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Abstract
Experiments involving games have two dimensions of difficulty for subjects in the 
laboratory. One is understanding the rules and structure of the game and the other is 
forming beliefs about the behavior of other players. Typically, these two dimensions 
cannot be disentangled as belief formation crucially depends on the understanding 
of the game. We present the one-player guessing game, a variation of the two-player 
guessing game (Grosskopf and Nagel 2008), which turns an otherwise strategic 
game into an individual decision-making task. The results show that a majority of 
subjects fail to understand the structure of the game. Moreover, subjects with a bet-
ter understanding of the structure of the game form more accurate beliefs of other 
player’s choices, and also better-respond to these beliefs.

Keywords Guessing game · Strategic thinking · Cognitive sophistication

JEL Classification C91 · D12 · D84 · G11

1 Introduction

Subjects in laboratory experiments consistently deviate from equilibrium behavior 
(Camerer 2003). Many models of bounded rationality try to explain these deviations 
through errors in belief formation (e.g., Nagel 1995; Ho et  al. 1998; Weizsäcker 
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2003). Another explanation is that subjects fail to fully understand the structure of 
the game (Chou et al. 2009 refer to this as an absence of “game form recognition”). 
Generally, when analyzing deviations from equilibrium behavior, one would expect 
both of these effects to play a role. However it is typically hard (if not impossible) 
to distinguish between the two, as correct belief formation crucially depends on a 
correct understanding of the structure of the game. With the help of a novel one-
player guessing game experiment, we are able to disentangle these two effects, thus 
improving the understanding of why subjects deviate from equilibrium behavior.

An extensive literature has attempted to analyze both belief formation and under-
standing the structure of the game. Costa-Gomes and Crawford (2006) present 
subjects with a series of two-player dominance-solvable games and conclude that 
most subjects understand the games, but play non-equilibrium strategies due to their 
“simplified models of others’ decisions.” In Costa-Gomes and Weizsäcker (2008) 
the authors look at subject’s actions and their stated beliefs, and find that subjects 
rarely best respond to their stated beliefs. However, Rey-Biel (2009) observes that 
in simplified versions of the games studied in Costa-Gomes and Weizsäcker (2008), 
Nash Equilibrium is a better predictor of subject behavior than any other model 
based on level-K reasoning.

Another strand of the literature focuses on whether subjects understand the struc-
ture of the game. Using two-player guessing games, Chou et  al. (2009) find that 
subjects are surprisingly unable to understand the experimental setup they are par-
ticipating in. By using different sets of instructions for the same game, and by intro-
ducing hints, they show that subjects do not deviate from equilibrium because of 
cognitive biases, but rather because of a lack of game form recognition, which they 
define as the relationships between possible choices, outcomes, and payoffs. Fragi-
adakis et al. (2016) let subjects play a two-player guessing game repeatedly against 
random opponents, and subsequently ask subjects to replicate or best respond to 
their previous choices. They find that while behavior of only 30% of subjects is con-
sistent with a set of commonly used models (including equilibrium play and level-
K), they also identify subjects who play strategically but are not identified by com-
monly used models. Finally, Agranov et al. (2015) develop an experimental protocol 
that allows them to track the decision-making process of subjects in a beauty contest 
game. The results show that around 45% of subjects consider playing weakly domi-
nated strategies at some point in their decision-making process.

In this experiment, we use a one-player guessing game which allows to meas-
ure how well subjects understand the structure of the two-player guessing game 
(Grosskopf and Nagel 2008). In this “game” subjects play the role of both players in 
a two-player guessing game. That is, they are asked to pick not one but two numbers 
between 0 and 100, and are paid according to the proximity of each of their choices 
to two thirds of the average of both choices. This setup switches off the belief chan-
nel, but still demands subjects to understand the structure of the game.1 By compar-
ing their actions in a two-player guessing game to the choices made in the one-player 

1 The latter feature would be missing when simply telling subjects what the other player of a two-player 
guessing game will play.
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guessing game we can disentangle the effects of beliefs from “game form recogni-
tion,” and analyze to what extent understanding the structure of the game determines 
their belief formation and their best-responses.2

Our experimental results show that a majority of subjects fails to fully solve the 
one-player guessing game, and that subjects with a better understanding of the struc-
ture of the one-player guessing game play values closer the Nash Equilibrium in the 
two-player guessing game. This implies that an important part of non-equilibrium 
play is likely due to the inability of subjects to fully understand the structure of the 
game. Additionally, we observe that subjects with a better understanding of the one-
player guessing game form more accurate beliefs, are better at best-responding to 
their own beliefs, and tend to better adjust their beliefs according to the population 
they face. These results confirm the intuition that understanding the structure of the 
game is crucial for belief formation.

2  Experimental design

The experiment consists of four different parts: Subjects first play the one-player 
guessing game (1PG), followed by the two-player guessing game (2PG). After this, 
we elicit subjects’ beliefs about other subjects’ two-player guessing game choices. 
A subset of subjects then participated in an additional belief elicitaton task (“What-
if” belief elicitation). At the end of the experiment, all subjects are asked to answer 
a battery of cognitive ability tests. In the following we describe each part of the 
experiment in more detail.

2.1  The one‑player guessing game (1PG)

The one-player guessing game, first introduced in Bosch-Rosa et al. (2018), allows 
to test whether subjects can solve the two-player guessing game introduced by 
Grosskopf and Nagel (2008) free of any strategic concerns.3

In essence, subjects play the role of both players in a two-player guessing game, 
i.e. they play the two player guessing game “against themselves.” Accordingly, each 
subject (i) picks two numbers xi ∈ [0, 100] and yi ∈ [0, 100] and is paid depending 
on the absolute distance of each chosen number to the “target value” which is two 
thirds of the average of both numbers. The further away each chosen number is from 
this target value, the lower is the payoff. Formally the experimental payoff for choos-
ing number xi and yi is:

(1)

2 For convenience we will henceforth refer to the one-player guessing game as a game, even though 
strictly speaking it is not one.
3 The idea of letting people play games with themselves, in order to test understanding of the structure 
of a game is not entirely new. See for instance Blume and Gneezy (2010) or Petersen and Winn (2014).
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Subjects are paid for both choices, so their combined payoff is:

The payoff function is maximized at (yi = 0, xi = 0) . This solution can be found 
through logical induction by starting with a random value x0,i , and then calculating 
the “best response” which is y�

1,i
=

1

2
x0,i . Following this, a “best response to the best 

response” can be calculated ( x�
1,i

=
1

2
y�
1,i

 ) and so on until reaching the fixed point 
( x�

∞,i
= 0 , y�

∞,i
= 0).

By turning the two-player guessing game into an algebraic problem with no stra-
tegic uncertainty, we can separate those subjects who can solve the mathematical 
problem associated with the guessing game from those who cannot.4

2.2  The two‑player guessing game (2PG)

The two-player guessing game that we use is an adaptation of the one presented in 
Grosskopf and Nagel (2008) and Nagel et al. (2016). Subjects are matched in pairs 
and asked to simultaneously pick a number zi ∈ [0, 100] . In Grosskopf and Nagel 
(2008) the winner is whoever picks the number closer to 2/3 of the average of both 
numbers, so unlike in games with N > 2 subjects, now zi = 0 is a (unique) weakly 
dominant strategy. In our version of the 2PG, the payments are based on the (abso-
lute) distance of each individual pick to 2/3 of the average of both numbers. For-
mally, the payment for player i depends on the choices of player j and her own in the 
following way:5 

This small change in payoffs dramatically changes the game as now the equilib-
rium is reached through iterated deletion of strictly dominated strategies, and zero is 
no longer a weakly dominant strategy. Now the best response is to choose 1/2 of the 
number a player believes the other player chooses.6

We opted for this modification of the original game for two reasons. First, it 
allows us to de facto ask subjects for a point estimate of their belief about the other 

(2)

(3)Π1PG
i

= max
[
�1PG
i

(xi) + �1PG
i

(yi), 0
]
.

(4)

4 A penalty which increases in the distance to the target guess is crucial here, as with the more com-
monly utilized tournament incentives one of the two selves would always win, and the game would 
become trivial. Additionally, this payoff structure allows us to study the best response of subjects to their 
beliefs in the 2PG as 0 is not anymore a unique weakly dominant strategy. See Sects. 2.2 and 3.4 for 
more details.
5 Note that we limited the minimum payoff to zero in order to avoid potential losses for the subject.
6 See Nagel et al. (2016) for a lengthier discussion on the implications that the different payoff structures 
have in the 2PG.
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subject’s choice, and secondly, and more important, it makes the game comparable 
to the 1PG. Note that while certainly not standard, distance-based payoff structures 
are widely used in the literature. Güth et al. (2002) first utilized such a payoff struc-
ture, arguing that it more closely resembles the financial decision-making situations 
that beauty contests are often intended to emulate. Since then a number of experi-
ments have used distance-based beauty contests.7 Most relevant for our experiment 
is Nagel et al. (2016), who directly compare distance-based and tournament incen-
tives in two player guessing games and find no significant differences across the 
choices of subjects.

2.3  Belief elicitation

After subjects had played the 1PG and the 2PG (with no feedback in both cases) we 
elicited their beliefs about the other players’ decisions in the 2PG. Similar to Lahav 
(2015), subjects were asked to distribute a total of 19 “tokens” into 20 “bins”.

Each token represented a subject in the session (each session consisted of 20 sub-
jects), and each bin had a range of 4 integers that players could play in the 2PG (i.e. 
the first bin had the range [0,4], the second [5,9], and so on). See Fig. 11 in "Elec-
tronic supplementary material Appendix C" for a screen-shot of the experimental 
interface.

To incentivize subjects, we used a linear scoring rule that paid €0.10 for each 
token that overlapped with the choice of any other subject in the 2PG. For instance, 
if a subject put three tokens in the bin “5–9” and in her session only 2 subjects had 
actually played any value within this range, then she would receive a total of 20 
cents for the tokens allocated in that bin. If, on the other hand, she placed 5 token 
in the bin “0–4” and 10 subjects had played a value in this range, then she would be 
paid 50 cents for the tokens allocated in that bin.

Formally, define bij as the number of tokens that subject i deposited in bin j, and 
p−ij as the number of subjects other than player i that chose a value that falls within 
bin j in the 2PG. Then the payoff for belief formation for subject i is:

The resulting distribution of beliefs provides an estimate of what subjects think 
about other subjects’ choices, and allows us to analyze how subject best-respond to 
their own beliefs.8

(5)

7 See for instance Hommes et al. (2004), Costa-Gomes and Crawford (2006), Mauersberger and Nagel 
(2018), or Duffy (2016) who reviews some of these experiments among other types of macroeconomic 
experiments.
8 There is some discussion about how to best incentivize subjects to state their true beliefs. In particular, 
there is mixed evidence on whether incentive compatibility matters or not (Schotter and Trevino 2014). 
Methods to elicit beliefs beyond first moments, such as ours, are typically difficult for subjects to under-
stand. Using a non-linear scoring rule would introduce an additional level of complexity. Hence, while 
not incentive compatible for risk neutral subjects, we opted for this approach because we believe it pro-
vides the best compromise between tractability for subjects and incentivization efficacy.
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2.3.1  “What if” belief elicitation

Since playing the 1PG could have an influence on the beliefs subjects form in the 
2PG, we asked a subset of 40 subjects to additionally guess the choices of players in 
a 2PG who had not previously taken part in the 1PG.9 The incentives for this elicita-
tion task are the same as the ones described above, and the data came from a random 
pick of 19 subjects from a sample of 80 subjects who we had invited two weeks ear-
lier to participate in a 2PG without previously taking part in the 1PG.

2.4  Cognitive ability

Gill and Prowse (2016) show that subjects who score higher in a Raven Test (Raven 
1960) choose numbers closer to equilibrium, earn more, and converge quicker to 
equilibrium in a three-player guessing game.10 Since we are interested in studying 
the ability of subjects to solve the guessing game, we also tested the cognitive ability 
of our subjects. In particular, all subjects answered a Raven Test and played “Race-
to-60,” a variant of the Race game (see e.g. Gneezy et al. 2010; Levitt et al. 2011).11 
The Raven Test is a multiple choice test in which subjects must pick an element that 
best completes a missing element in a matrix of geometrical shapes (see an example 
in Fig. 12 of "Electronic supplementary material Appendix C"). The score of this 
test has been found to correlate with measures of strategic sophistication and the 
ability of subjects to solve novel problems (Carpenter et al. 1990). It is increasingly 
used in economic research due to its simplicity and the lack of required technical 
skills.

Since logical induction is a central element of the guessing games, we test this 
ability with the “Race-to-60” game. In this game, each participant and a comput-
erized player sequentially choose numbers between 1 and 10, which are added up. 
Whoever is first to push the sum to or above 60 wins the game. The game is solvable 
by backward induction, and the first mover can always win by picking numbers such 
that the common pool adds up to the sequence : [5; 16; 27; 38; 49; 60]. Subjects 
always move first and therefore, independent of the computer’s backward induction 
ability, can always win the game.12

12 As in Bosch-Rosa et  al. (2018) the backward induction ability of the computer increased with the 
rounds of the game. In the first round the computer could do only one step of backward induction, in the 
second it could do two, in the third three, and so on.

9 In the instructions we told subjects they had to guess the choices made by 19 subjects who had played 
the 2PG a couple of weeks ago, without having previously played the 1PG. See "Electronic supplemen-
tary material Appendix D" for the instructions read to subjects.
10 Note however that Georganas et al. (2015) find only limited evidence of correlations between a variety 
of cognitive ability tasks and level-k reasoning ability.
11 While in Gill and Prowse (2016) subjects go through all 60 matrices of the original Raven Test, in our 
case subjects just took part in three of the hardest blocks of 12 matrices.
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3  Results

A total of 80 subjects participated in this experiment. All subjects were recruited 
through ORSEE (Greiner 2015) and were mostly undergraduate students with 
a variety of backgrounds, ranging from anthropology to electrical engineering or 
architecture. Sessions lasted one and a half hours and were run at the Experimen-
tal Economics Laboratory of the Technische Universität Berlin. Subjects who had 
previously participated in guessing game experiments were not invited. The experi-
ment was programmed and conducted using z-Tree (Fischbacher 2007). For detailed 
results on the cognitive ability tests, see "Electronic supplementary material Appen-
dix A"

3.1  The one player guessing game

In Fig. 1 we present the results of the 1PG in a scatter plot. Recall that in this case 
subjects have to pick two numbers, (xi, yi) ; the first number is depicted on the hor-
izontal axis, the second on the vertical axis. The diagonal dashed line marks the 
points where a subject picked the same number for xi and yi . The solid circle indi-
cates subjects who fully solved the game (0,0).

As can be seen, only a minority ( ≈ 31% ) of subjects is able to fully solve the 
1PG, i.e., pick zero for both numbers. In the remainder of this paper we will use this 
ability to fully solve the game as our primary measure of understanding of the struc-
ture of the guessing game.

Result 1 Only 31% of our subjects fully understand the one-player guessing game.

Another interesting observation in Fig. 1 is that subjects who play numbers closer 
together also play numbers closer to the origin. This is relevant, as in the 1PG there 
are two ways in which a subject (who has not fully solved the game) can improve 
her payoffs: by picking numbers closer to zero, and/or by picking numbers that are 
closer to each other. A Spearman test confirms the correlation between higher aver-
age of both choices and the distance between them (Spearman � = 0.83 , p value 
< 0.001 ). As subjects with high payoffs played both numbers that were close to each 
other, and to zero, one could interpret the payoffs of the 1PG as a measure of (par-
tial) understanding of the structure of the guessing game. Therefore, we will use the 
payoffs of the 1PG as a secondary measure to complement to our primary measure 
of understanding, “Solved 1PG”/“Not solved 1PG”.

3.2  The two player guessing game

The left panel of Fig. 2 shows the distribution of choices in the 2PG, for subjects 
who have played the 1PG before. The distribution appears to be quite different from 
the typical distribution one sees with guessing game “first timers.” The mass of the 
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distribution is close to zero with 50% of subjects playing Nash Equilibrium.13 The 
mean is 13.47 and the median choice is 2. As mentioned in Sect. 2.3.1 we also col-
lected data on 80 subjects who played the 2PG without previously taking part in 
the 1PG. Choices of these subjects are presented in the right panel of Fig. 2. While 
a relatively large number of subjects with no prior 1PG experience also play Nash 
Equilibrium (28.75%), the overall distribution of 2PG choices for those subjects is 
significantly shifted to the right compared to that of subjects with prior 1PG experi-
ence (Kolmogorov Smirnov test, p value < 0.001 , see Fig. 14 in "Electronic supple-
mentary material Appendix C" for cumulative density plots). This shift results in a 
mean and median choice without 1PG experience of 27.8 and 26 respectively.

The difference in behavior between both groups could be the result of two phe-
nomena: introspective learning from having played the 1PG (Weber 2003), or a 
change in the beliefs of subjects that previously played the 1PG given that they are 
facing a more “experienced” pool of subjects (Agranov et al. 2012).14 In Sect. 3.4.1 
we show that shifts of beliefs are relatively small. Therefore, we attribute most of 
the difference in behavior to introspective learning. So, while most subjects are not 
able to fully solve the 1PG, there appears to be some learning that carries over to the 
2PG.

3.3  Relationship between the 1PG and the 2PG

Figure 3 shows the decisions of subjects in the 2PG on the vertical axis, and their 
payoffs for the 1PG on the horizontal axis. Subjects who fully solved the 1PG (solid 
circles) mostly chose zero in the 2PG (24/25, 96%), and picked significantly lower 
numbers in the 2PG than subjects who did not fully solve the 1PG (Mann–Whitney 
U Test, p value < 0.001 ). In line with this, we also observe that subjects who earn 
higher payoffs in the 1PG play lower numbers in the 2PG (Spearman � = −0.745 , p 
value < 0.001)

Result 2 Subjects with a better understanding of the structure of the one-player 
guessing game play numbers closer to the Nash Equilibrium in the two-player guess-
ing game.

But, is playing numbers near the Nash Equilibrium the best strategy in the 
2PG? To answer this question we construct Π̄2PG

i
 . This variable represents the 

13 Note that in the 2PG there are two Pareto ranked Nash Equilibria in pure strategies: (1) both players 
choose zero and (2) both players choose one. The latter is because the best response to the counterpart 
picking 1 would be picking 1/2. Since in our experiment subjects can only chose integers, both 0 and 
1 are best responses. Such Pareto-ranked equilibria will always exist in laboratory experiments as it is 
impossible to implement a truly continuous choice.
14 Arguably, some learning could be due to a switch to simple heuristics (e.g. “play zero”) rather than 
real learning about the structure of the game. Using games that reverse the end of the strategy space con-
taining the equilibrium such as Ho et al. (1998) or Rick and Weber (2010), or games with interior equi-
libria as in Costa-Gomes and Crawford (2006) would allow to distinguish between these different kinds 
of learning. We thank the editor for this comment.
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Fig. 1  Scatter plot of the choices made by each subject. Darker dots refer to subjects that fully solved the 
game (0,0). See Fig. 13 in "Electronic supplementary material Appendix C" for a zoom in plot depicting 
only the choices from [0,50]
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Fig. 2  Distribution of choices in the 2PG with and without 1PG experience
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payoff that each subject i would have gotten had she played against the average 
choice of all other subjects j except herself (i.e., j ≠ i ). Formally Π̄2PG

i
 is defined 

as:

Figure 4 illustrates the relationship of Π̄2PG
i

 with both, the payoffs of the 1PG 
( Π1PG

i
 , left panel) and choice in the 2PG ( zi , right panel). Interestingly, subjects 

who fully solved the 1PG don’t have the highest Π̄2PG
i

 . This is because they play 
Nash Equilibrium, when payoffs would have been maximized by playing a num-
ber close to 9 as can be seen in the right plot. Overall, subjects who fully solved 
the game did not earn a significantly different payoff compared to subjects who 
did not fully solve the game (Mann–Whitney U test p value = 0.465).

Analyzing our secondary measure of understanding of the structure of the game 
( Π1PG

i
 ) reveals a more nuanced pattern: it appears that there is a non-monotonic rela-

tionship between understanding of the structure of the game and expected payoffs 
in the 2PG (see Fig. 15 in "Electronic supplementary material Appendix C" for a 
close-up of Fig. 4.). Regressing Π̄2PG

i
 on Π1PG

i
 and (Π1PG

i
)2 yields coefficients that 

are significantly positive and negative respectively. This gives statistical support 
to the fitted quadratic function in the left panel of Fig. 4, implying that increased 
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Fig. 3  Distribution of choices in the 2PG (vertical axis) and payoff in the 1PG (horizontal axis)
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understanding leads to increased expected payoffs, but that this relationship reverses 
for very high levels of understanding.

Result 3 The relationship between understanding of the structure of the one-player 
guessing game and payoffs in the two-player guessing game follows a non-mono-
tonic pattern.

3.4  Subjective beliefs

On the left panel of Fig. 5, we plot the number of tokens subjects have placed cor-
rectly in the belief elicitation task against the payoff in the 1PG. Subjects who 
fully solved the 1PG placed a larger number of tokens correctly (Mann–Whitney 
U test, p value = 0.001).15 This result is confirmed by the strong correlation that we 
observe between the 1PG payoff and the number tokens placed correctly (Spearman 
� = 0.583 , p value < 0.001). On the right panel of Fig. 5 we plot the distribution of 
tokens (horizontal axis) against the payoff in the 1PG (vertical axis). While subjects 
who did not fully solve the 1PG spread out their tokens across most of the strategy 
space, subjects who fully solved the 1PG expect their counterparts to play numbers 
closer to the Nash Equilibrium (Mann–Whitney U test, p value < 0.001 ). Again, the 
correlation between the distance of tokens to NE and payoffs in the 1PG confirms 
this result (Spearman � = −0.359 with p value = 0.001 ) (Table 1).

To test how the accuracy of beliefs relates to the understanding of the structure 
of the game, we plot the mean of the belief distribution of each subject against their 
payoff in the 1PG (vertical axis) on the left panel of Fig. 6.16 The vertical dotted 
line marks the mean choice across all subjects in the 2PG (13.63). The right panel 
of Fig. 6 plots the absolute distance of individual mean beliefs to mean 2PG play 
against earnings in the 1PG. Two things are clear from the graph: First, the mean 
beliefs of some subjects differ quite a bit from mean actual play in the 2PG. Second, 
subjects who fully solved the 1PG have a lower absolute difference of their mean 
beliefs and mean choice of all subjects in the 2PG (Mann–Whitney U test p value 
= 0.030 ). This result is supported using our secondary measure of understanding 
(Spearman � = −0.473 with p value < 0.001).

Result 4 Subjects with a better understanding of the structure of the one-player 
guessing game form more accurate beliefs about their counterparts’ choices in the 
two-player guessing game.

15 Again, in order to avoid noise due to session specific outliers, we compute the number of correct 
tokens by comparing individual beliefs to the distribution of the 2PG choices we collected across all ses-
sions. For more details see "Electronic supplementary material Appendix B".
16 The individual means of the belief distributions are calculated as mi =

∑20

j=1

bij

19
b̄j , where bij is the 

number of tokens that subject i put in bin j, and b̄j is the average value of the bin (so for example, for the 
first bin [0,4], b̄

1
= 2 , for the second [5,9], b̄

2
= 7 , etc.).
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Additionally, we analyze whether choices in the 2PG are best responses to the 
stated beliefs (i.e., the token distribution). To do so we compute the choice in the 
2PG that would maximize the payoff of a subject conditional on her stated beliefs 
being correct:

where z∗
i
(Bi) is the choice of subject i that maximizes her payoffs given her beliefs 

Bi = (bi1, bi2,… , bi20) , bij is the number of tokens that subject i put in bin j, and b̄j 
is the average value of the bin (so for example, for the first bin [0,4], b̄1 = 2 , for the 
second [5,9], b̄2 = 7 , etc.).17 We then create an individual variable Δz∗

i
= |zi − z∗

i
(Bi)| 

which is the absolute difference between actual choice of subject i in the 2PG minus 
the optimal choice conditional on her stated beliefs. Figure 7 illustrates the relation 
of Δz∗

i
 and the payoffs for the 1PG. It appears that subjects who fully solved the 

1PG are better at best responding to their own beliefs and therefore have a lower 
Δz∗

i
 (Mann–Whitney U test p value = 0.001 ). This is confirmed by a significantly 

(7)z∗
i
(B) = arg max

z̃i

20∑

j=1

bij

19

[
2 − 0.10

|||||
z̃i −

2

3

z̃i + b̄j

2

|||||

]
,
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Fig. 4  Relationship of payoff in the 1PG ( Π1PG

i
 ) and Π̄2PG

i
 (left panel). The line in the left panel is a fit-

ted quadratic function. The right panel shows the relationship of choice in the 2PG ( zi ) and Π̄2PG

i
 . In both 

panels the darker dots indicate subjects who fully solved the 1PG

17 We pick this instead of the lowest value of the bin, because it is a more stringent test to our “high abil-
ity” subjects.
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negative correlation between 1PG payoffs and Δz∗
i
 (Spearman � = −0.531 , p value 

< 0.001 ). These results imply that better understanding of the structure of the guess-
ing game improves the ability to best respond to own beliefs.

Table 1  Regression of Π̄2PG

i
 on 

the payoff in the 1PG ( Π1PG

i
 ) 

and its square value (Π1PG

i
)2

Standard errors in parentheses
*p < 0.05; **p < 0.01; ***p < 0.001

Π̄2PG

i

Π1PG

i
5.519 ∗∗∗

(0.904)
(Π1PG

i
)2 − 1.565 ∗∗∗

(0.353)
Constant − 3.389 ∗∗∗

(0.500)
N 80
Adj. R2 0.580
Joint test p value 0.000
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Fig. 5  Relationship between the payoff in the 1PG ( Π1PG

i
 ) and number of correct tokens deposited in the 

belief elicitation phase (left panel) and distribution of tokens across bins (right panel). Darker dots refer 
to subjects who fully solved the 1PG
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Result 5 Subjects with a better understanding of the structure of the one-player 
guessing game choose numbers closer to the best response of their beliefs in the 
two-player guessing game.

3.4.1  “What‑if” beliefs

As there could be some influence of having played the 1PG on the beliefs in the 
2PG, we asked 40 subjects to use 19 tokens to guess the choices of 19 subjects that 
had played the 2PG “a couple of weeks ago, without having previously played the 
1PG”. We will refer to these distributions as “what-if” distributions, as opposed to 
the elicited distributions in the belief elicitation part of the experiment which we 
will refer to as “original” distributions.

We plot the resulting aggregated distributions in Fig. 8. At first glance, the dif-
ferences between what-if and original distributions appear to be small.18 However, 
when comparing the means and variances of subjects’ individual distributions, we 
find that both mean and variance are significantly higher in the what-if distributions 
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Fig. 6  In the left panel we present the relationship between the payoff in the 1PG ( Π1PG

i
 ) and the mean 

value of the distributed tokens (horizontal axis). The vertical dotted line marks the mean of all choices 
in the 2PG (which is 13.63). The right panel illustrates the relationship between the payoff in the 1PG 
( Π1PG

i
 , vertical axis) and the absolute distance between mean choice of subjects in the 2PG and the mean 

value of the distributed tokens

18 The mean bin for the original distributions is 5.18, while the mean of the what-if distributions is 5.77 
(bin number 5 contained values 20–24 while bin 6 contained values 25–29.).
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(Wilcoxon matched-pairs signed-ranks test, p value = 0.039 and p value = 0.009 
for the difference in means and variance respectively). This indicates that subjects 
adjust their beliefs depending on the population they face.19

To get a better understanding of how subjects change their beliefs in the 2PG 
when faced with different populations, we plot the difference in means between the 
what-if and original distributions ( ΔBi ) against the individual payoff from the 1PG 
( Π1PG ) in Fig. 9. In this figure, any value above the horizontal dotted line indicates a 
shift of the what-if distribution, with respect to the original one, away from the NE.

As can be seen in Fig. 9, whenever subjects who fully solved the 1PG adjust their 
beliefs, they seem to do so in the right direction (i.e., away from the NE). However, 
we cannot reject the null hypothesis of no differences in the distribution means ( ΔBi ) 
between subjects who fully solved the 1PG and those who did not (Mann–Whitney 
U Test, p value = 0.683 ). Using our secondary measure of understanding, we find 
a significant correlation between payoffs in the 1PG and ΔBi (Pearson � = 0.308 , 
p value = 0.053 ), but we cannot reject the hypothesis that this relationship is not 
monotonic (Spearman � = 0.262 , p value = 0.101 ). Therefore, if we interpret a 
higher payoff in the 1PG as a better understanding of the structure of the game, then 
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 ) versus payoff in 
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)

19 See Fig.  16 of "Electronic supplementary material Appendix C" for a graphical representation of 
these results.
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it would appear that a better understanding is associated with better adjustment of 
beliefs in response to facing an inexperienced population.20

Result 6 There is weak evidence suggesting that subjects with a better understand-
ing of the structure of the one-player guessing game are better at adjusting their 
beliefs in response to facing an inexperienced population in the two-player guessing 
game.

4  Conclusion

In laboratory experiments, subjects often deviate from equilibrium play. These 
deviations can be the result of either subjects not understanding the structure of the 
underlying game or from not forming the correct beliefs about the strategies of their 
counterparts. One strand of the literature has tried to explain these deviations as 
errors in belief formation (e.g., Costa-Gomes and Crawford 2006; Ho et al. 1998). 
Yet, some recent research shows that subjects might not fully understand the experi-
mental environment.

In this paper we use an individual decision-making task that allows us to uncou-
ple subjects’ understanding of the game from their belief formation, and thus to 
establish to what extent understanding of the structure of the game contributes to 
non-equilibrium play in our experiment.

We find that a majority of subjects fail to fully understand the structure of the 
game. Moreover, subjects who understand the structure of the game play closer to 
the Nash Equilibrium, are better at best-responding to their own beliefs, and seem 
to modify their beliefs (correctly) depending on the population they are facing. This 
result is inconsistent with models of the Level-K type (e.g., Costa-Gomes and Craw-
ford 2006) which assume that agents fully understand the structure of the game and 
only play out of equilibrium due to flaws in belief formation. Our findings suggest, 
otherwise, that out of equilibrium play is not only the result of a limited ability to 
form correct beliefs, but that it also results from the inability of subjects to fully 
understand the game’s structure.

In light of these results, we believe the 1PG could be a useful “quick and easy” 
test for researchers interested in, or aiming to control for, understanding of the struc-
ture of guessing games. More generally, we believe that the reduction of strategic 
games into one-player forms could be a useful tool in the analysis of other games 

20 An important consideration in within-subject designs are experimenter demand effects. In our setup 
is not clear in what direction such effects may work. One may conjecture that, if subjects aim to appear 
rational, the interaction of experimenter demand and the extra opportunity for introspective learning may 
shift the what-if distribution closer to the Nash Equilibrium. As can be seen in Fig. 9 and see Fig. 16 of 
"Electronic supplementary material Appendix C", the shift in distributions seems to be in the opposite 
direction. This makes us somewhat optimistic that experimenter demand was either small or non-exist-
ent.
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too.21 Such transformation would allow researchers to study the degree of under-
standing that subjects have of the structure of the game, and to control for any devia-
tions from Nash equilibrium play independent of errors in belief formation.22

Finally, a potential extension of this experiment could be to vary the number of 
selves subjects play in the 1PG and compare play to standard guessing games popu-
lated by the same number of strategic players. On the one hand, increasing the num-
ber of selves and strategic players increases the complexity of the game, and may 
therefore make understanding the structure of the game and belief formation more 
difficult. On the other hand, increasing the number of selves and strategic players 
may lead subjects to better understand the unraveling mechanic of the game. We 
leave it to future extensions of this work to test whether the general findings in this 
paper would also hold under such conditions.
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