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Abstract

A Sidon set is a subset of an Abelian group with the property that the sums of two distinct elements are
distinct. We relate the Sidon sets constructed by Bose to affine subspaces of Fq2 of dimension one. We
define Sidon arrays which are combinatorial objects giving a partition of the group Zq2 as a union of Sidon
sets. We also use linear recurring sequences to quickly obtain Bose-type Sidon sets without the need to
use the discrete logarithm.
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1. Introduction

In number theory, a Sidon set (or Sidon sequence), named after the Hungarian
mathematician Szimon Szidon, is a set A = {a0, a1, a2, . . .} of natural numbers in which
all pairwise sums ai + aj (i ≤ j) are different. Sidon introduced the concept in his
investigations of Fourier series. This notion has been generalised: in an abelian group
G, a subset A is a Bh[g]-set if, for any element x of G, the number of h-tuples of
elements of A of sum x is less than or equal to g. The main problem in the study of
Sidon sets is to find the largest number of elements a Sidon set can have which are
smaller than some given number x.

There are several constructions of Sidon sets (for a complete summary, see [9]). We
will concentrate on the construction of Bose [1] using finite affine geometry. Let q be
any prime power and γ a generator of F×q2 and define the set

B(q, γ) := {a ∈ [q2 − 1] : γa − γ ∈ Fq}.
Bose [1] showed that B(q, γ) is a Sidon set.

The discrete logarithm function is defined by

Logγ : (F∗q2 ,×) −→ (Zq2−1,+)

γk �−→ Logγ(γ
k) = k.
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So the Sidon set B(q, γ) is B(q, γ) = {Logγ(α + a) : a ∈ Fq}.
However, the condition γa − γ ∈ Fq implies that (γa − γ)q = γa − γ, or equivalently

(γa)q − γa − (γq + γ) = 0,

which means that γa is a root of the polynomial f (x) = xq − x + β where β = γq + γ.
This fact will be used in our construction later.

We relate the Sidon sets constructed by Bose [1] with affine subspaces of Fq2 of
dimension one. We define Sidon arrays which are combinatorial objects giving a
partition of the group Zq2 as a union of Sidon sets. Sidon arrays are related to the
Sidon spaces constructed in [10] and used there to describe cyclic subspace codes. We
take a different approach inspired by Bose’s construction of Sidon sets. We also use
linear recurring sequences to quickly obtain Bose-type Sidon sets without the need to
use the discrete logarithm. Our method is as fast as the one described in [7], at least
when q is a prime.

The article is organised as follows. In Section 2, we review facts about linearised
polynomials and their relation with subspaces of Fq2 defined over Fq and we prove our
main result Theorem 2.5. In Section 3, we define the concept of Sidon array and we
give some examples. Section 4 is devoted to the fast construction of Bose-type Sidon
sets.

2. Linearised polynomials and Sidon sets

We start by recalling some elementary facts about linearised polynomials (for a
detailed exposition, we refer to [6, Ch. 3]).

Let Fq and Fqm be the finite fields with q and qm elements, respectively, where q is a
prime or a prime power. Polynomials over Fqm of the form

L(x) :=
n∑

i=0

cixqi
, n ∈ N,

are often known as q-polynomials or linearised polynomials. This terminology stems
from the following property: if F is an arbitrary extension field of Fqm , then

L(α + β) = L(α) + L( β) for all α, β ∈ F,
L(cα) = cL(α) for all c ∈ Fq and all α ∈ F.

So these special polynomials induce linear transformations of Fqm and Fq. An
important example of a linearised polynomial is the so-called trace polynomial

Tr(x) =
m−1∑

i=0

xqi

defining the trace function of Fqm over Fq. The following well-known theorem shows
the special character of the set of roots of a linearised polynomial.
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THEOREM 2.1 [6, Ch. 3]. Let L(x) be a nonzero linearised polynomial over Fqm and
let the extension field Fqs of Fqm contain all the roots of L(x). Then each root of L(x)
has the same multiplicity, which is either 1 or a power of q, and the roots form a
linear subspace of Fqs , regarded as a vector space over Fq. Reciprocally, let U be a
linear subspace of Fqm , considered as a vector space over Fq. Then for any nonnegative
integer k, the polynomial

L(x) =
∏

β∈U
(x − β)k

is a linearised polynomial over Fqm .

A polynomial of the form A(x) = L(x) + α, where L(x) is a linearised polynomial
over Fqm and α ∈ Fqm , is called an affine q-polynomial over Fqm . As in the case of
linearised polynomials, there is an analogue of Theorem 2.1.

THEOREM 2.2 [6, Ch. 3]. Let A(x) be an affine q-polynomial over Fqm and let the
extension field Fqs of Fqm contain all the roots of A(x). Then each root of A(x) has
the same multiplicity, which is either 1 or a power of q, and the roots form an affine
subspace of Fqs , regarded as a vector space over Fq. Reciprocally, let T be an affine
subspace of Fqm , considered as a vector space over Fq. Then for any nonnegative
integer k, the polynomial

A(x) =
∏

β∈T
(x − β)qk

is an affine q-polynomial over Fqm .

REMARK 2.3. The polynomial f (x) = xq − x + β in Bose’s construction is an affine
q-polynomial over Fq2 , so it defines an affine line in Fq2 .

In this paper, we are interested in the special case L(x) = xq + ax defined over Fq2 .
If L splits completely over Fq2 , then its roots have multiplicity one and form a vector
space of dimension one over Fq, that is to say a line, denoted by L. LetA be the affine
line associated to the affine q-polynomial A(x) = xq + ax + b, when it splits completely
over Fq2 .

Consider a line L ⊂ Fq2 , that is, L = Gen(θ) := {aθ : a ∈ Fq} for some nonzero θ ∈
Fq2 . Then for every δ ∈ Fq2\L, the setA := L + δ is an affine line. Fix once and for all
a primitive element γ in F×q2 .

Before stating and proving our main result, we require the following simple lemma.

LEMMA 2.4 [4, page 323]. If α1,α2,α3 and α4 ∈ Fq are distinct, then the relations

α1α2 = α3α4, α1 + α2 = α3 + α4 (2.1)

cannot hold simultaneously. In other words, any solution (α1,α2,α3,α4) ∈ F4
q of (2.1)

satisfies α1 ∈ {α3,α4}.
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THEOREM 2.5. Let γ be a primitive element in F×q2 and let θ, δ ∈ F×q2 be such that
δ � L = Gen(θ). Then the set

S := Logγ(A) = {Logγ(αθ + δ) | α ∈ Fq},

whereA := L + δ, is a Sidon set modulo q2 − 1.

PROOF. Let a1, a2, a3, a4 be any four different elements in S such that a1 + a2 =

a3 + a4. Since the sum is taken modulo q2 − 1 and γ is primitive, the powers of γi

are different for 1 ≤ i ≤ q2 − 1 and γa1 · γa2 = γa3 · γa4 .
Since the γai terms are different elements of Fq2 and by construction also

belong to A, there exist distinct α1,α2,α3,α4 ∈ Fq such that (α1θ + δ)(α2θ + δ) =
(α3θ + δ)(α4θ + δ), that is,

α1α2θ
2 + (α1 + α2)θδ + δ2 = α3α4θ

2 + (α3 + α4)θδ + δ2. (2.2)

Equation (2.2) is equivalent to

(α1α2 − α3α4)θ = (α3 + α4 − α1 − α2)δ.

By Lemma 2.4, the expressions α1α2 − α3α4 and α3 + α4 − α1 − α2 are not zero
simultaneously, so we can write

δ =
b
a
θ, (2.3)

where b = α1α2 − α3α4 and a = α3 + α4 − α1 − α2. Since b/a ∈ Fq, (2.3) implies δ ∈
Gen(θ), which contradicts our hypothesis and proves our claim. �

REMARK 2.6. Let us consider the linearised polynomial f (x) = xq − x, which decom-
poses completely in Fq2 . Its roots are all the elements of Fq, so the affine polynomial
g(x) = f (x − a) is also reducible and

f (x − a) = xq − aq − (x − a) = xq − x − (aq + a).

Setting β = aq + a, a straightforward calculation shows that β has trace 0 and we get
Bose’s construction as a particular case.

EXAMPLE 2.7. Let us consider q = p = 5. The polynomial p(x) = x2 + 4x + 2 is prim-
itive over F5. Let γ be a root of p(x), so that γ is a primitive element. The polynomial
A(x) = x5 + γ16x + γ14 splits completely over F52 with roots {γ4, γ6, γ11, γ14, γ15}, so the
set S := {4, 6, 11, 14, 15} is a Sidon set modulo 24.

3. Linearised polynomials and Sidon arrays

In this section, we define new objects which we have called Sidon arrays. We
first make some further remarks on the linearised polynomials that appear in the
construction of Sidon sets in the previous section. We need the following lemma giving
conditions for the polynomial xq + ax to factorise completely over Fq2 .
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LEMMA 3.1 (see [6, Theorem 2.24 and Exercise 2.14]). The polynomial L(x) = xq + ax
in Fq2 [x] splits completely over Fq2 if and only if there exists β ∈ Fq2 such that
a = βq−1.

Using Lemma 3.1 and since f (x) = b−qTr(bx) =
∏q

i=1(x − b−1λi), the roots of f can
be written as βλj for β a (q + 1)th root of unity and λj ranging over all trace zero
elements in Fq2 .

REMARK 3.2. The roots of a q-polynomial of the form xq + ax form a vector subspace
of dimension one over Fq and therefore an additive normal subgroup Ga of Fq2 with q
elements. Thus, Fq2 is the union of q different classes, that is,

Fq2 =

q⋃

i=1

(ci + Ga)

with the convention that c1 = 0 corresponds to the class of Ga.

By Theorem 2.2, the q elements of a class ci + Ga are the roots of an affine
polynomial of the form f (x) = xq + ax + b. Since ci belongs to at least one line, there
is a linearised polynomial L(x) that has ci as one of its roots. By the description given
above for the roots of L(x), we can also characterise the roots of the affine polynomial
f (x) as θλ + βG0, where G0 is the additive subgroup in Fq2 of trace zero elements, β
and θ are (q + 1)th roots of unity and λ ∈ G0 is such that θλ � βG0.

By Remark 3.2, the elements of Fq2 can be organised in a q × q matrix S such that
the ith row is the class (ci + Ga). Recall that the elements of Ga are of the form βλj,
where β is a (q + 1)th root of unity and λj ranges over all trace zero elements in Fq2 .
So the entries of S are si,j = ci + βλj.

DEFINITION 3.3. A Sidon array of order q is a matrix of order q × q whose entries are
all integers in the interval [0, q2 − 1] such that any row or column other than the first
row and first column is a Sidon set modulo q2 − 1.

From the comments and Remark 3.2, Sidon arrays of order q exist and they can be
constructed as indicated above.

EXAMPLE 3.4. Let us consider q = p = 5. The polynomial p(x) = x2 + 4x + 2 is
primitive over F5 with root γ. Take a = γ16. Then Ga = {0, γ19γ, γ7, γ13} is the set of
roots of f (x) = x5 + γ16x. The elements of Fq2 can be organised as in Table 1.

Taking logarithms, with the convention Logγ(0) = 24, gives Table 2.
It can be verified that the table meets the conditions for a Sidon array. In fact, the

second row corresponds to the set obtained in Example 2.7, as logarithms of the roots
of the polynomial A(x) = x5 + γ16x + γ14.

Sidon arrays are a refinement of the partitions in the case h = 2 introduced by
Gilberto et al. [5]. They proved the following theorem.

THEOREM 3.5 [5]. There is a partition of Zqh into Bd sets modulo qh − 1 where d runs
through the divisors of h.
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TABLE 1. A Sidon array modulo 25 before taking logarithms.

0 γ19 γ γ7 γ13

γ11 γ15 γ14 γ6 γ4

γ17 γ10 γ21 γ20 γ12

γ23 γ18 γ16 γ3 γ2

γ5 γ8 γ0 γ22 γ9

TABLE 2. A Sidon array modulo 25.

24 19 1 7 13
11 15 14 6 4
17 10 21 20 12
23 18 16 3 2
5 8 0 22 9

In our case, taking h = 2, we have a partition of Zq2 modulo q2 − 1 as B2 sets, that
is, Sidon sets.

A Golomb ruler Gk of order k is an ordered set of k integers (a1, a2, . . . , ak) such
that 0 ≤ a1 < a2 < · · · < ak and all the differences {ai − aj | 1 ≤ j < i ≤ k} are distinct.
A (v, k)-modular Golomb ruler is an ordered set of k integers (a1, a2, . . . , ak) such that
0 ≤ a1 < a2 < · · · < ak and all the differences {ai − aj | 1 ≤ j < i ≤ k, i � j} are distinct
and nonzero modulo v.

Sidon sets are widely used in the construction of Golomb rulers and modular
Golomb rulers (see [2, 3, 8]). In this context, disjoint Golomb rulers (see [11]) are
similar to Sidon arrays. This is another reason for our interest in Sidon arrays, since
they could have similar properties and applications as disjoint Golomb Rulers.

4. Linear recurrences and fast construction of Sidon sets

We begin this section with the definition and properties of recurrence relations,
which we need for our applications. For more details, see [6, Ch. 6].

DEFINITION 4.1. Let k ∈ N. A sequence s0, s1, . . . of elements of Fq is called a linear
recurring sequence of order k in Fq if there are elements a, a0, a1, . . . , ak−1 ∈ Fq such
that

sn+k = ak−1sn+k−1 + ak−2sn+k−2 + · · · + a0sn + a. (4.1)

The terms s0, s1, . . . , sk−1 determining the sequence are called initial values.
Equation (4.1) is called a linear recurrence relation of order k. If a = 0 it is called
homogeneous, otherwise it is called nonhomogeneous. The vector (sn, sn+1, . . . , sn+k−1)
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is called an nth state vector; in particular, (s0, s1, . . . , sk−1) is called an initial
state vector. Linear recurring sequences in Fq are eventually periodic. More precisely,
we have the following result.

THEOREM 4.2 (see [6, page 194]). If s0, s1, . . . is a linear recurring sequence in a finite
field satisfying the linear recurrence relation (4.1) and if the coefficient a0 is nonzero,
then the sequence s0, s1, . . . is periodic.

Suppose that the affine polynomial f (x) = xq + ax + b factorises as a product of
linear polynomials over Fq2 , so its roots lie on an affine line and therefore their discrete
logarithms form a Sidon set modulo q2 − 1. As remarked above, f (x) = β−qTr( βx + α)
for some nonzero β,α ∈ Fq2 . So if θ is a root of f (x), then it is also a root of Tr( βx + α).
We will use this fact to give a fast construction of Sidon sets without the need to take
discrete logarithms.

Fix a primitive element γ of Fq2 and define the sequence si := Tr( βγi + α) ∈ Fq.
By the properties of the trace polynomial, it is easy to prove that the sequence si is
periodic with period q2 − 1 and therefore a linear recurring sequence of order k in Fq
for some k. The next theorem follows from the above discussion and the construction
in Section 2.

THEOREM 4.3. Let si be the sequence defined above. Then the set S defined by S :=
{i (mod q2 − 1) | si = 0} is a Sidon set modulo q2 − 1.

Although the definition of the set does not involve discrete logarithms, there is still
the problem of evaluating the trace polynomial and calculating all the powers of the
primitive element γ. Using the fact that the sequence is recurrent, we can reduce our
problem to calculate only the initial values of the recurrence, with the rest reduced to
arithmetic on Fq.

Since γ is a primitive element, there exist n0 and m0 such that β = γn0 and α = γm0 .
In Fq,

si = Tr( βγi + α) = Tr( βγi) + Tr(α) = Tr(γn0γi) + Tr(γm0 ) = ti+n0 + tm0 ,

where ti := Tr(γi) is the sequence given by the trace. Also, ti is periodic with period
q2 − 1.

Let p(x) = x2 − a1x − a0 ∈ Fq[x] be the minimal polynomial of γ. Then we have
γ2 = a1γ + a0 and multiplying by γi gives γi+2 = a1γ

i+1 + a0γ
i. Taking the trace on

both sides,

ti+2 = Tr(γi+2) = Tr(a1γ
i+1 + a0γ

i) = a1Tr(γi+1) + a0Tr(γi) = a1ti+1 + a0ti. (4.2)

That is, the recurrence has order 2 and the coefficients of the recurrence are the
coefficients of the minimal polynomial p(x). So we only need to find the initial values
t0 and t1:

t0 = Tr(γ0) = 1q + 1 = 2, t1 = Tr(γ) = γq + γ = −a1,

the last equation because γ and γq are conjugates. Thus the sequence si is completely
determined. However, this is not yet an effective method because if n0 and m0 are large,
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we need to calculate many terms of the recurrence ti. Instead, we use the particular
case β = 1, that is, we consider the sequence si = Tr(x + α) = ti + tm0 . Set b = tm0 so
that ti = si − b. Substituting this in (4.2) gives

sn+2 = a1(sn+1 − b) + a0(sn − b) + b

= a1sn+1 + a0sn + b(1 − a1 − a0)

= a1sn+1 + a0sn + bp(1).

From this discussion, we derive the following result.

THEOREM 4.4. Let b ∈ Fq and f (x) = x2 − a1x − a0 ∈ Fq[x] be a primitive polynomial.
Define the nonhomogeneous sequence sn+2 = a1sn+1 + a0sn + a with s0 = 2 + b, s1 =

−a1 + b and a = b f (1). Then the set S := {i (mod (q2 − 1)) | si = 0} is a Sidon set
modulo q2 − 1.

The result of the previous theorem can be described algorithmically as shown in
Algorithm 1.

ALGORITHM 1: SidonSets

Input: b ∈ Fq and f (x) = x2 − a1x − a0 ∈ Fq[x], a primitive polynomial.
Output: A set S which is a Sidon set modulo q2 − 1 with q elements.

1: Set the initial values s0 = 2 + b, s1 = −a1 + b and the term a = b f (1) of the
nonhomogeneous recurrence sequence.

2: Set S = {}.
3: Calculate the remaining values of the recurrence sequence with the formula sn+2 =

a1sn+1 + a0sn + a (noting that it has period q2 − 1).
4: Find the integers i modulo q2 − 1 such that si = 0.
5: Put the integer i of the previous step in S.
6: Return S.

Algorithm 1 requires calculation of O(q2) terms to form the period and the
calculations being done in Fq. In [7, Theorem 2.1], the author shows that Bose-type
Sidon sets can be constructed without taking logarithms, only calculating certain
powers and doing arithmetic modulo q2 − 1, that is, with the same complexity.
When q = p with p prime, [7] also gives a fast criterion to construct primitive
polynomials.

EXAMPLE 4.5. Let us consider q = p = 5. The polynomial p(x) = x2 + 4x + 2 is
irreducible over F5 and primitive. Taking b = 2, we construct the first 25 terms of
the sequence {4, 1, 2, 4, 4, 0, 1, 0, 2, 1, 1, 3, 0, 3, 2, 0, 0, 4, 3, 4, 2, 3, 3, 1} and get the set
S := {5, 7, 12, 15, 16}which is a Sidon set modulo 24. This can be found by considering
the polynomial x5 + γ20x + γ19 with γ a root of p(x).
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