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An abelian processor is an automaton whose output is independent of the order of its

inputs. Bond and Levine have proved that a network of abelian processors performs the

same computation regardless of processing order (subject only to a halting condition). We

prove that any finite abelian processor can be emulated by a network of certain very simple

abelian processors, which we call gates. The most fundamental gate is a toppler, which

absorbs input particles until their number exceeds some given threshold, at which point it

topples, emitting one particle and returning to its initial state. With the exception of an

adder gate, which simply combines two streams of particles, each of our gates has only

one input wire, which sends letters (‘particles’) from a unary alphabet. Our results can be

reformulated in terms of the functions computed by processors, and one consequence is

that any increasing function from Nk to N� that is the sum of a linear function and a

periodic function can be expressed in terms of (possibly nested) sums of floors of quotients

by integers.

2010 Mathematics subject classification: Primary 68Q10

Secondary 68Q45, 68Q85, 90B10

1. Introduction

Consider a network of finite-state automata, each with a finite input and output alphabet.

What can such a network reliably compute if the wires connecting its components
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Abelian Logic Gates 389

are subject to unpredictable delays? The networks we will consider have a finite set

of k input wires and � output wires. These wires are unary (each carries letters from a

1-letter alphabet), and even they are subject to delays, so the network computes a function

Nk → N�: the input is a k-tuple of natural numbers (N = {0, 1, 2, . . .}) indicating how many

letters are fed along each input wire, and the output is an �-tuple indicating how many

letters are emitted along each output wire.

The essential issue such a network must overcome is that the order in which input

letters arrive at a node must not affect the output. To address this issue, Bond and Levine

[1], following Dhar [8, 9], proposed the class of abelian networks. These are networks each

of whose components is a special type of finite automaton called an abelian processor.

Certain abelian networks such as sandpile [23, 25] and rotor [14, 16, 19] networks

produce intricate fractal outputs from a simple input. Abelian networks can be used to

solve certain integer programs asynchronously [1] and to detect graph planarity [5]. From

the point of view of computational complexity, predicting the final state of a sandpile

on a finite simple graph can be done in polynomial time [26], and in fact this problem

is P-complete [22]. But on finite directed multigraphs, deciding whether a sandpile halts

is already NP-complete [12]. (Whether a sandpile halts is independent of the order of

topplings.) For further complexity results, see [6, 17, 18, 20, 21, 24]. Analogous problems

on infinite graphs are undecidable: an abelian network whose underlying graph is Z2, or

a sandpile network whose underlying graph is the product of Z2 with a finite path, can

emulate a Turing machine [4].

The following definition is equivalent to that in [1] but simpler to check. A processor

with input alphabet A, output alphabet B and state space Q is a collection of transition

maps and output maps

ti : Q → Q and oi : Q → NB

indexed by i ∈ A. The processor is abelian if

titj = tjti and oi + ojti = oj + oitj (1.1)

for all i, j ∈ A. The interpretation is that if the processor receives input letter i while in

state q, then it transitions to state ti(q) and outputs oi(q). The first equation in (1.1) above

asserts that the processor moves to the same state after receiving two letters, regardless

of their order. The second guarantees that it produces the same output. The processor

is called finite if both the alphabets A, B and the state space Q are finite. In this paper,

all abelian processors are assumed to be finite and to come with a distinguished starting

state q0 that can access all states: each q ∈ Q can be obtained by a composition of a finite

sequence of transition maps ti applied to q0.

We say that an abelian processor computes the function F : NA → NB if inputting xa

letters a for each a ∈ A results in the output of (F(x))b letters b for each b ∈ B. Our

convention that the various inputs and outputs are represented by different letters is

useful for notational purposes. An alternative viewpoint would be to regard all inputs

and outputs as consisting of indistinguishable ‘particles’, whose roles are determined by

which input or output wire they pass along.
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An abelian network is a directed graph with an abelian processor located at each node,

with outputs feeding into inputs according to the graph structure, and some inputs and

outputs designated as input and output wires for the entire network. (We give a more

formal definition below in §2.3.) An abelian network can compute a function as follows.

We start by feeding some number of letters along each input wire. Then, at each step, we

choose any processor that has at least one letter waiting at one of its inputs, and process

that letter, resulting in a new state of that processor, and perhaps some letters emitted

from its outputs. If after finitely many steps all remaining letters are located on the output

wires of the network, then we say that the computation halts.

The following is a central result of [1], generalizing the ‘abelian property’ of Dhar [7]

and Diaconis and Fulton [10, Theorem 4.1] (see [15] for further background). Provided

the computation halts, it does so regardless of the choice of processing order. Moreover,

the letters on the output wires and the final states of the processors are also independent

of the processing order. Thus, a network that halts on all inputs computes a function

from Nk to N� (where k and � are the numbers of input and output wires respectively).

This function is itself of a form that can be computed by some abelian processor, and we

say that the network emulates this processor.

The main goal of this paper is to prove a result in the opposite direction. Just as any

boolean function {0, 1}A → {0, 1}B can be computed by a circuit of AND, OR and NOT

gates, we show that any function NA → NB computed by an abelian processor can be

computed by a network of simple abelian logic gates, specified below. Furthermore (as

in the boolean case), the network can be made directed acyclic, which is to say that the

graph has no directed cycles.

For example, a sandpile or rotor-router process (see e.g. [15, 16]) defined on a finite

graph can be thought of as a computer whose input is particles placed on vertices, and

whose output constitutes particles collected at designated points. It is thus an abelian

processor, and our theorems show that it can be emulated by a directed acyclic network

of simple abelian gates.

Theorem 1.1. Any finite abelian processor can be emulated by a finite directed acyclic

network of adders, splitters, topplers, delayers and presinks.

If the processor satisfies certain additional conditions, then some gates are not needed.

An abelian processor is called bounded if the range of the function that it computes is a

finite subset of NB .

Theorem 1.2. Any bounded finite abelian processor can be emulated by a finite directed

acyclic network of adders, splitters, delayers and presinks.

An abelian processor P is called recurrent if for every pair of states q, q′ there is a finite

sequence of input letters that causes it to transition from q to q′. An abelian processor

that is not recurrent is called transient.

https://doi.org/10.1017/S0963548318000482 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000482


Abelian Logic Gates 391

Table 1. Abelian gates and the functions they compute

Single state

adder (x, y) �→ x + y

splitter x �→ (x, x)

Recurrent

toppler (λ � 2)
x �→

⌊
x

λ

⌋

primed toppler (1 � q < λ) x �→
⌊
x + q

λ

⌋

Transient

delayer x �→ max(x − 1, 0)

presink x �→ min(x, 1)

Theorem 1.3. Any recurrent finite abelian processor can be emulated by a finite directed

acyclic network of adders, splitters and topplers.

1.1. The gates

Table 1 lists our abelian logic gates, along with the symbols we will use when illustrating

networks. A splitter has one incoming edge, two outgoing edges, and a single internal

state. When it receives a letter, it sends one letter along each outgoing edge. On the other

hand, an adder has two incoming edges, one outgoing edge, and again a single internal

state. For each letter received on either input, it emits one letter. The rest of our gates

each have just one input and one output.

For integer λ � 2, a λ-toppler has internal states 0, 1, . . . , λ−1. If it receives a letter while

in state q < λ−1, it transitions to state q+1 and sends nothing. If it receives a letter while

in state λ−1, it ‘topples’: it transitions to state 0 and emits one letter. A λ-toppler that

begins in state 0 computes the function x �→ �x/λ	; if begun in state q > 0 it computes the

function x �→ �(x+q)/λ	. A toppler is called unprimed if its initial state is 0, and primed

otherwise.
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Figure 1. Emulating a rotor of degree 3 with topplers. To emulate a sandpile node, prime the three topplers

identically (and optionally combine them into one toppler preceding a splitter). For a rotor aggregation node,

insert a delayer between the adder and the splitter.

The above gates are all recurrent. Finally, we have two transient gates whose behaviours

are complementary to one another. A delayer has two internal states 0, 1. If it receives an

input letter while in state 0, it moves permanently to state 1, emitting nothing. In state 1

it sends out one letter for every letter it receives. Thus, begun at state 0, it computes the

function x �→ max(x−1, 0) = (x − 1)+. A presink has two internal states 0, 1. If it receives

a letter while in state 0, it transitions permanently to state 1 and emits one letter. All

subsequent inputs are ignored. From initial state 0 it computes x �→ min(x, 1) = 1[x > 0].

The topplers form an infinite family indexed by the parameter λ � 2. If we allow our

network to have feedback (i.e. drop the requirement that it be directed acyclic), then we

need only the case λ = 2, and in particular our palette of gates is reduced to a finite set.

Feedback also allows us to eliminate one further gate, the delayer.

Proposition 1.4. For any λ � 3, a λ-toppler can be emulated by a finite abelian network

of adders, splitters and 2-topplers. So can a delayer.

The toppler is a very close relative of the two most extensively studied abelian

processors: the sandpile node and the rotor node. Specifically, for a node of degree

k, either of these is easily emulated by k suitably primed topplers in parallel, as in

Figure 1. (Sandpiles and rotors are typically considered on undirected graphs, in which

case the k inputs and k outputs of a vertex are both routed along its k incident edges.)

Rotor aggregation [19] can also be emulated, by inserting a delayer into the network for

the rotor.

1.2. Unary input

A processor has unary input if its input alphabet A has size 1 (so that it computes a

function N → N�). It is easy to see from the definition that any finite-state processor

with unary input is automatically abelian. Indeed, the same holds for any processor with

exchangeable inputs, i.e. one whose transition maps and output maps are identical for

each input letter. (Such a processor can be emulated by adding all its inputs and feeding

https://doi.org/10.1017/S0963548318000482 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000482


Abelian Logic Gates 393

(a) (b)

Figure 2. (a) The graph of a ZILP function f : N2 → N. The height of a bar gives the value of the function,

and the origin is at the front of the picture. The periodic component has periods 4 and 5 in the two coordinates,

as indicated by the highlighted bars; the linear part has slopes 2/4 and 4/5 respectively. (b) A ZILEP function

comprising the same ‘recurrent part’ together with added ‘transient margins’.

them into a unary-input processor.) Note that all our gates have unary input except for

the adder, which has exchangeable inputs.

Theorems 1.1–1.3 have rather straightforward proofs if we restrict to unary-input

processors. (See Lemmas 4.1 and 6.1.) Our main contribution is that unary-input gates

(and adders) suffice to emulate processors with any number of inputs. (In contrast,

elementary considerations will show that there is no loss of generality in restricting to

processors with unary output; see Lemma 3.2.)

1.3. Function classes

An important preliminary step in the proofs of Theorems 1.1, 1.2 and 1.3 will be to

characterize the functions that can be computed by abelian processors (as well as by the

bounded and recurrent varieties). The characterizations turn out to be quite simple. A

function F : Nk → N� is computed by some finite abelian processor if and only if: (i) it

maps the zero vector 0 ∈ Nk to 0 ∈ N�, (ii) it is (weakly) increasing, and (iii) it can be

expressed as a linear function plus an eventually periodic function (see Definition 2.3 for

precise meanings). We call a function satisfying (i)–(iii) ZILEP (zero at zero, increasing,

linear plus eventually periodic). On the other hand, a function is computed by some

recurrent finite abelian processor if it is ZILP : eventually periodic is replaced with periodic.

Figure 2 shows examples of ZILP and ZILEP functions of two variables, illustrating some

of the difficulties to be overcome in computing them by networks.
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Table 2. Four different classes of abelian network. The second column indicates the class of increasing functions

L + P : Nk → N� computable by a finite, directed acyclic abelian network whose components are splitters, adders

and the gates listed in the first column. In the first two lines L and P take values in N�, while in the last two

lines L and P take values in Q�.

Components L + P Theorem(s)

(splitter and adder only) linear + zero Lemma 2.8

presink, delayer linear + eventually constant Theorems 1.2, 5.3

λ-toppler linear + periodic Theorems 1.3, 2.5

λ-toppler, presink, delayer linear + eventually periodic Theorems 1.1, 2.4

Our main theorems may be recast in terms of functions rather than processors. Table 2

summarizes our main results from this perspective. For instance, the following is a

straightforward consequence of Theorem 1.3.

Corollary 1.5 (recurrent abelian functions). Let R be the smallest set of functions F : Nk →
N containing the constant function 1 and the coordinate functions x1, . . . , xk , and closed under

addition and compositions of the form F �→ �F/λ	 for integer λ � 2. Then R is the set of all

increasing functions Nk → N expressible as L + P where L, P : Nk → Q with L linear and

P periodic.

1.4. Outline of article

Section 2 identifies the classes of functions computable by abelian processors, as described

above, and formalizes the definitions and claims relating to abelian networks. Section 3

contains a few elementary reductions including the proof of Proposition 1.4. The core

of the paper is Sections 4, 5 and 6, which are devoted respectively to the proofs of

Theorems 1.3, 1.2 and 1.1. These proofs are by induction on the number of inputs to

the processor; Theorem 1.1 is by far the hardest. A recurring theme in the proofs is

meagerization, which amounts to use of the easily verified identity

x =

⌊
x

m

⌋
+

⌊
x + 1

m

⌋
+ · · · +

⌊
x + m − 1

m

⌋
(1.2)

for positive integers x and m. A key step in the proof of the general emulation result,

Theorem 1.1, is the introduction of a ZILP function that computes the minimum of its

n arguments provided they are not too far apart (Proposition 6.3). That this function in

turn can be emulated follows from the recurrent case, Theorem 1.3.

In Section 7 we show that no gates can be omitted from our list. We conclude by posing

some open problems in Section 8.
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2. Functions computed by abelian processors and networks

In preparation for the proofs of the main results about emulation, we begin by identifying

the classes of functions that need to be computed.

2.1. Abelian processors

If P is an abelian processor with input alphabet A, and w = i1 · · · i� is a word with letters

in A, then we define the transition and output maps corresponding to the word:

tw := ti� · · · ti1 ,

ow := oi1 + oi2 ti1 + oi3 ti2ti1 + · · · + oi� ti�−1
· · · ti1 .

Lemma 2.1. For any words w,w′ such that w′ is a permutation of w, we have tw = tw′ and

ow = ow′ .

Proof. This follows from the definition of an abelian processor, by induction on the

length of w.

The function f = fP computed by an abelian processor P with initial state q0 is given

by

f(x) = ow(x)(q
0), x ∈ NA,

where w(x) is any word that contains xi copies of the letter i for all i ∈ A. We denote

vectors by boldface lower-case letters, and their coordinates by the corresponding lightface

letter, subscripted.

Lemma 2.2. Let f = fP . If ty(q
0) = ty′ (q0) then for any x, y, y′ ∈ Nk

f(x + y) − f(y) = f(x + y′) − f(y′).

Proof. Let ty(q
0) = ty′ (q0) = q; then f(x + y) = f(y) + ow(x)(q) and f(x + y) = f(y′) +

ow(x)(q). In other words, since y and y′ leave P in the same state q, the subsequent input

of x has the same effect.

Definition 2.3. A function f : Nk → N� is (weakly) increasing if x � y implies f(x) � f(y)

where � denotes the coordinatewise partial ordering. A function P : Nk → Q� is periodic

if there is a subgroup Λ ⊂ Zk of finite index such that P (x) = P (y) whenever x − y ∈ Λ.

A function P is eventually periodic if there exist λ1, . . . , λk � 1 and r1, . . . , rk such that for

each i = 1, . . . , k, if x � riei then

P (x) = P (x + λiei). (2.1)

Here ei is the ith standard basis vector.
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Note that given λ and r, an eventually periodic function is determined by its values on

the box [0, r1 + λ1] × · · · × [0, rk + λk]. This notion of eventually periodic is intermediate

in strength. A stronger requirement would be that P agrees with some periodic function

outside a finite set. A weaker requirement would be that (2.1) holds only for x � r.

An eventually periodic function is not generally periodic outside any finite box. The

reason is that there are typically infinitely many grid points x (that would, for example,

be red in Figure 2) which satisfy x � riei for some but not all i.

Theorem 2.4. Let k, � � 1. A function f : Nk → N� can be computed by a finite abelian

processor if and only if f satisfies all of the following:

(i) f(0) = 0,

(ii) f is increasing,

(iii) f = L + P for a linear function L and an eventually periodic function P .

As mentioned earlier, we call a function satisfying (i)–(iii) ZILEP. Note that L and

P need not have integer-valued coordinates, and P need not be non-negative. For

example, the function f(x) = �x/2	 is ZILEP (in fact ZILP) with L(x) = x/2 and P (x) =

−1[x is odd]/2.

Proof of Theorem 2.4. Any f = fP trivially satisfies f(0) = 0. To see that f is increasing,

given x � y there are words w(x) and w(y) (where the number of occurrences of letter i

in w(z) is zi) for which w(x) is a prefix of w(y). Then

ow(x) + outw(x) = ow(y).

Since the second term on the left is non-negative, ow(x)(q) � ow(y)(q).

To prove (iii), note that since Q is finite, some power of ti is idempotent, that is,

t2λii = tλii

for some λi � 1. Let L : Nk → N� be the linear function sending

λiei �→ f(2λiei) − f(λiei)

for each i = 1, . . . , k. Now we apply Lemma 2.2 with y = λiei and y′ = 2y to get

f(z + λiei) − f(z) = f(2λiei) − f(λiei) for all z � λiei, (2.2)

which shows that f − L is eventually periodic. Thus f satisfies (i)–(iii).

Conversely, given an increasing f = L + P , define an equivalence relation on Nk by

y ≡ y′ if f(y + z) − f(y) = f(y′ + z) − f(y′) for all z ∈ Nk . If L is linear and P is eventually

periodic, then there are only finitely many equivalence classes: if yi � ri + λi then y ≡
y − λiei, so any y ∈ Nk is equivalent to some element of the cuboid [0, λ1 + r1] × · · · ×
[0, λk + rk].

Now consider the abelian processor on the finite state space Nk/ ≡ with ti(x) = x + ei
and oi(x) = f(x + ei) − f(x). Note that ti and oi are well-defined. With initial state 0, this

processor computes f.
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2.2. Recurrent abelian processors

Recall that an abelian processor is called recurrent if for any states q, q′ ∈ Q there exists

x ∈ Nk such that q′ = tx(q). Since we assume that every state is accessible from the initial

state q0, this is equivalent to the assertion that for every q ∈ Q and y ∈ Nk there exists

z ∈ Nk such that q = ty+z(q). Our next result differs from Theorem 2.4 in only two words:

recurrent has been added and eventually has been removed! As mentioned earlier, we call

a function satisfying (i)–(iii) below ZILP.

Theorem 2.5. Let k, � � 1. A function f : Nk → N� can be computed by a recurrent finite

abelian processor if and only if f satisfies all of the following:

(i) f(0) = 0,

(ii) f is increasing,

(iii) f = L + P for a linear function L and a periodic function P .

Proof. By Theorem 2.4, f satisfies (i) and (ii) and f = L + P with L linear and P

eventually periodic. To prove (iii) we must show that equation (2.2) holds for all z ∈ Nk .

By recurrence, for any y ∈ Nk and any i ∈ A there exists y′ � λiei such that ty′ (q) = ty(q).

Now taking x = λiei in Lemma 2.2, the linear terms cancel, leaving

P (y + λiei) − P (y) = P (y′ + λiei) − P (y′).

The right side vanishes since P is eventually periodic. Since y ∈ Nk was arbitrary, P is in

fact periodic.

Conversely, given an increasing f = L + P , we define an abelian processor P on state

space Nk/ ≡ as in the proof of Theorem 2.4. If L is linear and P is periodic, then for

each i = 1, . . . , k we have y ≡ y − λiei whenever yi � λi. Now given any x, y ∈ Nk we find

x′ ≡ x with x′ � y, so P is recurrent.

2.3. Abelian networks

An abelian network N is a directed multigraph G = (V , E) along with specified pairwise

disjoint sets I, O, T ⊂ E of input, output and trash edges respectively. These edges are

dangling: the input edges have no tail, while the output and trash edges have no head.

The trash edges are for discarding unwanted letters. Each node v ∈ V is labelled with

an abelian processor Pv whose input alphabet equals the set of incoming edges to v and

whose output alphabet is the set of outgoing edges from v. In this paper, all abelian

networks are assumed finite: G is a finite graph and each Pv is a finite processor.

An abelian network operates as follows. Its total state is given by the internal states

(qv)v∈V of all its processors Pv , together with a vector x = (xe)e∈E ∈ NE that indicates the

number of letters sitting on each edge, waiting to be processed. Initially, x is supported

on the set of input edges I . At each step, any non-output non-trash edge e with xe > 0 is

chosen, and a letter is fed into the processor at its endnode v. Thus, xe is decreased by

1, the state of Pv is updated from qv to te(qv), and x is increased by oe(qv) (interpreted

as a vector in NE supported on the outgoing edges from v). Here t and o are the maps

associated to Pv . The sequence of choices of the edges e at successive steps is called a legal

https://doi.org/10.1017/S0963548318000482 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000482


398 A. E. Holroyd, L. Levine and P. Winkler

execution. The execution is said to halt if, after some finite number of steps, x is supported

on the set of output and trash edges (so that there are no letters left to process).

The following facts are proved in [1, Theorem 4.7]. Fixing the initial internal states

q0 = (q0
v )v∈V and an input vector x ∈ NI , if some execution halts then all legal executions

halt. In the latter case, the final states of the processors and the final output vector do

not depend on the choice of legal execution.

Suppose for a given q0 that the network halts on all input vectors. Then, since the final

output vector depends only on the input vector, the abelian network computes a function

NI → NO . If a network N and a processor P compute the same function, then we say that

N emulates P .

Proposition 2.6. If a finite abelian network halts on all inputs, then it emulates some finite

abelian processor.

Proof. We can regard the entire network as a processor, with its state given by the vector

of internal states q = (qv)v∈V . Its transition and output maps are determined by feeding

in a single input letter, performing any legal execution until it halts, and observing the

resulting state and output letters. Feeding in two input letters and using (a special case

of) the insensitivity to execution order stated above, we see that the relations (1.1) hold,

so the processor is abelian.

The abelian networks that halt on all inputs are characterized in [2, Theorem 5.6]: they

are those for which a certain matrix called the production matrix has Perron–Frobenius

eigenvalue strictly less than 1. An abelian network is called directed acyclic if its graph G

has no directed cycles; such a network trivially halts on all inputs. This paper is mostly

concerned with directed acyclic networks, together with some networks with certain limited

types of feedback; all of them halt on all inputs.

2.4. Recurrent abelian networks

The next lemma follows from [3, Theorem 3.9], but we include a proof for the sake

of completeness. A processor is called immutable if it has just one state, and mutable

otherwise. Among the abelian logic gates in Table 1, splitters and adders are immutable;

topplers, delayers and presinks are mutable.

Recall (from Proposition 1.4 or Figure 3) that if feedback is permitted, then the transient

delayer gate can be emulated by a network of recurrent gates, namely a 2-toppler and

a splitter. The next result shows that without feedback, no transient processor can be

emulated by a network of recurrent processors.

Proposition 2.7. A directed acyclic network N of recurrent processors emulates a recurrent

processor.

Proof. We proceed by induction on the number m of mutable processors in N. In the

case m = 0, the network N has only one state, so it is trivially recurrent.
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For the inductive step, suppose m � 1. Since N is directed acyclic, it has a mutable

processor P such that no other mutable processor feeds into anything upstream of P .

If N has k inputs, we can regard the remainder N − P as a network with m−1 mutable

processors and k+k′ inputs, where k′ is the number of edges from P to N − P . For each

state q of N, the function f = fN,q has the form

f(x) = g(x, h(x)) + j(x),

where g : Nk+k′ → N� is the function computed by N − P in initial state q, and h : Nk → Nk′

and j : Nk → N� are the functions sent by P in initial state q to N − P and the output of

N, respectively.

By Theorem 2.5 and the inductive hypothesis, each of g, h, j is the sum of a periodic

and a linear function. Writing g(y) = P (y) + b · y and h(x) = Q(x) + c · x, we have

f(x) = P (x, Q(x) + c · x) + b · (x, Q(x) + c · x) + j(x).

The first term is periodic and the second is a linear function plus a periodic function.

Since q is arbitrary the proof is complete by Theorem 2.5.

2.5. Varying the initial state

We remark that the emulation claims of our main theorems can be strengthened slightly,

in the following sense. Our definition of a processor P included a designated initial state

q0, but one may instead consider starting P from any state q ∈ Q, and it may compute

a different function from each q. All of these functions can be computed by the same

network N, by varying the internal states of the gates in N. To set up the network N to

compute the function fP ,q , we simply choose an input vector x that causes P to transition

from q0 to q, then feed x to N and observe the resulting gate states. In the recurrent case,

this amounts to adjusting the priming of topplers. In the transient case, a ‘used’ delayer

can be replaced with a wire, while a used presink becomes a trash edge.

2.6. Splitter–adder networks

In this section we show that splitter–adder networks compute precisely the increasing

linear functions. Using this, we will see how Theorem 1.3 implies Corollary 1.5.

Lemma 2.8. Let k, � � 1. The function f : Nk → N� can be computed by a network of

splitters and adders if and only if f(x) = Lx for some non-negative integer � × k matrix L.

Proof. If a network of splitters and adders has a directed cycle, then it does not halt on

all inputs, and so does not ‘compute a function’ according to our definition. If the network

is directed acyclic then by Proposition 2.7 and Theorem 2.5 it computes a ZILP function.

Since the network is immutable, the periodic part of any linear + periodic decomposition

must be zero. Conversely, consider a network of k splitters Si and � adders Aj , with Lji

edges from Si to Aj . Feed each input i into Si, and feed each Aj into output j.

Proof of Corollary 1.5. Given a function F ∈ R, the function x �→ F(x) − F(0) can be

computed by a finite, directed acyclic network of splitters, adders and (possibly primed)
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topplers. By Proposition 2.7 any such network emulates a recurrent finite abelian processor,

so F has the desired form by Theorem 2.5.

Conversely if F = L + P with L linear and P periodic, then F(x) − F(0) is computable

by a finite directed acyclic network of splitters, adders and topplers by Theorem 1.3.

We induct on the number of topplers to show that F ∈ R. In the base case there are

no topplers, N is a splitter–adder network, so by Lemma 2.8, F is an increasing linear

function of its inputs x1, . . . , xk .

Assume now that at least one component of N is a toppler. Since N is directed acyclic,

there is a toppler T such that no other toppler is downstream of T . Write D for the

portion of N downstream of T , and U = N − T − D for the remainder of the network.

Suppose U sends outputs r, s, u respectively to the output of N, to T , and to D, and that

the toppler T sends output t to D.

The downstream part D consists of only splitters and adders, so it computes a linear

function

L(t, u) = at + b · u

for some a ∈ N and b ∈ Nj , where j is the number of edges from U to D. The total output

of N is

F(x) − F(0) = r + L(t, u) = r + a

⌊
s

λ

⌋
+ b · u.

Each of r, s, u is a function of the input x = (x1, . . . , xk). By induction, r and s and each ui
belongs to the class R, so F does as well.

3. Basic reductions

In this section we describe some elementary network reductions.

3.1. Multi-way splitters and adders

An n-splitter computes the function N → Nn sending x �→ (x, . . . , x). It is emulated by

a directed binary tree of n − 1 splitters with the input node at the root and the n

output nodes at the leaves. Similarly, an n-adder computes the function Nn → N given by

(x1, . . . , xn) �→ x1 + · · · + xn. It is emulated by a tree of n − 1 adders.

3.2. The power of feedback

Proof of Proposition 1.4. To emulate an unprimed λ-toppler, let r = �log2 λ
 and let

2r − λ =

r−2∑
i=0

bi2
i, bi ∈ {0, 1}

be the binary representation of 2r − λ. Consider r 2-topplers H0, H1, . . . , Hr−1 in series: the

input node is H0, and each Hi feeds into Hi+1 for 0 � i < r−1. For i < r − 1 the 2-toppler

Hi is primed with bi. The last 2-toppler Hr−1 is unprimed, and feeds into an s-splitter

(s = 1 +
∑r−1

i=0 bi) which feeds one letter each into the output node o and the nodes Hi

such that bi = 1. This network repeatedly counts in binary from 2r − λ to 2r − 1, and it
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Figure 3. Emulating a 3-toppler, 4-toppler, 5-toppler and delayer by networks of 2-topplers.

sends output precisely when it transitions from 2r − 1 back to 2r − λ. Hence, it emulates

a λ-toppler. See Figure 3 for examples.

We can emulate a q-primed λ-toppler using the same network, but with different initial

states for its 2-topplers. The required states are simply those that result from feeding q

input letters into the network described above.

A delayer is constructed by splitting the output of a 2-toppler and adding one branch

back in as input to the 2-toppler (Figure 3).

3.3. Primed topplers

The following shows that we can also do without primed topplers (at the expense of using

a transient gate: the presink).

Lemma 3.1. A primed λ-toppler can be emulated by a directed acyclic network comprising

an unprimed λ-toppler, adders, splitters, and a presink.

Proof. See Figure 4. For 0 � q < λ we have �(x + q)/λ	 = �(x + q(x − 1)+)/λ	, so we

can emulate a q-primed λ-toppler by splitting the input, feeding it into a presink, and

adding q copies of the result into the original input before sending it to an unprimed

λ-toppler.

3.4. Reduction to unary output

Let P be an abelian processor that computes f : Nk → N�. If � = 1 then we say that P
has unary output. All of the logic gates in Table 1 have unary output with the exception of
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Figure 4. Emulating a primed toppler with an unprimed toppler.

Figure 5. Emulating a 2-output abelian processor with two unary-output processors.

the splitter. The next lemma shows that, for rather trivial reasons, it is enough to emulate

processors with unary output.

Lemma 3.2. Any abelian processor can be emulated by a directed acyclic network of split-

ters and processors with unary output.

Proof. Let P compute f = (f1, . . . , f�) : Nk → N�. By ignoring all outputs of P except

the jth, we obtain an abelian processor Pj that computes fj . Each Pj has unary output,

and P is emulated by a network that sends each input into an �-splitter that feeds into

P1, . . . ,P� (Figure 5).

In the subsequent proofs we can thus assume that the processors to be emulated have

unary output. By a k-ary processor we mean one with k inputs. A 1-ary processor is

sometimes called unary.

4. The recurrent case

In this section we prove Theorem 1.3. By Lemma 3.2 we may assume that the recurrent

processor to be emulated has unary output. We will proceed by induction on the number

of inputs.

4.1. Unary case

We start with the unary case (i.e. one input), which will form the base of our induction.

An alternative would be to start the induction with the trivial case of zero inputs, but the

simplicity of the unary case is illustrative.

By Theorem 2.5, a recurrent unary processor computes an increasing function f : N → N

of the form f(x) = cx + P (x), where c ∈ Q�0 and P : N → Q is periodic.
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Figure 6. Emulating a unary processor with a network of primed topplers.

Lemma 4.1. Let P be a recurrent unary processor that computes f(x) = cx + P (x), where

P is periodic of period λ. Then P can be emulated by a network of adders, splitters and

(suitably primed) λ-topplers.

Proof. Observe first that cλ is an integer: since f(0) = 0, we have P (λ) = P (0) = 0, thus

f(λ) = cλ ∈ N. We construct a network of cλ parallel λ-topplers as follows: the (unary)

input is split (by a cλ-splitter) into cλ streams, each of which feeds into a separate λ-

toppler. The outputs of the topplers are then combined (by a cλ-adder) to a single output

(Figure 6).

After mλ letters are input to this network, m ∈ N, each toppler will return to its original

state having output m letters, for a total output of m × cλ = c(mλ); thus the network does

compute cx + Q(x) where Q has period λ or some divisor of λ. To force Q = P it suffices

to choose the initial state q in such a way that the network’s output for x = 1, 2, . . . , λ

matches f(1), . . . , f(λ). This is easily done by setting di = f(x) − f(x−1), and for each i

with 1 � i � λ, starting di topplers in state λ−i.

Figure 6 illustrates the network constructed to compute the function f = 3/4x + P (x)

where P has period 4 with P (0) = 0, P (1) = 1/4, P (2) = 6/4 and P (3) = 3/4. The values

of f begin 0, 1, 3, 3, 3, 4, 6, 6, 6, 7, 9, 9, 9, . . . . The ‘I/O diagram’ of f is shown in Figure 6(a):

dots represent input letters and bars are output letters; the unfilled circle represents the

initial state.

4.2. Reduction to the meagre case

A recurrent k-ary processor computes a function f : Nk → N of the form f(x) = b · x +

P (x) where P is periodic.
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Definition 4.2. A recurrent processor is non-degenerate if bi �= 0 for all i.

Note that if bi = 0 then f(x) does not depend on the coordinate xi. In this case, by

Theorem 2.5 there is a finite (k−1)-ary recurrent processor that computes f.

Denote the lattice of periodicity of P by Λ ⊂ Zk . Let λi be the smallest positive integer

such that λiei ∈ Λ. For the purposes of the forthcoming induction, we focus on the last

coordinate.

Definition 4.3. We say that a k-ary processor P is meagre if fP (λkek) = 1.

Note that if P is meagre then for all x ∈ Nk we have

fP (x + λkek) = fP (x) + 1.

Next we emulate a non-degenerate recurrent processor by a network of meagre processors.

Lemma 4.4. Let P be a non-degenerate recurrent k-ary processor and let m = fP (λkek) =

λkbk . Then P can be emulated by a network of m − 1 splitters, m − 1 adders, and m meagre

recurrent k-ary processors.

Proof. For each j = 0, . . . , m − 1 consider the function

fj(x) =

⌊
f(x) + j

m

⌋
.

We claim that fj = fPj
for some recurrent processor Pj . One way to prove this is to use

Theorem 2.5, checking from the above formula that since f is ZILP, fj is also ZILP.

Another route is to note that fj is computed by a network in which the output of P
is fed into a j-primed m-toppler. By Proposition 2.7, fj is therefore computed by some

recurrent processor. (Note however that this network itself will not help us to emulate P
using gates, since it contains P!) Figure 7 illustrates an example of the reduction.

Now we use the meagerization identity (1.2):

f =

⌊
f

m

⌋
+

⌊
f + 1

m

⌋
+ · · · +

⌊
f + m − 1

m

⌋
.

Thus, P is emulated by an m-splitter that feeds into P0, . . . ,Pm−1, with the results fed into

an m-adder. It remains to check that each Pj is meagre. We have

fj(x + λkek) =

⌊
f(x + λkek) + j

m

⌋
=

⌊
f(x) + λkbk + j

m

⌋
= fj(x) + 1.

4.3. Reducing the alphabet size

Now we come to the main reduction.
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(a) (b)

Figure 7. (a) Example state diagram of a recurrent binary processor P with λ = (4, 5) and b = (1/2, 4/5). (The

function is the same as the one in Figure 2(a).) A dot with coordinates x = (x1, x2) represents the state of the

processor after it has received input x. (The initial state (0, 0) is an unfilled circle.) Each solid contour line

between two adjacent dots indicates that a letter is emitted when making that transition. (b) The highlighted

contours form the state diagram of the corresponding meagre processor P3, obtained by keeping every fourth

contour (starting from the first) of (a). The vertical period is still 5, although the horizontal period has increased.

Lemma 4.5. Let P be a meagre recurrent k-ary processor satisfying fP (x + λkek) =

fP (x) + 1. Then P can be emulated by a network of a recurrent (k−1)-ary processor, a

λk-toppler, and an adder.

Proof. Let P compute f. By Theorem 2.5, f is ZILP. Its representation as a linear plus

a periodic function makes sense as a function on all of Zk . Now consider the increasing

function

g(x1, . . . , xk−1) = −c − min{xk ∈ Z : f(x1, . . . , xk) � 0}.

where c = − min{xk ∈ Z : f(0, . . . , 0, xk) � 0}. Then g is an increasing function of

(x1, . . . , xk−1) ∈ Nk−1, and g(0) = 0.

If λ ∈ λ1Z × · · · × λk−1Z × {0}, then

g(x + λ) = −c − min{xk ∈ Z : f(x1, . . . , xk) + b · λ � 0}
= −c − min{xk ∈ Z : f(x1, . . . , xk−1, xk + λk(b · λ)) � 0}
= g(x) + λk(b · λ),

where the second equality holds because P is meagre. Hence g is ZILP. Let Q be the

(k − 1)-ary processor that computes g (which exists by Theorem 2.5).
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Figure 8. Emulating a meagre recurrent k-ary processor via a recurrent (k−1)-ary processor.

Note that for any integer j we have that f(x1, . . . , xk) � j if and only if f(x − jλkek) � 0,

which in turn happens if and only if g(x1, . . . , xk−1) + xk + c � jλk . Hence

f(x1, . . . , xk) =

⌊
g(x1, . . . , xk−1) + xk + c

λk

⌋
.

The definition of c gives that 0 � c < λk , since f(0) = 0 and f(−λkek) = −1. So P is

emulated by the network that feeds the last input letter ak into a λk-toppler T primed

with c, and a1, . . . , ak−1 into Q which feeds into T . See Figure 8.

Now we can prove the main result in the recurrent case.

Proof of Theorem 1.3. Let P be a recurrent abelian processor to be emulated. By

Lemma 3.2 we can assume that it has unary output. We proceed by induction on the

number of inputs k. The base case k = 1 is Lemma 3.2. For k > 1, we first use Lemma 4.4

to emulate the processor by a network of meagre k-ary processors. Then we replace each

of these with a network of (k − 1)-ary processors, by Lemma 4.5, and then apply the

inductive hypothesis to each of these.

4.4. The number of gates

How many gates do our networks use? For simplicity, consider the case of a recurrent

k-ary abelian processor with λi = 2 and bi = 1/2 for all i. It is not difficult to check that

our construction uses O(ck) gates as k → ∞ for some c. In fact, a counting argument

shows that exponential growth with k is unavoidable, as follows. Consider networks of

only adders, splitters, and 2-topplers, but suppose that we allow feedback (so that a λ-

toppler can be replaced with O(log λ) gates, by Proposition 1.4). The number of networks

with at most n gates is at most nc
′n for some c′ (we choose the type of each gate, together

with the matching of inputs to outputs). On the other hand, the number of different

ZILP functions f that can be computed by a processor of the above-mentioned form is

at least 2( k
�k/2	), since we may choose an arbitrary value f(x) ∈ {0, 1} for each of the

(
k

�k/2	
)

elements x of the middle layer {x ∈ {0, 1}k :
∑

i xi = �k/2	} of the hypercube. If all k-ary

processors can be emulated with at most n gates then nc
′n > 2( k

�k/2	). It follows easily that

some such processor requires at least Ck gates, for some fixed C > 1.

If we consider the dependence on the quantities λi and bi as well as k, our construction

apparently leaves more room for improvement in terms of the number of gates, since
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repeated meagerization tends to increase the periods λi. One might also investigate

whether there is an interesting theory of k-ary functions that can be computed with only

polynomially many gates as a function of k.

Our construction of networks emulating transient processors (Section 6) will be much

less efficient than the recurrent case, since the induction will rely on a ZILP function of

a potentially large number of arguments (Proposition 6.3) that is emulated by appeal to

Theorem 1.3. It would be of interest to reduce the number of gates here.

5. The bounded case

In this section we prove Theorem 1.2. Moreover, we identify the class of functions

computable without topplers.

Lemma 5.1. Let f : Nk → {0, 1} be increasing with f(0) = 0. There is a directed acyclic

network of adders, splitters, presinks and delayers that computes f.

Proof. Let M be the set of m ∈ Nk that are minimal (in the coordinate partial order) in

f−1(1). By Dickson’s Lemma [11], M is finite; and f(x) = 1 if and only if x � m for some

m ∈ M. Thus

f(x) =
∨

m∈M

∧
i∈A

1[xi � mi].

The function 1[xi � mi] is computed by mi − 1 delayers in series followed by a presink.

The minimum (∧) or maximum (∨) of a pair of boolean ({0, 1}-valued) inputs is computed

by adding the inputs and feeding the result into a delayer or a presink respectively. The

minimum or maximum of any finite set of boolean inputs is computed by repeated

pairwise operations. See Figure 9. The lemma follows.

Lemma 5.2. Suppose f : Nk → N is increasing and bounded with f(0) = 0. Then there is a

directed acyclic network of adders, splitters, presinks and delayers that computes f.

Proof. By Lemma 5.1, for each j ∈ N there is a network of the desired type that

computes x �→ 1[f(x) > j]. If f is bounded by J , then f(x) =
∑J−1

j=0 1[f(x) > j], so we add

the outputs of these J networks.

Proof of Theorem 1.2. Let P be a bounded abelian processor. By Lemma 3.2 we can

assume that it has unary output. The function that it computes is increasing and bounded,

and maps 0 to 0. Therefore, apply Lemma 5.2.

What is the class of all functions computable by a network of adders, splitters presinks

and delayers? Let us call a function P : Nk → N� eventually constant if it is eventually

periodic with all periods 1; that is, there exist r1, . . . , rk ∈ N such that P (x) = P (x + ei)

whenever xi � ri. (Note the relatively weak meaning of this term: Such a function may
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Figure 9. Networks computing 1[x � 4], and min(b1, b2, b3) and max(b1, b2, b3) for boolean inputs bi ∈ {0, 1}.

admit multiple limits as some arguments tend to infinity while the others are held constant,

as in our remark following the definition of eventually periodic.)

Theorem 5.3. Let k � 1. A function f : Nk → N can be computed by a finite, directed

acyclic network of adders, splitters, presinks and delayers if and only if it satisfies all of

the following:

(i) f(0) = 0,

(ii) f is increasing,

(iii) f = L + P for a linear function L and an eventually constant function P .

Proof. Let N be such a network, and let it compute f. Since adders and splitters are

immutable, and presinks and delayers become immutable after receiving one input, the

internal state of N can change only a bounded number of times. In fact, for each

i = 1, . . . , k we have tri = tr+1
i where r is the total number of presinks and delayers in N.

Letting bi := f((r + 1)ei) − f(rei), it follows from Lemma 2.2 that

f(x + ei) − f(x) = bi (5.1)

whenever xi � r. Note that bi ∈ N. Letting P (x) := f(x) − b · x, we find that P (x + ei) =

P (x) whenever xi � r, so P is eventually constant.

Conversely, suppose that f satisfies (i)–(iii). Write f = L + P for a linear function

L(x) = b · x with b ∈ Nk , and an eventually constant function P . Then there exist r1, . . . , rk
such that (5.1) holds for all i = 1, . . . , k and all x ∈ Nk such that xi � ri. In particular, the

function

g(x) := f(x) −
k∑

i=1

bi(xi − ri)
+
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is ZILP and bounded. By Theorem 1.2 there is a network N of adders, splitters, presinks

and delayers that computes g. To compute f, feed each input xi into a splitter which feeds

into N and into an ri-delayer followed by a bi-splitter.

6. The general case

In this section we prove Theorem 1.1. As in the recurrent case, the proof will be by

induction on the number of inputs, k, of the abelian processor. We identify Nk with

Nk−1 × N, and write (y, z) = y + zek . Meagerization will again play a crucial role. A major

new ingredient is ‘interleaving of layers’.

6.1. The unary case

As before, we first prove the case of unary input, although an alternative would be to

start the induction with the trivial zero-input processor.

Lemma 6.1. Any abelian processor with unary input and output can be emulated by a

directed acyclic network of adders, splitters, topplers, presinks and delayers.

Proof. Let the processor P compute F : N → N. Since F is ZILEP, it is linear plus

periodic when the argument is sufficiently large; thus, there exists R ∈ N such that the

function G given by

G(x) := F(x + R) − F(R), x ∈ N

is ZILP. We have

F(x) = G((x − R)+) +

R−1∑
i=0

[F(i + 1) − F(i)] 1[x > i]

as is easily checked by considering two cases: when x � R the first term vanishes and the

second telescopes; when x � R, the second term is F(R) and we use the definition of G.

By Lemma 4.1, the function G can be computed by a network of adders, splitters and

topplers. Now to compute F , we feed the input x into R delayers in series. For each

0 � i < R, the output after i of them is also split off and fed to a delayer, to give 1[x > i]

(as in the proof of Lemma 5.2); this is split into F(i + 1) − F(i) copies, while the output

(x − R)+ of the last delayer is fed into a network emulating G, and all the results are

added. See Figure 10 for an example.

6.2. Two-layer functions

We now proceed with a simple case of the inductive step, which provides a prototype for

the main argument, and which will also be used as a step in the main argument.

Lemma 6.2. Let P be a k-ary abelian processor that computes a function F , and suppose

that

F(y, z) = F(y, z′) if z, z′ � 1. (6.1)
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Figure 10. Emulating a transient unary processor. (In this example, the difference F(i + 1) − F(i) takes values

0, 3, . . . , 1 for i = 0, 1, . . . , R − 1.)

Then P can be emulated by a network of topplers, presinks, and (k − 1)-ary abelian pro-

cessors.

Proof. Define

W := sup
y∈Nk−1

F(y, 1) − F(y, 0),

and note that W < ∞, because the difference inside the supremum is an eventually periodic

function of y, and is thus bounded. If W = 0, then F is constant in z, and therefore P
can be emulated by a single (k − 1)-ary processor.

Suppose W � 1. We reduce to the case W = 1 by the meagerization identity (1.2).

Specifically, we express F as
∑W−1

i=0 Fi, where Fi := �(F + i)/W 	. Each Fi is ZILEP (this

can be checked directly, or by Proposition 2.6, since Fi is computed by feeding the output

of F into a toppler). Each Fi satisfies the condition (6.1), but now has Fi(y, 1) − Fi(y, 0) � 1

for all y, as promised. If we can find a network to compute each Fi then the results can

be fed to an adder to compute F .

Now we assume that W = 1. Define the two (k − 1)-ary functions (‘layers’):

f0(y) := F(y, 0),

f1(y) := F(y, 1) − u, where u := F(0, 1).

Each of f0, f1 is ZILEP. Therefore, by Theorem 2.4, they are computed by suitable (k − 1)-

ary abelian processors P0,P1. Note that since W = 1, we have u ∈ {0, 1}. We now claim

that

F(y, z) =

⌊
f0(y) + f1(y) + u + 1[z > 0]

2

⌋
. (6.2)

Once this is proved, the lemma follows: we split y and feed it to both P0 and P1, while

feeding z into a presink. The three outputs are added and fed into a primed 2-toppler in

initial state u. See Figure 11.

It suffices to check (6.2) for z = 0 and z = 1, since both sides are constant in z � 1.

Write Δ(y) = F(y, 1) − F(y, 0), so that Δ(y) ∈ {0, 1} for each y. For z = 0, the right side of
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Figure 11. Inductive step for emulating a two-layer function. (Here the solid disk represents k − 1 parallel

splitters that split each of the k − 1 entries of the vector y into two.)

(6.2) is ⌊
2F(y, 0) + Δ(y)

2

⌋
= F(y, 0).

On the other hand, for z = 1 we obtain⌊
2F(y, 1) + (1 − Δ(y))

2

⌋
= F(y, 1),

as required.

6.3. A pseudo-minimum and interleaving

The proof of Theorem 1.1 follows similar lines to the proof above, but is considerably

more intricate. Again we will start by using the meagerization identity to reduce to

a simpler case. The last step of the above proof can be interpreted as relying on the

fact that �(a + b)/2	 = min{a, b} if a and b are integers with |a − b| � 1. We need a

generalization of this fact involving the minimum of n arguments. The minimum function

(x1, . . . , xn) �→ min{x1, . . . , xn} itself is increasing but only piecewise linear. Since it has

unbounded difference with any linear function, it cannot be expressed as the sum of

a linear and an eventually periodic function, and thus cannot be computed by a finite

abelian processor. The next proposition states, however, that there exists a ZILP function

that agrees with min near the diagonal. For the proof, it will be convenient to extend the

domain of the function from Nn to Zn. Theorem 1.3 implies that the restriction of such a

function to Nn can be computed by a recurrent abelian network of gates.

Proposition 6.3 (pseudo-minimum). Fix n � 1. There exists an increasing function M :

Zn → Z with the following properties:

(i) M(x + n2ej) = M(x) + n, for all x ∈ Zn and 1 � j � n,

(ii) if x ∈ Zn is such that maxj xj − minj xj � n − 1 then M(x) = minj xj .

The case n = 1 of the above result is trivial, since we can take M to be the identity.

When n = 2 we can take M(x) = �(x1 + x2)/2	 (which satisfies the stronger periodicity

https://doi.org/10.1017/S0963548318000482 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000482


412 A. E. Holroyd, L. Levine and P. Winkler

Figure 12. Part of the function M̂ when n = 2. The origin is at the bottom left, and the region L is shaded.

condition M(x + 2ej) = M(x) + 1 than (i)). The result is much less obvious for n � 3. Our

proof is essentially by brute force. Our M will in addition be symmetric in the coordinates.

The period n2 appearing in (i) is relatively unimportant. We do not know whether it can

be reduced to order n. Any period suffices for our application.

Proof of Proposition 6.3. We start by defining a function M̂ that satisfies the given

conditions but is not defined everywhere. Then we will fill in the missing values. Let

L := {x ∈ Zn : minj xj = 0, maxj xj � n−1} = [0, n−1]n \ [1, n−1]n.

(This is the set on which (ii) requires M to be 0.) Write 1 = (1, . . . , 1) ∈ Zn. Let M̂ : Zn →
Z ∪ {�} be given by

M̂(x) =

{
n
∑

j uj + s if x ∈ L + n2u + s1 for some u ∈ Zn, s ∈ Z,

� otherwise.
(6.3)

Here the symbol � means ‘undefined’. See Figure 12 for an illustration.

We first check that the above definition is self-consistent. Suppose that x ∈ L + n2u + s1

and x ∈ L + n2v + t1; we need to check that the assigned values agree. First suppose that

u−v does not have all coordinates equal. Then

‖(n2u + s1) − (n2v + t1)‖∞ = ‖n2(u−v) + (s−t)1‖∞ � n2

2
,

since two coordinates of n2(u−v) differ by at least n2, and the same quantity s−t is added

to each. This gives a contradiction since L has ‖ · ‖∞-diameter n−1 < n2/2. Therefore,

u−v has all coordinates equal, i.e. u−v = w1 for some w ∈ Z. Since L + a1 and L + b1

are disjoint for a �= b, we must have n2u + s1 = n2v + t1, so n2w = t−s. But then the two

values assigned to M̂(x) by (6.3) are n
∑

j uj + s and n(
∑

j uj − nw) + t, which are equal.

Next observe that M̂ satisfies an analogue of (i). Specifically,

M̂(x) �= � implies M̂(x + n2v) = M̂(x) + n
∑
j

vj . (6.4)

This is immediate from (6.3). Note also that M̂ satisfies (ii), that is,

max
j

xj − min
j

xj � n−1 implies M̂(x) = min
j

xj , (6.5)
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since the assumption is equivalent to x ∈ L + (minj xj)1.

The key claim is that M̂ is increasing where it is defined:

x � y and M̂(x) �= � �= M̂(y) imply M̂(x) � M̂(y). (6.6)

To prove this, suppose that x ∈ L + n2u + s1 and y ∈ L + n2v + t1 satisfy x � y. If u−v

has all coordinates equal then we again write u−v = w1, so y ∈ L + n2u + (t − n2w)1.

For a < b, no element of L + a1 is � any element of L + b1. Therefore x � y implies

s � t − n2w, which yields M̂(x) � M̂(y) in this case. Now suppose w := u−v does not have

all coordinates equal, and write w = n−1
∑

j wj . Since 0 � L � (n−1)1 � n1,

n2u + s1 � x � y � n2v + t1 + n1,

which gives n2w � (t − s + n)1. Suppose for a contradiction that M̂(x) > M̂(y), which is

to say n
∑

j uj + s > n
∑

j vj + t, i.e. t − s < n2w. Combined with the previous inequality,

this gives n2w < (n + n2w)1 (where < denotes strict inequality in all coordinates). That is,

wj − w <
1

n
, 1 � j � n,

which is impossible by the assumption on w. Thus (6.6) is proved.

Now we fill in the gaps: define M by

M(x) := sup{M̂(z) : z � x and M̂(z) �= �},

where the supremum is −∞ if the set is empty and +∞ if it is unbounded above. (But

these possibilities will in fact be ruled out below.)

If x � y then the set in the definition of M(x) is contained in that for M(y). So

M is increasing. If M̂(x) �= � then taking z = x and using (6.6) gives M(x) = M̂(x). In

particular, M satisfies (ii) by (6.5). It is easily seen that for every x there exist u � x � v

such that M̂(u) �= � �= M̂(v). Therefore monotonicity of M shows that M(x) is finite.

Finally, the definition of M and (6.4) immediately imply that F satisfies the same equality

as M̂ in (6.4) (now for all x), which is (i).

The above result will be applied as follows.

Lemma 6.4 (interleaving). Fix n, k � 1. Let F : Nk−1 × N → N be an increasing function

satisfying

F(y, z) � F(y, z+1) � F(y, z) + 1, (6.7)

for all y ∈ Nk−1 and all z ∈ N. Then

F(y, z) = M(F(y, z0), . . . , F(y, zn−1)),

where M is the function from Proposition 6.3, and

zi = zi(z) := n

⌊
z+n−i−1

n

⌋
+ i.
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Figure 13. The interleaving functions zi(z) for n = 4.

The idea is that the function (y, z) �→ F(y, zi(z)) appearing in Lemma 6.4 picks out

every nth layer of F , starting from the ith (with each such layer repeated n times after an

appropriate initial offset). Figure 13 illustrates the functions zi. The lemma says that we can

recover F from these functions by ‘interleaving’ their layers, thus reducing the computation

of F to potentially simpler functions. Note that the functions (y, z) �→ F(y, zi(z)) do not

necessarily map 0 to 0 (even if F does), and so cannot themselves be computed by abelian

processors. We will address this issue with appropriate adjustments (akin to the use of

the quantity u in the proof of Lemma 6.2) when we apply the lemma in the proof of

Theorem 1.1.

Proof of Lemma 6.4. As i ranges from 0 to n−1, note that zi takes on each of the values

z, z+1, . . . , z+n−1 exactly once. Thus, the increasing rearrangement of (F(y, zi))
n−1
i=0 is

(F(y, z+j))n−1
j=0 .

By (6.7) it follows that

M((F(y, zi))
n−1
i=0 ) = min(F(y, zi))

n−1
i=0 = F(y, z).

6.4. Proof of main result

Proof of Theorem 1.1. By Lemma 3.2 we may assume that the processor P to be

emulated has unary output. Suppose that P computes F : Nk → N, and recall from

Theorem 2.4 that F is ZILEP. We will use induction on k, with Lemma 6.1 providing the

base case. We therefore suppose that k � 2 and focus on the kth coordinate. Suppose that

F(y, z + L) = F(y, z) + SL for all y ∈ Nk−1 and z � R. (6.8)

We call L the period, S the slope, and R the margin (the width of the non-periodic part) of

F with respect to the kth coordinate. (In the notation of Section 4, one choice is to take

L = λk , S = bk and R = rk . Note that L is defined only up to positive integer multiples,
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and R can always be increased. On the other hand, S is uniquely defined.) Motivated by

the proof of Lemma 6.2, we also consider the parameter

W := sup
(y,z)∈Nk

F(y, z + 1) − F(y, z), (6.9)

which we call the roughness of F . Since the difference inside the supremum is an eventually

periodic function of (y, z), we have W < ∞.

If W = 0 then F does not depend on the kth coordinate, so we are done by induction.

Assuming now that W > 0, we will first reduce to functions satisfying (6.8) and (6.9) with

parameters satisfying one of the following:

case 0 W = 1, L = R = n, S = 0,

case 1 W = 1, L = R = n, S = 1/n,

where in both cases, n is a positive integer.

Reduction to case 0. Suppose that the original function F has slope S = 0. We use the

meagerization identity (1.2) to express F as the sum
∑W−1

j=0 Fj where Fj = �(F + j)/W 	.
Each Fj is ZILEP by Proposition 2.6 or Theorem 2.4. We will emulate each Fj separately

and use an adder. Note that Fj has roughness 1. Moreover, since S = 0 we have

Fj(y, z) = Fj(y, R) for all z � R. (6.10)

Therefore we can set n = R, and Fj satisfies (6.8) and (6.9) with the claimed parameters

for case 0.

Reduction to case 1. Suppose on the other hand that F has slope S > 0. Take R larger

if necessary so that R � WL. We use the meagerization identity (1.2) to express F as∑Sn−1
j=0 Fj , where

n :=

⌊
R

WL

⌋
WL, Fj :=

⌊
F + j

Sn

⌋
.

Note that n � 1. We will again emulate each Fj separately and add them. Note that since

Sn � max(R, SL), each Fj has roughness 1. Next we check that n can be taken as both

the period and the margin for each Fj . Since L divides n and n � R, we have

Fj(y, z+n) =

⌊
F(y, z) + Sn + j

Sn

⌋
= Fj(y, z) + 1

for all y ∈ Nk−1 and all z � n. Finally, Fj has slope 1/n as desired.

Inductive step. Assume now that F satisfies (6.8) and (6.9) with parameters as given in

case 0 or case 1 in the above table. Also assume that the result of the theorem holds

for all processors with k − 1 inputs. We will apply the interleaving result, Lemma 6.4,

rewritten in terms of functions that map 0 to 0. To this end, define for i = 0, . . . , n − 1,

ζi(z) :=

⌊
z + n − i − 1

n

⌋
, z ∈ N,

ui := F(0, i),

Gi(y, ζ) := F(y, nζ + i) − ui, y ∈ Nk−1, ζ ∈ N,
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Figure 14. The additional reduction in case 1.

and

Mu(v) := M(v + u), v ∈ Nn,

where u := (u0, . . . , un−1) ∈ Zn and M is the function from Proposition 6.3. Then we have

F(y, z) = Mu(G0(y, ζ0(z)), . . . , Gn−1(y, ζn−1(z))). (6.11)

This follows from Lemma 6.4: the condition (6.7) is satisfied because W = 1.

Note that u0 = 0 and ui+1 − ui � 1 (also because W = 1), so by Proposition 6.3 we

have Mu(0) = M(u) = 0. Moreover, the function Mu is increasing and periodic, so by

Theorem 2.5 there is an recurrent abelian processor Mu that computes it, and by

Theorem 1.3 there exists a network (of topplers, adders and splitters) that emulates Mu.

Also note that the function z �→ ζi(z) is computed by a primed toppler.

For each i, the function Gi is increasing, and can be expressed as a linear plus an

eventually periodic function (by Theorem 2.4). And we have

Gi(0, 0) = F(0, i) − ui = 0.

So our task is reduced to finding a network to compute Gi. For all y and ζ � 1 we have

Gi(y, ζ + 1) − Gi(y, ζ) = F(y, nζ + i + n) − F(y, nζ + i) =

{
0 in case 0,

1 in case 1.

Thus, in case 0, Gi is ZILEP and satisfies the condition (6.1), so by Lemma 6.2 it can be

computed by a network of gates and (k − 1)-ary processors. By the inductive hypothesis,

each (k − 1)-ary processor can be replaced with a network of gates that emulates it.

On the other hand, in case 1 we can write

Gi(y, ζ) = Hi(y, ζ) + (ζ − 1)+,

for a function Hi (which can be written Hi(y, ζ) := Gi(y,1[ζ > 0])), that is ZILEP and

satisfies (6.1). By Lemma 6.2 and the inductive hypothesis, Hi can be computed by a

network of gates. Thus, we can compute Gi by feeding ζ into a splitter, sending one

output to a delayer and the other to a processor Hi that computes Hi, and adding the

results. See Figure 14.

Finally, (6.11) and Figure 15 show how to complete the emulation of F in either case:

z is split and fed into various primed topplers that compute the functions ζi(z), which are

combined with y and fed into networks emulating the Gi. The results are combined using

Mu.
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Figure 15. The main inductive step.

7. Necessity of all gates

In this section we study the classes of functions computable by various subsets of the

abelian logic gates in Table 1. The following observation will be useful: a function on Nk

can be decomposed in at most one way as the sum of a linear and an eventually periodic

function. Indeed, the difference of two linear functions is either zero or unbounded on Nk ,

so if

L1 + P1 = L2 + P2

for some linear functions L1, L2 and some eventually periodic functions P1, P2, then

L1 − L2 is bounded on Nk and hence L1 = L2, which in turn implies P1 = P2.

7.1. Necessity of infinitely many component types

We have seen that 2-topplers, splitters and adders suffice to emulate any finite recurrent

abelian processor if feedback is permitted. The goal of this section is to show that no

finite list of components will suffice to emulate all finite recurrent processors by a directed

acyclic network.

The exponent of a recurrent abelian processor is the smallest positive integer m such

that inputting m copies of any letter acts as the identity: tmi (q) = q for all recurrent states

q and all input letters i.

Lemma 7.1. Let N be a finite, directed acyclic network of recurrent abelian components.

The exponent of N divides the product of the exponents of its components.

Proof. Induct on the number of components. Since N is directed acyclic, it has at least

one component P such that no other component feeds into P . Let m be the exponent

of P , and let M be the product of the exponents of all components of N. For any letter

i in the input alphabet of P , if we input M letters i to P , then P returns to its initial
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recurrent state and outputs a non-negative integer multiple of M/m letters of each type.

By induction, the exponent of the remaining network N − P is divisible by M/m, so all

other processors also return to their initial recurrent states.

Lemma 7.2. Let N be a finite, directed acyclic network of recurrent abelian components

that emulates a λ-toppler. Then λ divides the exponent of N.

Proof. If m is the exponent of N, then x �→ FN(mx) is a linear function. Equating the

linear parts of the L + P decomposition of N and the λ-toppler, we obtain

FN(mx)

m
=

x

λ

for all x ∈ N. Setting x = 1 gives λ divides m.

Lemmas 7.1 and 7.2 immediately imply the following.

Corollary 7.3. Let L be any finite list of finite recurrent abelian processors. There exists

p ∈ N such that a finite, directed acyclic network of components from L cannot emulate a

p-toppler.

Proof. Let p be a prime that does not divide the exponent of any member of L.

7.2. Necessity of primed topplers in the recurrent case.

A directed acyclic network of adders, splitters and unprimed topplers computes a function

L + P with L linear and P periodic with P � 0. The inequality follows from converting

each toppler �x/λ	 into its linear part x/λ. Recall however that we can do away with

primed topplers if we allow presinks (Lemma 3.1).

7.3. Necessity of delayers and presinks

Proposition 2.7 implies that a directed acyclic network of recurrent components is itself

recurrent, so at least one transient gate is needed in order to emulate an arbitrary finite

abelian processor. But why do we have two transient gates, the delayer and the presink?

In this section we will show that neither can be used along with recurrent components to

emulate the other.

Lemma 7.4. If G : N → N is both ZILP and bounded, then G ≡ 0.

Proof. Write G = L + P for L linear and P periodic. In particular, P is bounded, so if

G is bounded then L is both bounded and linear, hence zero. But then G = P , and the

only increasing periodic function is the zero function.

Proposition 7.5. Let N be a finite directed acyclic network of recurrent components and

delayers. Then N cannot emulate a presink.
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Proof. Let A be the total alphabet of N, and let F = FN : NA → N. Let D ⊂ A the set

of incoming edges to the delayers. Note that inputting 1D converts all delayers to wires,

and has no other effect (in particular, no output is produced: F(1D) = 0). The resulting

network with delayers converted to wires is recurrent by Proposition 2.7, so the function

F̃(x) := F(x + 1D)

is ZILP by Theorem 2.5.

Now suppose for a contradiction that N emulates a presink; that is, for some letter

a ∈ A we have F(n1a) = 1{n > 0}. Then the function

G(n) := F(n1a + 1D)

is bounded (by 1 + maxq FN,q(1D), where the maximum is over the finitely many states

q of N). Since G is the restriction of the ZILP function F̃ to a coordinate ray, G is

ZILP, which implies G ≡ 0 by Lemma 7.4. But G(1) � F(1a) = 1, which gives the required

contradiction.

The proof shows a bit more: if N is a directed acyclic network of recurrent components

and delayers, then FN is either zero or unbounded along any coordinate ray.

Lemma 7.6. If G : N → N is ZILP, say G = L + P with L linear and P periodic, then

G(x) = L(x) for infinitely many x.

Proof. Since G(0) = L(0) = 0 we have P (0) = 0. Since P is periodic, P (x) = 0 for

infinitely many x.

Proposition 7.7. Let N be a finite, directed acyclic network of recurrent components and

presinks. Then N cannot emulate a delayer.

Proof. Let A be the total alphabet of N, and let F = FN : NA → N. Let S ⊂ A the set

of incoming edges to the presinks. Note that inputting 1S converts all presinks to sinks.

However, unlike the input 1D of the previous proposition, the input 1S may have other

effects: it may change the states of other components, and may produce a non-zero output

F(1S ).

Let q0 denote the initial state of N and q1 the state resulting from input 1S . The

resulting network R with presinks converted to sinks is recurrent by Proposition 2.7, so

the function

FR,q1 (x) = F(x + 1S ) − F(1S )

is ZILP by Theorem 2.5.

Now we relate FR,q1 to FR,q0 . Since R is recurrent, there is an input u ∈ NA such that

inputting u to R in state q1 results in state q0. Since converting presinks to sinks without
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changing the states of any other components cannot increase the output, we have

F(x) = FN,q0 (x) � FR,q0 (x)

= FR,q1 (x + u) − FR,q1 (u)

= F(x + u + 1S ) − F(u + 1S ).

Finally, suppose for a contradiction that N emulates a delayer; that is, for some letter

a ∈ A we have F(n1a) = (n − 1)+. Then the function

G(n) := F(n1a + u + 1S ) − F(u + 1S )

is ZILP with linear part L(n) = n. By Lemma 7.6, G(n) = n for infinitely many n. This

yields the required contradiction, since n > F(n1a) � G(n) for all n � 1.

8. Open problems

8.1. Floor depth

Let us define the floor depth of a ZILP function as the minimum number of nested

floor functions in a formula for it. More precisely, let R0 be the set of N-affine functions

Nk → N, and for n � 1 let Rn be the smallest set of functions closed under addition and

containing all functions of the form �f/λ	 for f ∈ Rn−1 and positive integer λ. The floor

depth of f is defined as the smallest n such that f ∈ Rn.

If f is computed by a directed acyclic network of splitters, adders and topplers, then

the proof of Corollary 1.5 in Section 2.6 shows that the floor depth of f is at most

the maximum number of topplers on a directed path in the network. Hence, by the

construction of the emulating network in Section 4, every ZILP function Nk → N has

floor depth at most k. Is this sharp?

8.2. Unprimed topplers

What class of functions Nk → N can be computed by a directed acyclic network of

splitters, adders and unprimed topplers?

8.3. Conservative gates

Call a finite abelian processor conservative if, in the matrix of the linear part of the

function it computes, each column sums to 1. We can think of the input and output letters

of such a processor as indistinguishable physical objects (balls) that are conserved, as in

a sandpile or rotor-router model with no sources or sinks. An internal state represents a

configuration of (a bounded number of) balls stored inside the processor. Splitters and

topplers are not conservative: splitters create balls while topplers consume them. But a

sandpile node – which distributes k particles each time it receives k – is conservative, even

though we would ordinarily emulate one using a toppler and splitters. A finite network

of conservative abelian processors with no trash edges emulates a single conservative

processor (provided the network halts). Find a minimal set of conservative gates that

allow any finite conservative abelian processor to be emulated.
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Table 3. Sixteen (4 × 4) types of L + P decomposition

for an increasing function Nk → N�

L P

linear zero

piecewise linear eventually constant

polynomial periodic

piecewise polynomial eventually periodic

8.4. Gates with infinite state space

Each of the following functions N2 → N,

(x, y) �→ min(x, y),

(x, y) �→ max(x, y),

(x, y) �→ xy,

can be computed by an abelian processor with an infinite state space. In the case of

min and max the state space N suffices, with transition function t(x,y)(q) = q + x − y. The

product (x, y) �→ xy requires state space N2, as well as unbounded output: for example,

when it receives input e1 in state (x, y) it transitions to state (x + 1, y) and outputs y

letters. What class of functions can be computed by an abelian network (with or without

feedback) whose components are finite abelian processors and a designated subset of the

above three? Such functions have an L + P decomposition where the L part is piecewise

linear, polynomial or piecewise polynomial (Table 3).
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