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A causal set is a countably infinite poset in which every element is above finitely many others;
causal sets are exactly the posets that have a linear extension with the order-type of the natural
numbers; we call such a linear extension a natural extension. We study probability measures on
the set of natural extensions of a causal set, especially those measures having the property of
order-invariance: if we condition on the set of the bottom k elements of the natural extension,
each feasible ordering among these k elements is equally likely. We give sufficient conditions for
the existence and uniqueness of an order-invariant measure on the set of natural extensions of a
causal set.

AMS 2010 Mathematics subject classification: Primary 06A07; 60C05

1. Introduction

For a finite partially ordered set (poset) P = (X,<), a linear extension of P is a linear order on
X extending the partial order <. The notion of a uniform random linear extension of P arises in
a number of contexts (see for instance [6, 21]), enabling meaning to be given to the probability
that x is below y, when x and y are incomparable.

We pick out one property possessed by the uniform measure in the finite case. A down-set in a
poset P = (X,<) is a subset D of X such that, if x ∈ D and y < x, then y ∈ D. For A a down-set
in P of size k, if we consider any linear extension of P in which the bottom k elements are the
elements of A, then the order on these elements is a linear extension of the poset PA induced by
P on A. It is easy to see that, under the uniform probability measure, if we condition on the event
that the bottom k elements are those in A, then each linear extension of PA is equally likely.
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Our aim in this paper is to initiate study of the case where P is countably infinite, imposing the
property above – which we shall call order-invariance – as an axiom. This condition, enabling a
passage from the finite to the infinite, is hopefully reminiscent of the notion of a Gibbs measure
from statistical physics.

As we shall see, depending on P , there may be one, many, or no order-invariant probability
measures on the set of linear extensions of P (or ‘on P ’, for short). Our results include sufficient
conditions for the existence of an order-invariant measure on P , and sufficient conditions for
uniqueness. We also give a number of examples, including one class of posets – the downward-
branching trees T – for which we give a surprisingly subtle answer to the question of when there
is an order-invariant measure on T .

Our need to be able to discuss the ‘bottom k elements’ in a linear extension of P leads us to
restrict the class of countable posets we deal with, and also the class of their linear extensions.

A causal set is a countably infinite partially ordered set P = (Z,<) such that every element is
above only finitely many others. A causal set is exactly a poset that has a linear extension with
the order-type of N, i.e., a bijection λ : N → Z such that we never have i < j and λ(i) > λ(j).
We call such a linear extension of a countable poset a natural extension.

A probability measure on the set of natural extensions of a causal set P is order-invariant if, for
each k ∈ N and each k-element down-set A of P , conditioned on the event {λ(1), . . . , λ(k)} = A,
each linear extension of PA is equally likely to be the restriction of λ to [k].

In this paper, all our measures will be probability measures, although we often omit explicit
mention of this; for instance, we will write ‘order-invariant measure’ instead of ‘order-invariant
probability measure’.

We give a simple example, to illustrate the definitions and to show that there are posets P with
more than one order-invariant measure on P .

Example 1. Let P be the causal set made up of the disjoint union of two infinite chains B :

b1 < b2 < · · · and C : c1 < c2 < · · · . Not every linear extension of P is a natural extension: for
instance b1 < b2 < · · · < c1 < c2 < · · · is a linear extension that does not have the order-type
of N.

We shall consider natural extensions of P as constructed ‘from the bottom up’. At each stage,
after we have selected the lowest k elements x1, x2, . . . , xk of the linear extension, the next ele-
ment xk+1 must be a minimal element among those not yet selected, and there will always be ex-
actly two candidates, one in B and one in C. To prescribe how to generate a ‘random linear exten-
sion’ of P , we need to give a probabilistic rule stating how to choose between these two elements.

Given a parameter q ∈ [0, 1], one such rule is ‘always choose the minimal remaining element
of B with probability q, and the minimal remaining element of C with probability 1 − q’. This
rule gives us a probability measure μq on the set of natural extensions of P (equipped with a
σ-field that we shall specify later).

To see that μq is order-invariant, consider any k-element down-set A of P , that is, A = {b1, . . . ,

b�, c1, . . . , ck−�} for some �. For any of the
(
k
�

)
linear extensions a1 < · · · < ak of PA, the a priori

probability that the random linear extension ‘starts’ a1 < · · · < ak is equal to q�(1 − q)k−�. Thus,
conditioned on the bottom k elements being the elements of A, each of the

(
k
�

)
linear extensions

of PA is equally likely to be the order among the elements of A.
Thus we have an uncountable family of order-invariant measures on P .
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An order-invariant measure on P is said to be extremal if it cannot be expressed as a convex
combination of two other order-invariant measures on P . We shall return to this example later and
show that the μq are the only extremal order-invariant measures on P . All other order-invariant
measures can be constructed according to a two-stage rule: first choose q according to some
probability distribution on [0, 1], then choose the linear extension according to μq.

This work is part of a wider project, initiated in our companion paper [8]. In that paper, we
consider probability measures where the causal set P is also random. More precisely, we consider
processes that generate a causal set one element at a time, at each stage adding a maximal
element, with a label drawn from a given set (which we take to be the interval [0, 1]), and putting
the new element above some down-set in the current poset. Such processes are called causal
set processes: formally they are Markov processes, whose states are pairs (x1 · · · xk,<[k]), where
x1 · · · xk is a string of elements from [0, 1], and <[k] is a partial order on the index set [k] that
is a suborder of the natural order on [k]. Each state corresponds to a partial order Pk on the set
Xk = {x1, . . . , xk} (given by xi < xj if and only if i <[k] j), together with a linear extension of Pk.

Let us indicate, fairly precisely, how a probability measure on a fixed causal set P = (Z,<),
with Z ⊂ [0, 1], fits into this framework. Consider a causal set process where the only allowed
transitions are to states (x1 · · · xk,<[k]), where Xk = {x1, . . . , xk} is a finite down-set in P , and
i <[k] j if and only if xi < xj . In other words, the derived poset Pk is the restriction of P to Xk.
Effectively, a transition always adds a minimal element xk+1 of P\Xk to the end of the string
x1 · · · xk, and augments the poset <[k] according to which elements of Xk are below xk+1 in P .
In such a process, the order <[k] can be derived from the string x1 · · · xk and the causal set P , and
so it can be omitted from the notation. A sample path of the process gives rise to an infinite string
x1x2 · · · of elements of Z : if it happens that X = {x1, x2, . . .} = Z , then this will be a natural
extension of P .

A consequence of the main result of [8] is that, to classify the extremal order-invariant meas-
ures in this broader setting, it is enough to classify the extremal order-invariant measures on
fixed causal sets. However, that is likely to be a prohibitively difficult task: giving conditions for
existence and/or uniqueness of order-invariant measures on a fixed P is a more realistic goal.

Besides the inherent interest, another motivation for studying order-invariant measures comes
from physics, in the context of a proposal for a random causal set as a mathematical model
of space–time. Rideout and Sorkin [15] gave various desirable conditions for such a model,
including order-invariance. Although the proposed list of conditions turns out to be too narrow
to include causal sets resembling the observed space–time universe (see [7]), we are led to ask
whether order-invariance itself is an obstacle: we return to this in the open problems in Section 11
at the end of the paper.

We mention some other connections with earlier work.
Some years ago, the first author [4, 5] studied random linear extensions of locally finite posets.

The main theorem of [4], interpreted in the present context, is as follows. If a causal set P has the
property that, for some fixed k, every element is incomparable with at most k others, then there
is a unique order-invariant measure on P . The interpretation is spelled out in Theorem 8.1 of the
present paper.

The specific case where the causal set is the two-dimensional grid G = (N × N, <) has at-
tracted attention from another direction, as it is connected with the representation theory of the
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infinite symmetric group, and with harmonic functions on the Young lattice (which is the lattice
of down-sets of G). A good account of this theory appears in Kerov [14], where a somewhat
more general theory is also developed. Our concerns in this paper are rather different, but the
two theories have various points of contact.

The case of order-invariant measures on a fixed causal set P can also be viewed as a (one-
dimensional) spin system. There are (at least) two ways to do this: either we can treat the elements
as particles, with the spin of an element z encoding its rank λ−1(z) in a natural extension λ, or we
can treat the pairs of incomparable elements as particles, with the spin of a pair determining
which is higher in the natural extension. Thus some of the general results discussed in, for
instance, Bovier [3] or Georgii [10] apply. (Indeed, some of the results in [10] hold also for
general order-invariant measures, as is explained in [8].)

The structure of the paper is as follows. Basic definitions and notation connected with causal
sets and natural extensions are given in Section 2. In Section 3, we give a full specification of
the probability spaces we work in, and of the notion of order-invariance. Section 4 is devoted
to a simple example worked out in some detail. In Section 5, we state a consequence of a result
from [8], giving different characterizations of extremal order-invariant measures.

Our formal definition of order-invariance includes processes that are not natural extensions of
P , but instead are natural extensions of the restriction PY of P to some infinite down-set in P .
An order-invariant measure that does a.s. give a natural extension of P is called faithful, and we
investigate this concept in Section 6.

As we have mentioned, we are particularly interested in the following two questions. For
which causal sets P is there an order-invariant measure on P ? For which causal sets P is there
a unique order-invariant measure on P ? In Section 7, we show that any causal set P with no
infinite antichain admits an order-invariant measure. In Section 8, we show that, for any causal
set P where there is a uniform bound k on the number of elements incomparable with an element
x, there is just one order-invariant measure on P . As mentioned above, this is a simple application
of the main result of [4].

These conditions for existence and uniqueness are far from necessary, and in particular it
seems that any description of which causal sets admit an order-invariant measure must be sig-
nificantly more complicated. In Section 9, we show that a downward-branching tree T ad-
mits an order-invariant measure if and only if a certain series of numbers derived from T is
convergent.

In Section 10, we briefly discuss the case of the two-dimensional grid poset studied by Kerov
[14] and others.

One question that we have not answered is the one that originally motivated this research: is
there an order-invariant process that gives rise to causal sets resembling discrete approximations
to the space–time structure of the universe? This and other open problems are discussed in
Section 11.

2. Causal sets and natural extensions

A (labelled) poset P is a pair (Z,<), where Z is a set (for us, Z will always be countable), and
< is a partial order on Z . A total order or linear order on Z is a poset such that each pair of
elements of Z is comparable.
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A down-set in P is a subset Y ⊆ Z such that, if a ∈ Y and b < a, then b ∈ Y . A stem is a
finite down-set (this term is less standard: it has been used in some physics papers). An up-set is
the complement of a down-set.

If P = (Z,<) is a poset, and Y ⊆ Z , then <Y denotes the restriction of the partial order to
Y , and PY = (Y ,<Y ). For W ⊂ Z , we also write P\W to mean PZ\W .

A pair (x, y) of elements of Z is a covering pair if x < y, and there is no z ∈ Z with x <

z < y.
For a poset P = (Z,<) and an element x ∈ Z , set D(x) = {y ∈ Z : y < x}, U(x) = {y ∈

Z : y > x} and let I(x) be the set of elements incomparable with x. We also define D[x] =

D(x) ∪ {x} and U[x] = U(x) ∪ {x}.
Let P = (Z,<) be a poset on a countably infinite set Z . We say that P is a causal set (or

causet) if D(z) is finite for each z ∈ Z .
A linear extension of a poset P = (Z,<) is a total order ≺ on Z such that, whenever x < y,

we also have x ≺ y.
The sets N and [k] = {1, . . . , k}, for k ∈ N, come equipped with a ‘standard’ linear order. In

these cases, a suborder of N or [k] will be a partial order on that ground-set (typically denoted
<N or <[k]) with the standard order as a linear extension, i.e., if <N is a suborder of N and i <N j,
then i is below j in the standard order on N.

A natural extension of a causal set P = (Z,<) is a bijection λ from N to Z such that λ−1

is order-preserving: i.e., if λ(i) < λ(j), then i < j. We shall often write natural extensions as
x1x2 · · · , meaning that λ(i) = xi. In this notation, an initial segment of λ is an initial substring
x1x2 · · · xk, for some k ∈ N.

A natural extension λ of P = (Z,<) gives rise to a linear extension ≺ by setting x ≺ y

whenever λ−1(x) < λ−1(y). The linear extensions arising in this way are those with the order-
type of N.

Similarly, if P = (Z,<) is a finite poset, with |Z | = k, we can think of a linear extension as
a bijection λ : [k] → Z such that λ−1 is order-preserving, i.e., if λ(i) < λ(j), then i < j in [k].
We shall sometimes write a linear extension of P as a string x1 · · · xk, meaning that λ(i) = xi for
i = 1, . . . , k: in this sense, we can again talk of an initial segment of a linear extension. For finite
partial orders, we shall use these various equivalent notions of linear extension interchangeably.
For a finite poset P , let e(P ) denote the number of linear extensions of P .

An ordered stem of a causal set, or a finite poset, P = (Z,<), is a finite string x1 · · · xk such
that X = {x1, . . . , xk} is a down-set in P , and x1 · · · xk is a linear extension of PX . Ordered stems
of a causal set (finite poset) P are exactly the strings that can arise as an initial segment of a
natural (linear) extension of P .

For a causal set or finite poset P , and an ordered stem x1 · · · xk of P , let EP (x1 · · · xk) denote
the set of natural/linear extensions of P with initial segment x1 · · · xk. When there is only one
poset P under consideration, we shall use the simpler notation E(x1 · · · xk) instead.

For a causal set P , let L(P ) denote the set of natural extensions of P . Also, let L′(P ) denote
the set of injections λ from N to P such that, for each i, D(λ(i)) ⊆ {λ(1), . . . , λ(i − 1)}. In general,
elements of L′(P ) need not be bijections: those elements of L′(P ) that are bijections are exactly
the natural extensions.

The following statements are all very straightforward to verify. A countable poset has a natural
extension if and only if every element is above finitely many elements, i.e., if and only if it is a
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causal set. If a causal set P has no element x with I(x) infinite, then all linear extensions of P are
natural extensions, and L(P ) = L′(P ). However, if there is an element x of P with I(x) infinite,
then there is (a) a linear extension of P that does not have the order-type of N and (b) an element
of L′(P ) whose image is the proper subset I(x) ∪ D(x) of P .

3. Order-invariant processes on fixed causal sets

Consider a fixed causal set P = (Z,<), with Z a countable subset of [0, 1]. (The actual nature of
the set Z is not crucial; we demand that the labels of our posets are taken from [0, 1] only in order
to incorporate the structures studied in this paper within the general framework
of [8].)

For k a non-negative integer, let E [k]
P denote the set of ordered stems of P with k elements. Let

EP be the union of the E [k]
P , i.e., the set of all ordered stems of P .

A causet process on P is a discrete-time Markov chain with state space EP , such that the only
allowed transitions from a state x1 · · · xk ∈ E [k]

P are those to a state x1 · · · xkxk+1 ∈ E [k+1]
P , where

xk+1 is a minimal element of P\Xk, where Xk = {x1, . . . , xk}.
Sample paths of a causet process on P , starting from the empty ordered stem, correspond to

natural extensions x1x2 · · · of some restriction PX to an infinite down-set X = {x1, x2, . . .} of P .
Indeed, given a natural extension x1x2 · · · , its finite initial segments form a possible sample path
of a causet process on P . It is thus natural to work with a sample space whose elements are these
natural extensions.

Accordingly, for a causal set P , we define ΩP to be the set of infinite strings ω = x1x2 · · ·
that are natural extensions of PX for some down-set X = {x1, x2, . . .} in P . Equivalently, ΩP is
the set of strings ω = x1x2 · · · such that, for each k ∈ N, xk is a minimal element of P\Xk−1,
where Xk−1 = {x1, . . . , xk−1}.

For a1a2 · · · ak an ordered stem of P , we define E(a1 · · · ak) = EP (a1 · · · ak) to be the set of
elements of ΩP with a1 · · · ak as an initial segment. In other words,

E(a1 · · · ak) = {ω = x1x2 · · · ∈ ΩP : x1 = a1, . . . , xk = ak}.

A set of this form is called a basic event (for P ).
For fixed k, let FP

k be the σ-field generated by the events E(a1 · · · ak), for a1 · · · ak an ordered
stem of length k. Also, let FP be the σ-field generated by the union of the FP

k .
A causet measure on P is a probability measure on (ΩP ,FP ).
A separating class in (ΩP ,FP ) is a subset H of FP such that, if two probability measures

agree on H, then they are equal. For any causal set P , the collection of basic events E(a1 · · · ak),
for a1 · · · ak an ordered stem of P , forms a separating class.

The sequence (FP
k ) is the natural filtration for a causet process on P . The measure μ of a

causet process on P is determined by the finite-dimensional distributions of the Markov process,
i.e., by its values on the sets E(a1 · · · ak).

We can equip ΩP with a metric in several natural ways, many of which lead to equivalent
topologies. For instance we can define the metric by

d(x1x2 · · · , y1y2 · · · ) =

∞∑
i=1

2−i1(xi �= yi).
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Theorem 3.1. Let P = (Z,<) be a causal set. The space ΩP , with the metric above, is compact
if and only if, for all stems A of P , P\A has finitely many minimal elements.

If P has no infinite antichain, then the condition above is satisfied, since the set of minimal
elements of P\A, for any stem A, is an antichain. However, the condition in the theorem is
weaker: consider a chain a1 < a2 < · · · , with incomparable infinite chains placed above each ai.
This poset has an infinite antichain, but deleting any stem leaves a causal set with finitely many
minimal elements.

Proof. Suppose first that, for each stem A of P , P\A has finitely many minimal elements.
Consider any sequence (ωm) of elements of ΩP . We show that there is a convergent subsequence
(ωmj ) of (ωm). The argument is very standard.

We construct an element ω0 = a1a2 · · · of ΩP with the property that, for each j ∈ N, the
ordered stem a1 · · · aj is an initial segment of infinitely many of the ωm. Once we have done this,
the result follows: for each j in turn, we choose mj > mj−1 so that ωmj has a1 . . . aj as an initial
segment – now the subsequence (ωmj ) converges to ω0.

We construct ω0 recursively. For j � 0, suppose that a1 · · · aj is an ordered stem in P that is
an initial segment of an infinite set {ωm1 , ωm2 , . . .} of the elements ωm. Now the set B of minimal
elements of P\{a1, . . . , aj} is finite. Moreover, the next entry of each of the ωmi is an element of
B, so some element aj+1 of B occurs infinitely often as the next element in ωmi , and hence the
ordered stem a1 · · · ajaj+1 occurs infinitely often as an initial segment. Proceeding in this way,
we may construct a suitable ω0.

Conversely, suppose that there is a stem A of P such that the set M of minimal elements of
P\A is infinite. We take some enumeration b1, b2, · · · of M, and any linear extension a1 · · · ak of
PA, and define ωi = a1 · · · akbibi+1bi+2 · · · , for i ∈ N. We see that each string ωi is in ΩP , and
that d(ωi, ωj) =

∑∞
�=k+1 2−� = 2−k whenever i �= j. Therefore the sequence (ωi) of elements of

ΩP does not have a convergent subsequence, and so the space ΩP is not compact.

We need some notation for functions on ΩP , i.e., random elements on our probability space. If
ω = x1x2 · · · , then we set ξj(ω) = xj , Ξj(ω) = {x1, . . . , xj}, and Ξ(ω) = {x1, x2, . . .}.

We say that a causet measure μ on P is order-invariant if, whenever A = {a1, . . . , ak} is a
stem of P , and s is a permutation of [k] such that both a1a2 · · · ak and as(1)as(2) · · · as(k) are linear
extensions of PA, then

μ(E(a1 · · · ak)) = μ(E(as(1) · · · as(k))). (3.1)

We say that a causet process on a causal set P is order-invariant if the corresponding causet
measure is order-invariant.

We can rephrase the condition of order-invariance in several different ways.
For A = {a1, . . . , ak} a stem of P , let νA denote the uniform measure on linear extensions of

the finite poset PA. Then the causet measure μ on P is order-invariant if and only if, for every
stem A = {a1, . . . , ak} of P , and every linear extension a1 · · · ak of PA,

μ(EP (a1 · · · ak) | Ξk = A) = νA({a1 · · · ak}) =
1

e(PA)
. (3.2)
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More generally, if μ is an order-invariant measure on P , A is a stem of P of size k, � is a
natural number with � � k, and a1 · · · a� is an ordered stem whose elements are all in A, then

μ(EP (a1 · · · a�) | Ξk = A) = νA(EPA(a1 · · · a�)). (3.3)

This identity is obtained by summing (3.2) over the elements of EPA(a1 · · · a�).
There is a strong similarity between order-invariance and the Gibbs measure condition from

statistical physics: if we take any finite patch of a space, and condition on the configuration
outside that patch (here, that means conditioning on the event that the set Ξk of the first k

elements – i.e., those not accounted for outside the patch – is equal to a given set A), then
all legal extensions of the configuration into the patch (here, all linear extensions of the order
restricted to A) are equally likely (or, more generally, have some specified relative probabilities).
See Georgii [10] or Bovier [3] for a very general treatment of Gibbs measures.

To check order-invariance, it is enough to verify condition (3.1) above when s is an adjacent
transposition, and the two transposed elements are incomparable. This is an easy consequence of
the fact that it is possible to step between any two linear extensions of a finite poset by exchanges
of adjacent incomparable elements.

A causet process on P is order-Markov if the transition probabilities out of a state x1 · · · xk ∈
EP depend only on the set Xk = {x1 · · · xk}, and not on the order of the elements. A causet
measure μ on P is order-Markov if its associated process is order-Markov: this means that

μ(E(a1 · · · akb))
μ(E(a1 · · · ak))

=
μ(E(as(1) · · · as(k)b))
μ(E(as(1) · · · as(k)))

,

whenever a1 · · · ak and as(1) · · · as(k) are ordered stems of P , s is a permutation of [k],

μ(E(a1 · · · ak)) > 0,

and b is a minimal element of P\{a1, . . . , ak}.
If μ is an order-invariant measure on P , then it is also order-Markov, as the numerators and

denominators above are equal. The converse is far from true: as an extreme example, consider a
causet measure μx1x2··· on a causal set P where the probability of one specified natural extension
x1x2 · · · of P is 1: this measure μx1x2··· is trivially order-Markov, but not order-invariant unless
x1x2 · · · forms a chain.

However, if we know that a causet measure μ arises from an order-Markov process, then in
order to check order-invariance, it is enough to verify that (3.1) holds when s is the permutation
exchanging the last two incomparable elements: if this holds, then the order-Markov condition
implies that (3.1) holds whenever s is an exchange of any pair of incomparable elements, and we
have already remarked that this suffices for order-invariance. We shall make use of this later.

We next give an easy but useful lemma, telling us what conditions need to be checked to
ensure that a given specification of values μ(E(a1 · · · ak)) defines a measure on (ΩP ,FP ), for a
given causal set P .

Lemma 3.2. Let P = (Z,<) be a causal set, and let f be a function from the set of ordered
stems of P to [0, 1]. Setting μ(E(a1 · · · ak)) = f(E(a1 · · · ak)) defines a measure on (ΩP ,FP ) if
and only if the following hold:

(i) f(φ) = 1, where φ denotes the empty string,
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Figure 1. The causal set P = (Z,<).

(ii) for each ordered stem a1 · · · ak, we have∑
b

f(a1 · · · akb) = f(a1 · · · ak),

where the sum runs over all minimal elements b of P\{a1, . . . , ak}.

The conditions of the lemma amount to Kolmogorov’s consistency conditions; see Chapter 8
in [13]. The proof is routine and omitted.

Thus, to check that μ is an order-invariant measure on a given causal set P , we need to check (i)
(which is usually trivial) and (ii), and also the order-invariance condition.

4. An example

In this section, we study one specific example in detail, both to illustrate the definitions and
themes of the paper and to provide an explicit (non-trivial) example of a causal set P such that
there is exactly one order-invariant measure on P .

Example 2. Figure 1 shows the Hasse diagram of a labelled causal set P = (Z,<), where
Z = {b1, b2, . . .}, and bj > bi if j > i + 1.

We will show, in some detail, that there is exactly one order-invariant measure on P . Some of
the methods we use to study this example will be seen in more generality later.

For n ∈ N, set Zn = {b1, . . . , bn}, and Pn = PZn
, the restriction of P to Zn. The linear exten-

sions of Pn either have bn as the top element, or have bn−1 top and bn next top. The former set of
linear extensions is in 1–1 correspondence with the set of linear extensions of Pn−1, and the latter
set is in 1–1 correspondence with the set of linear extensions of Pn−2. Therefore the number e(Pn)

of linear extensions of Pn satisfies e(Pn) = e(Pn−1) + e(Pn−2), and so e(Pn) is the nth Fibonacci
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number Fn (with the convention that F0 = F1 = 1). Similarly, we see that the number of linear
extensions of Pn with b1 as the bottom element is equal to e(Pn−1) = Fn−1.

Let νn denote the uniform measure on linear extensions of the finite poset Pn. The proportion
νn(EPn(b1)) of linear extensions of Pn in which b1 is the bottom element is equal to Fn−1/Fn,
which tends to φ = 1

2
(
√

5 − 1) = 0.618 · · · as n → ∞. Similarly, for each fixed k,

νn(EPn(b1b2 · · · bk)) =
Fn−k

Fn

→ φk, as n → ∞.

For any other ordered stem bs(1)bs(2) · · · bs(k), where s is a permutation of [k] (so the set of elements
in the stem is Zk), and any n � k, the linear extensions of Pn with initial segment bs(1) · · · bs(k)
are in 1–1 correspondence with those with initial segment b1 · · · bk, so that νn(EPn(bs(1) · · · bs(k)))
also tends to φk as n → ∞.

The only other k-element down-set of P is Wk = {b1, . . . , bk−1, bk+1}, and the same principle
applies to initial segments that are orderings of this set, νn(EPn (b1 · · · bk−1bk+1)) = Fn−k−1/Fn →
φk+1, and the same is true for any other ordered stem whose elements are those of Wk.

It is now natural to define

μ(EP (a1 · · · ak)) = lim
n→∞

νn(EPn(a1 · · · ak)),

for each ordered stem a1 · · · ak of P : we have seen that all these limits exist, and we have found
their values. We claim that μ is an order-invariant measure on P .

By Lemma 3.2, we need to verify identities of two types:

(a) μ(EP (a1 · · · ak)) =
∑

c μ(EP (a1 · · · akc)), for every ordered stem a1 · · · ak, where the sum is
over minimal elements c of P\{a1, . . . , ak}, of which there are at most two;

(b) μ(EP (a1 · · · ak)) = μ(EP (as(1) · · · as(k))), where s is a permutation of [k], and a1 · · · ak and
as(1) · · · as(k) are both ordered stems.

We could verify all these identities by direct calculation. However, it is just as easy to note that
these identities all hold for each of the measures νn with n > k, because the νn are uniform
measures on the set of linear extensions of finite posets, and therefore the identities hold in the
limit. Here, it is crucial that the sums in (a) are all finite sums.

On the other hand, we claim that the measure μ defined above is the only order-invariant
measure on P . To prove this, it is enough to show that ν(E(b1 · · · bk)) = φk = μ(E(b1 · · · bk)) for
each k, for any order-invariant measure ν on P . Indeed, the values of ν for all other basic events
can be derived from the values of the ν(E(b1 · · · bk)), assuming order-invariance, giving us that
ν(E(a1 · · · ak)) = μ(E(a1 · · · ak)) for all basic events, and it follows that ν = μ, since the family
of basic events forms a separating class.

Let ν be an order-invariant measure on P , and take any n > k. The set Ξn, a down-set in P of
size n, can take only the two values Zn = {b1, . . . , bn−1, bn} and Wn = {b1, . . . , bn−1, bn+1}. We
now have

ν(EP (b1 · · · bk)) = ν(EP (b1 · · · bk) | Ξn = Zn) ν({ω : Ξn(ω) = Zn})
+ ν(EP (b1 · · · bk) | Ξn = Wn) ν({ω : Ξn(ω) = Wn}).
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Therefore ν(EP (b1 · · · bk)) lies between the two values ν(EP (b1 · · · bk) | Ξn = Zn) and
ν(EP (b1 · · · bk) | Ξn = Wn). By (3.3), these two values are

νZn (EPn (b1 · · · bk)) = νn(EPn (b1 · · · bk)),
νWn (EPWn (b1 · · · bk)) = νn−1(EPn−1 (b1 · · · bk)).

As both νn(EPn (b1 · · · bk)) and νn−1(EPn−1 (b1 · · · bk)) tend to φk as n → ∞, we deduce that
ν(E(b1 · · · bk)) = φk, as required.

In summary, there is exactly one order-invariant measure on P .

This example is considered from a slightly different perspective in [8].

5. Extremal order-invariant measures

Recall that an order-invariant measure μ on P is extremal if it cannot be written as a convex
combination of two different order-invariant measures on P .

Two elements ω = x1x2 . . . , ω
′ = y1y2 . . . of ΩP are said to be finite rearrangements if, for

some n ∈ N, {x1, . . . , xn} = {y1, . . . , yn}, and, for m > n, xm = ym. A tail event in ΩP is a subset
E of ΩP such that, if ω ∈ E and ω′ is a finite rearrangement of ω, then ω′ ∈ E. A measure μ is
said to have trivial tail if μ(E) ∈ {0, 1} for every tail event E.

For ω = x1x2 · · · ∈ ΩP , and k ∈ N, we can define a measure νk(·)(ω) on ΩP as the uniform
measure on the set of elements of ΩP of the form xs(1) · · · xs(k)xk+1xk+2 · · · , where s is a permuta-
tion of [k]. There are e(PXk

) elements of this form, one corresponding to each linear extension
xs(1) · · · xs(k) of PXk

. We say that an order-invariant measure μ on P is essential if, for every event
E ∈ FP , for μ-almost every ω, νk(E)(ω) → μ(E) as k → ∞.

We studied the property of extremality at length in [8], in the wider context mentioned earlier.
In particular, we gave a number of equivalent conditions for an order-invariant measure to be
extremal. These all transfer to our present setting: if an order-invariant measure on P is extremal
in the space of all order-invariant measures, then it is certainly extremal in the space of order-
invariant measures on P ; conversely, if an order-invariant measure μ on P is a convex combin-
ation of two other order-invariant measures μ1 and μ2, then these must both be order-invariant
measures on P – meaning that, for events A such that μ(A) = 0, because μ is an order-invariant
measure on the fixed causal set P , we also have μ1(A) = μ2(A) = 0 – so if μ is extremal among
order-invariant measures on P , then it is extremal among all order-invariant measures.

Putting this observation together with Theorem 7.2 and Corollary 7.4 in [8] gives us the
following result.

Theorem 5.1. Let μ be an order-invariant measure on a causal set P , and let H be a separating
class in (ΩP ,FP ). The following are equivalent:

• μ is extremal,
• μ has trivial tails,
• μ is essential,
• for every event E ∈ H, for μ-almost every ω, νk(E)(ω) → μ(E) as k → ∞.

We illustrate this result by returning to the example in the Introduction.
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Example 1, revisited. As before, let P be the disjoint union of two infinite chains B : b1 <

b2 < · · · and C : c1 < c2 < · · · . For q ∈ [0, 1], let μq be the order-invariant measure on P

defined earlier.
The cases q = 0 and q = 1 are special. If q = 0, then elements from B are never chosen, and

Ξ = C a.s.; if q = 1, then Ξ = B a.s. If q ∈ (0, 1), then Ξ = B ∪ C a.s.
We claim that each measure μq is an extremal order-invariant measure. The easiest way to see

this is to show that μq satisfies the final condition in Theorem 5.1. Consider the event E(a1 · · · ak),
where a1 · · · ak is an ordered stem of P , and

{a1, . . . , ak} = {b1, . . . , b�, c1, . . . , ck−�}.

For μq-almost every ω, we have |B ∩ Ξn(ω)|/n → q as n → ∞. Now suppose that |B ∩ Ξn(ω)| =

mn(ω) = m; we have

νn(E(a1 · · · ak))(ω) =

(
n−k
m−�

)
(
n
m

) =

(
m

n

)�(
n − m

n

)k−�(
1 − O

(
k2

min(m, n − m)

))
.

Therefore, for any ω such that mn(ω)/n tends to q, we have

lim
n→∞

νn(E(a1 · · · ak))(ω) = q�(1 − q)k−� = μq(E(a1 · · · ak)). (5.1)

Therefore, μq satisfies the final condition given in Theorem 5.1, and hence is extremal.
Given any probability measure ρ on [0, 1], define a probability measure μρ by first choosing a

random parameter χ ∈ [0, 1] according to ρ, then sampling according to μχ. In other words, μρ is
a convex combination of the order-invariant measures μq , so is also order-invariant. Suppose that
ρ is not a.s. constant, so that there is some x such that 0 < p = ρ(χ � x) < 1; we claim that μρ
is not extremal. There are several easy arguments to show this, based on the various conditions
in Theorem 5.1.

(a) We can argue from the definition; for instance we can consider the conditional probability
measures μ1 and μ2 obtained by conditioning μρ on the events that χ � x and χ > x respect-
ively, and write μρ = pμ1 + (1 − p)μ2.

(b) We can consider the tail event lim supn→∞ |B ∩ Ξn|/n � x, which has probability p not equal
to 0 or 1.

(c) We can note that νn(E(b1))(ω) a.s. converges to the value χ chosen according to ρ, whereas
μρ(E(b1)) = Eρ(χ), so μρ is not essential.

The description of μρ includes several apparently different processes. For instance, consider
the following process: having chosen the bottom n elements, m from B and k = n − m from
C, choose the next element to be from B with probability (m + 1)/(n + 2). It is easy to check
directly that this defines an order-invariant process on P . The theory of Pólya’s Urn (see, for
instance, Exercise E10.1 in Williams [20]) tells us that the proportion of elements taken from B

in the first n steps converges to some limit χ as n → ∞, and that this limit χ has the uniform
distribution on (0, 1). Moreover, it is possible to show that this process has the same finite-
dimensional distributions as the one defined by choosing χ from the uniform distribution in
advance, then choosing the natural extension according to μχ. See Ross [17], Section 3.6.3. Other
urn processes correspond to other measures on [0, 1].

We will now show that every extremal order-invariant measure μ on P is of the form μq ,
for some q ∈ [0, 1]. Given such a measure μ, we set q = μ(E(b1)), the probability that the
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bottom element of the natural extension is in B. Our aim is to show that μ(E(a1 · · · ak)) =

μq(E(a1 · · · ak)) for every ordered stem a1 · · · ak of P .
For any n ∈ N, and any ω ∈ ΩP with Xn = Ξn(ω) = {b1, . . . , bm, c1, . . . , cn−m}, the probability

νn(E(b1))(ω) that the bottom element of a random linear extension of PXn
is b1 is equal to m/n,

the proportion of elements of B in Xn. As μ is extremal, and therefore essential, we have that
νn(E(b1))(ω) → q a.s., and so the proportion of elements of B among the first n elements also
a.s. tends to q.

Now, take any basic event E(a1 · · · ak), where the ai include exactly � elements of B, and any
ω such that m of the first n elements are in B. As in (5.1), for any ω such that the ratio m/n of
elements of B tends to q, we have

lim
n→∞

νn(E(a1 · · · ak))(ω) = q�(1 − q)k−�.

We deduce that μ(E(a1 · · · ak)) = q�(1 − q)k−� = μq(E(a1 · · · ak)), since μ is essential. As μ

agrees with μq on all basic events, μ and μq are equal.
Thus the μq are the only extremal order-invariant measures on P .
This example also appears in Section 2 of the paper of Kerov [14], and in [8].

It is not true that every extremal order-invariant measure is an extremal order-invariant measure
on some fixed P . For instance, an extremal order-invariant measure is derived from the following
process: at each step, take a label uniformly at random from [0, 1], and take a new element
incomparable with all existing elements. The causal set thus generated is a.s. an antichain.

As discussed at the end of Section 8 of [8], every order-invariant measure can be built from
an order-invariant measure on some fixed P by a process of replacing some infinite chains of P
by infinite antichains, with labels generated according to some probability distribution on [0, 1].
Thus the problem of classifying extremal order-invariant measures is reduced to the problem of
classifying extremal order-invariant measures on a fixed P .

Another result of [8] is that every order-invariant measure μ has an expression, unique up to
a.s., as a mixture of extremal order-invariant measures: there is a probability space (W,G, ρ),
whose elements are extremal order-invariant measures μω, and μ is given by sampling μω from
this space, and then sampling from μω (more formally, μ(·) =

∫
W
μω(·) dρ(μω)). If μ is an order-

invariant measure on some fixed causal set P , then the extremal order-invariant measures μω are,
ρ-a.s., measures on P , and so we can specify the mixture so that the μω are all measures on P .

In Example 1, for instance, this implies that every order-invariant measure on P is a mixture
of the μq , that is, of the form μρ for some probability measure ρ on [0, 1].

6. Faithful and non-faithful processes

A causet process on P = (Z,<), and/or its associated measure, is said to be faithful if Ξ(ω) = Z

a.s. If a causet process is faithful, then the associated probability measure μ is a measure on the
space L(P ) of natural extensions of P .

For instance, in Example 1 above, the measure μρ is faithful if and only if ρ({0, 1}) = 0.
If, for all elements x of a causal set P , the set I(x) of elements incomparable to x is finite, then

P has no proper infinite down-sets, and therefore all causet processes are faithful. Conversely, if
I(x) is infinite for some x, then any causet process on the restriction PI(x)∪D(x) is also a causet
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process on P : if the restricted process is order-invariant, then it can be seen as an unfaithful
order-invariant process on P . (In Section 9, we shall see a class of examples of causal sets P that
admit a unique order-invariant measure, which is faithful, even though I(x) is infinite for every
element x: there is no order-invariant causet process on any restriction PI(x)∪D(x).)

Let μ be an order-invariant measure on P = (Z,<). An element x ∈ Z is said to be absent in
μ if x /∈ Ξ almost surely. Of course, if there is an absent element in μ, then μ is unfaithful. We
shall prove that any maximal element x of P is absent in all order-invariant causet processes on
P – more generally, any element x with no infinite chain above it is always absent.

Here and in future, when we are dealing with uniformly random linear extensions of a finite
poset, we shall denote the linear extension ζ = ζ1 · · · ζn.

Let P = (Z,<) be a finite poset. For x ∈ Z and i ∈ [|Z |], we set ri(x) = νZ ({ζ : ζi = x}), the
probability that, in a random linear extension of P , x is in position i.

Lemma 6.1. If x is a maximal element in the finite poset P = (Z,<), then the sequence (ri(x))

is non-decreasing in i.

Proof. Set n = |Z | and, for each i = 1, . . . , n, let Li denote the set of linear extensions x1 · · · xn
of P in which xi = x. For i < n, define a map φi : Li → Li+1 by

φi(x1 · · · xxi+1 · · · xn) = x1 · · · xi+1x · · · xn.

This map φi is well-defined because, since x is maximal, x1 · · · xi+1x · · · xn is a linear extension
of P whenever x1 · · · xxi+1 · · · xn is. For each i, the map φi is clearly an injection, and so |Li| �
|Li+1|, and therefore ri(x) � ri(x + 1).

Proposition 6.2. Suppose μ is an order-invariant measure on a causal set P = (Z,<). If x ∈ Z

is not absent in μ, then there is an infinite chain in P with bottom element x.
In particular, if P has no infinite chain, then there is no order-invariant measure on P .

Proof. We start by proving that, if x is maximal in P , then x is absent in μ.
Suppose then that x is a maximal element that is not absent in μ. Now, for some j, m ∈ N,

we have μ({ω : ξj(ω) = x}) > 1/m. Set n = m + j − 1, so that μ({ω : ξj(ω) = x}) > 1/(n −
j + 1).

For any stem W of P , including x, with |W | = n, Lemma 6.1 tells us that rWi (x) = νW ({ζ :

ζi = x}) is non-decreasing in i. Therefore all of the rWi (x), for i = j, . . . , n, are at least rWj (x),
and so rWj (x) � 1/(n − j + 1).

Let Wn denote the set of all n-element stems of P . For W ∈ Wn, set aW = μ({ω : Ξn(ω) =

W }). Thus
∑

W∈Wn
aW = 1.

By order-invariance, if x ∈ W ,

μ(ξj = x | Ξn = W ) = rWj (x) � 1

n − j + 1
,

and so

μ({ω : ξj(ω) = x}) =
∑

W :x∈W
aW μ(ξj = x | Ξn = W ) � 1

n − j + 1
,

which is a contradiction. This proves that any maximal element x is absent in μ.
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To prove the full result, suppose that μ is an order-invariant measure on P = (Z,<), and let
W be the set of non-absent elements. Now μ is also an order-invariant measure on (W,<W ), so
this causal set has no maximal elements. For any element x ∈ W , we can construct an infinite
chain in (W,<W ) with bottom element x recursively: having found x = x0 < x1 < · · · < xk, let
xk+1 be any element of W above xk.

For the final statement, if there are no infinite chains in P , and μ is an order-invariant measure
on P , then every element is absent in μ, which is not possible.

Example 3. Let P = (Z,<) be a countably infinite antichain. As P contains no infinite chains,
there is no order-invariant causet process on P , by Proposition 6.2.

In the more general context of [8], there is an order-invariant process giving rise to an antichain
a.s., as discussed in that paper. However, such a process is not an order-invariant process on a
particular labelled antichain: the labels on the elements of the generated antichain are random.

Example 4. Let P consist of one infinite chain b1 < b2 < · · · together with a single incompar-
able element x. For any order-invariant measure μ on P , the maximal element x is absent in μ.
Thus there is no faithful order-invariant process on P , and the only order-invariant process is the
one whose measure is given by μ(b1b2 · · · ) = 1; i.e., at each stage i, the process a.s. selects the
next element bi of the infinite chain.

The causal sets in Examples 1, 3 and 4 are all upward-branching forests, i.e., causal sets in
which every element has at most one lower cover. Equivalently, P is an upward-branching forest
if, for each element x of P , the set D[x] is a finite chain. We can extend the arguments used in
the analyses of these examples as follows.

Proposition 6.3. Suppose the causal set P = (Z,<) is an upward-branching forest. Then there
is a faithful order-invariant process on P if and only if P has no maximal element.

Proof. If there is a maximal element x, then Proposition 6.2 shows that x is absent, so there is
no faithful order-invariant process.

If there is no maximal element, then we can define a faithful order-invariant process via a non-
zero flow f through the forest, with value 1. To be precise, a flow in P is a function f : Z → R

+

satisfying f(x) =
∑

y·>x f(y) for all x ∈ Z , where the sum is over all elements y such that (x, y)

is a covering pair. The value of the flow f is the sum over all minimal elements x of f(x).
(To obtain a flow g through the edges (covering pairs) of the forest, in the usual sense, we set
g(x, y) = f(y) for each covering pair (x, y).)

A flow f(x) can be constructed by working recursively up the forest, starting from the minimal
elements. The set of minimal elements is non-empty and countable, so we can assign positive real
numbers f(x) to the minimal elements summing to 1. Once we have chosen f(x), we note that
there is at least one, but only countably many, upper covers of x, so we can choose positive
numbers f(y), for the upper covers y of x, so that f(x) =

∑
y·>x f(y).

Note that, given any stem A in P , the sum of the f(x) over the minimal elements of P\A is 1.
Given a flow f, our rule defining an order-invariant causet process is: from any state x1 · · · xk,

and for any minimal element x of P\{x1, . . . , xk}, the probability of a transition to the state
x1 · · · xkx is equal to f(x).
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To see that a process defined in this way is order-invariant, observe that, if a1 · · · ak is an
ordered stem of P , then μ(E(a1a2 · · · ak)) = f(a1)f(a2) · · · f(ak), which depends only on the
stem {a1, . . . , ak}, and not on the order of its elements.

One can show, using the same ideas as in Example 1, that faithful extremal order-invariant
measures on an upward-branching forest are in 1–1 correspondence with flows through the forest.

A specific example is that where P = (Z,<) is a countable union
⋃∞

i=1 Ci of infinite chains.
In this case, an extremal order-invariant measure is specified by a probability distribution on the
index set N: given non-negative numbers p1, p2, · · · summing to 1, an order-invariant process on
P is defined by the rule that, at each step, the next element in chain Ci is chosen with probability
pi, independent of all other choices. This process is faithful if all the pi are positive. This is an
example of a faithful order-invariant measure on a causal set P containing an infinite antichain.

To conclude this section, we discuss the case where μ is an order-invariant measure on P =

(Z,<), and an element b ∈ Z is in the random set Ξ with probability strictly between 0 and 1.
In this situation, we can construct two new causet measures μ+ and μ− on P by conditioning on
the events b ∈ Ξ and b /∈ Ξ respectively:

μ+(E) = μ(E | b ∈ Ξ) =
μ(E ∩ {ω ∈ ΩP : b ∈ Ξ(ω)})
μ({ω ∈ ΩP : b ∈ Ξ(ω)}) ,

for all E ∈ FP , and similarly for μ−. Then μ(·) = μ+(·)μ(b ∈ Ξ) + μ−(·)μ(b /∈ Ξ), a convex
combination of μ+ and μ−.

Proposition 6.4. If μ is an order-invariant measure on P = (Z,<), and b is an element of
Z with 0 < μ({ω : b ∈ Ξ(ω)}) < 1, then the measures μ+ and μ− defined above are order-
invariant.

Proof. We start by showing that μ+ is order-invariant. Suppose that a1 · · · ak and as(1) · · · as(k)
are two ordered stems of P , where s is a permutation of [k]: our task is to show that

μ(E(a1 · · · ak) | b ∈ Ξ) = μ(E(as(1) · · · as(k)) | b ∈ Ξ).

Since μ({ω : b ∈ Ξ(ω)}) > 0, this is equivalent to

μ(E(a1 · · · ak) ∩ {ω : b ∈ Ξ(ω)}) = μ(E(as(1) · · · as(k)) ∩ {ω : b ∈ Ξ(ω)}).

If b is one of the aj , this holds directly by order-invariance. If not, then the set E(a1 · · · ak) ∩ {ω :

b ∈ Ξ(ω)} can be written as a countable disjoint union of events of the form E(a1 · · · akc1 · · · ctb).
By order-invariance, each such event has the same probability as the corresponding event

E(as(1) · · · as(k)c1 · · · ctb).

Summing the probabilities now gives the required result.
We can write

μ−(E) =
μ(E) − μ(b ∈ Ξ)μ+(E)

μ(b /∈ Ξ)
,

for every E ∈ FP . Using this identity, the fact that μ(b /∈ Ξ) > 0, and the order-invariance of μ
and μ+, we see that μ− is also order-invariant.
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This result is analogous to Lemma 4.3.10 of Bovier [3].
One consequence of Proposition 6.4 is that, if μ is an order-invariant measure on P = (Z,<),

and b is an element of Z such that P\U[b] has no infinite chain, then μ(b ∈ Ξ) = 1. Indeed, if
not, then Proposition 6.4 says that μ− is an order-invariant measure on P\U[b], in contradiction
to Proposition 6.2.

7. Existence of order-invariant measures

We have seen examples where there are one, none, or many (faithful) order-invariant measures on
a fixed labelled poset P . We now give a sufficient condition for the existence of an order-invariant
measure on P .

Theorem 7.1. Let P = (Z,<) be a causal set. If P\A has finitely many minimal elements for
each stem A of P , then there is an order-invariant measure on P . More generally, if PY has this
property for some infinite down-set Y of P , then there is an order-invariant measure on P .

Proof. Suppose that P\A has finitely many minimal elements for each stem A of P .
Let Z1 ⊂ Z2 ⊂ · · · be an increasing sequence of stems of P = (Z,<) whose union is Z . Note

that, for each ordered stem a1 · · · ak, νZn (E(a1 · · · ak)) is defined for all n large enough that all the
aj are in Zn.

Since the set of all ordered stems of P is countable, a standard diagonalization argument shows
that there is a subsequence (Znj ) of (Zn) such that limj→∞ ν

Znj (E(a1 · · · ak)) exists for all ordered
stems a1 · · · ak.

For each ordered stem a1 · · · ak, we now set

μ(E(a1 · · · ak)) = lim
j→∞

ν
Znj (E(a1 · · · ak));

we claim that this defines an order-invariant measure on (ΩP ,FP ).
For each ordered stem a1 · · · ak, the set {b1, . . . , br} of minimal elements of P\{a1, . . . , ak} is

finite by assumption. Provided |Znj | > k, we have

r∑
i=1

ν
Znj (E(a1 · · · akbi)) = ν

Znj (E(a1 · · · ak)),

so this identity also holds for the limit μ. (Note that νZn (E(c1 · · · ct)) = 0 unless all the ci are in
Zn.) Thus, by Lemma 3.2, μ is a causet measure on P .

Checking that μ is order-invariant is also immediate: if a1 · · · ak is an ordered stem of P , and s

is a permutation of [k] such that as(1) · · · as(k) is also an ordered stem of P , then

ν
Znj (E(a1 · · · ak)) = ν

Znj (E(as(1) · · · as(k)))

for every nj for which these are defined, so this identity holds in the limit too.
For the second statement in (1), we simply apply the first statement to PY .

Corollary 7.2. If I(x) is finite for every element x of P , then there is a faithful order-invariant
measure on P .
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Proof. If I(x) is finite for all x ∈ P , then there is certainly no infinite antichain in P , and
therefore the condition of Theorem 7.1 is satisfied, and there is an order-invariant measure on P .

Moreover, as we remarked at the beginning of Section 6, a causal set P in which I(x) is finite
for every x has no proper infinite down-sets – indeed, any causet process on P generates each
element x no later than step |I(x) + D[x]| – so all causet measures on P are faithful.

If we think of two elements of P = (Z,<) as ‘interacting’ if they are incomparable, then the
condition that I(x) is finite for every x ∈ Z is analogous to the condition that an interaction in a
spin system be regular – see Section 4.2 of Bovier [3], which suffices for the existence of Gibbs
measures in the context studied there (see Corollary 4.2.17 of [3]).

Example 4 illustrates these results: the poset P of that example has no infinite antichain, but
there is one element x with I(x) infinite; there is just one order-invariant measure on P , and it is
not faithful.

The condition in Theorem 7.1 is certainly not necessary for the existence of an order-invariant
measure on P . Indeed, we have already seen examples – see Proposition 6.3 and the remarks
after it – where P\A has infinitely many minimal elements for every stem A, and yet there are
infinitely many faithful extremal order-invariant measures on P .

However, we do have the following result.

Corollary 7.3. Let P = (Z,<) be a causal set. Then the following are equivalent.

(1) For every infinite down-set Y of Z , there is an order-invariant measure on PY .
(2) For every stem A of P , P\A has finitely many minimal elements.

Proof. That (2) implies (1) follows from applying Theorem 7.1 to each PY , where Y is an
infinite down-set of P .

If (2) fails, then there is a stem A such that the set M of minimal elements of P\A is infinite.
Then A ∪ M is an infinite down-set of P with no infinite chains, so there is no order-invariant
measure on PA∪M , by Proposition 6.2.

It is no accident that the condition of Theorem 7.1 for the existence of an order-invariant meas-
ure is the same as that in Theorem 3.1 for ΩP to be compact. Indeed, we can use compactness
to give an alternative proof of the first part of Theorem 7.1: we merely sketch this proof, which
relies on the theory of weak compactness (see Billingsley [2]).

Since the space (ΩP ,FP ) is compact, every family of measures in P = P(ΩP ,FP ) is tight.
Thus, by Prohorov’s theorem, every such family, and in particular the family νZn (·) as defined in
the proof, is relatively compact for weak convergence. Thus some sequence of measures νZn (·)
has a weak limit: we showed in [8] that a weak limit of such measures is order-invariant.

Some ‘compactness’ condition is required for either proof to work. For instance, suppose
P = (Z,<) is an antichain, with Z = {z1, z2, . . .}, and set Zn = {z1, . . . , zn} for each n ∈ N. Now,
for each fixed k, νZn (E(zk)) = 1/n for n � k, so νZn (E(zk)) → 0 as n → ∞ for each zk ∈ Z ,
although

∑∞
k=1 ν

ZnE(zk) = 1 for each n. A similar issue is explored in Example (4.16) in [10],
where a sequence of measures tends weakly to a limit that is not a measure on the original space:
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the limiting measure can be seen as a ‘point mass at infinity’ in the one-point compactification
of the originally non-compact space.

8. Uniqueness of order-invariant measures

Our purpose in this section is to give a sufficient condition on a causal set P for P to admit a
unique order-invariant measure.

The following result can be seen as an interpretation of a result from Brightwell [4].

Theorem 8.1. Let P = (Z,<) be a causal set, and suppose there is some k such that |I(x)| � k

for all x ∈ P . Then there is a unique order-invariant measure on P .

Proof. For incomparable elements a and b of P , let R(a, b) be the event that a appears below b

in a natural extension of P . Formally, R(a, b) = {ω ∈ ΩP : ∃i < j, ξi(ω) = a, ξj(ω) = b}.
Suppose P satisfies the condition of the theorem. It is proved in [4] that, for any increasing

sequence (Z1, Z2, . . .) of stems in P = (Z,<), whose union is Z , and any Boolean combination
R of events of the form R(a, b), the limit, as n → ∞, of νZn (R) exists, and is independent of the
choice of sequence (Zn).

Each basic event E(a1 · · · ak) can be written as an intersection of events R(a, b). Also, for any
ω = x1x2 · · · ∈ ΩP , the union of the sequence (X1, X2, . . .) of stems is Z . Therefore, for each
ordered stem a1 · · · ak, and each ω ∈ ΩP , the result of [4] tells us that νXn (E(a1 · · · ak)) tends to
a limit, which we denote μ(E(a1 · · · ak)), independent of the sequence (Xn).

As in the proof of Theorem 7.1, this limit μ is an order-invariant causet measure on P .
Moreover, for every ω ∈ ΩP , νn(E(a1 · · · ak)(ω) tends to μ(E(a1 · · · ak)). Every extremal order-

invariant measure ν on P is essential, by Theorem 5.1, and so ν must agree with μ on the
separating class consisting of the basic events E(a1 · · · ak), and therefore ν = μ.

Thus there is only one extremal order-invariant measure on P , namely μ.

The condition that I(x) be uniformly bounded in Theorem 8.1 is reminiscent of Dobrushin’s
uniqueness criterion for interacting particle systems (see [3] or [10]), in that it bounds the strength
of interactions.

Example 5. An example in Brightwell [4] shows that just having all the I(x) finite is not
sufficient to guarantee a unique order-invariant measure.

To construct this example, we start with P1 the one-element poset on Z1 = {a} and P2 the
two-element antichain Z2 = {a, b}. Each Pn, n � 3, is constructed from Pn−1 by adding a chain
of mn elements above the elements of Zn−2 and incomparable with the chain Zn−1\Zn−2, where
mn grows rapidly with n (mn = 22n suffices). The infinite poset P is the union of the Pn. The point
is that, as mn is much larger than mn−1, most linear extensions of the poset Pn have the elements
of Zn−2, in some order, as an initial segment, so νZn (EPn(a)) can be made as close as is desired to
νZn−2 (EPn−2 (a)), for each n � 3. Thus νZ2n (EP2n(a)) and νZ2n+1EP2n+1(a)) tend to different limits as
n → ∞. The proof of Theorem 7.1 then implies that there are at least two different order-invariant
measures. These measures are necessarily faithful, as all the I(x) are finite in this example.
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For details, see [4].

On the other hand, the condition in Theorem 7.1 is not necessary for the uniqueness of an
order-invariant measure on a causal set P . For instance, one can build a causal set by stacking
finite posets on top of one another, with all elements of one poset in the stack being above all
elements of all posets below it. It is easy to see that such a poset admits a unique order-invariant
measure, constructed in an obvious way from the uniform measures on linear extensions of each
poset in the stack. This class includes examples in which there is no uniform bound on |I(x)|.

9. Downward-branching trees

A downward-branching forest is a causal set in which every element has exactly one upper cover
(equivalently, for each element x, U[x] is a chain). A downward-branching tree, or simply tree,
is a downward-branching forest with just one component, i.e., such that every two elements have
a common upper bound.

Our purpose in this section is to characterize the trees T = (Z,<) that admit an order-invariant
measure. Such a measure μ must be faithful: for any element x ∈ Z , there is no infinite chain in
Z\U[x] (if the infinite chain U[y] is disjoint from U[x], then x and y have no common upper
bound), and so, by the remark after Proposition 6.4, μ(x ∈ Ξ) = 1.

Before giving this characterization, we state and prove two simple general lemmas that we
shall need in the course of the proof, and later.

Lemma 9.1. Let P = (Z,<) be a causal set, and let a1a2 · · · ak be any ordered stem of P . If
μ is an order-invariant measure on P such that, with positive probability, all the ai appear, then
μ(E(a1a2 · · · ak)) > 0.

In particular, if a is a minimal element of P , then either μ(E(a)) > 0, or a is absent.

Proof. The event that all the ai appear is a countable union of events of the form E(b1b2 · · · bj),
where all the ai appear in the set B = {b1, . . . , bj}. Thus at least one such event has positive
probability. Now, there is a linear extension bs(1) · · · bs(j) of PB with initial segment a1 · · · ak. We
see that

μ(E(a1a2 · · · ak)) � μ(E(bs(1) · · · bs(j))) = μ(E(b1b2 · · · bj)) > 0,

as required.

Lemma 9.2. Let μ be a faithful order-invariant measure on P = (Z,<) and let A be any stem
of P . Take any linear extension a1 . . . am of PA. For any ordered stem b1 · · · bk of P\A, define

μA(E(b1 · · · bk)) =
μ(E(a1 · · · amb1 · · · bk)

μ(E(a1 · · · am))
.

Then μA is a faithful order-invariant measure on P\A.

Proof. Note first that μ(E(a1 · · · am)) > 0, by Lemma 9.1, so μA is well-defined. Also, by order-
invariance, it is independent of the choice of the linear extension of PA.
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Figure 2. A downward-branching tree.

For any ordered stem b1 · · · bk, we need to check that the sum, over all minimal elements b

of P\(A ∪ {b1, . . . , bk}), of μA(E(b1 · · · bkb)) is equal to μA(E(b1 · · · bk)); this is immediate from
the definition, since μ satisfies the analogous property.

Thus, by Lemma 3.2, μA is a causet measure on P\A. Order-invariance and faithfulness are
immediate from the definition.

Let T = (Z,<) be a downward-branching tree. Let C : x0 < x1 < · · · be an arbitrary max-
imal chain in T : the minimal element x0 determines this chain C uniquely as the chain U[x0] of
elements above x0.

For i � 1, set Bi = D(xi) and Ai = D(xi)\D[xi−1]. Thus Ai is the finite forest of elements
‘hanging off’ C at xi. The sets Ai partition T\C. Also, for each i, Bi = D(xi) = Ai ∪ D[xi−1],
and these two sets Ai and D[xi−1] have no comparabilities between them. See Figure 2.

Set ai = |Ai|, bi = |Bi|, and ti = ai/bi, for each i � 0. So ti is the proportion of elements below
xi that are in subtrees other than D[xi−1].

Proposition 9.3. A tree T = (Z,<) admits an order-invariant measure if and only if
∑∞

i=0 ti
converges. If the sum is convergent, there is just one order-invariant measure on T .

This convergence condition is quite strong: a tree T such that
∑

ti converges can be thought of
as consisting of one chain C with elements hanging off it at widely spaced intervals. For instance,
if each ai is 1, so that there is one minimal element hanging off each element in the chain, then
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bi = 2i for each i, so ti = 1/2i, and
∑

ti is divergent. This is therefore an example of a causal
set with an infinite chain admitting no order-invariant measure.

Proof. We first note that the convergence condition is invariant under choice of the maximal
chain: given any two chains, defined by their minimal elements, the elements have a least upper
bound, which appears in both chains, and the sequence (ti) is the same in both chains beyond this
point.

We will now show that the convergence condition is invariant under the removal of a min-
imal element x. Unless T is a single chain – in which case the condition is satisfied both
before and after removing the unique minimal element x – we can choose a reference chain
C in which x is in one of the Ai. Removing x has the effect of reducing the one term ti, and
increasing all subsequent terms tj by at most a factor of 2, so the convergence of

∑
ti is not

affected.
We deduce moreover that the convergence condition is invariant under the removal of any

finite down-set of T .
Suppose that T admits an order-invariant measure μ, and consider the event ET (x0) that x0 is

the bottom element in a random linear extension. By Lemma 9.1, μ(ET (x0)) > 0.
Our basic intuition is that an order-invariant measure μ on T , if it exists at all, has to be

the limit of the measures νD[xj ], as j → ∞. (Indeed, if there is an order-invariant measure, then
there is an extremal one, which is essential by Theorem 5.1, and therefore is certainly a limit
of some sequence of measures νDk , where (Dk) is an increasing sequence of down-sets of T .)
Accordingly, our next step is to fix j � 1 and analyse the family of linear extensions of TD[xj ],
which we call Tj for convenience. As xj is the unique maximal element of Tj , a linear extension
of Tj consists of a linear extension of TD(xj ) with xj appended, so we may focus instead on the
family of linear extensions of TD(xj ).

In TD(xj ), there are no comparabilities between the sets Aj and D[xj−1], so a linear extension
of TD(xj ) is determined uniquely by: (i) a linear extension of TAj

, (ii) a linear extension of Tj−1,
and (iii) a set I of aj elements of [bj]. Given these three ingredients, the linear extension of TD(xj )

can be formed by mapping the elements of Aj to the elements of I , in the order given by the linear
extension from (i), then mapping the elements of D[xj−1] to the elements of [bj]\I , in the order
given by the linear extension from (ii).

The event that, in a uniformly random linear extension ζ of TD(xj ), the bottom element ζ1 is in
D[xj−1], depends only on the set I , and its probability is just the probability that 1 �∈ I , which is
(bj − aj)/bj = 1 − tj .

Furthermore, the event that the lowest element of D[xj−1] is x0, in a uniformly random linear
extension of Tj , depends only on the linear extension of Tj−1 chosen in part (ii) of the process
described above, so this event is independent of the event that the overall bottom element in the
linear extension of Tj is in D[xj−1]. Hence we have

νD[xj ](ETj (x0)) = (1 − tj)ν
D[xj−1](ETj−1 (x0)),

and it follows by induction that

νD[xj ](ETj (x0)) =

j∏
i=1

(1 − ti).

https://doi.org/10.1017/S0963548311000721 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548311000721


352 G. Brightwell and M. Luczak

Moreover, if W is any stem including xj (and therefore all of D[xj]), then νW (ETW (x0)) �∏j
i=1(1 − ti), as the product is the probability that x0 is the lowest element of D[xj] in a uniformly

random linear extension of TW .
For j, n ∈ N, let Aj,n = {ω : xj ∈ Ξn(ω)}. We have that, for ω ∈ Aj,n,

νΞn(ω)(ETΞn (x0)) �
j∏

i=1

(1 − ti).

For any j ∈ N and ε > 0, we may take n sufficiently large that μ(Aj,n) > 1 − ε. Now, by (3.3),
we have that

μ(ET (x0)) =
∑
X

μ(ET (x0) | Ξn = X) μ(Ξn = X) =
∑
X

νX(ETX (x0)) μ(Ξn = X),

where the sum is over all stems X of T of size n. Now we have

μ(ET (x0)) �
∑

X:xj /∈X

μ(Ξn = X) +
∑

X:xj∈X
νX(ETX (x0)) μ(Ξn = X) � ε +

j∏
i=1

(1 − ti).

As both ε and j are arbitrary, we conclude that μ(ET (x0)) �
∏∞

i=1(1 − ti), which is positive if
and only if

∑
ti converges.

This proves that, if T admits an order-invariant process, then
∑

ti converges.
Indeed, we can extract more information from the argument above. Suppose that

∑
ti does

converge. For any minimal element x, decompose the tree using the reference chain C = U[x],
calculate the constants ti = ti(x) for this chain C, and set pT (x) =

∏∞
i=1(1 − ti(x)). We have seen

that μ(ET (x)) � pT (x), for any order-invariant measure μ on T .
We claim that the sum of the pT (x) over all minimal x is equal to 1. This will imply that

μ(ET (x)) = pT (x), for any order-invariant measure μ on T , and any minimal element x.
Note first that, for each fixed j, we have

∑
x∈Mj

∏j
i=1(1 − ti(x)) = 1, where the sum is over the

set Mj of minimal elements of D[xj], as
∏j

i=1(1 − ti(x)) is the probability that x is the bottom
element in a random linear extension of Tj .

Therefore
∑

x∈Mj
pT (x) =

∑
x∈Mj

∏∞
i=1(1 − ti(x)) � 1, for each j. It follows that the sum of

pT (x) over all minimal elements of T is at most 1.
To see the reverse inequality, we fix any ε > 0. As

∑
ti converges, there is some n such that∏∞

i=n+1(1 − ti) > 1 − ε. Now, for all x ∈ Mn, ti(x) = ti for i � n. Therefore

∑
x∈Mn

pT (x) =
∑
x∈Mn

n∏
i=1

(1 − ti(x))

∞∏
i=n+1

(1 − ti) > (1 − ε)
∑
x∈Mn

n∏
i=1

(1 − ti(x)) = 1 − ε.

What this shows is that, if there is an order-invariant measure μ on T , then μ(ET (x)) must be
equal to pT (x) for every minimal element x of T .

Furthermore, from any state a1 · · · ak, with A = {a1, . . . , ak}, all subsequent transitions must
be those of an order-invariant process on T\A, also a downward-branching tree, by Lemma 9.2.
Therefore the probabilities for the next transition are necessarily obtained by selecting the next
minimal element to be x with probability pT\A(x).

This proves that, in the case where
∑

ti converges, there is at most one order-invariant process
on T , namely the one described above, with the rule that, if we have so far selected the elements
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of the stem A, then the probability that a minimal element x of T\A is the next element selected
is pT\A(x).

It remains to show that this process is order-invariant.
The process is, by its definition, order-Markov. We need to check that, after the deletion of

some stem A, ET\A(yz) and ET\A(zy) have the same probabilities, whenever y and z are minimal
elements of T\A. Without loss of generality, A = ∅ and y = x0. We choose n so that z < xn.

We see that

μ(ET (yz)) = pT (y)pT\{y}(z) =

∞∏
i=1

(1 − ti(y))

∞∏
i=1

(1 − t′i(z)),

where the ti are calculated in T , and the t′i in T\{y}. Similarly

μ(ET (zy)) =

∞∏
i=1

(1 − ti(z))

∞∏
i=1

(1 − t′′i (y)),

where the t′′i are calculated in T\{z}. In each product, all the terms beyond the nth are identical,
so we need to prove that

n∏
i=1

(1 − ti(y))

n∏
i=1

(1 − t′i(z)) =

n∏
i=1

(1 − ti(z))

n∏
i=1

(1 − t′′i (y)).

But these products are exactly νD[xn](ETn(yz)) and νD[xn](ETn(zy)) respectively, so they are in-
deed equal.

One explicit way of realizing the unique order-invariant measure in the case when
∑

ti con-
verges is as follows. Again, we need only describe how to generate the first element. Choose
a reference chain C with minimal element x0, and define the Ai with respect to C as before.
Mark each set Ai with probability ti, independently of other marks. Note that no empty Ai is
marked, and, by the Borel–Cantelli lemma, since

∑
ti is finite, there are a.s. only a finite number

of marked Ai. If there are any marked sets, let Ak be the last marked set, take a uniformly random
linear extension of the finite poset Ak, and select the bottom element of this linear extension as
our first element. If there are no marked sets, we choose x0 as our first element. We omit the
detailed analysis.

10. The two-dimensional grid poset

Let G = (N × N, <) be the infinite two-dimensional grid poset, with (a, b) � (c, d) if a � c and
b � d. This is a causal set, with unique minimal element (1, 1).

This example is studied in detail in papers of Gnedin and Kerov [11], Kerov [14] and Vershik
and Tsilevich [19]. Our account will be a sketch only.

As G has no infinite antichain, Theorem 7.1 tells us that there is an order-invariant measure
on G – however, this is actually trivial in this case, as the chain H = {(a, 1) : a ∈ N} forms an
infinite down-set in G, and the process that always selects the next element of H is certainly
order-invariant.

In fact, there is a faithful order-invariant measure on G. Although I(x) is infinite for all
elements x of G except the unique minimum, the method used in the proof of Theorem 7.1
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can be used directly to construct such a measure. If we take Zn = [n] × [n], a down-set in G,
for each n ∈ N, then the numbers of linear extensions of subposets of GZn

can be calculated
using the hook formula of Frame, Robinson and Thrall [9], and so it is possible to write down
an expression for νZn (E(a1 · · · ak)) for each n and any ordered stem a1 · · · ak. It turns out that
νZn (E(a1 · · · ak)) converges to a positive limit for each ordered stem a1 · · · ak, and so the limit
is a faithful order-invariant measure on G. This measure is the well-known Plancherel measure
(see, for instance, [1, 18]).

However, this is far from the only faithful order-invariant measure on G. For example, for
α ∈ (0, 1), we construct an order-invariant measure as follows. We decompose G as the union
of the chain H = {(a, 1) : a ∈ N}, and G\H , which is isomorphic to G. On the poset formed
as the disjoint union H ∪ (G\H), where the relations between H and G\H are deleted, we
construct a process which, at each step, takes the next element of the chain H with probability
α, and otherwise takes an element from G\H according to the Plancherel measure. With positive
probability, the sequence constructed is actually a natural extension of G: conditioning on this
event gives an order-invariant measure on G. The order-invariant measure we obtain ‘favours the
first row H’, as elements of this row are chosen a positive proportion of the time in the process,
unlike in the Plancherel measure.

It is easy to see that this can be extended, to obtain processes favouring more than one
row, and/or favouring the low-numbered columns. Kerov [14] shows that the extremal order-
invariant measures on G are in 1–1 correspondence with pairs of sequences α1 � α2 � · · · � 0,
β1 � β2 � · · · � 0, such that

∑∞
i=1 αi +

∑∞
i=1 βi � 1. (The measure described above is the one

corresponding to α1 = α, with all other αi and βi equal to zero.)

11. Open problems

We finish by mentioning a number of open problems.

(1) Is there some reasonably simple description of the class of causal sets that admit a (faithful)
order-invariant measure? We see from consideration of the class of downward-branching trees
that there can be no very simple description. However, perhaps Theorem 9.3 may give some
indication of the nature of a possible classification of causal sets admitting an order-invariant
measure.

(2) Is there some reasonably simple description of the class of causal sets that admit a unique
order-invariant measure? This seems likely to be harder than the previous problem.

In [8], we give a description of the general form of any extremal order-invariant measure on
the space (Ω,F). In order to extend this to a classification of extremal order-invariant measures,
it would suffice to be able to describe all extremal order-invariant measures on fixed causal sets.
It is not clear what such a description might look like, but solving problems (1) and (2) would be
progress towards this goal.

(3) One specific problem relates to a partial order obtained by taking a Poisson process X in R
2
+,

and taking the partial order < on X induced by the co-ordinate order. The poset P = (X,<) is
a.s. a causal set. Does such a poset (a.s.) admit an order-invariant measure?
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If so, it seems that P will (a.s.) admit infinitely many order-invariant measures, because
an order-invariant measure μ must have

∑
x∈M μ(E(x)) > 1 − ε for some finite set M = M(ε)

of minimal elements x, whereas the Poisson process itself has no distinguishable ‘minimum
region’ of finite area. This is because the Lebesgue measure on R

2
+, and hence the Poisson pro-

cess, are Lorentz invariant (i.e., invariant under the measure-preserving transformations (x, y) →
(ax, a−1y) of R

2
+).

The motivation behind this problem comes from physics. Any process generating a random
causal set can be viewed as a potential discrete model for the space–time universe. Rideout and
Sorkin [15, 16] proposed (essentially) order-invariance as a desirable feature of such a model.
It would be good to know whether the (rich) class of order-invariant processes does include
processes that produce outcomes resembling the observed space–time universe, i.e., at least
locally resembling a Poisson process in four-dimensional Minkowski space M4. If such a process
exists, it will have an expression as a mixture of extremal order-invariant processes on fixed
causal sets, where the causal sets ‘resemble’ those produced from a Poisson process.

It seems likely that either (i) causal sets arising from a Poisson process in M4 (with an origin)
a.s. admit an order-invariant measure, or (ii) there is some necessary structural condition for
the existence of an order-invariant measure that is not satisfied by any causal set ‘faithfully
embedded’ into M4. It would be very interesting to know which.

The two-dimensional version of this question, as proposed above, should be easier to settle.

(4) We give a more specific question, an answer to which is likely to lead to an answer to
problem (3). Let P = (X,<) denote the causal set defined from a Poisson process in the positive
quadrant, as above. For each n, consider the restriction Pn of P to the set Xn of points in the
square [0, n]2.

Now let x = (u, v) be the point in X with minimum sum of co-ordinates u + v. Consider the
probability qn = νXn (EPn(x)) that x is the bottom element of a uniform random linear extension
of Pn. Does qn a.s. tend to zero as n → ∞?

If qn does (a.s.) tend to zero, then it should be fairly easy to deduce that, in any order-invariant
measure μ on P , μ(EP (x)) = 0, and thence that there is no order-invariant measure on P .

On the other hand, if qn tends to some non-zero limit, and also νXn (EPn(y)) converges for every
other minimal element y, with the sum of these limits being 1, then it seems very likely that the
measures νXn will have a limit that is an order-invariant measure on P .

The following version of the question seems likely to be equivalent, and may be slightly more
appealing. If we generate Pn as above, and then take a random linear extension of Pn, does the
probability that the bottom element lies in [0, 1]2 tend to zero as n → ∞?

(5) Can one say anything interesting about the causet properties ‘P admits an order-invariant
measure’ and ‘P admits a unique order-invariant measure’. Could one or other be monotone (i.e.,
preserved under adding relations)? The following example shows that the property ‘P admits a
faithful order-invariant measure’ is not monotone.

Example 6. Let P = (Z,<) consist of two chains B : b1 < b2 < · · · and C : c0 < c1 < c2 <

· · · , with also the ‘cross-relations’ ci > bj if j < 2i – so each element ci has 2i − 1 elements of
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B below it. This causal set P is obtained from the one in Example 1, which does admit a faithful
order-invariant measure, by adding relations. We shall show that, in any order-invariant measure
μ on P , c0, and hence all the elements of C, are absent.

For n � 1, let X be any down-set of P of size 2n containing c0. Thus cn /∈ X, and so X contains
at most n elements of C. If Q = (Y ,<′) is the poset with Y = X consisting of the union of the
two chains C ∩ X and B ∩ X, without the cross-relations, then νY (EQ(c0)) = |C ∩ X|/|X| �
n/2n. Now the theorem of Graham, Yao and Yao [12] implies that adding the cross-relations
(which means conditioning on certain events that the cj are higher than the bi) cannot increase
the probability that c0 is below b1: thus

νX(EPX (c0)) � νY (EQ(c0)) � n

2n
.

As in the proof of Proposition 6.2, this implies that, in any order-invariant measure μ on P ,
μ(EP (c0)) � n/2n for every n, so μ(EP (c0)) = 0. Finally, by Lemma 9.1, we see that c0, and
hence all the ci, are absent in μ.

The property of admitting an order-invariant measure is preserved under the addition of finitely
many relations to P : conditioning an order-invariant measure μ on the event that a linear exten-
sion of P respects those extra relations yields an order-invariant measure on the causal set with
the relations added.

However, we do not know whether the property of admitting an order-invariant measure is
preserved under the removal of finitely many relations.
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