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We consider linear and nonlinear inverse source problems of sound radiation in an unbounded

domain which models an oceanic waveguide. The method for analysing their solvability is

based on analytical properties of generalized acoustic potentials and the theory of extremal

problems.

1 Introduction

In this paper we are concerned with the theoretical study of acoustic inverse source

problems for an unbounded domain D ⊂ Rn with a reflecting boundary S which models

an oceanic waveguide. We shall refer to these problems as ‘inverse source problems of

underwater acoustics’. Four inverse source problems arising in underwater acoustics will

be considered below. We refer to the first two as inverse source problems for the acoustic

potential; they are acoustic analogues of linear and nonlinear inverse source problems

for the gravitational potential which have been extensively studied by many authors

(see Isakov [1] and Cherednichenko [2] and the references therein). The remaining two

problems are linear and nonlinear inverse sound radiation extremum problems. They are

infinite-dimensional analogues of the inverse extremal problems relevant to the active

minimization of sound fields in regular acoustic waveguides. These problems have great

practical importance (for a review of results and applications, see Elliott & Nelson [3]

and Alekseev & Martynenko [4]).

Although inverse source problems for the acoustic potential are similar to inverse source

problems for the gravitational potential, there exist two important differences between

the former and the latter. The first is that the uniqueness of the corresponding direct

boundary value problem is violated for domains of waveguide type when the sound

frequency coincides with an eigenfrequency of the waveguide. The second is that the

oceanic waveguide geometry is such that the Helmholtz equation should be considered

not in the whole space Rn (as in the gravitational case), but in an unbounded region

D with a reflecting boundary at which a homogeneous boundary condition is imposed.

This complicates the analysis of inverse source problems of underwater acoustics because

even the direct sound radiation problems for the above-mentioned domains are not well

enough understood.

Due to these difficulties, the theory of acoustic inverse source problems started to be

developed only recently. The first theoretical studies of linear problems were made for
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the case when D = R3 by Bleistein & Cohen [5], Porter & Devaney [6] and Devaney

& Sherman [7], and for D = R2 by Porter & Devaney [8]. In these papers the non-

uniqueness of inverse source problems was established by demonstrating the existence

of so-called ‘non-radiating sources’ and sufficient conditions for an unknown density

f, namely the minimum of its energy in the L2-, were established which ensure the

uniqueness of the recovered source. Later these results were generalized to inhomogeneous

or dissipative media by Devaney & Porter [9] and Tsang et al. [10] and, for the case of

unbounded domains in R3 with a reflecting boundary, by Alekseev & Chebotarev [11]

and Alekseev [12]. We also mention recent papers by Alekseev & Chebotarev [13] and

Alekseev [14], where the first results for acoustic nonlinear inverse source problems were

presented for some model cases.

The purpose of the paper is to analyse the solvability, and partially the uniqueness, of

inverse source problems of underwater acoustics outlined above. Exact formulations of

these problems are given in § 2. In § 3 we present the solvability analysis of linear inverse

source problems in the space L2(Ω). We also suggest a procedure for extracting a unique

stable solution by introducing a notion of a ‘normal solution’. In § 4 we describe some

results obtained for nonlinear inverse source problems.

2 Statement of direct and inverse source problems

2.1 Statement of a direct sound radiation problem

Let D be an unbounded domain of the space Rn (n = 3 or 2), occupied by the acoustic

medium, with a reflecting boundary S = ∂D. We want to study acoustic wave propagation

in D in the ‘frequency domain’. Let sound volume sources be distributed with a density

f. The direct problem of sound radiation consists of finding an acoustic field potential Φ

satisfying Helmholtz equation with variable coefficients, or

LΦ ≡ ρdiv

(
1

ρ
gradΦ

)
+ k2Φ = −f in D, (2.1)

as well as the following boundary condition on S:

BΦ ≡ a(x)Φ+ b(x)
∂Φ

∂n
= 0 on S, (2.2 a)

and the radiation condition as |x| → ∞,

Φ ∈ R(D), |x| → ∞; (2.2 b)

here a(x) and b(x) are given functions describing the acoustic properties of the surface S ,

∂Φ/∂n denotes the outward normal derivative and R(D) is the set of functions D → C, i.e.

complex-valued functions in D, satisfying a suitable radiation condition as |x| → ∞, to be

discussed further below: the function ρ(x) describes the density of the medium, and k(x) =

ω/c(x) is a variable wave number, where ω is the frequency and c(x) is the sound speed.

Depending on the behaviour of the functions a and b, the reflecting boundary S can be

divided into three parts: S1 is the soft boundary where a = 1, b = 0, S2 is the hard boundary

where a = 0, b = 1 and S3 is the impedance boundary where a(x)� 0, b(x)� 0; the so-

called acoustic impedance Z(x) which, by condition (2.2a), is equal to b(x)/iωρ(x)a(x),

does not equal 0 or ∞ on S3. In fact Z = 0 on S1, Z = ∞ on S2 and 0�Z�∞ on S3.
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Figure 1. Geometry of a regular waveguide.

The problem (2.1)–(2.2) describes, for example, radiation and propagation of sound in

an oceanic waveguide, and now we describe some of the relevant configurations. To this

end we present the data for problem (2.1)–(2.2), i.e. the domain D, the coefficients ρ and k

and the boundary operator B as a quadruple W = (D, ρ, k,B). Further on we shall refer

to (D, ρ, k,B) as the waveguide quadruple, or simply waveguide.

The simplest model of an infinitely deep homogeneous ocean is characterized by the

relations

D = Rn, n = 3 or 2, ρ = ρ0 = const > 0, k = k0 = const > 0. (2.3)

For this model, equation (2.1) is the Helmholtz equation with constant coefficients

LΦ ≡ ∆Φ+ k2
0Φ = −f, (2.4)

the boundary condition (2.2 a) is absent, and the set R(D) in (2.2 b) consists of functions

Φ : Rn → C satisfying the usual Sommerfeld radiation condition of the form

∂Φ(x)

∂|x| − ik0Φ(x) = o(|x| 1−n2 ), |x| → ∞. (2.5)

It is well-known (e.g. see Rellich [15]) that the radiation condition (2.5) indeed selects

a unique solution of equation (2.4), at least if the support suppf of the density f in

equation (2.1) is bounded.

Another model of an ocean of finite depth corresponds to the domain D being un-

bounded in horizontal directions and bounded in the vertical direction under the condition

that the upper surface S ′ is soft and the lower surface S ′′ is hard or of impedance-type.

In the case where coefficients ρ and k are constant or depend only upon the vertical

coordinate z, and both surfaces S ′ and S ′′ are plane-parallel (see Figure 1), this model

is called a regular or stratified waveguide. In the more common case where ρ and k are

constant or depend upon z only outside a compact set in D and the boundaries S ′ and

S ′′ are locally curvilinear, as in Figure 2, we have a locally non-regular waveguide.

For both models, the space R(D) in equation (2.2 b) consists of functions satisfying

the partial Sveshnikov radiation conditions (see Sveshnikov [16] for three dimensions and

Alekseev et al. [17] for two dimensions). In contrast to equation (2.5), they require the

additional condition that the frequency ω does not belong to the discrete set {ω1, ω2, . . .}
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Figure 2. Geometry of a locally non-regular waveguide.

of eigenfrequencies for the considered waveguide quadruple (D, ρ, k,B). Otherwise the

respective homogeneous problem (2.1)–(2.2) with f = 0 has a nontrivial eigenfunction Φ.

The study of the solvability of the direct problem (2.1)–(2.2) poses serious difficulties.

They are connected on the one hand with the unboundedness of the domain D, as well

as its boundary S , and presence of the variable coefficients in equation (2.1) and the

boundary operator B in equation (2.2 a) on the other hand. A series of papers is devoted

to the study of this problem in the general case. Among them, one can mention [18, 19, 20].

The unique solvability of the Dirichlet problem for equation (2.4) in the domain D for

which the boundary is only locally non-planar is studied in the first paper. In Zhang [19]

the unique solvability of the respective transmission problem for the Helmholtz equation

(2.1) with a locally non-planar interface is proved. Finally, the unique solvability of the

boundary-value problem (2.1)–(2.2) for a locally non-planar waveguide inR2 is established

by Alekseev & Komarov [20] in the absence of acoustic resonance, i.e. when ω is not an

eigenfrequency of the waveguide considered. The importance of non-resonance condition

is stressed by the fact that in a number of papers (see, for example, Evans et al. [21] and

the references therein), it has been shown that acoustic resonances in locally non-planar

waveguides are proved to exist. We assume below that ω is not an eigenfrequency for the

wavequide W considered.

Let Ω be a bounded open subset of D, such that suppf ⊆ Ω. Then, if it exists, the

solution Φ of the direct problem (2.1)–(2.2) can be formally represented as

Φ(x) =

∫
Ω

G(x, y)f(y)dy, (2.6)

where G(x, y) ≡ GW(x, y) is the Green’s function of the direct problem (2.1)–(2.2). The

free-space Green’s function G has the form

G(x, y) =
exp(ik|x− y|)

4π|x− y| for n = 3, G(x, y) =
i

4
H

(1)
0 (k|x− y|) for n = 2, (2.7)

where H (1)
0 is the Hankel function of the first kind and order zero.

The formula (2.6) shows that the sound field is generated by the pair (Ω, f). We call the

pair (Ω, f) a volume radiating system, and the set Ω itself a volume antenna. Thus the direct

sound radiation problem consists of finding a potential Φ : D → C from the conditions

(2.1)–(2.2), and it can be represented in a schematic form as (W;Ω, f)→ Φ.
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2.2 Inverse source problems

Inverse source problems play important role in applications for obtaining information, for

example, on the environment. These problems consist of finding an unknown radiating

system (Ω, f) or, for example, a density f for a known Ω, given some information about

the radiated acoustic field. This information may take many different forms. For example,

one can choose the set of values ΦQ(x) of the potential Φ at the points of some set Q

located away from Ω. In the model case when D is the space R3 or half-space R3
+ the

sphere S∞ or hemisphere S+∞ of the radius R∞ located far from Ω, is often taken as the

set Q. In this case prescribing the potential Φ∞ on S∞ is equivalent, in fact, to prescribing

the far-field pattern generated by the pair (Ω, f). From a theoretical point of view, the

values of the potential Φ can be given in the domain outside the sphere S∞ or in the

domain Ωe ≡ D \ Ω. Inverse source problems in which the unknown sources are found

from the measurements of the acoustic potential Φ at some set of points of the domain D

are called inverse source problems for the acoustic potential by analogy with inverse source

problems for the gravitational potential (sf. Cherednichenko [2]).

Information of another type is used in extremum inverse source problems. In these

problems, the field −Φ0 which is generated by a primary source is given, and it is

required to suppress it completely or to minimize it by the action of secondary sources. To

formulate extremum problems mathematically, we introduce a cost functional J . Usually

this depends upon the sum Φ−Φ0, where Φ is the field created by the secondary sources

sought. For example, one may take this quantity to be the total or potential sound energy

of Φ− Φ0 in some subset Q of the domain D, or the total acoustic power radiated by all

sources (primary and secondary) to the waveguide far zone. The secondary sources are

usually assumed to lie in some restricted set, for example, a ball in D. Minimizing this

functional, one can determine the desired optimal distribution of the secondary sources

and the minimal value Jopt of the functional J . This minimal value Jopt determines the

suppression level (magnitude of the suppressed power) of the primary sound field by

optimal secondary source [3, 4].

Now we formulate our inverse source problems, beginning with linear inverse source

problems. Let Φe be the external acoustic potential in the complement Ωe of Ω. For every

function f defined in Ω (or even in D) let

fΩ(x) =

{
f(x), x ∈ Ω,
0, x ^ Ω.

(2.8)

Problem Pr.1.1 (Inverse Source Problem). Given a waveguide W, a set Ω and a function

Φe in Ωe, find a function f such that the solution Φ of the direct sound radiation problem

LΦ = −fΩ in D, BΦ = 0 on S, Φ ∈ R(D) (2.9)

satisfies the condition Φ = Φe on Ωe.

Further, let Q ⊂ Ωe be a bounded open subset, Φ0 be a given function in Q which

represents a sound field generated in Q by a primary source as in Figure 3. Suppose also

that X and Y are normed spaces of densities f in Ω and potentials Φ in Q, respectively.

Let us introduce a cost functional J on X by J(g) = ‖Φg−Φ0‖2
Y , where ‖ · ‖Y is a suitable
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Figure 3. Geometry of primary and secondary sources.

norm on Y and let Φg ∈ Y be the unique solution of equation (2.9) with f replaced by

g, where g ∈ X.

Problem Pr.1.2 (Inverse Extremum Source Problem). Given a waveguide W, sets Ω,Q and

a function Φ0 in Q, find f ∈ X such that J(f) is minimized on X.

Now we formulate the nonlinear version of these problems in which we have find Ω

rather than f. Let B = {x ∈ Rn : |x| < R} ⊂ D be a ball in D and f be a given function

defined in B; let Φe be the external potential defined in Be = D \ B.

Problem Pr.2.1 (Inverse Shape Problem). Given a waveguide W, a ball B and functions f,

Φe defined in B, Be, respectively, find a bounded open subset Ω ⊂ B such that the solution

Φ of the problem (2.9) satisfies the condition Φ = Φe in Be.

Again, let f be a given function defined in the ball B and denote by T a set of all

bounded open subsets of B, and introduce a cost functional J on T by J(Ω) = ‖ΦΩ−Φ0‖2
Y ,

where ΦΩ is a unique solution of equation (2.9) for a subset Ω ∈ T .

Problem Pr.2.2 (Inverse Extremum Shape Problem). Given a waveguide W, sets B, Q and

functions f, Φ0 defined in B, Q, respectively, find a bounded open subset Ω ⊂ B such that

the solution ΦΩ of the problem (2.9) satisfies: J(Ω)→ inf on T .

Remark 2.1 Problems 1.1 and 2.1 are the acoustic analogues of the corresponding inverse

source problems for the gravitational potential (sf. [1, 2]). Also, Problem 1.2 is an

infinite-dimensional analogue of the linear problem of active sound minimization with a

discrete antenna in a regular waveguide that has been studied numerically by Alekseev

& Komarov [22, 23] and Stell & Bernhard [24, 25]. Similarly, Problem 2.2 is an infinite-

dimensional analogue of the problem studied by Alekseev & Martynenko [4], Alekseev

& Komarov [26] and Alekseev [27].
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Remark 2.2 Let us denote by Ωopt a solution of Pr.2.2, and assume that Jopt = J(Ωopt) = 0.

Physically, this case corresponds to the complete suppression of the sound field of a

primary source in the domain Q. Mathematically, this case implies the solution Ωopt of

Pr.2.2 is a solution of Pr.2.1. This of course holds under the condition that a given field

Φ0 in Q can be extended to the domain Be as the exterior potential Φe satisfying LΦe = 0.

Thus, for the proof of the existence theorem for Pr.2.1, it suffices to prove the existence of

the solution Ωopt of the extremum Problem 2.2 for which J(Ωopt) = 0. We shall make use

of this fact when studying Pr.2.1 in § 4.

3 Inverse source problems

In what follows we deal both with functions defined on the whole domain D (the potential

Φ is an example of such a function) and with functions defined on certain subsets of D,

for instance, in Ω. Sometimes, it will be necessary to extend a function f defined in Ω by

zero outside Ω as in equation (2.8). Equally, if a function Φ is defined in D, we consider

its restrictions to certain subsets of D, for example, to Ω = Ωi and Ωe. These restrictions

are denoted by SiΦ, SeΦ, respectively, where the symbols Si and Se have the meanings of

the restriction operators to the subsets Ωi, Ωe, respectively. Let Li = Si ◦ L, Le = Se ◦ L.

We use the function spaces L2(Ω),W 2,2(Ω),W 2,2
loc (D) and subspaces Ẇ 2,2(Ω) = {f ∈

W 2,2(Ω) : fΩ ∈W 2,2(D)},W 2,2
0 (Ω) = closure of D(Ω) in W 2,2(Ω). Here D(Ω) is the space

of functions in Rn infinitely differentiable with compact supports in Ω, the function fΩ
being defined by equation (2.8). It is well-known that W 2,2

0 (Ω) ⊂ Ẇ 2,2(Ω) ⊂ W 2,2(Ω) for

any open subset Ω ⊂ Rn. Furthermore, if Γ ≡ ∂Ω ∈ C0,1, i.e. Γ is Lipschitz-continuous,

then

W
2,2
0 (Ω) = Ẇ 2,2(Ω). (3.1)

We assume that the following conditions are imposed on W and Ω:

(1) S ∈ C2, k ∈ C∞(D), ρ ∈ C∞(D); ρ > ρ0 = const > 0; Imk = 0.

(2) the homogeneous direct problem (2.9) has only a trivial solution Φ = 0 (i.e. ω is

not an eigenfrequency of the waveguide W = (D, ρ, k,B) considered).

(3) a bounded open subset Ω ⊂ D is such that dist (Ω, ∂D) > 0, and Γ ∈ C0,1.

This estimate is the consequence of the regularity conditions in point (1):

‖ LΦ ‖L2(Ω′)6 C1 ‖ Φ ‖W 2,2(Ω′) ∀Φ ∈W 2,2
loc (D), (3.2)

where Ω′ is an arbitrary bounded open subset of D and the constant C1 is independent

of Ω′, Φ. To impose additional conditions on the data let us consider the linear subset

V
2,2
Ω (D) = {Ψ ∈W 2,2

loc (D) ∩R(D) : LeΨ = 0 in Ωe, BΨ = 0 on S}. (3.3)

It follows from point (2) that the operator Li : V 2,2
Ω (D) → L2(Ω) is invertible. Therefore,

there exists an inverse operator L−1
i defined on the set Li[V

2,2
Ω (D)] ⊆ L2(Ω). Every function

Ψ ∈ V 2,2
Ω (D) is just the potential generated by the pair (Ω, f) with the density f = −LiΨ .

Let A = −L−1
i , Ai = Si ◦ A, Ae = Se ◦ A. One can easily formulate sufficient conditions

for the data (S, ρ, k,B) which provide:

(4) The operator Li is surjective, so that Li[V
2,2
Ω (D)] = L2(Ω), and the operator A is
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represented on the space L2(Ω) by Green’s function G of the direct problem (2.9)

as

[Af](x) =

∫
Ω

G(x, y)f(y)dy, x ∈ D. (3.4)

Also, by elliptic regularity theory, Ai[C
∞(Ω)] ⊂ C∞(Ω) and the following estimate holds:

‖Af‖W 2,2(Ω′) 6 C2‖f‖L2(Ω) ∀f ∈ L2(Ω), (3.5)

where Ω′ is an arbitrary bounded open subset of D, and the constant C2 depends only

upon n,W, Ω ∪Ω′. When conditions (2.3) hold, the free-space Green’s function G has the

form of equation (2.7). In this case, all the above-mentioned properties of the operator

A defined by equation (3.4) are well-known from the acoustic potential theory (see, for

example, Alekseev [12]).

Consider the spaces L2(Ω),W 2,2
0 (Ω), Ẇ 2,2(Ω),D(Ω). By extending functions in these

spaces to be zero outside Ω, we obtain (closed) subspaces of the spaces L2(D),W 2,2(D), and

D(D), respectively, which are denoted by L2
Ω (D), W 2,2

0,Ω(D), Ẇ 2,2
Ω (D),DΩ(D). It follows from

their definitions, (3.1) and point (3) above that DΩ(D) ⊂ W
2,2
0,Ω(D) = Ẇ

2,2
Ω (D) ⊂ V

2,2
Ω (D).

Since the restriction of any element of such spaces to Ωe equals to zero, we shall call

them the zero external potential spaces. Now we study Li, the images of Ẇ 2,2
Ω (D) and

W
2,2
0,Ω(D) in the space L2(Ω). To this end, we introduce in L2(Ω) two closed subspaces:

Ṅ2(Ω) = Ker Ae in L2(Ω) and N2
0(Ω) = closure of D(Ω) ∩ Ṅ2(Ω) in L2(Ω).

Lemma 3.1 Assume that conditions (1)–(4) hold. Then

Li[DΩ(D)] ≡ L[D(Ω)] = D(Ω) ∩ Ṅ2(Ω), A[D(Ω) ∩ Ṅ2(Ω)] = DΩ(D). (3.6)

Proof Let g ∈ Li[DΩ(D)], i.e. g = LiΦΩ = LΦ, where Φ ∈ D(Ω). Since the supports of

functions are not increased by differentiating, by (1), we have g ∈ D(Ω). Besides, g ∈
Ṅ2(Ω) as Ag = −ΦΩ by A = −L−1

i . Therefore, Aeg = 0. This implies g ∈ D(Ω) ∩ Ṅ2(Ω).

Assume next that g ∈ D(Ω) ∩ Ṅ2(Ω) and Φ = −Ag. Since g ∈ C∞(Ω) we have, by

elliptic regularity theory, that SiΦ ≡ Aig ∈ C∞(Ω). Also, there exists a strictly interior

subset Ω′ of Ω such that g = 0 outside of Ω′. The latter implies that the function Φ is a

potential of Ω′ and therefore, by (4), LΦ = 0 in Ω′e = D \ Ω′. Finally, Φ = 0 outside of

Ω as g ∈ Ṅ2(Ω). It follows from the unique extension principle (sf. Colton & Kress [28])

that Φ = 0 outside of Ω′. Therefore, Φ ∈ DΩ(D), and Lemma follows from A = −L−1
i .

q

Theorem 3.1 Assume that the conditions of Lemma 3.1 hold. Then

Li[Ẇ
2,2
Ω (D)] ≡ L[Ẇ 2,2(Ω)] = Ṅ2(Ω), Li[W

2,2
0,Ω(D)] ≡ L[W 2,2

0 (Ω)] =N2
0(Ω). (3.7)

Proof We restrict ourselves to the proof of the second relation in equation (3.7) since the

correctness of the former follows from the definitions of Ẇ 2,2
Ω and Ṅ2(Ω).

Let g ∈ Li[W 2,2
0,Ω(D)], i.e. g = LiΦΩ ≡ LΦ, where Φ ∈W 2,2

0 (Ω). By definition of W 2,2
0 (Ω),

there exists a sequence {Φm} ≡ {Φm}∞m=1 such that

Φm ∈ D(Ω), Φm → Φ in W 2,2(Ω) as m→∞. (3.8)
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Let gm = LΦm. By equations (3.6) and (3.2), we have

gm ∈ D(Ω) ∩ Ṅ2(Ω), gm → g in L2(Ω) as m→∞. (3.9)

This implies g ∈ N2
0(Ω). Now, let g ∈ N2

0(Ω). Then there exists a sequence {gm} satisfying

equation (3.9). Let Ψ = −Ag, Ψm = −Agm. By equations (3.6), (3.5), Ψm ∈ DΩ(D),

SeΨ = 0 and the functions Φm = SiΨm, Φ = SiΨ satisfy equation (3.8). This means that

Φ ∈W 2,2
0 (Ω), Ψ = ΦΩ ∈W 2,2

0,Ω(D) and, therefore, g = LiΨ ∈ Li[W 2,2
0,Ω(D)]. q

It follows from Theorem 3.1 that Ṅ2(Ω) and N2
0(Ω) are the density spaces generating

a sound field with a zero external potential and, by equation (3.1), N2
0(Ω) = Ṅ2(Ω).

Remark 3.1 Using the terminology of Bleistein & Cohen [5], the pair (Ω, f) with Aef = 0

is called a non-radiating system. It follows from Theorem 3.1 that the pair (Ω, f) is

nonradiating iff f ∈ Ṅ2(Ω) ≡ L[Ẇ 2,2(Ω)] provided that f ∈ L2(Ω) and points (1)–(4)

hold.

To introduce one more non-radiating criterion, denote by K2(Ω) the closed subspace

in L2(Ω) which consists of functions f satisfying Lf = 0 in Ω in the distributional sense:〈
Lf,

1

ρ
ϕ

〉
D′(Ω)×D(Ω)

≡
∫
Ω

1

ρ
fLϕdx = 0 ∀ϕ ∈ D(Ω), (3.10)

where ‘-’ denotes the complex conjugate. We call an annihilator of a set M⊂ L2(Ω) with

power 1/ρ the closed subspace M⊥ρ of L2(Ω) every element f of which satisfies∫
Ω

1

ρ
f(x)g(x)dx = 0 ∀g ∈ M. (3.11)

Theorem 3.2 Assume that conditions of Lemma 3.1 hold. Then [N2
0(Ω)]⊥ρ =K2(Ω).

Proof Let f ∈ K2(Ω). We show that f satisfies equation (3.11) for any g ∈ N2
0(Ω). By

definition ofN2
0(Ω), there exists a sequence {gm} satisfying equation (3.9). Let ϕm = −Aigm.

Then, by equation (3.6), ϕm ∈ D(Ω) and Lϕm = gm. Since f ∈ K2(Ω) we have∫
Ω

1

ρ
f(x)gm(x)dx =

∫
Ω

1

ρ
f(x)Lϕm(x)dx = 0, m = 1, 2, . . . . (3.12)

Passing on here to the limit as m→∞ we obtain equation (3.11) for any g ∈ N2
0(Ω).

Now, let f ∈ [N2
0(Ω)]⊥ρ , i.e. f ∈ L2(Ω) and f satisfies equation (3.11) for M =N2

0(Ω).

As for any ϕ ∈ D(Ω), by Lemma 3.1, Lϕ ∈ D(Ω) ∩ Ṅ2(Ω) ⊂N2
0(Ω) then it follows from

(3.11) that f satisfies equation (3.10). This implies that f ∈ K2(Ω). q

Corollary 3.1 Under conditions (1)–(4), the pair (Ω, f) is non-radiating iff f ∈ [K2(Ω)]⊥ρ .

Also, the following orthogonal decomposition of L2(Ω) with power 1/ρ exists

L2(Ω) =K2(Ω)⊕N2
0(Ω) ≡K2(Ω)⊕ Ṅ2(Ω). (3.13)

Remark 3.2 Formula (3.13) is an analogue for an acoustic case of the well-known relation
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in gravitational potential theory concerning the decomposition of the space L2(Ω) into

orthogonal complements: L2(Ω) = H ⊕ H⊥. Here H consists of functions in L2(Ω)

harmonic in Ω. In our case the space H consists of functions Φ ∈ L2(Ω) satisfying LΦ = 0

in the distributional sense, and the spaces H =K2(Ω) and H⊥ =N2
0(Ω) are orthogonal

with power 1/ρ, where ρ is a variable density of a medium. Also, instead of the analytic

extension principle used in inverse source problems for the gravitational potential, we

make here use of the unique extension principle which is valid for elliptic equations with

smooth coefficients. Using equation (3.13) and other results obtained, we construct below

the theory of solvability of Problem 1.1, which is analogous to the corresponding problem

for the gravitational potential.

Let Φe be a given function in the set Ωe. It follows from § 2 and definition of Ae that

solving Problem 1.1 is reduced to finding a density f ∈ L2(Ω) from the equation

[Aef](x) = Φe(x), x ∈ Ωe. (3.14)

Denote by V
2,2
Ω (Ωe) a linear subset of W 2,2

loc (Ωe) which consists of restrictions to Ωe of

functions from V
2,2
Ω (D). It follows from the definition of V 2,2

Ω (D) that each function

Φe ∈ V 2,2
Ω (Ωe) has the physical meaning of the external potential of the set Ω. So we have

Lemma 3.2 Under conditions (1)–(4) a solution f ∈ L2(Ω) of equation (3.14) exists if and

only if Φe ∈ V
2,2
Ω (Ωe), i.e. Φe admits an extension into D as a function Φ from V

2,2
Ω (D).

Besides, a particular solution f of equation (3.14) is defined by f = −LiΦ.

Following Stein [29], one can check that it is possible to extend Φe as a function Φ

from V
2,2
Ω (D) due to condition (3), when the following conditions hold:

(5) Φe ∈W 2,2
loc (Ωe) ∩R(Ωe), LΦe = 0 in Ωe, BΦe = 0 on S

where the condition BΦe = 0 is absent when D = Rn. As a result we obtain

Theorem 3.3 Under conditions (1)–(5), there exists an infinite set of solutions of equa-

tion (3.14) from the space L2(Ω). These solutions and only these can be represented as

f = −LiΦ− f0 = −L(Φi + Φ0), (3.15)

where f0 (or Φ0) is an arbitrary function of the space Ṅ2(Ω) (or Ẇ 2,2(Ω)), Φi = SiΦ,

where Φ ∈ V 2,2
Ω (D) is an extension of a given function Φe into D.

Theorem 3.3, along with equation (3.15), provides a simple way for constructing the set

of all solutions to the equation (3.14) (or Pr.1.1). The cardinality of this set is determined

by the cardinality of the class Ṅ2(Ω) = L[Ẇ 2,2(Ω)] of densities generating the sound field

with a zero external potential. This is a consequence of the statement of Pr.1.1. In fact,

the crucial property for the sound radiation problems is that the sources are located in

a limited part of the waveguide while the radiated field of interest is located outside the

domain occupied by sources and, as a rule, at large distances from the sources. Therefore,

if only a far field is of interest, then the potentials of the class Ẇ 2,2
Ω (D) do not differ

from each other as they describe a ‘zero’ radiated field while all the densities f = −LiΨ ,

where Ψ belongs to Ẇ
2,2
Ω (D), are different and form the set Ṅ2(Ω). Thus, the same
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zero radiated field corresponds to different densities of the class Ṅ2(Ω) and this fact

alone implies non-uniqueness of the solution of Pr.1.1. However, if we were to consider a

radiated field in the whole domain D including the set Ω where sources are located, then,

by condition (2), every radiated field Ψ ∈ Ẇ 2,2
Ω (D) would correspond to a single density

f = −LiΨ ∈ Ṅ2(Ω).

Denote by S2(Ω,Φe) the set all solutions of Pr.1.1 which correspond to given Φe. This

set is empty if Φe ^ V
2,2
Ω (Ωe) or is a translation of the closed subspace Ṅ2(Ω) of the space

L2(Ω) by an element LiΦ (see Theorem 3.3). In the latter case S2(Ω,Φe) is a convex closed

subset of L2(Ω) and therefore it contains a unique element f+ with a minimum norm

‖f+/
√
ρ‖L2(Ω). This element f+ is called a normal solution of equation (3.14) (or Pr.1.1).

By virtue of properties of normal solutions of linear equations in Hilbert spaces, we have

that f+ ∈ [Ṅ2(Ω)]⊥ρ . By equation (3.13), it follows from this fact that f+ ∈ K2(Ω), i.e. f+

satisfies the homogeneous Helmholtz equation Lf+ = 0 in Ω. Conversely, if f ∈ S2(Ω,Φe)

is an element of K2(Ω), then by equation (3.13), f is a normal solution of Pr.1.1. Let

Φe ∈ V 2,2
Ω (Ωe)∩W 2,2(Ωe), and let Φi = SiΦ, where Φ is an extension of Φe into D. Then, by

continuity of the extension operator [29], ‖ Φi ‖W 2,2(Ω)6 C3 ‖ Φe ‖W 2,2(Ωe), where a constant

C3 is independent of Φe. Since LΦi is a particular solution of Pr.1.1, then we obtain, by

definition of the normal solution and equation (3.2), the estimate

‖ 1√
ρ
f+‖L2(Ω) 6‖ 1√

ρ
LΦi ‖L2(Ω)6

C1√
ρ0
‖ Φi ‖W 2,2(Ω)6 C‖Φe‖W 2,2(Ωe), C =

C1C3√
ρ0
, (3.16)

which means the stability of f+ in L2(Ω)-norm. Now we formulate these results as

Theorem 3.4 Assume that conditions (1)–(4) hold. Then:

(1) the function f ∈ S2(Ω,Φe) belongs to the space K2(Ω), i.e. f satisfies the homoge-

neous Helmholtz equation Lf = 0 if and only if f is the normal solution of Pr.1.1;

(2) the normal solution f+ ∈ L2(Ω) of Pr.1.1 for any Φe ∈ V 2,2
Ω (Ωe) exists, is unique and

is stable with respect to small perturbations of Φe in the W 2,2(Ωe)-norm.

Now we turn to Pr.1.2. Consider the case where the domain Q is Ωe ∩ BR . Here BR is

a ball of a radius R such that Ω ⊂ BR . Let X = L2(Ω), Y = W 2,2(Q), and Φ0 ∈ Y be a

given function defined in Q, J(g) = ‖Aeg − Φ0‖2
Y . It follows from the statement of Pr.1.2

that solving Pr.1.2 for this case is equivalent to finding a minimizer of J .

Theorem 3.5 Under conditions (1)–(4), for any Φ0 ∈ Y there exists at least one solution

f ∈ X of Pr.1.2. The normal solution f+ ∈ X of Pr.1.2 exists and is unique.

Proof Let J∗ = infg∈X J(g) ≡ infg∈X ‖Aeg−Φ0‖2
Y . Denote by {gm} ≡ {gm}∞m=1 a minimizing

sequence for J . Let Φm = Aegm. Consider for any m the set S2(Ω,Φm) of all solutions of

Pr.1.1 corresponding to Φm. It is clear that S2(Ω,Φm)� ∅ and for any fm ∈ S2(Ω,Φm)

(in particular, for the normal solution f+
m ) we have ‖Aef+

m − Φ0‖Y = ‖Aegm − Φ0‖Y =

‖Φm −Φ0‖Y → J∗ as m→ 0. Hence it follows that {f+
m } as well as {gm} are minimizing

sequences for J and, besides, ‖Φm‖Y 6 C4 = const. Proceeding as in the proof of the
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Figure 4. Geometry of an unknown domain in inverse shape problem.

estimate (3.16), we deduce that ‖f+
m/
√
ρ‖X 6 CR‖Φm‖Y 6 CRC4, where CR is a constant.

Thus, there exists a subsequence of {f+
m }, which is denoted by {f+

m }, and a function f ∈ X
such that f+

m → f weakly in X as m→∞. By (3.5) for Ω′ = Q, we have the continuity of Ae
under conditions (i)-(iv). Then Aefm−Φ0 → Aef−Φ0 weakly in Y as m→∞. Finally, by

the weak lower-semicontinuity of the norm we have ‖Aef−Φ0‖Y 6 lim inf ‖Aefm−Φ0‖Y =

J∗. This implies that f is a solution of Pr.1.2. The existence and uniqueness of the normal

solution f+ ∈ X of Pr.1.2 are obvious. q

4 Inverse shape problems

For simplicity, we consider here the case of two dimensions. Three-dimensional case can

be studied in a similar way. Let Σ = [0, 2π). Denote by Hs(Σ) the function space which

consists of the restrictions to Σ of the Sobolev space Hs
2π(R) with a norm ‖·‖s periodic with

a period 2π functions (these restrictions are continuous for s > 1/2). Introduce in Hs(Σ)

a convex closed subset K = Ks
M = {v ∈ Hs : v > 0, ‖v‖s 6 M}, where M is a constant

such that ‖v‖C(Σ) 6 Cs‖v‖s 6 CsM < R, and, by the Sobolev imbedding theorem, the

constant Cs is independent of v. Every function u ∈ K defines a continuous (and invertible

at u > 0 on Σ) map yu : Σ → R2. It acts as Σ 3 ϕ → yu(ϕ) = (u(ϕ), ϕ)p ≡ yuϕ, where

(r, ϕ)p are polar coordinates of a point y ∈ R2. Let Γu =
{

y = yuϕ ≡ (u(ϕ), ϕ)p, ϕ ∈ Σ} be

the yu-image of Σ and let Ωu = intΓu (see Figure 4).

We assume that the following conditions hold:

Q is a bounded open subset of D such that B ∩ Q = ∅, f ∈ C(B), Φ0 ∈ L2(Q). (4a)

The Green’s function G(x, y) ≡ GW(x, y) of the direct problem (2.1)–(2.2) exists, is unique,

symmetric and is continuous on B × Q. (4b)

Denote by TK a set of bounded open subsets of B which boundaries are described by

functions v ∈ K . In what follows we shall study the both nonlinear problems: Pr.2.1 and

Pr.2.2 under additional condition that an unknown subset Ω belongs to the set TK . It

follows from (4b) that Pr.2.1 on the set TK is reduced to finding a solution u ∈ TK of the
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nonlinear first-kind integral equation

[Fu](x) ≡
∫ 2π

0

∫ u(ϕ)

0

G(x, y)f(y)rdrdϕ = Φe(x), x ∈ Be (4.1)

and Pr.2.2 on TK is reduced to finding a quasisolution u ∈ K , i.e. a least-square solution,

on the set K of

[Fu](x) = Φ0(x), x ∈ Q. (4.2)

The last problem is equivalent to finding a function u such that

u ∈ K and J(u) 6 J(v) ≡
∫
Q

|Fv − Φ0|2dx ∀v ∈ K. (4.3)

Note that the set Ωu associated with the solution u of (4.1) or (4.3) is reconstructed from

u by Ωu = {y = (r, ϕ)p : 0 6 r 6 u(ϕ), ϕ ∈ Σ}.
Denote by (, ) the inner product in L2(Q) and by <,> the duality pairing on H−s(Σ)×

Hs(Σ), where H−s(Σ) = (Hs(Σ))′ for s > 0. Let

V [u, h](x) =

∫
Σ

G(x, yuϕ)f(yuϕ)u(ϕ)h(ϕ)dϕ, U[Q, g](y) =

∫
Q

G(x, y)g(x)dx. (4.4)

Lemma 4.1 Under conditions (4a) and (4b) the operator F: Hs(Σ)→ L2(Q) in equation (4.1)

and the functional J: Hs(Σ)→ R in equation (4.3) are continuous and Frechét-differentiable

on the set K in the relative topology of H0(Σ). Besides, for every u ∈ K, h ∈ Hs(Σ)

F ′(u)h = V [u, h], 〈J ′(u), h〉 = 2Re

∫
Σ

U[Q, Fu− Φ0](yuϕ)f(yuϕ)u(ϕ)h(ϕ)dϕ. (4.5)

Proof The statement of Lemma 4.1 is a direct consequence of equations (4.1), (4.3) and

conditions (4a), (4b) (see also Alekseev & Chebotarev [13] and Alekseev [14] in model

cases). q

Theorem 4.1 Under conditions (4a), (4b) there exists at least one solution u of problem (4.3).

Proof To prove this result it suffices to consider a minimizing sequence {vm} ∈ K which

is bounded in Hs(Σ) and to take into account the lower-semicontinuty of J . q

Let u ∈ K be an arbitrary solution of equation (4.3), Γu be the curve associated

with u and Ωu =intΓu be a corresponding solution of Pr.2.2. Consider the function

g ≡ Fu− Φ0 ∈ L2(Q) which is the residual of equation (4.2) for the solution u. Let

Ψ (y) ≡ Ψ1(y) + iΨ2(y) = U[Q, g](y) ≡
∫
Q

G(x, y)g(x)dx. (4.6)

It follows from properties of G that Ψ is the potential generated in D by the pair (Q, g)

and

LΨ = −g in Q, LΨ = 0 in Qe = D \Q, BΨ = 0 on ∂D and Ψ ∈W 2,2
loc (D) ∩R(D). (4.7)

Since J is a differentiable functional we have 〈J ′(u), v − u〉 > 0 ∀v ∈ K . Furthermore, if
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the solution u of equation (4.3) is an interior point of K , i.e. u satisfies the conditions

u(ϕ) > 0 on Σ, ‖u‖s < M (4.8)

then, by equation (4.5), we have

Re[Ψf](y) ≡ Re{U[Q, Fu− Φ0](y)f(y)} = 0 on Γu. (4.9)

Based on equation (4.9) we formulate and prove a conditional existence theorem of a

solution of Pr.2.1. For this purpose, we need Theorem 3.4 on properties of the normal

solution of Pr.1.1 from the class K2(Ω) which was proved in § 3 under conditions (1)–(4)

imposed on the pair (W, Ω). Also we need the additional condition onW concerning some

properties of solutions of the direct problem in D. Let us denote by Q∞e the unbounded

connected component of the compliment Qe = D \ Q of the bounded open subset Q of

D. (We note that Q∞e = Qe in the particular case when Q is a simply-connected domain).

The condition is:

the waveguide W is such that every function Ψ ∈W 2,2
loc (D) satisfying

LΨ = 0 in Q∞e , BΨ = 0 on ∂D, Ψ ∈ R(D) and ReΨ (or ImΨ ) = 0 in Q∞e

vanishes identically in Q∞e . (4c)

It has been shown by Alekseev et al. [17] that condition (4c) (which means, in fact,

non-existence of a pure imaginary or pure real external potential Ψe in the unbounded

subdomain Q∞e of D) is true for k2 = const > 0, ρ = const > 0 in the case where D is

an unbounded domain with a smooth compact boundary or a half-plane y > 0 or the

plane D = R2. Similar results for R3 follow from Rellich [15] (see also Alekseev [14]).

There are also examples of a waveguide type domain D for which there exists a pure

imaginary (or real) external potential Ψe (see Alekseev [14] and Alekseev et al. [17]) and

therefore condition (4c) is not valid. So one can assume that the breakdown of (4c) is a

manifestation of the effects of waveguide properties of the domain D.

By analogy with § 3, denote by K2(Q) the closed subspace in L2(Q) which consists of

functions g satisfying the equation Lg = 0 in the distribution sense.

Theorem 4.2 In addition to (1), (2), (3) for Q, (4) and (4a)–(4c), let the following conditions

hold:

f = Ref > 0 on B; (4d)

Qe is a connected subdomain of D and ∂Q ∈ C0,1, Φ0 ∈ K2(Q); (4e)

there exist a solution u ∈ Hs(Σ), s > 1/2, of (4.3) satisfying relations (4.8) such

that zero is not a Dirichlet eigenvalue of the operator L in the set Ωu. (4f)

Then the function u is a solution of the equation (4.2).

Proof Let u ∈ K be the solution of problem (4.3) satisfying all the conditions in condition

(4f). It is obvious from definition of K that L(Fu) = 0 in Be so that, by condition

(4a), we have Fu |Q ∈ K2(Q). Hence it follows from condition (4e) and the condition

Imk2 = 0 in (3) that g ≡ Fu− Φ0 ∈ K2(Q). Consider the function Ψ = U[Q, g] in

equation (4.6). As Ωu ⊂ Qe and Imk2 = 0, we deduce from equations (4.7) and (4.9) that
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the restriction Ψ1 |Ωu of the real part Ψ1 of Ψ to the domain Ωu is a solution of the

homogeneous Dirichlet problem LΨ1 = 0 in Ωu, Ψ1 = 0 on Γu. Using the condition (4f)

we conclude that Ψ1 = 0 on Ωu. Since LΨ1 = 0 in Qe and, by (4e), the set Qe ≡ Q∞e
is connected, it follows from the unique extension principle that Ψ1(y) ≡ 0 in Qe.

Together with equations (4.7), this means that the function Ψ satisfies all the conditions

in (4c). Taking into consideration condition (4c), we deduce that Ψ = 0 in Qe. Thus the

function Ψ is a zero external potential of the field generated by the pair (Q, g) with

the density g ∈ K2(Q). It follows from Theorem 3.4 that g = 0 in Q. Then we have

Fu− Φ0 = 0 in Q⇒ Fu = Φ0 in Q. q

We end this section with the following consequence to Theorem 4.2, which supplements

Remark 2.2.

Corollary 4.1 Under conditions of Theorem 4.2, the given function Φ0 in equation (4.2)

permits the (unique) extension Φe to the set Be which satisfies the conditions

LΦe = 0 in Be, BΦe = 0 on D, Φe ∈ R(D).

Moreover the function u mentioned in Theorem 4.2 is simultaneously a solution of equa-

tion (4.1), and the set Ωu corresponding to u is a solution of the inverse shape Problem 2.1

with the external potential Φe.

5 Conclusions

In this paper we have studied inverse source and shape problems of sound radiation in an

unbounded domain D with a reflecting boundary. We have given the exact formulation

of these inverse problems and developed, under some assumptions on the data (i.e. the

domain D and variable coefficients of differential and boundary operators), the theory of

the solvability of the inverse source problem for the acoustic potential (Problem 1.1). We

have also deduced the formula (3.13) of the orthogonal decomposition with power 1/ρ of

the space L2(Ω) into two orthogonal subspaces, the first one of which,K2(Ω), consists of

functions Φ satisfying the homogeneous Helmholtz equation LΦ = 0 in Ω. Based on the

decomposition (3.13), we have proved the existence, uniqueness and stability of the normal

solution of Problem 1.1, i.e. a solution (density) f with the minimal L2(Ω) norm f/
√
ρ.

These results can be considered as the generalization to acoustics of the well-known theory

of the solvability for the gravitational inverse source problem (cf. Cherednichenko [2]).

Also we have proved the existence theorems for extremum Problems 1.2 and 2.2

which have no gravitational analogues but are infinite-dimensional analogues of the

inverse extremal problems of the active minimization of sound fields in regular acoustic

waveguides. Finally we have established sufficient conditions for the data and a solution

of the nonlinear extremum Problem 2.2 under which it is a solution of the corresponding

nonlinear inverse shape Problem 2.1. Using this result, we intend to develop further the

theory of the local solvability for inverse shape problems in acoustics.
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