 rotation with positive shear stabilizes TI and completely suppresses
the instability of current-free fields. Solutions for AMRI only exist if the molecular
viscosity and the microscopic magnetic diffusivity strongly differ, hence solutions do
not exist for Pm= 1 which is characteristic of double-diffusive instabilities.

An important difference to the standard magnetorotational instability with axial
fields (which only exists for negative shear) is that the new instability also appears
in the inductionless approximation with Pm = 0 for sufficiently large positive shear.
The numerical calculations suggest a lower limit of µcrit = 1.8. For finite but small
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magnetic Prandtl numbers solutions exist even below this limit but with very large
Reynolds numbers. The consequence is that for finite but small magnetic Prandtl
numbers the solutions for µ>µcrit scale with Re and Ha almost independent of Pm.
This gives the chance to probe the numerical results by experiments in the laboratory
by use of liquid metals with their extremely low magnetic Prandtl numbers. For the
optimal gap width of 0.25 and for liquid sodium as the conducting fluid the minimal
axial current is 26.1 kA and the rotation frequency is approximately 10 Hz (for
Rout= 5 cm). These numbers should be suitable for experiments. However, in view of
the significant differences of Hamin for perfectly conducting and insulating boundaries
(figure 6) any real experiment with sodium flowing between (for example) copper
walls remains to be carefully predicted.
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