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To properly treat the collisional transport of alpha particles due to a weakly rippled
tokamak magnetic field the tangential magnetic drift due to its gradient (the ∇B drift)
and pitch angle scatter must be retained. Their combination gives rise to a narrow
boundary layer in which collisions are able to match the finite trapped response to the
ripple to the vanishing passing response of the alphas. Away from this boundary layer
collisions are ineffective. There the ∇B drift of the alphas balances the small radial
drift of the trapped alphas caused by the ripple. A narrow collisional boundary layer
is necessary since this balance does not allow the perturbed trapped alpha distribution
function to vanish at the trapped–passing boundary. The solution of this boundary
layer problem allows the alpha transport fluxes to be evaluated in a self-consistent
manner to obtain meaningful constraints on the ripple allowable in a tokamak fusion
reactor. A key result of the analysis is that collisional alpha losses are insensitive to
the ripple near the equatorial plane on the outboard side where the ripple is high. As
the high field side ripple is normally very small, collisional

√
ν ripple transport is

unlikely to be a serious issue.

Key words: fusion plasma, plasma confinement

1. Introduction

For birth alphas the magnetic drift due to the gradient of the magnetic field, ∇B,
is more important than the electric or E × B drift. However, no satisfactory analytic
evaluation of collisional transport is presently available to test simulations of alpha
transport in the presence of ripple when ∇B drift dominates. Here, it is demonstrated
that in the weak ripple limit analytic expressions for the alpha fluxes can be obtained
and used to place constraints on the ripple that can be tolerated, as well as be used
to validate simulations.

In the presence of ∇B drift a narrow boundary layer must form just inside the
trapped–passing boundary to allow the finite trapped response to match to the
vanishing response of the well-confined passing alpha. The boundary layer always
results in alpha particle and energy diffusivities proportional to the square root of
the appropriate collision frequency, ν. The behaviour is similar to the

√
ν regime in

stellarators as approximately treated by Galeev et al. (1969) and Ho & Kulsrud (1987),
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and more rigorously formulated by Calvo et al. (2017), and recently applied to
tokamaks by Catto (2018).

Physically the transport is expected to be a result of the sensitivity of trapped
energetic alphas in tokamaks to ripple in the vicinity of their turning points (Goldston,
White & Boozer 1981; Linsker & Boozer 1982; Yushmanov 1982, 1983; Mynick
1986; White 2001). However, these latter references do not consider the collisional
boundary layer analysis associated with the ∇B drifting barely trapped alphas and
so obtain diffusivities linear in ν or stochastic transport. By regarding collisions as
a perturbation instead of on equal footing with the ∇B drift, they ignore the vital
barely trapped alphas that their treatments are unable to properly handle.

The ripple δ = δ(ψ, ϑ) due to N toroidal field coils is normally defined as

δ = (Bmax − Bmin)/(Bmax + Bmin), (1.1)

with Bmax and Bmin the maximum and minimum fields on the flux surface labelled by
the poloidal flux function ψ , and ϑ the poloidal angle variable. The ripple form

B= B0[1− ε(ψ) cos ϑ − δ(ψ, ϑ) cos(Nζ )], (1.2)

is often used to obtain explicit results, with ε the inverse aspect ratio, B0 the magnetic
field at the magnetic axis, ζ the toroidal angle variable and δ(ψ, ϑ) a slow function
of ϑ . To avoid introducing ripple wells along the magnetic field B, δ � qNδ < ε
must be assumed, where q is the safety factor and ε/q' Bp/B0, with Bp the poloidal
magnetic field. By considering the weak ripple limit, the departure from axisymmetry
only matters for the radial magnetic drift.

The proportionality of the diffusivity to
√
ν in the boundary layer treatments of

Galeev et al. (1969), Ho & Kulsrud (1987), Calvo et al. (2017), Catto (2018) is
very different than the precession or tangential drift results of Goldston et al. (1981),
Linsker & Boozer (1982), Yushmanov (1982, 1983) and Mynick (1986). They do
not allow for the existence of a narrow collisional boundary layer that is necessary
to make the perturbed trapped distribution function vanish at the trapped–passing
boundary. In the E × B toroidal precession, weak ripple case considered by Linsker
& Boozer (1982) and Mynick (1986) the heuristic particle diffusivity of their
equations (27) and (4), respectively, is

Dtp
LBM ∼ ε

1/2(q2N2ν/ε)(δqNρ0v0/rNω
√

qN)2 = [νNq3δ2ρ2
0v

2
0/ε

1/2(rω)2] ∝ ν, (1.3)

where ν is the pitch angle scattering frequency of alphas off the background ions,
ω∼ cEr/RBp∼ cqEr/rB0 is the precession frequency with Er the radial component of
the electric field E and c the speed of light and v0 and ρ0 are the birth speed and
birth gyroradius of the alphas. Both Linsker & Boozer and Mynick use ε1/2 as the
trapped fraction, as there is no boundary layer in their calculation, and q2N2ν/ε as
the effective collision frequency with a step size of δqNρ0v0/rNω

√
qN. However, the

perturbed distribution functions as given by their equations (32) and (47), respectively,
do not vanish at the trapped–passing boundary as required to match onto the vanishing
trapped response. In addition, Linsker & Boozer (1982) realize they are assuming that
the dominant transport contribution is from banana orbits with turning points away
from the equatorial plane, while for the boundary layer evaluation to be presented here
the barely trapped alphas dominate. Mynick (1986) extends Linsker & Boozer to more
general magnetic field perturbations, but continues to treat collisions perturbatively so
no boundary layer is considered in the precession case. Yushmanov (1983) extends his

https://doi.org/10.1017/S0022377819000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000151


Collisional alpha transport in a weakly rippled magnetic field 3

earlier work (Yushmanov 1982) to find the diffusivities by a perturbation technique
that treats collisions as weak and therefore ignores boundary layer effects. Finally,
the map used by Goldston et al. (1981) uses the radial step in their equation (8)
that becomes infinite for the barely trapped and ignore collisions so can only study
stochastic transport without any provision for a collisional boundary layer due to the
barely trapped stalling at turning points where collisions and precession matter most.
It is unclear how sensitive their ripple threshold estimate of

δ 6 (ε/πqN)3/2(ρ0 dq/dr)−1, (1.4)

is to these approximations, but some improvements were made by White et al. (1996).
Mynick (1986) and White (2001) provide useful summaries of these results with (and
without) precession.

In the following section a phenomenological estimate of the alpha diffusivity
associated with the collisional narrow boundary layer formed by the presence of
tangential ∇B drift. Then § 3 gives a detailed evaluation of all the terms in the transit
averaged kinetic equation to be solved in the boundary layer. The solution of the
kinetic equation using the results of Catto (2018) is given in § 4 for the

√
ν regime,

followed by the evaluation of the transport fluxes and diffusivities. The closing section
presents a summary and discussion of key points. It stresses that collisional

√
ν alpha

losses are insensitive to the ripple near the equatorial plane on the outboard side
where ripple is much stronger (Redi et al. 1996).

2. Phenomenological estimate and comparisons
Both Clebsch and Boozer (1981) representations are employed to write B as

B= Bb=∇α×∇ψ =K(ψ, ϑ, ζ )∇ψ +G(ψ)∇ϑ + I(ψ)∇ζ , (2.1)

with K(ψ, ϑ, ζ ) periodic in the poloidal and toroidal angle, and

α = ζ − qϑ, (2.2)

with q= q(ψ) the safety factor. The preceding give

B · ∇ζ = q∇ψ ×∇ϑ · ∇ζ = qB · ∇ϑ (2.3)

and

B2
= (G+ qI)B · ∇ϑ, (2.4)

as well as B · ∇α = 0= B · ∇ψ , with G /qI ∼ rBp/qRB0 ∼ ε
2/q2
� 1.

The transit averaged drift kinetic equation need only be solved for the trapped since
vm · ∇ψ = 0 for the passing means that the perturbed passing distribution function
vanishes ( fp=0). Here vm ·∇ψ is the radial magnetic drift due to the rippled magnetic
field, with the overbar indicating transit averaging over the trapped,

Ā=

∮
α

d`A/v‖∮
α

d`/v‖
=

∮
α

dτA∮
α

dτ
=

∮
α

dϑA/v‖b · ∇ϑ∮
α

dϑ/v‖b · ∇ϑ
, (2.5)
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with A arbitrary, dτ = d`/v‖ = dϑ/v‖b · ∇ϑ and q dϑ = dζ for α = ζ − qϑ fixed
(denoted by the subscript on the integral). The integrals are over a full bounce for
trapped particles. For energetic alphas, the E× B drift is small and can be ignored.

The usual transit averaged equation

vm · ∇ψ
∂fs

∂ψ
+ vm · ∇α

∂ft

∂α
=C{ft}, (2.6)

must be solved for the trapped correction ft = ft(ψ, α, v, µ, σ ) to the slowing down
distribution

fs(ψ, v)=
S(ψ)τs(ψ)H(v0 − v)

4π[v3 + v3
c (ψ)]

, (2.7)

where f = fs + ft with ft� fs, µ= v2
⊥
/2B is the magnetic moment, σ = v‖/|v‖| is the

sign of the parallel velocity v‖ =
√
v2 − 2µB and the magnetic drift is

vm =Ω
−1
[µb×∇B+ v2

‖
b× (b · ∇b)] 'Ω−1v‖∇× (v‖b), (2.8)

where the final form is a useful approximate form for the magnetic drift as the parallel
velocity correction is negligible. In addition, C is the alpha collision operator, S the
alpha birth rate, τs is the slowing down time for the alphas, vc is the critical speed
at which the drag of the background ions and electrons on the alphas is equal and
v0 is the alpha birth speed with H a Heaviside step function that vanishes for speeds
v > v0. The magnetic drift term in a flux surface, vm · ∇α, is dominated by the ∇B
drift as curvature drift is small for the trapped.

The weak ripple limit means that the departure from axisymmetry only matters for
the radial magnetic drift term. Everywhere else the axisymmetric limit

B→ I(ψ)∇ζ +∇ζ ×∇ψ (2.9)

is used with I = RBt and R|∇ζ | = 1, where R is the major radius and Bt ' B0 is
the toroidal magnetic field. Therefore, except for a very small radial drift due to
asymmetry, the alphas try to move on surfaces of constant drift kinetic canonical
angular momentum

ψ̄∗ =ψ − I(ψ)v‖/Ω, (2.10)

with Ω = ZeB/Mc the alpha gyrofrequency.
Pitch angle scattering must be the dominant collisional process to get a boundary

layer narrower than ε1/2. This balance between the strong ∇B drift of the alphas
tangential to the flux surface and collisions, reduces the width w in pitch angle λ
of the boundary layer by enhancing the pitch angle scattering frequency ν ∼ v3

c/v
3
0τs,

with τs the slowing down time. Using

C{ft} ∼ ν
∂2ft

∂λ2
∼
νft

w2
∼

Nqv2
0 ft

Ω0εR2
∼ vm · ∇α

∂ft

∂α
, (2.11)

where ∂ft/∂α ∼ Nft due to the N coils, gives the normalized width of the boundary
layer w to be

w∼ (r Rν/Nρ0qv0)
1/2
� ε1/2, (2.12)
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Collisional alpha transport in a weakly rippled magnetic field 5

indicating that the alphas must ∇B precess on a flux surface much faster than they
pitch angle scatter off the ions. This condition for the boundary layer analysis to be
valid is easily satisfied by alphas. The effective barely trapped fraction is estimated
from this boundary layer width to be

F∼w, (2.13)

with w� ε1/2 requiring (Nρ0qv0/R2ν)1/2� 1. For deuterium–tritium (D–T) with R=
10 m, B= 5T and Ti ' 10 keV and ne ' 1014 cm−3, R/ρ0 ∼ 102 and v0/νR∼ 106, so
a narrow boundary layer will occur. Then the effective drift decorrelation time for the
alphas is

τ ∼ F2/ν ∼ (rR/Nqρ0v0). (2.14)

The radial ∇B drift speed of the alphas is

V = vm · ∇ψ/RBp ∼ qρ0v0Nδ/r, (2.15)

and small decorrelation time limits the effective radial step size ∆ to be

∆∼ Vτ ∼ Rδ. (2.16)

Consequently, the weak ripple diffusivity is

Dweak√
ν ∼ F∆2/τ ∼ q1/2ε−1/2N1/2δ2v

1/2
0 ρ

1/2
0 Rν1/2. (2.17)

This result will be justified in more detail by solving a boundary layer problem that
allows the trapped distribution function ft to vanish at the trapped–passing boundary.

The banana regime diffusivity is due to a combination of pitch angle scattering off
the ions and electron drag and is found to be of order Dban

axi ' 0.25q2ρ2
0/ετs`n(v0/vc)∼

q2ρ2
0/ετs for D–T (Hsu, Catto & Sigmar 1990), giving

Dweak√
ν

Dban
axi
∼

(
v3/2

c

v
3/2
0

)(
N1/2δ1/2ε1/2

q3/2

)
R
√
v0τs

ρ
3/2
0

=

(
qNδ
ε

)1/2 (
vcR δ
v0ρ0

)3/2
ε
√
v0τs/R
q2

, (2.18)

for weak ripple (qNδ < ε). For this estimate, weak ripple transport will be larger than
neoclassical for δ ∼ 10−3, even though qNδ < ε, because R/ρ0 ∼ 102, v0τs/R ∼ 106,
and v3/2

c /v
3/2
0 ∼ 1/5. More specifically, weak ripple transport will occur and be larger

than neoclassical whenever

ε

qN
> δ >

(
qρ0v0

Rvc

)3/4 ( R
Nεv0τs

)1/4

. (2.19)

These inequalities indicate that ripple levels of δ ∼ 10−3 are needed to keep ripple
and neoclassical losses comparable. The ripple on the outboard or low field side of a
tokamak is typically of this order, but it is much smaller on the high field side (Redi
et al. 1996).

Ripple of δ∼ 10−3 will also avoid seriously depleting the slowing down distribution
function during

√
ν regime transport as τsDweak√

ν
/a2
� 1 gives the constraint on the

ripple of

δ <

(
v0

vc

)3/4 ( a
R

)( r R
Nqρ0v0τs

)1/4

. (2.20)
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The detailed boundary layer evaluation performed in the § 4 indicates that the barely
trapped alphas dominate

√
ν regime collisional transport so that outboard ripple larger

than δ ∼ 10−3 is tolerable.
Catto (2018) performed a boundary layer analysis for strong ripple (qNδ � ε) to

find

Dstrong
√
ν
∼ (qvc/v0)

3/2(ρ0v0/ωR)2(ω/τs)
1/2, (2.21)

with ω the rotation frequency due to a radial electric field. Comparing this to the small
ripple result, but using a magnetic drift estimate of ωR∼ v0ρp0/R∼ qρ0v0/R, gives

Dweak√
ν

Dstrong
√
ν

∼
q1/2N1/2δ2

ε1/2
∼

(
qNδ
ε

)1/2

δ3/2, (2.22)

which is very small even if qNδ ∼ ε, as might be expected. Unfortunately, retaining
the ∇B drift in the strong ripple limit is not an analytically tractable limit so this
estimate is likely to be too crude. Moreover, the large ripple limit treats only ripple
trapped alphas in wells that are poloidally localized.

3. Transit averaged kinetic equation
Only the axisymmetric forms of the collision operator and drift within a flux surface

are required in the kinetic equation. Neglecting curvature drift, they may be written
as

C{ft} '
2v3
λ

τsv
3

(∮
α

dϑ/ξ
) ∂

∂λ

[
λ

(∮
α

dϑξ
)
∂ft

∂λ

]
, (3.1)

and

vm · ∇α '
Mcv2

Ze

(∂/∂ψ)

(∮
α

dϑ ξ
)

(∮
α

dϑ/ξ
) , (3.2)

where λ = 2µB0/v
2, and ξ 2

= v2
‖
/v2
= 1 − 2µB/v2

= 1 − λB/B0 ' 1 − λ(1 − ε) −
2λε sin2(ϑ/2). The pitch angle scattering collision frequency is ν = v3

λ/v
3
0τs∼ v

3
c/v

3
0τs,

where

v3
λ =

3π1/2T3/2
e

(2m)1/2Mne

∑
i

Z2
i ni, (3.3)

v3
c =

3π1/2T3/2
e

(2m)1/2ne

∑
i

Z2
i ni

Mi
, (3.4)

and

τs =
3MT3/2

e

4(2πm)1/2Z2e4ne`nΛ
, (3.5)
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with the electron and bulk ion densities and temperatures denoted by nj and Tj, and
m the electron mass and Mi the mass of an ion of charge Zi. The density of slowing
down alphas is

ns =

∫
d3vfs = Sτs

∫ v0

0

v2 dv
(v3 + v3

c )
=

Sτs

3
`n[1+ (v3

0/v
3
c )] ' Sτs`n(v0/vc), (3.6)

where v3
0/v

3
c� 1 and v3

λ / v
3
c = 3/5 for the deuterium–tritium (D–T) reaction of interest

here.
To evaluate the magnetic drift the divergence of an arbitrary vector A is written as

∇ · A= B · ∇ϑ
[
∂

∂ψ

(
A · ∇ψ
B · ∇ϑ

)
+

∂

∂ϑ

(
A · ∇ϑ
B · ∇ϑ

)
+
∂

∂α

(
A · ∇α
B · ∇ϑ

)]
, (3.7)

giving

vm · ∇α '
v‖

Ω
∇α · ∇× (v‖b)

=
v‖

Ω
B · ∇ϑ

[
∂

∂ψ

(
Bv‖

B · ∇ϑ

)
+

∂

∂ϑ

(
v‖b · ∇α×∇ϑ

B · ∇ϑ

)]
, (3.8)

and

vm · ∇ψ '
v‖

Ω
∇ψ · ∇× (v‖b)

= −
v‖

Ω
B · ∇ϑ

[
∂

∂α

(
Bv‖

B · ∇ϑ

)
−

∂

∂ϑ

(
v‖b · ∇ψ ×∇ϑ

B · ∇ϑ

)]
. (3.9)

As a result, neglecting curvature drift

vm · ∇α '
Mcv2

Ze
∮
α

dϑξ−1

∂

∂ψ

∮
α

dϑξ, (3.10)

and

vm · ∇ψ '−
Mcv2

Ze
∮
α

dϑξ−1

∂

∂α

∮
α

dϑξ. (3.11)

Ripple only matters in the radial drift. Using 2ξ∂ξ/∂α|ϑ = −Nδλ sin[N(α + qϑ)],
gives

vm · ∇ψ =
McNλv2

2Ze

∮
α

dϑξ−1δ sin[N(α + qϑ)]∮
α

dϑξ−1
. (3.12)

Then, using sin[N(α + qϑ)] = sin(Nα) cos(Nqϑ) + cos(Nα) sin(Nqϑ), and noting
that the term odd in ϑ about the equatorial plane (ϑ = 0) vanishes, leaves

vm · ∇ψ =
McNλv2 sin(Nα)

2Ze

∮
α

dϑξ−1δ cos(qNϑ)∮
α

dϑξ−1
, (3.13)

giving the estimate vm · ∇ψ/RBp ∼ qNρ0v0δ/r used earlier.
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Using the full bounce, large aspect ratio results∮
α

dϑ/ξ = 8(2ελ)−1/2
∫ π/2

0
dx/
√

1− κ2 sin2 x= 8(2ε)−1/2
√

1− ε+ 2εκ2K(κ), (3.14)∮
α

dϑξ =
8
√

2εκ2

√
1− ε+ 2εκ2

∫ π/2

0

dx cos2 x√
1− κ2 sin2 x

=
8
√

2ε[E(κ)− (1− κ2)K(κ)]
√

1− ε+ 2εκ2
, (3.15)

and ∮
α

dϑ
ξ

cos ϑ =
8

(2ελ)1/2

∫ π/2

0
dx
(1− 2κ2 sin2 x)√

1− κ2 sin2 x

=
8

(2ε)1/2
√

1− ε+ 2εκ2[2E(κ)−K(κ)], (3.16)

where κ sin x= sin(ϑ/2) and the α subscript is a reminder that the integral is to be
performed at fixed α. Here K(κ) and E(κ) are complete elliptic integrals of the first
and second kind, respectively, with

κ2
= [1− (1− ε)λ]/2ελ, (3.17)

so that κ = 0 are the deeply trapped and κ = 1 the is the barely passing boundary.
Using these results along with the barely trapped limits E(κ)→ 1+ · · · and K(κ)→
`n(4/

√
1− κ2)+ · · · , gives

C{ft} '
v3
λ

4τsv3εκK(κ)
∂

∂κ

{
[E(κ)− (1− κ2)K(κ)]

κ

∂ft

∂κ

}
−→
κ→1

(v3
λ/2ετsv

3)

`n[8/(1− κ)]
∂2ft

∂κ2
, (3.18)

and

vm · ∇α '
v2
[2E(κ)−K(κ)]
2ΩpR2K(κ)

−→
κ→1

−v2

2ΩpR2
, (3.19)

where Ωp = ZeBp/Mc' εΩ0/q.
The integral appearing in vm · ∇ψ was evaluated in the Nq� 1 limit in Linsker &

Boozer (1982), Mynick (1986) and White (2001), but their procedure is inadequate for
the barely trapped (κ→ 1) as the result is singular. Appendix A gives the asymptotic
expansion for κ→ 1 that is found by more carefully expanding the ϑ dependence of
ξ about the turning point ϑt, where

sin(ϑt/2)=
√
[1− (1− ε)λ]/2ελ= κ. (3.20)

Using sin(ϑ/2)= κ sin x leads to the form∮
α

dϑ
ξ
δ cos(qNϑ) =

8
(2ελ)1/2

Re
∫ π/2

0

dxδeiqNϑ√
1− κ2 sin2 x

'
8δ

(2ε)1/2
√

1− ε+ 2εκ2 Re{eiqNϑt K̃(κ)}, (3.21)
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Collisional alpha transport in a weakly rippled magnetic field 9

with

K̃(κ)≡
∫ π/2

0
dxeiqN(ϑ−ϑt)/

√
1− κ2 sin2 x, (3.22)

and where δ' δ(ψ, ϑ =π) is used since only the limit κ→ 1 (ϑ→π) is of interest.
Then changing to ϑ by using cos(ϑ/2) dϑ = 2κ cos x dx, the result from appendix A
gives

K̃(κ)≡
1
2

∫ ϑt

0

dϑeiqN(ϑ−ϑt)√
κ2 − sin2(ϑ/2)

' `n
(

1
qN
√

2(1− κ)

)
. (3.23)

Therefore, using δ = δ(ψ, ϑ =π),

vm · ∇ψ '
NδB0v

2`n[2q2N2(1− κ)]
2Ω0`n[(1− κ)/8]

cos(πqN) sin(Nα). (3.24)

Inserting the preceding κ→1 results into the transit averaged kinetic equation yields
the equation that must be solved for the trapped

v3
λ

2ετsv3`n[8/(1− κ)]
∂2ft

∂κ2
+

qv2

2Ω0Rr
∂ft

∂α

=
qNv2δ`n[2q2N2(1− κ)] cos(πqN)

2Ω0r`n[(1− κ)/8]
RBp

∂fs

∂ψ
sin(Nα). (3.25)

In the section that follows this equation is solved for the trapped in the narrow
boundary layer just inside the trapped–passing boundary.

4. Boundary layer analysis and transport fluxes
Fortunately, the weak ripple limit with the ∇B drift retained is analytically tractable,

as will now be demonstrated. There is no need to assume poloidal localization since
ripple trapping does not occur.

Defining

η≡ (1− κ)/8, (4.1)
ft ≡ Im[H(η)eiNα

], (4.2)

k≡
32qNτsv

5

v3
λΩ0R2

� 1, (4.3)

and

L≡
32δ qN τsv

5 cos(πqN)
Ω0Rv3

λ

RBp
∂fs

∂ψ
, (4.4)

the boundary layer equation becomes of the form first considered by Calvo et al.
(2017):

1
`n(η)

∂2H
∂η2
− 2ikH =−2L

`n(16q2N2η)

`n(η)
'−2L, (4.5)
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where for alphas it is not unreasonable to assume `n(η−1) ∼ `n(k1/2) > `n(16q2N2)
as v4

0τsρ0/v
3
λR

2 ≫ 4q3N3, and Im denotes imaginary part. Then, a boundary layer
equation of the exact same form as in the strong ripple limit of Catto (2018) is
obtained. There it is shown that the matched asymptotic solution vanishing at the
trapped–passing boundary is

H =
iL
k
[e−(1−i)η

√
2k`n(

√
2k)
− 1]. (4.6)

Consequently,

ft = BpR2 ∂fs

∂ψ
δ cos(πqN)Re{[e−(1−i)η

√
2k`n(

√
2k)
− 1]eiNα

}, (4.7)

where ft/fs ∼ Rδ/a� 1 is required, with the minor radius, a, assumed to be roughly
the radial scale length of the alpha density variation, and Re denoting the real part.

The alpha flux is evaluated from

Γd =

〈∫
d3v(Mv2/2)dftvm · ∇ψ

〉
, (4.8)

where 〈· · ·〉 is the flux surface average, with d= 0 for the alpha particle flux and d= 1
for the alpha energy flux. Ignoring curvature drift, using d3v→ 2π(Bv2/B0ξ) dv dλ,
performing the transit average first by holding α fixed and noting∫ ϑt

−ϑt

dϑ
B · ∇ϑ

B
ξ

vm · ∇ψ = vm · ∇ψ

∫ ϑt

−ϑt

dϑ
ξ b · ∇ϑ

'
2B0

π
√

2ε

√
1− ε+ 2εκ2K(κ)vm · ∇ψ

∫ π

−π

dϑ
B · ∇ϑ

, (4.9)

gives the alternate and more useful form of the fluxes to be

Γd =

〈∫
d3v(Mv2/2)dftvm · ∇ψ

〉
' 8
√

2ε
∫ v0

0
dvv2

(
Mv2

2

)d 〈∫ 1

0
dκ ftvm · ∇ψ `n

(
8

1− κ

)〉
, (4.10)

where ft ∝ exp(iNα)is independent of ϑ and the last form is for κ→ 1. Inserting ft
and vm · ∇ψ , and using

`n(v0/vc)

ns

∂ns

∂ψ
�

1
vc

∂vc

∂ψ
∼

1
ni

∂ni

∂ψ
, (4.11)

leaves

Γd ' −
16 B2

pR2qNδ2 cos2(πqN)

π
√

2εΩ0`n(v0/vc)

∂ns

∂ψ

∫ v0

0

dvv4

v3 + v3
c

(
Mv2

2

)d

×Re
{

i
∫
∞

0
dη[e−(1−i)η

√
2k`n(

√
2k)
− 1]`n(16q2N2η)

}
, (4.12)
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where 〈sin(Nα)eiNα
〉 ' i/2 is used. Letting χ = η

√
k`n(2k)∝ v5/2 and defining

k0 ≡
32qNτsv

5
0

v3
λΩ0R2

� 1, (4.13)

then the fraction of barely trapped particles that contribute is proportional to

Re
{

i
∫
∞

0
dη[e−(1−i)η

√
2k`n(

√
2k)
− 1]`n(16q2N2η)

}
'
`n(
√

k`n(2k)/16q2N2)

2
√

k`n(2k)
, (4.14)

with the speed weighting∫ v0

0
dvv4

(
Mv2

2

)d
`n[
√

k`n(2k)/16q2N2
]

(v3 + v3
c )
√

k`n(2k)

'
v2

0`n[
√

k0`n(2k0)/16q2N2
]

√
k0`n(2k0)

{
`n(v0/vc) d= 0
Mv2

0/3 d= 1, (4.15)

thereby yielding the collisional particle and energy fluxes for the alphas

Γd ' −
B2

pR3q1/2N1/2δ2v
3/2
λ ρ

1/2
0 cos2(πqN)

π
√
ετsv0`n(v0/vc)

∂ns

∂ψ

`n[
√

k0`n(2k0)/16q2N2
]

√
`n(2k0)

×

{
`n(v0/vc) d= 0
Mv2

0/3 d= 1. (4.16)

The flux implies that the particle diffusivity of the alphas is

Dweak
0 =

q1/2N1/2δ2v
3/2
λ ρ

1/2
0 R

2πv0
√
ετs`n(2k0)

`n
[√

k0`n(2k0)

16q2N2

]
, (4.17)

while the alpha energy diffusivity is

Dweak
1 =

q1/2N1/2δ2v
3/2
λ ρ

1/2
0 R

3πv0
√
ετs`n(2k0)

`n[
√

k0`n(2k0)/16q2N2
]

`n(v0/vc)
, (4.18)

where a coarse grain average is used to replace cos2(πqN) by 1/2.
The first expression is the same as the estimate in § 2 within numerical and

logarithmic factors that decrease the diffusivity since ν = v3
λ/v

3
0τs ∼ v

3
c/v

3
0τs. However,

the boundary layer solution technique makes it clear that the ripple that matters is at
the equatorial plane on the high field side since δ = δ(ψ, ϑ = π). Consequently, the
weak ripple,

√
ν transport regime seems unlikely to be an important consideration for

the alphas since the details of the collisional boundary layer analysis presented here
imply that these results are insensitive to the ripple near the low field side equatorial
plane where the ripple is largest and typically approximately δ ∼ 10−3. High field
side ripple is substantially smaller. Therefore, adequately confined collisionless alpha
orbits appears to be all that is required to keep collisional alpha confinement at
axisymmetric neoclassical levels (Hsu et al. 1990) in weakly rippled tokamak fields.
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5. Summary and discussion

A fully self-consistent evaluation of alpha particle and energy transport fluxes for
weak ripple (ε > qNδ) has been performed in the

√
ν regime. The new features of this

evaluation are a complete boundary layer analysis retaining collisions to enable the
perturbed trapped distribution function to vanish at the trapped–passing boundary so it
can properly match to the passing response and the careful treatment of the tangential
magnetic ∇B drift on a flux surface so that the radial steps remain well behaved for
the barely trapped alphas. The result places only mild constraints on ripple. These
are necessary to satisfy to keep ripple transport comparable to neoclassical, while
avoiding alpha depletion. Indeed, since the results are only sensitive to the ripple near
the equatorial plane on the high field side it is likely that the losses are well below
axisymmetric neoclassical transport losses (Hsu et al. 1990).

The
√
ν regime ripple restriction on the alpha energy loss to avoid depletion of the

alphas just after birth found from τsDweak
1 /a2

� 1 is

δ �

[
3π`n(v0/vc)

√
`n(2k0)

`n[
√

k0`n(2k0)/16q2N2]

]1/2 (
v0

vλ

)3/4 ( a
R

)( r R
Nqρ0v0τs

)1/4

∼ 5
(
v0

vλ

)3/4 ( a
R

)( εR2

Nqρ0v0τs

)1/4

∼ 10−2, (5.1)

with k0� 1 required for a narrow boundary layer, and

k0 =
32qNρ0v

4
0τs

v3
λR2

∼ 108, (5.2)

for R/ρ0 ∼ 102, v0τs/R ∼ 106 and v0/vλ ∼ 3. The
√
ν regime results suggest that

when the ripple is weak (δ < ε/qN), alpha energy depletion will be not be a issue in
tokamaks because the collisional boundary layer analysis is dominated by the barely
trapped particles and they are only sensitive to the very small ripple near the high
field side equatorial plane (Redi et al. 1996). The analytic results obtained here can
be used to validate a full simulation of the solution of the transit averaged equation
for a more realistic model of collisional transport with strongly varying poloidal ripple.
Based on the analytic results presented here, it seems likely that adequate confinement
of collisionless alpha orbits will ensure that collisional

√
ν alpha losses due to ripple

will be small.
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Appendix A. Asymptotic expansions for κ→ 1

To approximately expand the elliptic integral

K(κ)=
∫ π/2

0
dx/
√

1− κ2 sin2 x=
∫ π/2

0
dx/
√

1− κ2 + κ2 cos2 x (A 1)
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as κ→ 1, expand cos2 x about x=π/2. Then letting z=−x+π/2 gives

K(κ) '
∫ π/2

0
dx/
√

1− κ2 + κ2(x−π/2)2

=

∫ π/2

0
dz/
√

1− κ2 + κ2z2 = κ−1`n[κz+
√
κ2z2 + 1− κ2]|

π/2
0 , (A 2)

so as κ → 1, `n[π/
√

1− κ2], which is close to K(κ)→ `n(4/
√

1− κ2) + · · · and
recovered using

K(κ) =
∫ π/2

0
dx/
√

1− κ2 + κ2(x−π/2)2

+

∫ π/2

0
dx/
√

1− κ2 + κ2 cos2 x−
∫ π/2

0
dx/
√

1− κ2 + κ2(x−π/2)2. (A 3)

Next use sin(ϑ/2)= κ sin x and sin(ϑt/2)= κ to consider the form

K̃(κ)≡
∫ π/2

0
dxeiqN(ϑ−ϑt)/

√
1− κ2 sin2 x. (A 4)

Then changing to ϑ by using cos(ϑ/2) dϑ = 2κ cos x dx, gives

K̃(κ)≡
1
2

∫ ϑt

0

dϑeiqN(ϑ−ϑt)√
κ2 − sin2(ϑ/2)

=
1
2

∫ ϑt

0

dϑeiqN(ϑ−ϑt)

√
[κ + sin(ϑ/2)][κ − sin(ϑ/2)]

. (A 5)

Expanding about ϑt using

sin(ϑ/2)= κ +
√

1− κ2(ϑ − ϑt)/2− κ(ϑ − ϑt)
2/8+ · · · , (A 6)

yields

K̃(κ) '
1
2

∫ ϑt

0

dϑe−iqN(ϑt−ϑ)√
(κ + · · ·)(ϑt − ϑ)[

√
1− κ2 + κ(ϑt − ϑ)/4+ · · ·]

=
1
κ

∫ qNϑt

0

dz e−iz

√
z(δ + z)

, (A 7)

where z= qN(ϑt − ϑ) and δ = 4qN
√

1− κ2/κ , with ϑt→π as κ→ 1.
Integrate by parts using

1
√

z(δ + z)
=

d
dz

[
`n
(

2
δ

√
z(δ + z)+

2z
δ
+ 1
)
− `n(const.)

]
, (A 8)

to find

κK̃(κ) '
∫ qNϑt

0

dz e−iz

√
z(δ + z)

=

∫ qNϑt

0
dz e−iz d

dz

{
`n
[

2
δ

√
z(δ + z)+

2z
δ
+ 1
]
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− `n

[
2qNϑt

δ

(√
1+

δ

qNϑt
+ 1

)
+ 1

]}

= `n

[
2qNϑt

δ

(√
1+

δ

qNϑt
+ 1

)
+ 1

]

+ i
∫ qNϑt

0
dz e−iz

{
`n

[
2z
δ

(√
1+

δ

z
+ 1

)
+ 1

]

− `n

[
2qNϑt

δ

(√
1+

δ

qNϑt
+ 1

)
+ 1

]}
. (A 9)

Letting δ→ 0 leaves

κK̃(κ) ' `n
(

4qNϑt

δ

)
+ i
∫ qNϑt

0
dz e−iz`n

(
z

qNϑt

)
' `n

(
π

√
2(1− κ)

)
+ i
∫ qNπ

0
dz e−iz`n

(
z

qNπ

)
' `n

(
1

qN
√

2(1− κ)

)
, (A 10)

where using y= z/qNπ yields (Gradshteyn & Ryzhik 2007)

i
∫ qNπ

0
dz e−iz`n

(
z

qNπ

)
= iπqN

∫ 1

0
dye−iπqNy`ny

= −

∫ 1

0
dy`ny

d
dy
(e−iπqNy

− 1)

=

∫ 1

0

dy
y
(e−iπqNy

− 1)

=

∫ πqN

0

dz
z
(e−iz
− 1)

=

∫ πqN

0

dz
z
(cos z− 1)− i

∫ πqN

0

dz
z

sin z

= [Ci(πqN)−C− `n(πqN)] − i[Si(πqN)], (A 11)

where C= 0.577215 is Euler’s constant and

Si(x)=
∫ x

0

dt sin t
t
= si(x)+

π

2
, (A 12)

and

Ci(x)=C+ `nx+
∫ x

0

dt(cos t− 1)
t

. (A 13)

The preceding evaluation is very different from results (Linsker & Boozer 1982; White
2001) obtained by simply using

ξ 2
' 2ελ[sin(ϑt/2) cos(ϑt/2)](ϑt − ϑ)= ελ(sin ϑt)(ϑt − ϑ) (A 14)
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to write, for example,∮
α

dϑ
ξ

cos(Nqϑ) '
4

√
ελ sin ϑt

∫ ϑt

0
dϑ

cos(Nqϑ)
√
ϑt − ϑ

=
4

√
ελ sin ϑt

Re
[

eiqNϑt

∫ ϑt

0
dϑ

eiqN(ϑ−ϑt)

√
ϑt − ϑ

]
, (A 15)

for a complete bounce. Letting z=Nq(ϑt − ϑ) gives∫ ϑt

0
dϑ

eiqN(ϑ−ϑt)

√
ϑt − ϑ

=
1
√

Nq

∫ qNϑt

0
dz

e−iz

√
z
'

1
√

Nq

∫
∞

0
dz

e−iz

√
z
. (A 16)

Using (Magnus, Oberhettinger & Soni 1966)∫
∞

0
dz

e−iz

√
z
=

∫
∞

0
dz

cos z
√

z
− i
∫
∞

0
dz

sin z
√

z

= Γ (1/2)
(

cos
π

4
− i sin

π

4

)
=π1/2e−iπ/4, (A 17)

yields ∮
α

dϑ
ξ

cos(Nqϑ)'
2
√

2π√
εNqλκ

√
1− κ2

cos
(

Nqϑt −
π

4

)
, (A 18)

where 2κ
√

1− κ2 = 2 sin(ϑt/2) cos(ϑt/2) = sin ϑt and ϑt → π − 2
√

2(1− κ). Then
(A 18) gives

vd · ∇ψ

RBp
'

√
πNqλv2δ cos

[
(Nq− 1

4)π
]

4Ω0rK(κ)
√
κ
√

1− κ2
sin(Nα)∼

qρ0v0δ
√

Nq
r

. (A 19)

Taking the κ→ 1 (ϑt→π) limit yields

vd · ∇ψ −→
κ→1
−RBp

√
πqN v2δ cos[(Nq − 1/4)π]

25/4Ω0r(1− κ)1/4 `n[8/(1− κ)]
sin(Nα), (A 20)

which is singular! However, the result for vd · ∇ψ should not be singular as κ→ 1.
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