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A NEWMINIMAL NON-�-SCATTERED LINEAR ORDER

HOSSEIN LAMEI RAMANDI

Abstract. We will show it is consistent with GCH that there is a minimal non-�-scattered linear order
which does not contain any real or Aronszajn type. In particular the assumption PFA+ in the main result of
[5] is necessary, and there are other obstructions than real and Aronszajn types to the sharpness of Laver’s
theorem in [8].

§1. Introduction. Fraı̈ssé in [4] conjectured that every descending sequence of
countable order types is finite and every antichain of countable order types is finite.
That is, the class of countable linear orders is well quasi-ordered. Laver confirmed
the conjecture by proving a stronger statement.

Theorem 1.1 ([8]). The class of �-scattered linear orders is well quasi-ordered. In
particular every descending chain of �-scattered linear orders is finite.
Here the class of linear orders is considered with the quasi-order of embeddability.
Recall that a linear order L is said to be scattered if it does not contain a copy of the
rationals. L is called �-scattered if it is a countable union of scattered linear orders.
At the end of his article, Laver asks about the behavior of non-�-scattered linear
orders under embeddability. For instance, to what extent Laver’s theorem is sharp?
If the answer to this question is independent of ZFC, what are the obstructions to
the sharpness of Laver’s theorem?
Not very long after Laver proved Theorem 1.1, various theorems in the direction
of showing that Laver’s theorem is consistently not sharpwere proved. Baumgartner
in [2], showed that it is consistent that all ℵ1-dense sets of the reals are isomorphic.
In the same article, he mentions that one can add all ℵ1 sized subsets of the reals to
the class of all �-scattered linear orders in order to obtain a class L of linear orders
such that L is strictly larger than the class of �-scattered linear orders, L is closed
under taking suborders and it is consistent that L is well quasi-ordered.
Another result in the direction of “Laver’s theorem is consistently not sharp”
is due to Abraham and Shelah. In [1], they showed that PFA, the proper forcing
axiom, implies that every twononstationaryCountryman lines are either isomorphic
or reverse isomorphic. An Aronszajn line A is said to be nonstationary if there
is a continuous increasing sequence 〈A� : � ∈ �1〉 of countable subsets of A
which covers A such that for each � ∈ �1 no maximal interval of A \ A� has a
least or greatest element. Since every Countryman line contains an uncountable
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nonstationary suborder, one can even consider a larger class of linear orders than
what Baumgartner and Laver considered and still have a class of linear orders which
is consistently well quasi-ordered and which is closed under taking suborders. Later
Martinez–Ranero in [9] showed that under PFA the class of all Aronszajn lines is
well quasi-ordered.
Baumgartner seems to be the first person who considered the other side of Laver’s
question, i.e., to what extent is Laver’s theorem sharp? In [3], he introduces a class of
non-�-scattered linear orders and proves in ZFC that his examples are not minimal
with respect to being non-�-scattered. Baumgartner’s example can be described as
follows. Let L = {Cα : α ∈ S} ordered lexicographically, where S is a stationary
subset of �1 consisting of limit ordinals and Cα is a cofinal sequence in α that
has order type �. Baumgartner’s example L has the property that a suborder
{C� : � ∈ A} is �-scattered if and only if A is not stationary. This together with
pressing down lemma implies that if f : L −→ L is an embedding then the set
{� ∈ S : f(C�) �= C�} is not stationary. Therefore if S0 ⊂ S is such that S \ S0 and
S0 are stationary then L does not embed into the linear order corresponding to S0.
In this article, Baumgartber type refers to Baumgartner’s examples or the revers of
them.
The behavior of Baumgartner types inspired Ishiu and Moore to generalize the
situation above for a broader class of linear orders and prove the following theorem.

Theorem 1.2 ([5]). PFA+ implies that every minimal non-�-scattered linear order
is either a real or a Countryman type.

In other words under PFA+, the only obstructions to the sharpness of Laver’s
theorem are real and Countryman types. This breakthrough should be considered
with the following result.

Theorem 1.3 ([10]). It is consistent with CH that �1 and �∗
1 are the only linear

orders that are minimal with respect to being uncountable.

Later the methods in [5] and [10] were used to prove Laver’s theorem is sharp,
i.e., it is impossible to improve the theorem in ZFC.

Theorem 1.4 ([7]). If there is a supercompact cardinal, then there is a forcing
extension which satisfies CH in which there are no minimal non-�-scattered linear
orders.

Note that all of the results proving that Laver’s theorem is consistently not sharp
were based on the consistency of the minimality of real types or Aronszajn types.
So it is natural to ask the following question.

Question 1.5. Does any minimal non-�-scattered linear order have to be real or
Aronszajn type?

This question is also important from the point of view of the work involved in
proving Theorems 1.2, 1.3, and 1.4. An affirmative answer to this question would
assert that the assumption PFA+ would not be needed in order to obtain the results
in [5]. Consequently, the model Moore came up with in order to prove Theorem 1.3
would already satisfy “Laver’s thorem is sharp.” Therefore the work in [7] as well as
the large cardinal assumption would not be needed to prove Theorem 1.4. In this
article, we will provide a negative answer to this question. In particular real and
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Aronszajn types are not the only possible obstructions to the sharpness of Laver’s
theorem.

Theorem 1.6. It is consistent with GCH that there is a non-�-scattered linear
order L which contains no real or Aronszajn type and is minimal with respect to not
being �-scattered.

Moreover, Theorem 1.6 is related the following question which is due to
Galvin.

Question 1.7 ([3], Problem 4). Is there a linear order which is minimal with respect
to not being�-scattered andwhich has the property that all of its uncountable suborders
contain a copy of �1?

Note that a consistent negative answer is already given by Theorem 1.2. Theorem
1.6 does not answer Galvin’s question because the linear order we introduce has a
lot of copies of �∗

1 .
This article, is organized as follows. Section 2 reviews some notations, definitions
and facts regarding linear orders. Section 3 is devoted to constructing a specific
Kurepa tree that is a suitable candidate for having suborders that witness Theorem
1.6. We also show that this tree contains a lot of non-�-scattered linear orders
which become �-scattered in order to witness the main result. In Section 4 we
introduce the posets that add isomorphisms we need. Section 5 finishes the proof of
Theorem 1.6.

§2. Preliminaries. This section is devoted to some background, notation and
definitions regarding trees, linearly ordered sets, forcings and their iterations. More
discussion can be found in [5–7] and [11].
To avoid ambiguity we fix some terminology and notations. An �1-tree is a tree
which is of height �1, has countable levels and does not branch at limit heights,
i.e., if s, t are of the same limit height and have the same predecessors then they are
equal. A branch of a tree T is a chain in T which intersects all levels. An �1-tree T
is called Aronszajn if it has no branches. It is called Kurepa if it has at least �2 many
branches.
For a tree T and t ∈ T , T (t) is the collection of all elements of T that are
comparable with t. If T is a tree and A is a set of ordinals, by T � A we mean
{t ∈ T : ht(t) ∈ A}, with the order inherited from T . If S,T are trees of height
κ and C ⊂ κ is a club and f : T � C −→ S � C is one to one, level and
order preserving then f is called a club embedding from T to S. B(T ) refers to
the collection of all branches of T . If L is a linearly ordered set, L̂ denotes the
completion of L. Formally L̂ consists of all Dedekind cuts of L.
The following few definitions and facts give a characterization of �-scatteredness
which we use in the proof of Theorem 1.6. They also generalize the behavior of
Baumgartner types that causes them to be nonminimal. We will use this to show
that the generic tree that we build in Section 3 has suborders that are obstructions
to minimality.

Definition 2.1 ([5]). Assume L is a linear order and Z is a countable set. We
say Z captures x ∈ L if there is a z ∈ Z ∩ L̂ such that there is no element of Z ∩L
strictly in between x and z.
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Fact 2.2 ([5]). SupposeL is a linear order andκ is a regular large enough cardinal.
If M is a countable elementary submodel of Hκ such that L ∈ M and x ∈ L \M ,
thenM captures x ∈ L iff it there is a unique z ∈ L̂∩M such that there is no element
ofM ∩ L strictly in between x and z. In this case we sayM captures x via z.
Definition 2.3 ([5]). Assume L is a linear order. Ω(L) is the set of all countable
Z ⊂ L̂ which capture all elements of L. Γ(L) = [L̂]� \Ω(L).
Proposition 2.4 ([5]). A linear order L is �-scattered iff Γ(L) is not stationary in
[L̂]� .

Definition 2.5 ([5]). Assume L is a linear order, x ∈ L, andM is a countable
elementary submodel of H� where � > 2|L| is a large enough regular cardinal.
We say x is internal to M if there is a club E ⊂ [L]� in M such that whenever
Z ∈M ∩E, Z captures x ∈ L. We say L is amenable if for all large enough regular
cardinals �, for all countable elementary submodelsM of H� that contain L as an
element, and for all x ∈ L, x is internal toM .
The following proposition shows that amenability is what causes Baumgartner
types and consistently more linear orders to be nonminimal, see [7], discussion after
the proof of Theorem 3.1.

Proposition 2.6 ([5]). If L is an amenable non-�-scattered linear order of size ℵ1,
then it is not minimal with respect to being non-�-scattered.

During this article, we consider the invariants Ω, and Γ for trees and linear orders
with different definitions. The point is that all these definitions coincide modulo an
equivalence relation that is defined here.

Definition 2.7. Assume X,Y are two uncountable sets and A,B are two collec-
tions of countable subsets of X,Y such that

⋃
A = X and

⋃
B = Y . We say A,B

are equivalent if for all large enough regular cardinal � there is a clubE of countable
elementary submodelsM ofH� such thatM ∩X ∈ A if and only ifM ∩ Y ∈ B.
The invariant Ω together with the equivalence relation mentioned above was used
in [5]. By the work in [5], if L0 ⊂ L and L embedds into L0 then Ω(L) is equivalent
to Ω(L0). In fact the strategy in that work was to find a suborder L0 of a given
non-�-scattered linear order L such that Ω(L0) is stationary and not equivalent to
Ω(L). This seems to be the motivation of Problem 5.10 in [5]. The problem asks,
assuming that S is stationary, is the class of all linear orders L with Ω(L) ≡ S well
quasi-ordered? We will show that even with such a restriction on the Ω of non-�-
scattered linear orders it is impossible to obtain a well quasi ordered class. Here for
linear orders A and B, the linear order consisting of the disjoint union of A,B in
which every element of A is less than every element of B is denoted by A⊕ B.
Proposition 2.8. Assume S ⊂ �1 is a stationary set consisting of limit ordinals,
and {Si : i ∈ �} is a partition of S into infinitely many stationary pieces. Let
〈Cα ⊂ α : α ∈ S〉 be a collection of cofinal sequences of order type�. Let L = {Cα :
α ∈ S} and Li = {Cα : α ∈ ⋃

j≥i Sj} ordered with the lex order. Then the sequence
〈L⊕ Li : i ∈ �〉 is a descending chain of linear orders and Ω(L⊕ Li) ≡ Ω(L⊕ Lj)
for all i, j in �.
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Proof. We start with an observation. Assume LX = {xα : α ∈ X} and
LY = {yα : α ∈ Y} are two arbitrary Baumgartner types where X,Y are sta-
tionary subsets of �1 consisting of limit ordinals and xα, yα are increasing cofinal
�-sequences in α. Suppose f : LX −→ LY is an embedding. Then the set of α
with f(xα) �= yα is nonstationary. In order to see this, note that the set of all
α with f(xα) = y� , for some � ∈ α, is nonstationary by pressing down lemma.
Similarly, the set of all � with y� = f(xα), for some α ∈ � is nonstationary.
Hence {xα : f(xα) = y� (∃� > α)} is �-scattered. Therefore the set of all α with
f(xα) = y� for some � > α is nonstationary as desired.
Now we will show that the sequence 〈L ⊕ Li : i ∈ �〉 is a descending chain.
Assume for some m ∈ �, L ⊕ Lm embeds into L ⊕ Lm+1. Let A = {aα : α ∈⋃
i≥m Si} and B = {bα : α ∈ ⋃

i≥m+1 Si} be disjoint from L and be isomorphic
to Lm and Lm+1, respectively, via the maps aα 
→ Cα and bα 
→ Cα . Also let
f : L ⊕ A −→ L ⊕ B be an embedding. Then the sets {α : f(Cα) �= Cα and
f(Cα) �= bα} and {α : f(aα) �= Cα andf(aα) �= bα} are nonstationary. Therefore,
there is a nonstationaryN ⊂ �1 such that for all α ∈ Sm \N , f(aα) = Cα and for
all α ∈ Sm \N , f(Cα) = Cα . This contradicts the injectivity of f.
If M is a countable elementary submodel of H� (� > 2�1 ), M captures
all elements of L ⊕ Li if and only if M ∩ �1 /∈ S. This shows that Ω(L ⊕ Li) ≡
Ω(L⊕ Lj). �
Assume T is an �1-tree that is equipped with a lexicographic order such that for
all t ∈ T , the set {s ∈ T : ht(s) = ht(t)+1 and t <T s} is isomorphic to Q, when it
is considered with the lex order of the tree T . Let L = (T,<lex), then Ω(L) defined
here is equivalent to the Ω(T ) defined in [6].

Definition 2.9 ([6]). Assume T is an �1-tree. Ω(T ) is the set of all countable
Z ⊂ B(T ) with the property that for all t ∈ TαZ there is a b ∈ Z with t ∈ b, where
αZ = sup{b Δ b′ : b, b′ ∈ Z}.
Nowwe have two notions of capturing: for linear orders and�1-trees. The follow-
ing trivial fact asserts that in the cases that we are interested in, these two notions
coincide.
Fact 2.10. Assume T is an �1-tree equipped with a lex order such that the set of
all immediate successors of each element ofT is isomorphic toQ. SupposeB(T ) is the
collection of all cofinal branches in T ,M is a countable elementary submodel of H�
for some large enough regular �, and t ∈ T . ThenM captures t if and only if either
t ∈ M or there is a branch b ∈ M ∩ B(T ) such that t Δ b ≥ M ∩ �1. Here t Δ b is
the height of the least element of b that is not a predecessor of t.
The following fact is also easy to check.
Fact 2.11. Assume L′ ⊂ L are linear orders, x ∈ L′ and M is a countable
elementary submodel ofH� that hasL,L′ as elements, where � > 2|L̂| is regular. Then
M captures x as an element of L iffM captures x as an element of L′.
We will need the following fact in the final section. We include the proof for more
clarity.
Fact 2.12. Assume L is a linear order which has size ℵ2, all elements of L have
cofinality and coinitiality �1, and L′ ⊂ L is dense and has cardinality ℵ1. Then L′ is
not �-scattered.
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Proof. Assume L′ is �-scattered. Since all x ∈ L have cofinality and coinitiality
�1, there is a scattered suborder L0 of L′ whose closure in L has cardinality ℵ2.
For x, y ∈ L0 let x ∼ y if there are at most ℵ1 many elements of the closure of
L0 in between x and y. Note that there are exactly ℵ1 many equivalence classes
and between every two distinct equivalence classes there are ℵ1 many, equivalence
classes. Now let L1 be a suborder of L0 which intersect each equivalence class at
exactly one point.L1 is an infinite dense linear order which contradicts scatteredness
of L0. �
We will be using forcings which are not proper. The rest of this section is devoted
to the facts and lemmas which enable us to show that countable support iterations
of these forcings are robust enough to preserve cardinals, under mild assumptions
like CH. More discussion can be found in [6] and [11].
For a regular cardinal �,H� is the collection of all sets of hereditary cardinality less
than �. We assume H� is equipped with a fixed well ordering without mentioning
it. Assume P is an arbitrary set and � is a regular cardinal such that P and the
powerset of P are in H� . A countable elementary submodel N of H� is said to be
suitable for P if P ∈ N . If P is a forcing notion and 〈pn : n ∈ �〉 is a decreasing
sequence of conditions in P ∩ N , 〈pn : n ∈ �〉 is said to be (N,P)-generic if for all
dense subsets D of P that are in N , there is an n ∈ � such that pn ∈ D.
Definition 2.13. Assume X is uncountable and S ⊂ [X ]� is stationary. A poset

P is said to beS-complete, if every descending (M,P)-generic sequence, 〈pn : n ∈ �〉
has a lower bound, for allM withM ∩X ∈ S andM suitable for X,P .
Fact 2.14 ([11]). Assume X is uncountable and S ⊂ [X ]� is stationary. If P is
an S-complete forcing then it preserves �1 and adds no new countable sequences of
ordinals.

Corollary 2.15 ([11]). Assume X is uncountable and S ⊂ [X ]� is stationary.
Then S-completeness is preserved under countable support iterations.

We will use the following lemmas from [6]. Note that no forcing can add a new
cofinal branch or Aronszajn subtree to T when T has no Aronszajn subtree and
has only countably many cofinal branches.

Lemma 2.16 ([6]). Assume T is an �1-tree which has uncountably many cofinal
branches and which has no Aronszajn subtree in the ground model V. Also assume
Ω(T ) ⊂ [B(T )]� is stationary and P is an Ω(T )-complete forcing. Then T has no
Aronszajn subtree in VP .

Lemma 2.17. Assume T is an �1-tree, X is an uncountable set, S ⊂ [X ]� is
stationary, and P is an S-complete forcing. Then P does not add new cofinal branches
to T .

The following definition is a modification of the Shelah’s notion for chain con-
dition, κ-proper isomorphism condition. We will be using it for verifying certain
chain conditions.

Definition 2.18. Assume S,X are as above and κ is an regular cardinal. We say
that P satisfies the S-closedness isomorphism condition for κ, or P has the S-cic for
κ, if whenever
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• M,N are suitable models for P ,
• bothM ∩ X,N ∩ X are in S,
• h :M → N is an isomorphism such that h � (M ∩N) = id ,
• min(N \M ∩ κ) > sup(M ∩ κ), and
• 〈pn : n ∈ �〉 is an (M,P)-generic sequence,
then there is a common lower bound q ∈ P for 〈pn : n ∈ �〉 and 〈h(pn) : n ∈ �〉.
Lemma 2.19. Assume 2ℵ0 < κ, κ is a regular cardinal and that S,X are as above.
If P satisfies the S-cic for κ then it has the κ-c.c.
The proof of the following fact, which is useful in verifying the chain condition
properties of an iteration of posets, can be found in [6].

Lemma 2.20. Suppose 〈Pi , Q̇j : i ≤ 	, j < 	〉 is a countable support iteration of
S-complete forcings, where S ⊂ [X ]� is stationary and X is uncountable. Assume in
addition that

�Pi “Q̇i has the Š-cic for κ”,
for all i ∈ 	. Then P	 has the S-cic for κ.

§3. The generic homogeneous Kurepa tree.
Definition 3.1. Assume 〈M� : � ∈ �2〉 is a continuous ∈-chain of ℵ1-sized
elementary submodels of H(2�2 )+ , such that � ∪ �1 ⊂ M� and 〈M
 : 
 ≤ �〉 is
in M�+1. Fix C ⊂ �2 consisting of all sup(M� ∩ �2) for � ∈ �2. The poset H is
the collection of all conditions q = (Tq, bq,Πq) for which the following statements
hold:

(1) Tq is a countable tree of height αq +1 which is equipped with a lexicographic
order such that for all t ∈ (Tq)<αq , the set t+, consisting of all immediate
successors of t, is isomorphic to the rationals when considered with the
lexicographic order.

(2) bq is a bijective function from a countable subset of �2 to the last level of Tq.
(3) The collection, Πq = 〈�qt,s : (t, s) ∈

⋃
�∈αq ((Tq)�)

2〉 such that �qt,s is a tree
isomorphism from Tq(t) to Tq(s), which preserves the lexicographic order.

(4) The collection Πq is coherent, in the sense that if t′ > t and �
q
t,s(t′) = s ′ then

�qt′,s′ = �
q
t,s � Tq(t′).

(5) The collection Πq is symmetric in the sense that �
q
s,t = (�

q
t,s)−1.

(6) The collection Πq respects the club C in the following sense. If α ∈ C , t, s
are in Tq and have the same height, then � < α iff b−1q (�

q
t,s(bq(�))) < α.

(7) The collection Πq respects the composition operation, in the sense that if
t, s, u are in (Tq)� and � < αq then �

q
s,u ◦ �qt,s = �qt,u.

For p, q ∈ H we let q ≤ p if
(1) (Tq)≤αp = Tp and the lex order on Tp is the same as the one on Tq ,
(2) dom(bp) ⊂ dom(bq),
(3) for all � ∈ dom(bp), bp(�) ≤ bq(�),
(4) for all (t, s) ∈ ⋃

�∈αq (Tp)
2
� , �

p
t,s is equal to �

q
t,s � Tp, and

(5) for all (t, s) ∈ ⋃
�∈αq (Tp)

2
� , and �, 
 ∈ dom(bp), if �pt,s(bp(�)) = bp(
) then

�qt,s(bq(�)) = bq(
).
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Notation 3.2. Assume G is a generic filter for H. Define TG to be
⋃
q∈G Tq and

b� to be the branch {bq(�) : q ∈ G}. If t, s are in TG and have the same height �t,s
denotes

⋃
q∈G �

q
t,s .

Lemma 3.3. H is �-closed.
Proof. Let 〈pn : n ∈ �〉 be a decreasing sequence in H and sup(αpn )n∈� = α.
Let T =

⋃
n∈� Tpn . Note that (bpn (�) : n ∈ �) is a cofinal chain in T for all

� ∈ ⋃
n∈� dom(bpn ). Let Tq be a countable tree of height α + 1 such that

• (Tq)<α = T ,
• for all � ∈ ⋃

n∈� dom(bpn ), (bpn (�) : n ∈ �) has an upper bound in Tq , and
• every element of height α is an upper bound for (bpn (�) : n ∈ �), for some
� ∈ ⋃

n∈� dom(bpn ).
Now let q be the condition withαq = α andTq as above. Let bq be the function form⋃
n∈� dom(bpn ) to the last level of Tq such that for all � in the domain, bq(�) is the
upper bound for the chain (bpn (�) : n ∈ �). Similarly ⋃n∈� �pnt,s , can be extended
to the last level of Tq , for all t, s that are of the same height and are in T . It is
easy to see that the condition q described above is a lower bound for the sequence
〈pn : n ∈ �〉. �
Lemma 3.4. GCH implies thatH has the ℵ2-cc.
Proof. Let 〈q� : � ∈ �2〉 be a collection of conditions in H. Since there are ℵ1-
many possibilities for Tq and Πq , we can thin down this collection to a subset of the
same cardinality so that Tq� and Πq� do not depend on �. Now define f : C −→ �2
by f(�) = sup(dom(bq� ) ∩ �), where C is the club that all elements of H respect.
Note that for all � ∈ C with cf(�) > �, f(�) < �. So there is a stationary S ⊂ C ,
and α ∈ �2 such that f � S is the constant α. We can thin down S to a stationary
subset S′ if necessary, so that in 〈q� : � ∈ S′〉, dom(bq� ) ∩ α and bq� � α do not
depend on �. Let S′′ ⊂ S′ \ (α + 1) be of size ℵ2 and whenever � < 
 are in S′′,
sup(dom(bq� )) < 
. Note that 〈bq� : � ∈ S′′〉 forms a Δ-systemwith root r such that
the dom(r) ⊂ α. Moreover for all � ∈ S′′, min(dom(bq� ) \ r) ≥ �. Since S′′ ⊂ C ,
every two conditions in 〈q� : � ∈ S′′〉 are compatible. �
The following can routinely be verified.

Fact 3.5. The following sets are dense in H.
• Hα := {q ∈ H|αq > α}.
• For � ∈ �2, I� := {q ∈ H : � ∈ dom(bq)}.
The proof of the following lemma is the same as Lemma 3.3.

Lemma 3.6. IfM is suitable forH and 〈pn : n ∈ �〉 is a decreasing (M,H)-generic
sequence, then there is a lower bound q for 〈pn : n ∈ �〉 such that dom(bq) =M ∩�2,
and αq =M ∩�1.
Fact 3.7. • Assume G is a generic filter for H. Then the generic tree T :=⋃

q∈G Tq is a Kurepa tree such that 〈{bq(�) : q ∈ G} : � ∈ �2〉 is an enumeration
of the set of all branches.

• T has no Aronszajn subtree. Moreover, any uncountable downward closed subtree
of T contains a branch b� for some � ∈ �2.

• Assume L is the linear order consisting of all branches of T , B(T ), ordered by
the lexicographic order of the tree T . Then Ω(L) is stationary.
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Proof. The first statement follows from the second one. The second statement
follows from the third one and Proposition 2.9, or the stronger statement Theorem
4.1 of [5]. For the last statement, letM be suitable forH and p ∈M ∩H. Then the
(M,H)-generic condition from the last lemma forces thatM [Ġ ] ∩ L ∈ Ω(L). �
From now on, T is the generic Kurepa tree generated by H unless otherwise
mentioned. Also K is the linear order B(T ) ordered by the lexicographic order of
the tree T . We fix an enumeration of B(T ) = 〈b� : � ∈ �2〉.
The rest of this section is devoted to showing thatK has a lot of non-�-scattered
suborders that are amenable. These facts are not used in the proof of the results in the
next sections but show some possible obstruction for theminimality of suborders of
K . In the next sections, these non-�-scattered suborders are forced to be �-scattered
by an improper forcing. Here we say a countable sequence of conditions inH forces
a statement if every lower bound of that sequence forces that statement, equivalently
all generic filter that contain the sequence extends the model to the one in which the
statement holds.

Definition 3.8. Let T be theH-generic tree and t ∈ T . The element t is said to
be simple if whenever � > 2�1 is a regular cardinal andM is a countable elementary
submodel of H� containing T , then M captures t ∈ T . Otherwise t is said to be
complex.

Lemma 3.9. Assume GCH holds in V, M is suitable for H, 〈pn : n ∈ �〉 is an
(M,H)-generic sequence, t ∈ T0 :=

⋃
n∈� Tpn , 〈pn〉n∈� � “t is simple”, b is a branch

in T0 and ht(t) < α < 	 := M ∩ �1. Then there exists s ∈ T0 such that ht(s) = α,
t < s , s /∈ b and 〈pn〉n∈� � “s is simple”.
Proof. First note that if G is H-generic over V then H�3 [G ] = HV[G ]�3 has a
well ordering �. Let �̇ be an H-name for �. Since 〈pn〉n∈� isM -generic it decides
�̇∩ (M [Ġ ])2, in the sense that, if � and � are twoH-names that are inM then there
is an n ∈ � such that pn � “��̇�” or pn � “��̇�”.
Also note that if t is simple then so is every t′ ∈ t+.Now let � ∈M be anH-name
for a branch of theH-generic tree such that 〈pn〉n∈� forces that
• t ∈ �,
• �(ht(t) + 1) �= b(ht(t) + 1), and
• � is the �̇-minimum branch of Ṫ with the properties above.
Let s ∈ T0 such that 〈pn〉n∈� forces that s = �(α). We will show that 〈pn〉n∈� � “s
is simple”. Let G be an H-generic filter containing 〈pn〉n∈� and in V[G ], N be a
countable elementary submodel of H�3 . If N ∩ �1 ≤ ht(t), by simplicity of t, N
captures s. if ht(t) < N ∩�1 then t+ ⊂ N so �G = min�{c ∈ B(T ) : c(ht(t)+1) =
s(ht(t) + 1)}. So by elementarity �G ∈ N and N captures s. �
Proposition 3.10. Assume GCH holds in V and G is V-generic for H. Then K
has an amenable non-�-scattered suborder in V[G ].

Proof. Let L = {t ∈ T : t is minimal complex} ordered by the lexicographic
order of theH-generic treeT . To seeL is amenable, letM be a countable elementary
submodel of H� with T,L ∈ M , where � is a regular large enough cardinal and
t ∈ L. We need to show that t is internal to M . If ht(t) < M ∩ �1 then t ∈ M
and there is nothing to prove. If ht(t) > M ∩ �1, note that t � (M ∩ �1) is simple
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and M captures it. If ht(t) = M ∩ �1, let E = {N ∩ B(T ) : N is a countable
elementary submodel of H�3 with T,L ∈ N}. For every Z ∈ E ∩M there is a
countable elementary submodel N of H�3 such that N ∈ M and N ∩ B(T ) = Z.
In particular N ∩ �1 < ht(t), and since t is a minimal complex element of T , Z
captures t. So t is internal toM and L is amenable.
In order to see L is not �-scattered we will show that Γ(L) is stationary in [L̂]� .
Assume Ė is anH-name for a club in [L̂]� and q ∈ H. In V, letM be suitable forH
with q, Ė inM and 〈pn : n ∈ �〉 be anM -generic sequence such that p0 = q. Also
let 〈bn : n ∈ �〉 be an enumeration of all branches of T0 =

⋃
n∈� Tpn which are

downward closure of {bpn(�) : n ∈ �} for some � ∈M∩ �2. By the previous lemma
there is a sequence 〈tk : k ∈ �〉 of elements in T0 such that for all k ∈ �, 〈pn〉n∈�
forces that tk is simple, tk < tk+1, tk /∈ bk and sup{ht(tk) : k ∈ �} = 	 :=M ∩�1.
Now let Tp = T0 ∪ (Tp)	 where (Tp)	 is a minimal set such that
• for each � ∈M ∩ �2, {bpn(�) : n ∈ �} has a unique upper bound in (Tp)	 ,
• the sequence 〈tk : k ∈ �〉 has a unique upper bound for in (Tp)	 , and
• for each u, v ∈ T0 and t ∈ (Tp)	 with u < t, (�pnu,v)[{s ∈ T0 : s < t}] has a
unique upper bound in (Tp)	 .

It is easy to see that there is a bp which is a function from a countable subset of �2
to (Tp)	 and Πp consisting of natural extensions of the maps �

pn
u,v where u, v are in

T0, such that p = (Tp, bp,Πp) is a lower bound for p.
On the other hand p forces the following statement.

• There are minimal complex elements at the 	th level of theH-generic tree T .
• M [Ġ ] ∩ � ∈ Ė, where � is anH-name for L̂ inM .
• M [Ġ ] ∩ � does not capture all elements of L̇.
Therefore 1H � “L̇ is not �-scattered.” Note that the elements of L form an
antichain inT . LetL′ ⊂ K such that for every t ∈ L there is a unique branch b ∈ L′

with t ∈ b. Then L′ is isomorphic to L, hence K has an amenable non-�-scattered
suborder. �

§4. Adding embeddings. In the previous section we introduced a forcing which
generates a Kurepa tree T equipped with a lexicographic order which also has
some homogeneity properties. In this section we use the homogeneity of T to
prove the countable support iteration of some forcings that add embeddings among
the ℵ1-sized dense subsets of the linear order K = (B(T ), <lex) do not collapse
cardinals. We fix an enumeration 〈b� : � ∈ �2〉 of the branches of the tree T for
the rest of the article, and recall that for each t ∈ T , the set t+, consisting of
all immediate successors of t with respect to <T , is isomorphic to the rationals
when considered with <lex. Here homogeneity of T means that there is a collection
Π = 〈�t,s : t, s ∈ T ∧ ht(t) = ht(s)〉 with the following properties.
(1) for all t, s in T which have the same height, �t,s is a tree and lex order
isomorphism from T (t) to T (s).

(2) Π is symmetric, in the sense that �t,s = (�s,t)−1.
(3) Π is coherent in the sense that if t, s, t′, s ′ are in T , ht(t) = ht(s), t < t′,
s < s ′ and �t,s(t′) = s ′, then �t,s � (T (t′)) = �t′,s′ , where t′ ↑= {u ∈ T : t′
is compatible with u}.

https://doi.org/10.1017/jsl.2019.49 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.49


1586 HOSSEIN LAMEI RAMANDI

Definition 4.1. Assume T is as above and X,Y are two subsets of �2 such that
|X | = |Y | = ℵ1 and both {b� : � ∈ X}, {b� : � ∈ Y} are dense in K . FXY (= F) is
the poset consisting of all conditions p = (fp, φp) for which the following holds:

(1) fp : T � Ap −→ T � Ap is a lex order and level preserving tree isomorphism
where Ap ⊂ �1 is countable and closed with maxAp = αp.

(2) φp is a countable partial injection from �2 to �2 such that:
(a) for all � ∈ dom(φp), if � ∈ X then φp(�) ∈ Y ,
(b) for all � ∈ dom(φp) \X , bφp(�) = �t,s [b�], where t = b�(αp + 1) and s is
an immediate successor of fp(b�(αp)), and

(c) the map b� 
→ bφp(�) is lexicographic order preserving.
(3) For all t ∈ Tαp there are at most finitely many � ∈ dom(φp) with t ∈ b� .
(4) For all � ∈ dom(φp), fp(b�(αp)) = bφp(�)(αp).
We let q ≤ p if fp ⊂ fq, Aq ∩ αp = Ap and φp ⊂ φq .
It is obvious that the sets {q ∈ F : αq > �} and {q ∈ F : � ∈ dom(φq)} are
dense for all � ∈ �1 and � ∈ �2. Therefore the forcingF adds a lexicographic order
embedding from X to Y via the map Φ � X where Φ =

⋃
p∈G φp and G is the

generic filter for F . We will show that countable support iterations of these forcings
do not collapse cardinals.

Lemma 4.2. Assume P is an S-complete forcing where S = Ω(T ), and Ẋ , Ẏ are
P-names for the indexes of the elements of ℵ1-sized dense subsets of K . Then
(1) � “ ˙FXY is Š-complete”, and
(2) � “ ˙FXY has the Š-cic for �̌2”.
Proof. Let G ⊂ P be generic. We work in V[G ]. To see (1), assume M is
suitable for F andM ∩ K ∈ S. Also let 〈pn = (fn, φn) : n ∈ �〉 be a descending
(M,F)-generic sequence and 	 = M ∩ �1. Note that M ∩ �2 =

⋃
n∈� dom(φn)

and
⋃
n∈� Apn is cofinal in 	. Now let φp =

⋃
n∈� φn, and fp =

⋃
n∈� fn ∪ f,

where f(b�(	)) = bφp(�)(	) for all � ∈ M ∩ �2. This makes p a lower bound for
〈pn : n ∈ �〉, sinceM ∩K ∈ S, and {b�(	) : � ∈M ∩ �2} = T	 .
For (2), still in V[G ], letM,N, 〈pn = (fn, φn) : n ∈ �〉, and h be as in Definition
2.18 with M ∩ �1 = N ∩ �1 = 	. Since h fixes the intersection h(fn) = fn
and b(	) = [h(b)](	), for all b ∈ M ∩ B(T ). Let φp =

⋃
n∈�(φn ∪ h(φn)) and

fp =
⋃
n∈� fn ∪ f, where f(b�(	)) = bφp(�)(	) for all � ∈M ∩ �2.

Weneed to show thatp is a condition and a common lower bound for 〈pn : n ∈ �〉
and its image under h. We will prove the map b� 
→ bφp(�) preserves the order <lex.
The rest of the requirements are obvious. Let �, 
 be in (M ∪N)∩�2 and b� <lex b
.
If one of � or 
 is in M ∩ N , we are done. We are also done if b�(	) �= b
(	). So
assume that � ∈ M , 
 ∈ N , and b�(	) = b
(	). By elementarity 
 = h(�). Fix
n ∈ � such that � ∈ dom(φn). Since |X | = ℵ1 andX ∈M ∩N ,M ∩X = N ∩X . In
particular, �, 
 are not in X . Let t = b�(αpn + 1) and s be the immediate successor
of fpn(b�(αpn )) such that bφn(�) = �t,s [b�]. Then bhφn(
) = �t,s [b
]. But �t,s preserves
<lex, so bφn(�) <lex bhφn(
). Hence, φp preserves <lex. �

§5. Proof of the main theorem. In this section we will finish the proof of Theorem
1.6. The strategy is to show that if two ℵ1-sized L,L′ ⊂ K have closure of cardinal-
ity ℵ2, then they are isomorphic. Note that by Lemma 3.10,K has non-�-scattered
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suborders whose closure have cardinality ℵ1. So in order to use the strategy men-
tioned above, we need to make these suborders �-scattered by forcings for which
the analogue of Lemma 4.2 holds. We finish this section with a proof of Theorem
1.6.

Definition 5.1. Assume L ⊂ K , |L̄| ≤ ℵ1. PL(= P) is the poset consisting of
all conditions p : αp + 1 −→ [L̄]� ∩Ω(L) that are ⊂- increasing and continuous.
Lemma 5.2. Assume S = Ω(K), Q is an S-complete forcing, and L̇ is a Q-name
for a suborder of K whose closure has size ≤ℵ1. Then
(1) � “ṖL is Š-complete”, and
(2) � “ṖL has the Š-cic for �̌2”.
Proof. Let G ⊂ Q be generic. We work in V[G ]. To see (1), let M be suitable
for P andM ∩ K ∈ S. It is enough to show thatM ∩ L̄ ∈ Ω(L). First note that
M does not capture any x ∈ K \M via cuts of countable cofinality or initiality. In
order to see this, assumeM captures x ∈ K via a cut z where z = sup{yn : n ∈ �}
and 〈yn : n ∈ �〉 is an increasing sequence in K. Let α = sup{xΔyn : n ∈
�}. Obviously α ∈ M ∩ �1 and we can find x′ ∈ K ∩ M that is strictly in
between z and x. This contradicts the assumption thatM captures x via z. So if
M captures an element that is not in M , it has to capture it via a cut z ∈ K̂ of
cofinality and coinitiality ℵ1. But then z determines a branch in T which means that
z ∈ K .
Now letM capture x ∈ L \M via z ∈ K ∩M . We will show that z ∈ L̄. Note
that K \ L̄ is the union of a collection consisting of pairwise disjoint convex open
subsets of K . So if z ∈ (K \ L̄) ∩M there is a convex open set I containing z
which is in M . Since I ∈ M the endpoints of I are in M ∩ K̂ . But M captures
x via a unique cut, so z is an endpoint of I which contradicts the fact that I is
open.
For (2), note that if h : M −→ N is an isomorphism that fixesM ∩ N , then h
fixes L̄ ∩M because |L̄| = ℵ1. So any lower bound for anM -generic sequence is a
lower bound for an N -generic sequence. �
Now we are ready to prove Theorem 1.6. Assume GCH holds in V and T is the
generic Kurepa tree from the forcing H in VH. By Facts and Lemmas 2.16, 2.17,
3.7, 4.2, and 5.2, and the work in [6] there is countable support iteration of forcings
of length �2 which is Ω(T )-complete and extends VH to a model in which the
following holds.
(1) T is club isomorphic to all of its everywhere Kurepa subtrees and has no
Aronszajn subtree.

(2) If X,Y are two dense suborders of K = (B(T ), <lex) and |X | = |Y | = ℵ1
then X embeds into Y as a linear order.

(3) If X ⊂ K and |X̄ | ≤ ℵ1 then X is �-scattered.
Note that if L ⊂ K, |L| = ℵ1, |L̄| = ℵ2, then there is L0 ⊂ L such that L̄0 is ℵ2-
dense. To see this, for b, b′ ∈ L, let b ∼ b′ if there are at most ℵ1 many elements of L̄
in between b, b′. It is obvious that there are at least two distinct equivalence classes.
We consider the set of equivalence classes as a linear order. Here, the equivalence
classes are ordered by the order of their elements. Since the equivalence classes are
convex subsets of L, this order is well defied.
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The set of equivalence classes is ℵ1-dense. In order to see this, let b, b′ be two
non-equivalent elements of L such that there are only countably many equivalence
classes in between them. Note that these equivalence classes are disjoint convex sets.
Let α ∈ �1 be large enough such that for each t ∈ Tα with b <lex t <lex b′, the
set of all branches containing t intersects at most one equivalence class. For each
c ∈ L̄ ∩ (b, b′) there exists t ∈ Tα with b <lex t <lex b′ such that t ∈ c. So, there are
only ℵ1 many elements of L̄ in between b, b′, which is a contradiction. Now, let L0
be a suborder of L that intersects each equivalence class at exactly one point. L̄0 is
ℵ2-dense. In order to see this, let b ∈ L̄ \ L̄0. Fix t ∈ b such that B(Tt) intersect at
most one equivalence class. Since |L̄ ∩ B(Tt)| ≤ ℵ1 and there are at most ℵ1 many
such t ∈ T , |L̄ \ L̄0| ≤ ℵ1.
Note that for such an L0, the tree

⋃
L̄0 is an everywhere Kurepa subtree of T .

So L0 is isomorphic to an ℵ1-sized dense suborder of K . This finishes the proof
because all ℵ1-sized dense suborders of K are biembeddable.
We will finish the article, with some remarks about the iteration of the forcings we
used. The most important features of the forcings we used are Ω(T )-completeness
and ℵ2-chain conditions. These forcings preserve the stationarity of stationary sub-
sets of Ω(T ), but they do not need to preserve the stationarity of stationary subsets
of Γ(T ). In fact, someof the iterandswe considered shoot clubs into the complement
of some stationary subsets of Γ(T ). On the other hand the set Γ(T ) itself remains
stationary in the final model we obtain, by Proposition 2.4. The only way to see that
Γ(T ) is stationary is that�2 is preserved and consequentlyK is not �-scattered. The
phenomenon that only preserving �2 without any control on countable structures
which come from Γ(T ) guarantees that Γ(T ) remains stationary seems to be new
and mysterious. For instance, assume S ⊂ Γ(T ) is stationary and is not in the form
of Ω or Γ of any suborder of K . Is there any way to determine whether or not
S remains stationary in the extension under counatble support iterations of these
forcings?
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