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Taylor–Couette flows have been widely studied in part due to the enhanced mixing
performance from the variety of hydrodynamic flow states accessible. These process
improvements have been demonstrated despite the traditionally limited injection
mechanisms from the complexity of the Taylor–Couette geometry. In this study, using
a newly designed, modified Taylor–Couette cell, axial mass transport behaviour is
experimentally determined over two orders of magnitude of Reynolds number. Four
different flow states, including laminar and turbulent Taylor vortex flows and laminar
and turbulent wavy vortex flows, were studied. Using flow visualization techniques,
the measured dispersion coefficient was found to increase with increasing Re, and
a single, unified regression is found for all vortices studied. In addition to mass
transport, the vortex structures’ stability to radial injection is also quantified. A
dimensionless stability criterion, the ratio of injection to diffusion time scales, was
found to capture the conditions under which vortex structures are stable to injection.
Using the stability criterion, global and transitional stability regions are identified as
a function of Reynolds number, Re.
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1. Introduction
1.1. Taylor–Couette flows

Azimuthal flow between two concentric rotating cylinders, or Taylor–Couette (TC)
flow, is a seminal fluid dynamic platform used in understanding the effects of
hydrodynamics on complex fluids and processes (Fardin, Perge & Taberlet 2014). It
is well known for Newtonian fluids that beyond a critical speed of inner cylinder
rotation, the flow transitions from unidirectional azimuthal flow (Couette flow, CF)
to stationary toroidal vortices (laminar Taylor vortex, LTV), found initially by Taylor
(1923). As the inner cylinder speed further increases, the vortices evolve further at
critical points, gaining a temporal frequency (dominant frequency of the travelling
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wave (or azimuthal frequency) (laminar wavy vortex, LWV), multiple temporal
frequencies (modulated wave vortices, MWV) and turbulent features (turbulent wavy
vortex, TWV and turbulent Taylor vortex, TTV) (Andereck, Liu & Swinney 1986;
Dutcher & Muller 2009). The cascade of flow instabilities and wide variety of
flow states have been used to enhance the fundamental understanding between flow
field and complex processes such as polymer–clay flocculation (Coufort, Bouyer &
Liné 2005), drag reduction (van den Berg et al. 2003; Dutcher & Muller 2011),
heterogeneous versus homogenous catalysis (Sczechowski, Koval & Noble 1995) and
liquid–liquid mixing (Nemri, Charton & Climent 2016).

TC flow dynamics are typically characterized by the Reynolds number (Re), based
on the gap width, d, cylinder speed (primarily the inner cylinder speed), Ωiri, and
kinematic viscosity, ν. The Reynolds number is typically defined as

Re=Ωirid/ν. (1.1)

Another important parameter is the radius ratio, η, defined as the ratio of the inner
and outer cylinder radii, which captures the relative range of curvature of the fluid
streamlines (Dutcher & Muller 2007), and is fixed within the narrow gap regime in
the current study. Finally, the aspect ratio in this study is within the large aspect ratio
regime to avoid end effects.

TC cells offer the advantages of optical access, well-defined flows with limited
spatial and temporal variation of hydrodynamic conditions compared to other
geometries, and a rich cascade of different flow states that offer a range of
hydrodynamic conditions, both laminar and turbulent. These TC cell advantages
improve process performance in a variety of applications, including polymerization
(Kataoka et al. 1995), composite pigment synthesis (Kim et al. 2014), photocatalysis
(Sczechowski et al. 1995; Dutta & Ray 2004), food processing (Krintiras et al. 2016),
emulsion generation (Park et al. 2004), bioreactors (Haut et al. 2003; Ramezani
et al. 2015), extraction (Baier & Graham 2000; Ahmad et al. 2014) and medical
applications (Beaudoin & Jaffrin 1989). However, these process improvements have
largely only been demonstrated at the laboratory scale and there is limited commercial
application of TC cells. Additionally, there is still only a small operational parameter
space explored for multiphase TC flows. Due to mechanical complexity, injection of
a second fluid into the annulus during rotation has been traditionally accomplished
through single access points in a stationary outer cylinder or through the top of the
annulus, restricting mixing performance and analysis.

1.1.1. Mixing in Taylor–Couette flows
There have been several studies examining mixing and mass transfer (Ohmura

et al. 1997, 1998; Dusting & Balabani 2009; Nemri et al. 2013, 2014, 2016) as well
as momentum transport (van den Berg et al. 2003; Dubrulle et al. 2005; Eckhardt,
Grossmann & Lohse 2007) in TC flows. Enhanced mass transport in TC flow
is attributed to advective transport from the vortex structures with two different
transport mechanisms: inter- and intra-vortex transport. The dispersion coefficients are
several orders of magnitude higher than molecular diffusion coefficients, indicating
the importance of the controlled mixing available in TC flow. Different techniques
have been used to quantify mass transfer, including residence time distribution
measurements (Ohmura et al. 1998; Nemri et al. 2013, 2016) and laser induced
fluorescence (LIF) techniques (Dusting & Balabani 2009; Nemri et al. 2014, 2016) to
generate spatial and temporal profiles. While residence time distribution measurements,
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326 N. A. Wilkinson and C. S. Dutcher

consisting of measuring concentration time profiles at multiple individual locations
axially along the annulus, offer experimental simplicity, only a limited number of
vortices can be examined at one time and no spatial inhomogeneities can be observed.
In contrast, during LIF and similar techniques, the entire spatial concentration
profile can be captured over time, increasing the detail that can be observed. For
example, a study by Dusting & Balabani (2009) revealed different mixing processes
within different spatial regions inside a single vortex in LTV flow state. A similar
phenomenon is observed in the LWV structure, where a poorly mixed region in the
core of the vortex is observed (Nemri et al. 2014).

A few different models have been used to analyse the mass transport behaviour
in TC flows, summarized by Nemri and co-workers (2016). One of the first models
proposed by Kataoka & Takigawa (1981) treated each unitary vortex pair as a
well-mixed reactor; thus mass transport was modelled as intermixing between a series
of continuous stirred tank reactors, yielding a single axial mass transfer coefficient.
Since several studies have observed different regimes of mass transfer within a vortex,
a two-zone model has been used (Nemri et al. 2014) where the ‘unmixed core’ is
treated as a separate mass transfer zone. The model can be pictured as treating each
vortex as two well-mixed reactors, one inside the other, yielding two mass transfer
coefficients, one between adjacent vortices and one between zones inside individual
vortices. However, defining the spatial boundaries of these two zones inside the LWV
is non-trivial due to vortex axial motion.

While many studies of mixing and mass transfer in TC flows exist, previous studies
examined one or two flow states over a narrow range of Re. A variety of correlations
of mass transfer with Re have been determined (Ohmura et al. 1997, 1998; Dusting
& Balabani 2009; Nemri et al. 2014, 2016), but correlations are often only for single
flow state regimes and there tends to be little consensus in the results. Adding to
the intricacy, studies have reported multiple mass transfer coefficients for a given Re,
depending on the ramp protocol used to form the vortex structure (Nemri et al. 2016).

Mechanical restrictions from the TC geometry have constrained previous studies to
use single injection locations, either at the top of the annulus (Dusting & Balabani
2009) or through holes in the outer cylinder (Nemri et al. 2013, 2014, 2016). Often,
a capillary is inserted in the annulus from the external hole to inject in the centre
of a particular vortex (Nemri et al. 2016). While yielding precise control over
injection location, the presence of the capillary in the annulus can locally alter
the flow profile. Indeed, the prior studies (Nemri et al. 2014, 2016) take care to
minimize flow disturbances and show evidence for a different rate of mass transfer
between the inflow and outflow boundaries of the vortices. However, this interesting
asymmetric behaviour may be potentially due to the presence of a capillary through
only one of the flow boundaries. Therefore, mass transport without modification of
the annulus geometry is needed to confirm the different inflow and outflow mass
transfer behaviour.

Additionally, the single injection location restricts the amount of fluid that can be
injected without disrupting the vortex structure. The short pulse of mass at a single
point results in concentration profiles measured with LIF techniques being azimuthally
periodic, limiting temporal data resolution to once per vortex per rotation period and
mass transfer occurring in both the axial and azimuthal directions, complicating the
mass transfer analysis (Nemri et al. 2014). To address this, in order to determine a
diffusion coefficient, a volume averaged concentration per vortex is needed to remove
the azimuthal gradients present from the short, pulsed injections (Nemri et al. 2013,
2014, 2016). However, this averaging method convolutes azimuthal mass transport
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with axial mass transport and decreases the temporal resolution of the concentration
measurements. Modified injection mechanisms from multiple azimuthal positions at
a given axial position could be used to remove the azimuthal concentration gradient,
decreasing the complexity of measuring axial mass transport. In addition, expanded
fields of view can be used to study longer range mass transport behaviour.

1.2. Improved Taylor–Couette geometry for mixing studies
A new, modified TC cell design has been recently described and characterized
that incorporates 16 injection ports evenly distributed axially (10 cm spacing)
and azimuthally (90◦ spacing) into the inner cylinder, allowing for injection of
large volumes during co- and counter-rotation (Wilkinson & Dutcher 2017). Most
importantly, the modified design’s injection system is non-intrusive in the annulus,
unlike systems using capillaries or syringes inserted into the annulus. The flush ports
do not alter the flow profile, leaving the vortex structures undisturbed. Additionally,
since the injection ports are located along the inner cylinder, the injection ports are
moving azimuthally during injection, spatially distributing the injection fluid. This
design has been shown to not alter the flow profile compared to traditional TC cell
designs. Because the vortex structures are not disturbed by the injection mechanism
itself, this design is ideal for observation of multi-vortex mass transport.

This is the first study that explicitly considers vortex stability to large volume
injection and vortex stability during mass transport. Vortex stability is an important
parameter because the process applications of interest often require large volumes of
solution to be mixed. If the vortex structure is lost due to injection, the mass transfer
process changes. When vortices reform, dislocations or a new vortex state may form,
altering the mass transport. Even when a vortex flow state is stable to injections, the
resulting axial flow can cause axial motion of the vortices that result in bulk transport
of mass, rather than inter-vortex transport, further complicating mass transfer analysis.

In the present study, large volume injections (up to 13 % of annulus volume)
were explored to study the stability of four different vortex structures (LTV, LWV,
TWV, TTV), spanning two orders of magnitude of Re. Injection conditions vary in
both total amount and rate of injection. Dispersion coefficients were experimentally
measured for the vortex structures under stable injection conditions tracking the
temporal evolution of concentration within more than seven individual vortices. A
non-dimensional stability criterion was then generated to define the stable operational
space for injection conditions with different vortex structures.

2. Materials and methods
2.1. Equipment and materials

The Taylor–Couette cell used here is a modified TC cell design that incorporates
16 injection ports along the inner cylinder for non-intrusive injection of one fluid
into another during operation. The complete details of the recent design have been
described and characterized elsewhere (Wilkinson & Dutcher 2017). The inner cylinder
is anodized aluminium (di = 13.54 ± 0.01 cm) and the outer cylinder is borosilicate
glass (do = 15.20 ± 0.01 cm). The annulus gap axial height is 51 cm and the gap
radial width is 0.84 cm. The radius ratio is 0.89 and the gap to height (aspect) ratio
is 60. The working volume of fluid within the annulus is ∼1.8 l. The top and bottom
of the annulus are fixed to the outer cylinders and are stationary in the experiments
done here. Further details and schematics on the end caps can be found in an earlier
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publication (Wilkinson & Dutcher 2017, figure 2). Additionally, fluid is removed
through the perforations in the top cap of the cylinder during injections.

Each cylinder is driven by a stepper motor (Applied Motion Products HT34-497
2 phase stepper motor with a STAC5-S-E120 controller) with a 7 : 1 gear reducer.
The minimum speed change of each cylinder is 385.8 µHz. Each injection port has
a check valve with a 10 psi crack pressure and a flow restrictor to normalize flow
between injection ports. This injection assembly provides consistent injections and the
variation between injection rows is less than 7 % (Wilkinson & Dutcher 2017).

A Basler Ace camera (1280 × 1024, 50 frames per second) is used for video
capture with two different light sources. For vortex stability experiments, a LED
light strip, equipped with a diffuser (Metaphase 19 in. Exo2 Light), aligned axially
with the cell, provides consistent lighting along the entire height of the annulus. The
LED orientation provides a view of the θ–z plane of the vortex. For mass transfer
experiments, a laser diode is used (Thorlabs, 450 nm, 1600 mW max) along with a
laser light sheet generator optic to create a light sheet that is oriented normal to the
surface of the inner cylinder. This orientation provides a view of the r–z plane of the
vortex.

All water used was distilled water. Kalliroscope rheoscopic fluid was purchased
from VWR and used as received. The density of the 9 : 1 (by volume) distilled
water : Kalliroscope solution used had a measured density of 994.6 ± 1.1 kg m−3.
The viscosity was measured to be 1.006× 10−6 m2 s−1. The density of the distilled
water used here was 995.1 ± 0.6 kg m−3 and the density of stock Kalliroscope was
measured to be 996.8± 1.6 kg m−3.

2.2. Injection flow rate calibration
The flow rates explored during the initial device characterization (Wilkinson &
Dutcher 2017) only reached 30 psi drive pressures, reaching 5.9 g s−1 flow rates
with distilled water. Higher drive pressures were explored here and the flow rates
from these pressures were measured using three solutions: (i) distilled water, (ii) 9 : 1
distilled water : Kalliroscope and (iii) undiluted Kalliroscope solutions. All solutions
were found to have the same injection flow rate for a given drive pressure. The
calibration to higher drive pressures was performed following the same calibration
process for lower drive pressures described in detail previously (Wilkinson &
Dutcher 2017). The inner cylinder was removed from the outer cylinder and the
three-dimensional printed contour match covers were removed to aid in sample
collection. Scintillation vials were attached to the end of each injection port and fluid
sample masses were measured for a variety of injection times at the desired injection
pressure. Figure 1(a) shows the individual flow rate calibrations with 95 % confidence
intervals. Figure 1(b) shows the total injection mass flow rate as a function of drive
pressure. All experiments reported here were conducted within the calibrated range
of 20–60 psi.

2.3. Vortex stability experiments
For experiments assessing vortex stability to radial injection, the annulus was filled
with a 9:1 water : Kalliroscope solution and the same mixture was injected through
all of the inner cylinder injection ports. Injection of like fluids eliminates gradients
in fluid properties, such as Kalliroscope concentration. The desired vortex state
was established in the annulus prior to injection. Care was taken to eliminate
any discontinuities, also known as dislocations (Dutcher & Muller 2009), in the
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FIGURE 1. (Colour online) Injection mass flow rate calibration with injection pressure.
(a) Individual calibration experiments for each drive pressure for both distilled water and
Kalliroscope solutions. The red symbols correspond to Kalliroscope solutions and the blue
symbols correspond to distilled water solutions. The solid lines represent the best fit linear
regression used to quantify the flow rates shown in (b). The dashed lines are the 95 %
confidence intervals for each linear regression. (b) The total mass flow rate through the
injection system as a function of drive pressure for various pressures used to calculate the
injected mass in further experiments. The equation for the regression is flow rate = 6.79
ln(drive pressure/1 psi) 17.23, with units as shown in (b).
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FIGURE 2. (Colour online) (a) Concentration profiles for several vortices of repeated
20 g (1.1 % annulus) Kalliroscope solution injections in the TTV structure. (b) Final
average Kalliroscope concentration calibration curve generated from the repeated 20 g
(1.1 % annulus) Kalliroscope injection used to correct the linear scaling. The solid blue
line corresponds to y= x. The dashed black line is the best fit quadratic calibration curve
used to correct the linearly scaled concentration data.

vortex structure. These discontinuities give the appearance of two vortices merging
and separating as they rotate and are an artefact that should be avoided when
doing stability and mass transfer studies. For each vortex structure, a motor control
script was created to control the inner cylinder speed to create the vortex structure
reproducibly. In particular for the laminar wavy states, higher Re flow states were
first established, and then the inner cylinder motor speed was decreased. The motor

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

59
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.596


330 N. A. Wilkinson and C. S. Dutcher

scripts were used to generate the same vortex structures observed from equilibrium
ramps (Dutcher & Muller 2009) quickly and consistently. Similar techniques of motor
ramping scripts for fast and consistent vortex generation have been used previously
(Nemri et al. 2013). Once the vortex structure was established, a video was taken,
starting 30 s prior to injection, of the entire length of the annulus to capture the
behaviour of all vortices. The resultant video was used to generate the space–time
plots and subsequent Fourier transforms for analysis and characterization of flow
stabilities, in a process described previously (Dutcher & Muller 2009; Wilkinson &
Dutcher 2017).

2.4. Mass transfer experiments
For experiments measuring vortex mass transfer, the annulus was loaded with
distilled water and undiluted Kalliroscope solution was injected through all of the
injection ports into the annulus. While Kalliroscope contains particulates, making
measurement of molecular diffusion impossible, advection is far more important than
diffusion in TC flow since the measured dispersion coefficients are many orders of
magnitude greater than molecular diffusion coefficients. Similar to the vortex stability
experiments, the desired flow state was initially established prior to injection. Once
the motor control script was completed, a video of the annulus between the fourth
and third injection port rows was started 30 s prior to injection. The field of view
was restricted to that between two ports to increase spatial resolution. For the LTV
and TTV vortex states, the boundaries of the vortices were determined by plotting
the pixel intensity profile in the axial direction. The pixel intensity drops at each
vortex boundary and could be used to identify the boundary locations. An example
image showing vortex locations is shown in supplementary figure S1 available online
at https://doi.org/10.1017/jfm.2018.596. However, this technique does not work for
the LWV and TWV flow states as the boundary moves axially and the decrease in
pixel intensity is no longer present. Instead, the midpoint of each azimuthal wave was
identified visually, and the average axial location was used. Time-dependent spatial
variations in Kalliroscope concentration after injection was used to determine the
mass transport coefficients, described below.

2.5. Intensity to concentration calibration
The concentration of Kalliroscope is measured by quantifying the intensity of light
locally reflected by the Kalliroscope solids in solution. The calibration used here was
to check the validity of linear scaling over the large range of Kalliroscope used in
this study. Additionally, the calibration was done in the TC cell under experimentally
relevant conditions to account for scattering from Kalliroscope out of the plane of
the light sheet. A shortened explanation of the method is presented here, with the
expanded version included in the supplementary information. The pixel intensity of
each vortex area is averaged, producing a single concentration per vortex. A linear
scaling is initially used, but a quadratic equation is used to correct for multiple
scattering due to the relatively large concentrations of Kalliroscope. The intensity is
first linearly scaled to concentration per vortex using the following equation:

C=
I − Io

If − Io
×

m
Vo +m/ρ

, (2.1)

where C is the concentration of Kalliroscope solution (g l−1), I is the instantaneous
average pixel intensity, Io is the zero concentration (pre-injection) intensity, If is the
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final concentration intensity, m is the mass of Kalliroscope injected (g) and ρ is the
density of the Kalliroscope solution, which was measured to be 994.6± 1.1 (kg m−3).
Vo is the initial volume of distilled water in the annulus, equal to 1.8 l.

Because relatively large volume injections are explored here, the intensity to
concentration profile is not necessarily linear with concentration. To account for
this nonlinearity an injection of 20 g Kalliroscope in the TTV structure (Re= 6510,
vcylinder= 12 cm s−1) was repeated a total of five times with 3 min of time in between
to allow for the concentrations in each vortex to equilibrate, shown in figure 2(a). The
different coloured lines in figure 2(a) are the different individual vortices between the
injection port rows 3 and 4. The concentration in each vortex at the end of the 3 min
equilibration time between injections is compared to the expected concentration in the
annulus. A regression was then performed to convert the linearly scaled concentration
to the expected concentration, shown in figure 2(b), resulting in the following best fit
quadratic scaling:

Cscaled =−0.003613C2
+ 1.108C, (2.2)

where C is the linearly scaled concentration of Kalliroscope from above and Cscaled
is the properly scaled Kalliroscope concentration (g l−1), removing the effect of
secondary scattering. The results of this scaling, shown in figure 2(b), primarily only
affect Kalliroscope concentrations above 35 g l−1, where deviation from the 1 : 1
scaling is apparent. The calibration at high loadings is important in the lower Re
vortex structures, such as the TWV, where the concentration of Kalliroscope in the
vortices near the injection ports can be high.

2.5.1. Mass transfer coefficient analysis
Once time profiles of Kalliroscope concentration per vortex were constructed,

regression of the intermixing coefficient can begin. An analysis procedure like that
of Ohmura and co-workers (1997) is used. The key difference here is that the
analysis is per vortex, rather than per unitary vortex pair, as in Ohmura et al. (1997).
For the analysis, each vortex is treated as an individual well-mixed reactor. The
spatial concentration of Kalliroscope in each vortex was averaged to create a single
concentration per vortex for each frame. Therefore, the analysis only captures mass
transport between vortices across the interfacial area between adjacent vortices. The
mass balance for the nth vortex is defined by

Vn
∂Cn

∂t
= kS(Cn−1 − 2Cn +Cn+1), (2.3)

where Cn is the concentration of the nth vortex (the vortex of interest) and subscripts
n+ 1 and n− 1 correspond to adjacent vortices. Vn is the volume of the nth vortex
[π(r2

o − r2
i )Ln], S is the interfacial area between vortices [π(r2

o − r2
i )] and k is the

intermixing coefficient.
Nemri et al. (2014) observed a difference in the mass transfer at the inflow and

outflow boundaries in the LTV and LWV flow states. A modification was made to
(2.3) to test for different behaviour at the inflow ‘in’ and outflow ‘out’ boundaries,
resulting in the following:

Vn
∂Cn

∂t
= kinS(Cn−1 −Cn)− koutS(Cn −Cn+1). (2.4)

Equation (2.4) is used for every other vortex and kin and kout are switched for the
remaining vortices.
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To determine the best fit k for each experiment, the fsolve function in Matlab was
used to minimize the mean square error between the predicted vortex concentrations
over time and the measured values. The experimentally measured concentrations in
the vortices located just above the fourth row injection port and the vortex located
just below the third row injection port were used as boundary conditions in the
determination of k.

3. Results and discussion
3.1. Mass transfer

First, the intermixing coefficients in (2.3) and (2.4) were determined. Because stock
Kalliroscope solution is injected into distilled water for these experiments, the solution
properties, and thus Re, change slightly over the course of the experiment. The Re
used to define each experiment is based on the final solution conditions and is
thus the lowest value over the course of each experiment. As the 16 injection ports
are located along the inner cylinder, there are minimal azimuthal concentration
gradients present, making the primary concentration gradient in the axial direction.
The azimuthal gradient is only observable in the lowest vortex state, the LTV, but
the LTV is so weak that even the 50 g (2.7 % by volume of annulus ‘% annulus’,
16 s) injection at 20 psi (3.1 g s−1 0.32 m s−1) of stock Kalliroscope into distilled
water was enough to disrupt the vortex structure. The disruption comes from both the
radial injection, discussed later, and the slight density difference between the stock
Kalliroscope solution and distilled water. Future studies could potentially increase
the viscosity of the solutions to circumvent the issues observed here. An example
of this disruption can be seen in figure 3, where between 31 and 50 s, there is a
stream of Kalliroscope that falls from the injection ports at the top of the images.
Figure 3 also shows an azimuthal concentration gradient, as denoted by the change in
intensity between the panels showing 31, 35 and 40 s. Because of this disruption of
the vortex structure, an intermixing coefficient was not experimentally measured for
the LTV. Instead, the regressed trend of the intermixing coefficient was extrapolated
to determine a value for the LTV structure. Increasing the viscosity of the fluid in the
annulus could potentially stabilize the vortex, but is beyond the scope of the current
study.

Each injection value (20 (1.1 % annulus), 50 (2.7 % annulus), and 100 g (5.5 %
annulus)) at 20 psi (3.1 g s−1, 0.32 m s−1) was explored at a single Re value for
each vortex structure (LTV, LWV, TWV and TTV) and the variation of the regressed
intermixing coefficients with injected mass was less than 10 %. This variation is within
the variation observed from replicates at Re= 2083, vcylinder = 25 cm s−1 (TWV) and
Re = 6510, vcylinder (surface velocity of the inner cylinder) =77 cm s−1, Ωcylinder =

1.8 Hz (TTV). Because all the injection mass values produced the same results, only
50 g (2.7 % annulus) injections were conducted at the remaining Re values for each
vortex type at 20 psi (3.1 g s−1, 0.32 m s−1) and for all higher injection pressures (30
(5.9 g s−1, 0.58 m s−1) and 60 psi (10.6 g s−1, 1.1 m s−1)). In the results presented
the intermixing coefficients are all 50 g (2.7 % annulus) injections (versus 20 (1.1 %
annulus) and 100 g (5.5 % annulus) injections). The 50 g (2.7 % annulus) injection
gave the best experimental lighting conditions in terms of being able to resolve small
concentrations during the mass transfer while still being able to capture the locally
high concentrations in the vortex located at the injection port.

Mass transfer experiments were conducted at two different Re values for the LWV
and TWV states, and three Re values for the TTV wave state. For each wave state
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FIGURE 3. (Colour online) Mass transfer results for the LTV structure (Re=146, vcylinder=

1.7 cm s−1, Ωcylinder = 0.041 Hz) for a 20 psi (3.1 g s−1, 0.32 m s−1) 50 g injection
(2.7 % annulus, tinject = 16 s). Snapshots of the annulus between injection port rows 3 and
4 after injection illustrating the spatial concentration evolution. The numbers at the top of
panel represent the dimensionless time, t/τν (τν = d2/ν), of each panel. The red arrows
indicate the axial location of the injection port rows 3 and 4, which are 10 cm apart.

tested, one Re value was near the lower edge and the other was near the higher edge
of the Re stability range in which the vortex was the equilibrium wave state and easily
formed. For the TTV state the highest value was near the upper limit of the motor
speed sustainable by the current system. The choices of Re were made to capture the
effect of changing Re within the same vortex state, and to compare the effect of Re
between vortices.

It should be noted that the applicability of the modelling of mass transport as
a series of well-mixed reactors in Taylor–Couette vortex flow has been discussed
recently and it was suggested that it is an insufficient representation of the actual
process due to the observation of an ‘unmixed core’. Examples of the mass transfer
results are shown in figures 3–6, for the flow states LTV, LWV, TWV and TTV,
respectively. Expanded graphs of these experiments are shown in supplementary
figures S2–S4. However, the ‘unmixed core’ is only observed here for the LWV flow
state, as seen in figure 4 (t/τν = 0.57–0.71 (40–50 s), where τν = d2/ν) where the
outline of the vortices can be seen with regions of lower Kalliroscope concentration
at the centre. There is no obvious ‘unmixed core’ in the LTV flow state (figure 3)
possibly due to the disruption of the flow state itself upon injection. With the addition
of turbulence to the flow states, the ‘unmixed core’ is no longer observed, as seen
in figures 5 and 6. Turbulence decreases local concentration gradients, so the loss
of the ‘unmixed core’ is not surprising for these structures. Others have suggested
a two-zone approach, where an inner core is separated from the outer part of the
vortex, but recent publications spatially average concentrations over the whole vortex,
even when the ‘unmixed core’ is present (Nemri et al. 2014, 2016).

To maintain consistency with previous studies and between the turbulent and
laminar wavy vortex flow states, the well-mixed model was applied to the LWV
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FIGURE 4. (Colour online) Mass transfer results for the LWV structure (Re = 615,
vcylinder = 7.2 cm s−1, Ωcylinder = 0.17 Hz) for a 20 psi (3.1 g s−1, 0.32 m s−1) 50 g
injection (2.7 % annulus, tinject = 16 s). (a) Snapshots (0.75 cm wide) of the annulus
between injection port rows 3 and 4 after injection illustrating the spatial concentration
evolution. The numbers at the top of the panel represent the dimensionless time, t/τν , of
each image. The red arrows indicate the axial location of the injection port rows 3 and 4,
which are 10 cm apart. (b) Temporal profile of the concentration in several vortices (solid
lines) and the model (dashed lines) using the best fit intermixing coefficient. The y-axis is
normalized by the equilibrium concentration of Kalliroscope, 25 g l−1, and the x-axis is
dimensionless time, time divided by the momentum time scale (τν = 70.139 s). The black
(vortex 1) and grey (vortex 8) lines correspond to the outermost vortices that are used as
the input boundary conditions in the model regression. The model is regressed over the
entire time profile (extending to t/τν = 8.6 (600 s)), but only the shorter time response is
shown here to better show the differences between vortex structures.

flow state, despite its drawbacks. However, the series of well-mixed reactors model
is more applicable here, as there is only an axial concentration gradient present due
to the azimuthal distribution of injection ports along the inner cylinder. Previous
studies have all had single injection locations that injected a pulse of fluid, resulting
in both an azimuthal and an axial concentration gradient. Even with the drawbacks
of the model, the predictions match well with the experimentally measured vortex
concentration profile. Additionally, this is the first study to introduce injection fluid
non-intrusively (with flush mounted ports) and distributed throughout the annulus.
In contrast to using a capillary inserted down through the annulus to inject fluid,
here, the geometry of the annulus is undisturbed and the stability of the flow field to
injection is known.

Overall, figures 3–6 show that as Re increases, inter-vortex mass transfer also
increases, shown both qualitatively in the r–z planes and quantitatively in the
concentration profiles. As Re increases, the concentration profiles collapse to the
final value at earlier times. Likewise, the axial space between injection port rows
is illuminated with Kalliroscope faster in time. The dependence of the intermixing
coefficient, k, with Re is shown in figure 7(a). The dashed line is a regressed, best
fit quadratic equation, k = 9.97 × 10−11Re2

+ 1.12 × 10−6Re + 2.32 × 10−4, where
k has units of m s−1. The intermixing coefficient can be linearly converted to an
effective dispersion coefficient by the following equation: D∗z = 2λk (Ohmura et al.
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FIGURE 5. (Colour online) Injection mass transfer results for the TWV structure (Re =
2083, vcylinder = 25 cm s−1, Ωcylinder = 0.59 Hz) for a 20 psi (3.1 g s−1, 0.32 m s−1) 50 g
injection (2.7 % annulus, tinject = 16 s). (a) Snapshots (0.75 cm wide) of the annulus
between injection port rows 3 and 4 after injection illustrating the spatial concentration
evolution. The numbers at the top of the panel represent the dimensionless time, t/τν , of
each image. The red arrows indicate the axial location of the injection port rows 3 and 4,
which are 10 cm apart. (b) Temporal profile of the concentration in several vortices (solid
lines) and the model (dashed lines) using the best fit intermixing coefficient. The y-axis is
normalized by the equilibrium concentration of Kalliroscope, 25 g l−1, and the x-axis is
dimensionless time, time divided by the momentum time scale (τν = 70.139 s). The black
(vortex 1) and grey (vortex 8) lines correspond to the outermost vortices that are used as
the input boundary conditions in the model regression. The model is regressed over the
entire time profile (extending to t/τν = 8.6 (600 s)), but only the shorter time response is
shown here to better show the differences between vortex structures.

1997) where λ is the axial wavelength and D∗z is the effective dispersion coefficient.
The axial wavelength was determined by averaging all the vortex axial heights
used during the intermixing coefficient regression. The trend of effective dispersion
coefficient with Re is shown in figure 7(b). The axial wavelengths for all of the
vortex flow states tested here are very similar, ∼1 cm, therefore D∗z has a similar
trend to k with a different magnitude. The dashed line in figure 7(b) is also a
quadratic equation, D∗z = 1.24 × 10−12Re2

+ 3.11 × 10−8Re + 6.22 × 10−6, where D∗z
has units of m2 s−1. A quadratic fit was chosen as it was the simplest fit that still
maintained an R2> 0.9. Traditionally, a power law fit is used for fitting mass transport
data in TC flow for individual flow states. The best power law fit for the data here
is D∗z = 1.73 × 10−7Re0.85, which has R2

= 0.87. While the correlation coefficient
is close to a polynomial fit, the trend of the data is not captured well, as seen in
supplementary figure S5. The dispersion coefficient values determined here are similar
to previous studies, which also report dispersion coefficients ranging from 10−5 to
10−4 cm2 s−1 despite using different TC cells and the use of Kalliroscope particles
rather than fluorescent dyes. The dispersion coefficients are similar because of the
insignificance of molecular diffusion in these flow structures. Molecular diffusion of
the dyes is typically six orders of magnitude smaller than the regressed dispersion
coefficients.

The smoothly increasing mass transfer with increasing Re across multiple vortex
wave states was also seen by Nemri et al. (2013, 2016). The main difference is in
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FIGURE 6. (Colour online) Mass transfer results for the TTV structure (Re = 10 090,
vcylinder = 120 cm s−1, Ωcylinder = 2.8 Hz) for a 20 psi (3.1 g s−1, 0.32 m s−1) 50 g
injection (2.7 % annulus, tinject = 16 s). (a) Snapshots (0.75 cm wide) of the annulus
between injection port rows 3 and 4 after injection illustrating the spatial concentration
evolution. The numbers at the top of the panel represent the dimensionless time, t/τν , of
each image. The red arrows indicate the axial location of the injection port rows 3 and 4,
which are 10 cm apart. (b) Temporal profile of the concentration in several vortices (solid
lines) and the model (dashed lines) using the best fit intermixing coefficient. The y-axis is
normalized by the equilibrium concentration of Kalliroscope, 25 g l−1, and the x-axis is
dimensionless time, time divided by the momentum time scale (τν = 70.139 s). The black
(vortex 1) and grey (vortex 9) lines correspond to the outermost vortices that are used as
the input boundary conditions in the model regression. The model is regressed over the
entire time profile (extending to t/τν = 8.6 (600 s)), but only the shorter time response is
shown here to better show the differences between vortex structures.

the large Re regime, where they observe a plateau of dispersion coefficient in the TTV
vortex state, whereas the work here does not observe any plateau, even at Re∼ 104.
This difference in high Re behaviour is potentially due to the presence of the injection
capillary inside the annulus in previous studies that altered the mass transfer in the
TTV vortex state. Additionally, the quadratic fit is across the entire Re range and is
comparable to the plethora of different power law regressions for individual vortex
states, which have power law exponents ranging from 0.8 to 2.8, as summarized by
Nemri et al. (2016).

Since figure 7(a,b) shows that there is no systematic effect of increasing drive
pressure, a single value of the effective dispersion coefficient was used for all
pressures at a given Re for the analysis of vortex stability discussed in the following
section. The mass transfer behaviour near the vortex stability boundaries was not
explored here because of concerns about the vortex stability to radial injection. Near
the critical Re for transitions between vortices, the injection could locally or globally
change the vortex state, altering the mass transport behaviour. Additionally, the work
by Nemri et al. (2013) shows a smoothly increasing trend of dispersion coefficient
with Re across multiple vortex states.

Previous studies have seen evidence that there is a difference in inter-vortex mass
transfer at the inflow and outflow vortex boundaries. However, these studies used
injection from a capillary that protrudes into the vortex through one boundary, but
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FIGURE 7. (Colour online) (a) Intermixing coefficient for all injection pressures and
vortex flow states explored. All values have 50 g injections (2.7 % annulus, 4.7 s< tinject <
16 s). The black dashed line corresponds to the quadratic best fit, with an R2 of 0.92.
(b) Imaginary mass transfer coefficient for all injection pressures and vortex flow states
explored. The effective dispersion coefficient trend is similar to the intermixing coefficient
because the axial wavelengths for all vortices were ∼1 cm. All values are from 50 g
injections (2.7 % annulus, 4.7 s< tinject < 16 s). The black dashed line corresponds to the
quadratic best fit, with an R2 of 0.92. The vertical dashed lines in both (a) and (b) indicate
the bounds of the various vortex structures.

not the other. The asymmetry in the injection method may cause the asymmetry
in the previous results. Moreover, mass transfer analysis is also typically only
performed on two or three vortices. Here, 7–10 vortices are analysed with high
speed (50 frames per second) measurement recording and intermixing coefficients
are regressed simultaneously. From the data collected using this new TC cell design,
there is no evidence of a difference in the intermixing coefficients at the inflow and
outflow boundaries. Regression with two intermixing coefficients did not reduce the
mean square error of the fit, nor did it change the appearance of the fit. Therefore,
it appears that the apparent difference in inflow and outflow mass transfer is a result
of specific injection geometries, rather than the vortex dynamics itself.

3.2. Vortex stability to injection
The mixing of two fluids is important to many different processes, often involving
the mixing of large volumes of one fluid into another. TC cells have been shown to
improve the performance of many mixing processes from bioreactors and chemical
synthesis to photocatalysis. It is therefore important to know the limitations of each
vortex type to fluid injection for the application of Taylor–Couette flows to mixing
applications. Previous studies have focused on injections with a small amount mass
of a tracer fluid when measuring mass transfer in Taylor–Couette cells reportedly
not to disrupt the vortex structures with the injection. However, there is no evidence
presented to quantify the extent of lack of disruption. Here, large volumes of fluid are
injected to test the stability limits of each vortex type and a dimensionless number
criterion is proposed to capture the governing stability behaviour and predict future
process feasibility.

As before, four different vortex structures were examined (LTV, LWV, TWV
and TTV) with turbulent/laminar pairs for each overall vortex type (Taylor and
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wavy vortex). The same Re values were used for vortex stability measurements as
were used for the mass transfer experiments, so that the experimentally measured
effective dispersion coefficient could be used, except for the LTV, which used the
predicted value from the regression of D∗z . For each experiment, the injection starts at
t/τν = 0.43 (30 s) after the start of recording and the behaviour of the vortex after the
beginning of the injection is recorded for t/τν = 7.6 (530 s). The Fourier transforms,
both spatial and temporal, of each space–time plot were used to determine global
vortex stability. The vortex was determined to be unstable to injection if the Fourier
transform temporarily lost a dominant frequency during the injection. For all cases,
after injection stops, the dominant frequencies eventually return as the initial vortex
is the equilibrium state at the established Re.

In these experiments exploring vortex stability, the fluid injected is identical to
the fluid already in the annulus, removing any effects of changing fluid properties.
Supplementary figure S6 and figure 8 show the behaviour of the LTV (Re = 146,
vcylinder = 1.7 cm s−1) to the slowest, smallest (20 psi (3.1 g s−1, 0.32 m s−1), 20 g
(1.1 % annulus, tinject = 6.4 s)) and fastest, largest (60 psi (10.6 g s−1 1.1 m s−1),
100 g (5.5 % annulus, tinject = 9.5 s)) injection, respectively. The LTV is the least
stable vortex structure tested here, which is expected as it is also at the lowest Re
tested. While globally stable at the slowest and smallest injection (20 psi (3.1 g s−1,
0.32 m s−1), 20 g (1.1 % annulus, tinject = 6.4 s)), there are perturbations present
that persist over the course of the whole experiment. The perturbations, seen in
supplementary figure S6, are most likely due to the upward axial flow from the
injection, as the perturbations are only present in the upper portion of the annulus
and become progressively more pronounced at each higher injection port row. There
is a vertical axial flow during injection because the only fluid outlet from the annulus
is through the top cap. The vertical axial flow triggers an oscillation in the LTV in
the upper portion of the annulus that is never fully recovered from within the time
scales measured here. There is no apparent frequency of this oscillation as the pattern
is different between each injection port row.

Vortex instability can be seen in figure 8, which shows the highest injection speed
and amount (60 psi (10.6 g s−1 1.1 m s−1), 100 g (5.5 % annulus, tinject = 9.5 s)). At
this injection condition, the vortex structure is temporarily lost during injection, as
denoted by the loss of the wavenumber (spatial frequency) at kd ∼ 1 (k∼ 1.2 cm−1).
The LTV’s instability to axial flow is also apparent in figure 8, as the vortex structure
is substantially more disrupted at the top than it is at the bottom of the annulus. When
the LTV does recover, the wavenumber (spatial frequency) is lower, indicative of wider
vortices. This decrease of wavenumber (spatial frequency) was also observed during
initial characterization of this device with the TTV structure (Wilkinson & Dutcher
2017), and is due to a loss of one or more vortices out of the top of the annulus. The
vortices move upward with the axial flow and leave the annulus and are not reformed.
The loss of these vortices causes an axial expansion of the remaining vortices to fill
the annulus height.

Figures 9 and 10 show the behaviour of the lower Re value of the LWV structure
(Re = 270, vcylinder = 3.2 cm s−1, Ωcylinder = 0.076 Hz) at the two extremes of
the injection conditions. Figure 9 shows stable behaviour at 20 psi (3.1 g s−1,
0.32 m s−1), 20 g (1.1 % annulus, tinject = 6.4 s). The injection does cause a small
local perturbation in the wave structure that recovers after ∼t/τν = 2.1 (∼150 s).
Figure 10 illustrates the interesting unstable behaviour of the LWV, where the
high injection mass and speed (60 psi (10.6 g s−1, 1.1 m s−1), 100 g (5.5 % annulus,
tinject= 9.5 s)) overwhelm the vortex structure. The space–time plots show a prolonged
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FIGURE 8. (Colour online) Space–time and corresponding Fourier transform plots for LTV
(Re=146, vcylinder=1.7 cm s−1, Ωcylinder=0.041 Hz) 60 psi (10.6 g s−1, 1.1 m s−1) 100 g
(5.5 % annulus, tinject = 9.5 s), showing unstable behaviour. The depicted view is of the
entire annulus height. The axial locations of the injection port rows are z/d = 10, 21,
33 and 45 (8, 18, 28 and 38 cm). The periodic grey spots are the injection port covers.
In the top row, all ports are visible, and in the second row, every other port is visible.
(a) Space–time plot showing the entire time response of the vortex structure as a function
of dimensionless time. The vertical red dashed lines show the time range that panel (b)
shows. (b) Space–time plot showing the short time response of the vortex during and
after injection as a function of dimensionless time. The vertical red dashed lines enclose
the injection duration. (c) Spatial Fourier transform contour for the entire time domain.
The colour represents the log of the magnitude of the complex modulus of the Fourier
transform. (d) Temporal Fourier transform contour for the entire time domain.
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period of chaotic structure, corresponding to the change in both the temporal and
spatial Fourier spectra. Interestingly, at t/τν = 0.71 (∼50 s), there is simultaneously
both upward and downward vertical motions of the remaining vortices in figure 10.
While the LWV does eventually fully reform, there is an increase in the wavenumber
(spatial frequency) as there are more vortices after injection than before injection.
Additionally, even at t/τν = 7.6 (530 s) from injection, the LWV has not completely
recovered, as demonstrated by the perturbations in the wave structure.

Supplementary figures S7, S8 and figure 11 show the behaviour of the same LWV
structure but at a higher Re (Re = 615, vcylinder = 7.2 cm s−1, Ωcylinder = 0.17 Hz).
Supplementary figure S7 shows the stable response of the vortex at 20 g (1.1 %
annulus, tinject = 3.4 s) and 30 psi (5.9 g s−1, 0.58 m s−1). Despite the higher drive
pressure than that used in figure 9, the LWV shows fewer effects due to injection.
Supplementary figure S8 and figure 11 show two different unstable responses of the
high Re LWV at Re = 615, vcylinder = 7.2 cm s−1, Ωcylinder = 0.17 Hz. Supplementary
figure S8 shows the response to a 60 psi (10.6 g s−1, 1.1 m s−1), 100 g (5.5 %
annulus, tinject= 9.5 s) injection. Figure 11 shows the response to a 60 psi (10.6 g s−1,
1.1 m s−1), 240 g (13 % annulus, tinject = 22 s) injection. There is a loss of two
vortex pairs out of the top of the annulus, causing the decrease in wavenumber
(spatial frequency) and a perturbation in the wave structure that persists for t/τν = 3.1
(∼220 s) after the start of injection. The recovery time of the LWV is less at a
higher Re, as seen in figure 11, compared to the recovery time at lower Re, as
seen in figure 10. The reduced effect of injection as Re increases indicates that the
increased effective dispersion coefficient stabilizes the vortex to injection as it is now
better able to transport the injected mass through the vortex structure.

Overall, as Re increases the vortices become more stable to injection mass and
pressure, both within the same vortex structure type (e.g. low versus high Re LWV)
and between vortex structures (e.g. TWV and TTV). Vortex stability is dependent
on both injection mass and pressure, as vortices can be stable to 100 g (5.5 %
annulus, tinject = 32 s) injections at 20 psi (3.1 g s−1, 0.32 m s−1) but not at 60 psi
(10.6 g s−1, 1.1 m s−1) and likewise stable to 60 psi (10.6 g s−1, 1.1 m s−1) at 50 g
(2.7 % annulus, tinject = 4.7 s) injection but not at 100 g (5.5 % annulus, tinject = 9.5 s)
injection. Therefore, both injection mass and pressure act to destabilize the vortices.
Injection mass and pressure increase the amount of mass introduced into the vortex
at the injection port location, which can only be ultimately removed from the top
edge of the annulus. The injected mass then must be transferred between vortices, all
the vortices must move upward, or a combination of the two. The inter-vortex mass
transfer, therefore, acts to stabilize the vortices.

The time scale associated with the destabilizing injection can be described as

τinject(s)= S/tinjectv
2
inject, (3.1)

where S is the interfacial area between vortices [π(r2
o − r2

i )]. This interfacial area was
chosen as it is the area that the mass injected must cross to be transported to the exit
of the annulus. The injection time (tinject) and average linear velocity of the injected
fluid (vinject), are found from

vinject (m s−1)=
Injection rate (g s−1)

ρ(g m−3) Injection area (m2)
(3.2)

and

tinject (s)=
Injection mass (g)

Injection rate (g s−1)
. (3.3)
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FIGURE 9. (Colour online) Space–time and corresponding Fourier transform plots for
LWV (Re= 270, vcylinder= 3.2 cm s−1, Ωcylinder= 0.076 Hz) 20 psi (3.1 g s−1, 0.32 m s−1)
20 g (1.1 % annulus, tinject = 6.4 s), showing stable behaviour. The depicted view is
between injection port rows 2–4. The axial locations of the injection port rows are z/d=
1.2, 13 and 25 (1, 11 and 21 cm). (a) Space–time plot showing the entire time response
of the vortex structure as a function of dimensionless time. The vertical red dashed lines
show the time range that panel (b) shows. (b) Space–time plot showing the short time
response of the vortex during and after injection as a function of dimensionless time.
The vertical red dashed lines enclose the injection duration. (c) Spatial Fourier transform
contour for the entire time domain. (d) Temporal Fourier transform contour for the entire
time domain. The colour represents the log of the magnitude of the complex modulus of
the FFT.
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FIGURE 10. (Colour online) Space–time and corresponding Fourier transform plots for
LWV (Re= 270, vcylinder= 3.2 cm s−1, Ωcylinder= 0.076 Hz) 60 psi (10.6 g s−1, 1.1 m s−1)
100 g (5.5 % annulus, tinject = 9.5 s), showing unstable behaviour. The depicted view is
between injection port rows 2–4. The axial locations of the injection port rows are z/d=
1.2, 13 and 25 (1, 11 and 21 cm). (a) Space–time plot showing the entire time response
of the vortex structure as a function of dimensionless time. The vertical red dashed lines
show the time range that panel (b) shows. (b) Space–time plot showing the short time
response of the vortex during and after injection as a function of dimensionless time.
The vertical red dashed lines enclose the injection duration. (c) Spatial Fourier transform
contour for the entire time domain. (d) Temporal Fourier transform contour for the entire
time domain. The colour represents the log of the magnitude of the complex modulus of
the FFT.
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FIGURE 11. (Colour online) Space–time and corresponding Fourier transform plots for
LWV (Re= 615, vcylinder = 7.2 cm s−1, Ωcylinder = 0.17 Hz) 60 psi (10.6 g s−1, 1.1 m s−1)
240 g (13 % annulus, tinject = 22 s), showing unstable behaviour. The depicted view is
the entire annulus. The axial locations of the injection port rows are z/d = 12, 24, 36
and 48 (10, 20, 30 and 40 cm). (a) Space–time plot showing the entire time response
of the vortex structure as a function of dimensionless time. The vertical red dashed lines
show the time range that panel (b) shows. (b) Space–time plot showing the short time
response of the vortex during and after injection as a function of dimensionless time.
The vertical red dashed lines enclose the injection duration. (c) Spatial Fourier transform
contour for the entire time domain as a function of dimensionless time. (d) Temporal
Fourier transform contour for the entire time domain as a function of dimensionless time.
The colour represents the log of the magnitude of the complex modulus of the FFT.
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Injection rate in (3.2) and (3.3) is a function of injection pressure as defined in the
calibration in figure 1, ρ is the density of the injected fluid, injection area is the cross-
sectional area of the injection ports (9.677 × 10−6 (m2)). The value of vinject varies
from 0.32 m s−1 at 20 psi injections to 1.1 m s−1 at 60 psi injections. The time scale
of injection from (3.1) captures the extent of the perturbation induced by the injection.
As τinject decreases, the effect of the injection conditions increases.

Similarly, a stabilizing time scale associated with mass transport can be constructed
from the effective dispersion coefficient. Since D∗z is regressed from the mass transport
across the vortex interfacial area, S is used in the mass transport time scale as well,
resulting in the following equation:

τtransport (s)= S/D∗z . (3.4)

As the time scale of mass transport increases, the ability of the vortex structure to
transport mass axially decreases.

A non-dimensional number can then be constructed by taking the ratio of these two
time scales. Taking the ratio of the time scale of mass transport to injection results in
the destabilizing drivers in the numerator (tinject and vinject) and the stabilizing driver
in the denominator (D∗z ), creating the following dimensionless number:

Stability number= τtransport/τinject = tinjectv
2
inject/D

∗

z . (3.5)

High stability numbers correspond to scenarios where it takes longer for mass to
be transported through the vortex structure than the time scale of injection, resulting
in unstable conditions. Figure 12 shows how the stability number varies for each
experimental condition explored here. The open symbols are stable conditions and the
closed symbols are unstable conditions. At stability number values above 4.3×105, all
vortices become unstable.

There is a region of partial stability beneath this instability threshold where vortices
are stable overall, but exhibit perturbations and/or wave splitting/joining behaviour that
does not compromise the stability of the entire structure, similar to what has been
observed previously (Coles 1965). This region is comprised of the shaded grey region
in figure 12, and the lower limit of the region is when the stability number is 2.1×
105. To the authors’ knowledge, this is the first stability criterion developed for mixing
in TC flow. This criterion can be used to identify which vortex is required for a given
mixing process condition. It can also be used to identify what injection conditions can
be used if a specific vortex structure is required.

It should be noted that the stability number has only been tested for this annulus
gap width and radius ratio. This limitation excludes testing the stability number’s
invariance to S and radius ratio, as presented here. The injection time scale could be
scaled with the injection area, rather than S to recapture a dependence of stability
with S. The annulus gap width, along with radius ratio, confines the injection radially.
If the injection is strong enough for the stream exiting the injection port to reach the
outer wall, the additional flow patterns generated will likely further destabilize the
vortex structure. A possible scaling of this mode of instability could be vinject/vvortex or
could be found by comparing the kinetic energy of the injection stream to the vortex,
but further exploration is required. The annulus gap width is captured in Re, which
controls the effective dispersion coefficient, but no exploration of the effect of annulus
gap width is explored here to confirm if this dependence is sufficient. Additionally,
this work does not explore injection of fluids of significantly different properties from
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FIGURE 12. (Colour online) Dimensionless stability criterion values for all the
experimental conditions explored. The colour of the symbol corresponds to injection
pressure (black = 20 psi (3.1 g s−1, 0.32 m s−1), blue = 30 psi (5.9 g s−1, 0.58 m s−1)
and red = 60 psi (10.6 g s−1, 1.1 m s−1)), the shape corresponds to the injection mass
(circle = 20 g (1.1 % annulus), triangle = 50 g (2.7 % annulus), star = 100 g (5.5 %
annulus) and hexagon = 240 g (13 % annulus)) and the fill corresponds to the stability
of the flow state (open = stable and filled = unstable). The maroon horizontal dashed
line corresponds to the global stability threshold, such that stability number values above
that threshold correspond to unstable behaviour. The grey region corresponds to a partial
stability threshold where only a portion of the vortex structure is unstable or exhibits
perturbations and/or wave splitting/joining behaviour that does not compromise the stability
of the entire structure occurs.

the fluid already in the annulus, namely fluids of different densities or viscosities.
Injection of a fluid of differing properties would then create a scenario where the
solution properties between vortices, and even spatially within a vortex, vary as
mass is transferred within and between vortices. The spatial and temporal gradient in
solution properties can potentially locally change vortex behaviour, increasing analysis
complexity. Finally, only inner cylinder rotation is explored in the present study. With
the addition of independent rotation of the outer cylinder, it is possible to have two
separate wave states that exist at the same total Re. Measuring the mass transfer of
two different vortices with the same total Re would elucidate the relative importance
of the vortex structure to Re.

4. Conclusions
Taylor–Couette flows have many applications in chemical reactions, materials

synthesis, water treatment and solution processing, all of which involve mixing
solutions together in a controlled manner to improve process performance. Using
a modified Taylor–Couette cell design that non-intrusively incorporates injection
ports into the inner cylinder, vortex stability to radial fluid injection was explored
as a function of Re encompassing four different wave states, with and without
turbulence, and across two orders of magnitude of Re. The injection design minimizes
azimuthal concentration gradients, resulting in simplified mass transfer analysis.
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Inter-vortex mass transfer was measured for each vortex structure and Re explored by
injecting a Kalliroscope solution into distilled water and tracking the concentration of
Kalliroscope within each vortex. An inter-vortex mixing model is used to calculate
an intermixing coefficient, which is then converted into an effective dispersion
coefficient. A quadratic relationship between the effective dispersion coefficient and
Re was developed from the data.

This study is also the first to explore vortex stability to injection and intentionally
destabilize vortex structures. A non-dimensional stability number was created to
predict whether a vortex will be stable to injection or unstable. This stability number
is proportional to the time of injection, the square of injection speed and inversely
proportional to the effective dispersion coefficient. In addition to yielding a global
stability criterion, a partial stability region also emerged, where the overall vortex
structure is stable, but perturbation and/or wave splitting/joining can occur without
compromising the entire vortex structure. The stability number can inform accessible
injection conditions for a desired process; for a given amount of fluid intended to be
mixed, a corresponding maximum injection speed can be determined for the desired
Re of operation.
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