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The objective of the present work was to identify the compositional parameters of raw milk that
affected ethanol stability at natural pH when natural milk conditions were not modified. Heat
stability, measured as coagulation time (CT), was included in the analysis to verify relation to
alcohol test. Statistical models were proposed for alcohol and heat (CT) stabilities. Milk samples
of good hygienic quality from dairy farms were classified in two groups according to their
alcohol stability. Unstable samples to ethanol (72%, v/v) presented lower values of pH, somatic
cells count, casein and non-fat-solids relative to ethanol stable samples (ethanol at 78%, v/v or
more) ; whereas freezing point, chloride, sodium and potassium concentrations were higher in
the unstable group. Logistic regression and multiple regression were applied to modelling alcohol
and heat stability behaviour respectively. Chloride, potassium, ionic calcium and somatic cell
count were included in the alcohol regression model, whereas calcium, phosphorous, urea, pH
and ionic calcium were part of CT model. Ionic calcium was the only measured variable that
contributed to both models; however coagulation time was noted to be more sensitive to ionic
calcium than alcohol. The relation between ionic strength and casein was found to contribute
to the alcohol model but not to the CT model. However, the interaction calcium plus
magnesium plus phosphorous and casein contributed only to CT model.
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Milk ethanol stability (MES) was defined as the minimum
concentration of added aqueous ethanol that gives rise to
milk coagulation (Horne & Parker, 1979) and it had been
a subject of considerable interest for two main reasons.
Firstly, to achieve a better understanding of the factors that
controlled micellar stability. Horne (1992) thoroughly dis-
cussed newly proposed theories connected to MES and
clearly showed that mechanisms involved in it were com-
plex and not totally elucidated. Secondly was the necessity
of transferring this knowledge to formulate new dairy prod-
ucts or to extend the shelf life of the existing products such
as cream liqueurs or alcoholic beverages (Donnelly &
Horne, 1986; Horne & Muir, 1990; Horne, 1992).

There is also a third important reason to explore this
subject. MES was used as a simple, cheap, efficient and
quick pass-or-fail test to detect milk sourness in many
countries. This method is still in use in Argentina, leading
to rejection of the batch of milk if clots were formed when
70% (v/v) ethanol solution was added to an equal milk

volume. Also the test was applied to predict milk heat
stability, because of the necessity to have an easy essay to
evaluate this property.

Bacteriological milk quality has improved steadily in
Argentinean dairy farms during the last ten years (Taverna
& Calvinho, 1999; Taverna et al. 1999) so acidity devel-
opment cases were rare. However, positive alcohol test
results were still occurring causing confusions and good
quality milk was rejected. Consequently, lack of reliability
of MES at certain seasons was recognised. In effect, during
autumn and spring season stability defects were reported in
some dairy farms with good milk bacteriological quality
(Negri, 2002) with no known reason. Similar behaviour
was reported by Donnelly & Horne (1986), who observed
that a decrease in MES occurred frequently during winter in
Ireland. They suggested high salt balance ratio during late
and early lactation as an important contribution to this
behaviour.

During the last 20 years important progress had been
made in identifying principal factors that affected MES
which were considered in the selection of the variables
measured in this work. Horne & Parker (1981a) found that*For correspondence; e-mail : mchavez@rafaela.inta.gov.ar
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serum phase components govern the sigmoidal shape and
position of the ethanol stability/pH profile. Moreover, these
authors (1981a, b) confirmed that among serum phase
components the ionic calcium concentration played an im-
portant role, a fact previously observed by Davies & White
(1958). Salts (calcium, magnesium, phosphorus and citrate)
were reported to influence ethanol/pH profile parameters
(Donnelly & Horne, 1986; Horne, 1987). Finally, other
important variables to ethanol stability previously found
were the ionic strength (Horne, 1987) and the pH (Horne
& Parker, 1979; Horne, 1992).

All this valuable information was obtained by changing
the original micelle equilibrium in some way, e.g. pH or
dialysis of milk. Our objective, however, was to determine
the composition parameters that affected milk ethanol
stability without any external modification to bulk milk
samples. MES seasonal variation was used to select two
milk groups for the study: stable and unstable to alcohol.
Logistic regression was applied to propose a statistical
model between MES and the explanatory variables. Logis-
tic regression was a class of lineal model derived from a
logarithmic transformation and described the relation be-
tween a dichotomous response, provided by the alcohol
test, and the set of explanatory or independent variables.
Coagulation time (CT) was also measured for every sample
and a multiple regression model was applied to determine
heat stability (CT) relationship to measured explanatory
variables. Finally, variables capable of affecting both heat
and ethanol stability were explored.

Materials and Methods

Milk samples

Eighty five bulk milk samples were collected and analysed
during autumn and spring, when alcohol problems ap-
peared, during 2001. Milk pools were produced pro-
portionally from morning and evening milking of dairy
farms from the Central Dairy Area of Argentina. Random
milk pool samples from different farms were considered in
the study if they had acceptable bacteriological quality (pH
range 6.6–6.8; acidity 8D range 14–16; Standard plate
count cfu/ml <100 000). Animal feed was not special,
rather those commonly used in farms according to the time
of the year. Upon receipt, samples were classified immedi-
ately in two groups at natural pH: (a) stable when pre-
cipitation occurred at ethanol concentration of 78% (v/v)
or greater and (b) unstable when precipitation occurred at
72% (v/v) or less. Alcohol test was performed by adding
equal volumes of ethanol to the milk. Ethanol concentra-
tions of 72 and 78% (v/v) were selected because these
concentrations correspond to pH 6.6 and 6.7 respectively
according to Horne & Muir (1990, Fig. 1).

Compositional analysis

The following analyses were performed in duplicate at least
for every sample: somatic cell count (SCC) were counted

electronically using Fossomatic 5000 (Foss Electric,
Hillerød, Denmark) according to International Dairy
Federation Standard (IDF; 1995); standard plate count of
aerobic mesophilic bacteria (SPC) was measured according
to IDF (1991a); milk acidity was determined by titration
with NaOH (Instituto Argentino de Racionalización de
Materiales, 1976) ; pH was measured by an Orion Ross�

Sure-flow TM electrode and an Orion pH-ISE 710A meter
(Beverly, MA, USA); freezing point (8C) was determined
according to IDF (1991b) by an Astor 400SE apparatus
(Astori, Italy) ; total nitrogen (TN), non-protein N (NPN) and
non-casein N (NCN) were measured using micro-Kjeldahl
techniques (IDF, 1964, 1993). These N fractions were then
used to calculate total protein ((TN–NPN)r6.38), casein
protein ((TN–NCN)r6.38) and whey protein ((NCN–
NPN)r6.38). Casein number was expressed as casein/total
proteinr100. Fat, lactose, citrate (Cit), non-fat solids (NFS)
and urea were analysed using an IR milk analyser (Milko-
scan Ft 120, Foss Electric, Hillerød, Denmark; IDF, 1996).
Phosphorous (P) and chloride (Cl) concentrations were
determined by the phosphomolybdate method (IDF, 1987)
and the Mohrks method (Bradley et al. 1992). Calcium (Ca),
sodium (Na), magnesium (Mg) and potassium (K) concen-
tration were measured by atomic absorption spectrometry
(Perkin-Elmer 5000 spectrometer, Connecticut, USA, 1982).
Ionized calcium concentration (Ca2+) was determined
using a Phoenix CAL1502 electrode (Houston, USA; Geerts
et al. 1983). The heat stability of milk was evaluated as the
CT at 140 8C in a stirred temperature-controlled oil bath,
measured by a modification of the method proposed by
Davies & White (1966) (Negri, 2002). Briefly, the glass
tubes with pendulous movement used by Davies & White
(1966) were substituted by capillaries, filled with milk,
closed using a flame and then introduced into the bath.
Capillaries ensured instant heat transfer evenly to the
milk volume and CT (min) was determined when clot was
detected by simple observation.

Statistical analysis

Mean values, confidence intervals, mean comparison by
Student’s t-test, logistic and multiple regression were cal-
culated using SAS (1989). Significance of P<0.05 was used
in every analysis. Logistic and multiple regression were
done on a data base of 26 stable and 26 unstable sample
results. Decrease in data number occurred because meth-
ods eliminated uncompleted rows. The response variable
in the Logistic Regression Model was a discrete variable:
unstable or stable milk samples to alcohol. The log odds,
that was ln[p/(1–p)] where p was the probability of being
part of one alcohol classification, was the function chosen
to model alcohol effect. The logistic regression model fitted
the log odds to explanatory variables by a linear function,
Hosmer & Lemeshow goodness of fit test and Wald x2’s par-
ameter were used to evaluate the procedure of fitting and
individual effect each variable had in the logistic model, re-
spectively. Results of the model were predicted probability
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of an improved outcome after the inverse transformation of
log odds were done. Multiple regression method was ap-
plied to CT. This statistical model goodness of fit was
evaluated considering the determination coefficient (R2)
and the model percentage of deviation (%D) with respect
to experimental values. The latter was obtained by Eq. (1)
as proposed by Heldman (1974):

%D=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i = 1 ((Tv –Ev)=Ev)2

i

N–1

s
r100 (1)

where Tv is the theoretical value obtained when statistical
models were applied, Ev the experimental value and N the
number of observations.

Results and Discussion

Mean values, number of determinations and confidence in-
tervals of every measured variable are presented in Table 1.
Results obtained were similar to those reported in others
studies in the same dairy area (Taverna & Coulon, 2000;
Taverna et al. 2001a–d).

Variables which presented significant difference be-
tween the two groups of milk were also indicated in Table
1. Low casein concentration was one of the factors that
characterized unstable samples, together with the fact that
total protein concentration in both groups was equal, it was
concluded that unstable group had a lower casein number
(73.45%). Important differences between groups were due

to mineral elements; among them Cl, Na and K presented
higher values in the unstable group than in the stable group.
Mastitis can be disregarded as the cause of these differ-
ences in salt concentrations since the unstable group had a
lower mean SCC value. Horne & Parker (1981b) proposed
a mechanism for ethanol-induced precipitation in which
the dielectric strength of the micelle medium played an
important role. Ionic strength, given by Cl, K and Na, af-
fected that property. In effect, ionic strength increase re-
duced the dielectric constant of the medium weakening
the energy barrier that prevents coagulation. Horne &
Parker (1981a) observed that the addition of NaCl de-
creased ethanol stability.

Ca2+ of both groups presented similar concentration
to previous reports for raw milk at natural pH: values of
81.2–92.2 ppm were recorded by Geerts et al. (1983),
89.78 ppm at 4 8C by Muldoon & Liska (1969) and
56.11–100.2 ppm by Demott (1968). Ca2+ concentration
was significantly different between groups when P<0.1.
The addition of Ca2+ was proved to increase ethanol un-
stability (Horne & Parker, 1981a; Horne, 1987; Horne &
Muir, 1990) and according to results of Table 1 same
tendency was verified. Additionally, Ca2+ presented cor-
relation (correlation coefficient r= –0.6) with respect to CT
only. Thus, Ca2+ increment caused CT reduction which
was in agreement with previous works (Fox & Morrissey,
1977; Singh & Fox, 1987a, b; Singh & Creamer, 1992;
Jeurnink & De Kruif, 1995; Le Ray et al. 1998; Aoki et al.
1999; Le Greät & Gaucheron, 1999).

Table 1. Mean values (X ), sample size (N ) and confidence interval (CI) of the parameters measured to characterise stable and
unstable milk samples with respect to ethanol stability

Ethanol-stable samples Ethanol-unstable samples

Parameters X CI 95% N X CI 95% N

Acidity (8D) 14.1 13.9–14.3 50 14.2 13.9–14.5 28
pH* 6.71 6.70–6.72 57 6.68 6.67–6.69 28
SPC (r10– 3 cfu/ml) 25 15–39 54 30 15–58 27
SCC (r10– 3 cell/ml)* 372 324–427 52 284 233–346 26
Freezing point (8C)* 0.518 0.515–0.521 49 0.523 0.520–0.526 19
NFS (g/l)* 87.4 86.8–88.0 56 86.0 85.1–86.9 27
Fat (g/l) 36.4 35.6–36.8 56 35.9 34.5–37.3 28
Lactose (g/l) 47.2 46.9–47.5 56 46.7 46.2–47.2 28
Protein (g/l) 33.2 32.8–33.6 44 32.4 31.7–33.1 26
Casein (g/l)* 24.7 24.3–25.1 44 23.8 22.3–25.3 25
Whey protein (g/l) 6.3 6.1–6.5 43 6.2 6.0–6.4 25
NPN (g/l) 0.35 0.34–0.36 46 0.36 0.34–0.38 27
Urea (g/l) 0.37 0.35–0.39 56 0.38 0.34–0.42 28
Citrate (g/l) 1.31 1.28–1.34 56 1.32 1.27–1.37 28
P (g/l) 0.95 0.93–0.97 55 0.94 0.94–0.95 28
Cl (g/l)* 1.45 1.42–1.48 54 1.61 1.54–1.68 28
Ca (g/l) 1.11 1.08–1.14 52 1.15 1.09–1.23 28
Mg (g/l) 0.11 0.10–0.11 53 0.12 0.11–0.13 28
Na (g/l)* 0.45 0.42–0.48 53 0.52 0.47–0.57 27
K (g/l)* 1.49 1.46–1.52 53 1.55 1.50–1.60 28
Ca2+ (ppm) 74.10 66.45–81.75 48 88.71 73.67–103.73 28
CT (min)* 23.8 22.3–25.3 52 19.9 17.2–22.6 28

*Values were significantly different (P<0.05)
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Difference in NFS was attributed to casein concentration
variation between groups (r=0.54) and the difference in
the freezing point was related to minerals, particularly to
the sum of Na, K and Cl (r=0.44). pH results presented
similar behaviour to that found by Horne & Parker (1979)
and by Horne & Muir (1990) when they verified that
ethanol stability increased when pH was raised artificially.

CT mean values, measured using capillary method, were
in agreement with those reported by other authors using the
standard method. Davies & White (1966) and Morrissey
et al. (1981) obtained CT mean value and confidence
interval equal to 19.67±0.73 and 18.23±3.20 min from
milk samples of individual cows respectively, whereas Holt
et al. (1978) obtained CT mean value 20.15±3.06 min from
silo milk.

CT mean values between groups were different, showing
that the unstable group had less heat stability. However,
Fig. 1 helps to explain why ethanol stability still was not
a reliable test to predict heat behaviour. According to fre-
quency distribution (Fig. 1), 94.23% of the stable samples
together with 82.14% of the unstable samples presented CT
values between 34 and 13 min. So, there was a large range
of intersection between CT values of both groups, proving
that there was not a biunivocal correspondence between
both stabilities. In fact, according to frequency distribution
(Fig. 1) the higher percentages of stable samples presented
CT values between 22 and 25 min, coinciding with un-
stable behaviour. The results confirmed that alcohol test
was not a good heat stability predictor, which was widely
known (Horne & Parker, 1979; Horne & Muir, 1990).

Another aim of this study was to obtain the relationships
between alcohol stability and CT and the explanatory
variables. Obtained models and goodness of fit are shown
in Table 2. Each statistical model was fitted using 52
observations.

The odds obtained after transformation (odds=exp[logit
(hi)]) indicated the chance a sample had to be classified as
either stable or unstable. Odds classification limit was one;
then, every predicted value less than limit value indicated

that sample was alcohol stable while values higher than
one indicate unstable samples.

Contribution of Cl and K to ethanol stability was ex-
pected since they modified ionic strength and through it
charge interactions with the micelles. However, Na, which
was part of the milk ionic strength, was not included in the
model; it may play an alternative role in ethanol stability or
present a non-linear behaviour and further studies should
be carried. SCC contribution to alcohol stability was not
clear since it did not present significant correlation to any
of the measured variables in this study. A hypothesis was
to consider it as another component of the serum phase
which, in general terms, was known to participate in
alcohol stability (Horne & Parker, 1981a).

According to result (Table 2), the only variable that con-
tributed to both stabilities was ionic calcium. Moreover, an
increase of Ca2+ concentration produced a decrease in both
stabilities. These results were in agreement with previous
reports. Horne & Muir (1990), reviewing the advances in
the subject, mentioned that Ca2+ may be assigned a
dominant role in ethanol stability. The negative influence
on CT was widely proved as mentioned above. However,
sensitivity of each stability to Ca2+ should be considered to
be different. In effect, according to Wald k2 parameter,
Ca2+ presented third order of significance (4.99) whereas
Cl (11.36) and K (5.60) were placed in first and second
order respectively. Partial determination coefficients of CT
model were selected to carry out the same analysis for heat
stability. In this case, Ca2+ presented the highest coefficient
(R2=0.36), second place corresponded to Ca (R2=0.19),
third to pH (R2=0.08), then to urea (R2=0.05) and finally to
P (R2=0.04). Obtained results suggested that heat stability
showed more sensitivity to Ca2+ than ethanol stability.

Every variable included in the CT model was already
known to influence heat stability (Fox & Morrissey, 1977;
Van Boekel et al. 1989; Singh & Creamer, 1992; Chavez

Table 2. Optimal variable and parameters value set to alcohol
and coagulation time statistical models

Dependent variable Parameter± SE Parameters of fit

logit(hi)
Intercept –37.41±19.69 Goodness of fit=3.68,
log(SCCi) –4.19±2.05 P=0.88
Cli 205.60±60.99
Ki 170.20±71.97
Ca2+

i 485.10±217.2

CTi

Intercept –463.10±125.91 R2=0.72,
pHi 72.91±18.35 D (%)=20.8
Ureai 210.51±60.78
Pi 171.45±66.67
Cai –178.31±36.78
Ca2+

i –878.44±170.80

i=1,2,…,n samples ; Ca2+ units, g/100 ml; SE, standard error ; R2, deter-

mination coefficient ; %D, the model percentage of deviation with respect

to experimental values
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Fig. 1. Percentage frequency distribution of coagulation time
values at 140 8C from ( ) ethanol-stable and (%) unstable milk
sample groups.
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et al. 2002). Moreover, positive effect of pH, urea and P
with respect to CT stability together with negative effects of
Ca and Ca2+ were in concordance with published works
cited in this paper. It should be added that Mg may have
the same behaviour as Ca since they were highly correlated
(r=0.689, P=1r10–4).

Last point of this study was to consider mineral contri-
bution to both stabilities since they influenced micelle
equilibrium. Thus, minerals were divided into two groups
according to their interaction with micelle systems: first
group included those minerals that influence the environ-
ment surrounding micelles (ionic strength; Eq. 2) and se-
cond group included those integral to the micelle (micelle
structure; Eq.3).

V1=(Cl+Na+K)=casein (2)

V2=(Mg+Ca+P)=casein (3)

In order to explore the participation of V1 and V2 in
each stability, these relationships were included in the data
base and new statistical models were obtained. Methods
applied were the same as those used to determined model
proposed in Table 2. As a result, V1 was selected as an
optimal variable of the new alcohol stability model
(goodness of fit 5.23, P=0.81) whereas V2 was not part of
it. However, V2 was included in the new CT model
(R2=0.68; D=22.67%) but V1 was not. This allowed the
proposal that variation in ionic strength was more import-
ant to alcohol stability than to heat stability; whereas ions
(Ca, Mg and P) that formed part of the micelle structure
showed the opposite behaviour.

The study was performed with the collaboration of INTI-CITIL.
The research was partly financed by the following dairy indus-
tries: SanCor CUL, Milkaut SA, Suc de Alfredo Williner SA,
Mastellone Hnos. SA, Manfrey Coop. and Molfino Hnos.
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técnica para productores 1997–1998, 89 pp. 75–76. Editado por

EEA-Rafaela, Publicación micelánea
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