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Abstract We study smooth local models of families of symmetric and reversible vector
fields near a partially hyperbolic singularity. Special attention is given to the question of
whether the involved changes of variables commute with the symmetry.

1. Introduction

For the investigation of nonlocal bifurcations, such as near a homoclinic orbit, it is not
enough to perform center manifold reductidi?][ near a singularity: a simple smooth
model in a full neighborhood is often needed, for example in order to compute Roincar’
maps. The dependence of the smooth local model on the bifurcation parameter is
important, seed, 17J. A special case of what we shall present in §2 was used by Rychlik
[14, Theorem 1.1] in the construction of geometric Lorenz attractors within the class of
vector fields oriR3 having the involutionR (x1, x2, x3) = (—x1, —x2, X3) as a symmetry.

See alsol, 6, 9, 11, 1Band many others. A particularly motivating example for this paper
has been studied by Champneys aratteffich in ] and concerns a smoothtparameter
family X, of vector fields defined near the origin Bf having a singularity at zero for

all u near zero such that the eigenvalues of the linearizati®p(0) of Xg atx = 0

arew, —a, iw and —iw, with o, @ nonzero real numbers. It is, moreover, assumed that
these vector fields have a homoclinic orbitiat= 0 and are time reversible for the linear
involution R(x1, x2, x3, x4) = (x2, x1, x4, x3), thatis: R, X,, = — X, for all parameterg..

We consider ap-parameter family of vector fieldX,, near a singularityrp where
(possibly) not all eigenvalues have their real part different from zero for some patu@g
of the parameter. Such a singularityis called partially hyperbolicl[7]. In this paper we
are interested in symmetric and reversible vector fields.

In the case of extra constraints, such as symmetry or reversibility, or in high
codimension, it may be unavoidable that resonances and nonhyperbolicities of the
eigenvalues at an equilibrium point persist. In such circumstances linearizability near the
singularity becomes ungeneric, so a more complicated form is ne&fed [
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A first simplification, which we shall not describe as it is widely discussed in the
literature (b, 7, 8, 11 and many others), is the formal normal form, that is: use successive
polynomial changes of variables in order to simplify the Taylor series of the vector field
at the singularity. The preservation of extra structure in this formal context is also well
understood, using the theory of graded Lie algebras (see the cited references).

The result of the formal normal form procedure is a family of the faxp(x) =
Py (x, 1) + Ry(x, u) where Py is a ‘simplified’ polynomial system of degree at most
N and whereRy (x, n) = O(|(x, w)|V+1).

The question of simplification of the remainder teRy is of a totally different nature,
especially in the partially hyperbolic case. This is the aspect we want to restrict our
attention to in this paper.

Remark 1.In what follows we will consider @-parameter family of vector field§,, near

the origin ofR", with Xo(0) = 0, as being a vector fieldl (x, u) = X, (x)d/dx +0.9/9

on a neighborhood ofx, 1) = (0,0) € R" & R? having a partially hyperbolic singular
point there; from the methods further on it will follow that all changes of variables respect
this ‘familial character’, and are of the forir(x, ) = (h,(x), ).

So let, in generalX be a smooth vector field on a neighborhood oE0R” with
X(0) = 0 such that for some linear transformati&nof R” we haveR.X = X, that
iISRoX = X o R. One says thakX is R-symmetric. At a partially hyperbolic fixed
point we consider the so-called quasipolynomial forts]] we will explain this in the
next section. When there are no resonances on the real parts of the eigenvalues in the
‘hyperbolic’ directions (see further on) this is what Takehg][called the standard form,
which means: normally linear along the center manifold; see &8lso [

A similar subject is that th&-reversible vector fields, that is vector fiel@ssatisfying
R.X = —X; in that caseR is called a time reversing symmetry. Note that this last relation
entails resonances when there are nonzero eigenvaluess #n eigenvalue thea is
also one, giving the relatiois= (m + DA +m(=1),m =12, ....

2. The symmetric case

For the simplicity of the exposition we start with @ vector field X defined on a
neighborhood of a partially hyperbolic fixed point, although many facts can still be
formulated in theC"€ context.

Notation 1. Let 0 € R” be a partially hyperbolic singular point of tlt& vector field X
and let its linear part at zero be:= d X (0). Let R be a linear transformation @&" such
that R, X = X. This impliesRA = AR. Up to a linear change of variabldswe can
assume that

A = diagonalAog, A1, ..., Ay, Aytls -, Autsl

(i.e. A consists of the blockd ; on the diagonal; all other blocks are zero), where4he
are squarel/; @ d; matrices such that the spectrum 4§ lies entirely in the imaginary
axis and such that fof € {1,...,u + s} the eigenvalues oft ; have the same real part
Aj #0andiyq1 < -+ < Aygs < 0 < X1 < -+ < Ay. The chosen letters:” and ‘s’
refer to ‘unstable’ and ‘stable’, respectively. This partitiordoiihto blocks corresponds to
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asplittingR" = Eo® E1 @ - - - ® E,+,, Where the dimension of the linear subspégds
d;. As mentioned in Remark 1, possible parameter directions lie in a subspage of

Note that in generaP will not commute withR; we continue our study renaming
PRP~1 againR. Let us perform a corresponding partition #®r that isR = [R,»j];.";?io.
The relationRA = AR yieldsR;; A; = A;R;; and, together with the spectral assumptions,
this impliesR;; = O fori # j. SOR = diagonalRqo, . . . , Ruts,u+s]-

Letusdenote. = (A1, ..., Ay4s), E" = E1® - - ® E,, E' = E;41® -+ - ® Ey4s,

Eh — EU @ E*
R" = diagonalR11, ..., Ruul,
R = diagonaﬂRu+1,u+l7 ceey Ru+s,u+s]~
Letx,y = (y1, ..., yu) @ndz = (yy+1, - - -, Yu+s) denote coordinate functions dfy, E“,

E’, respectively, and write
c 8 u a s a
Xx,y,0)=XMx,y,0)— + X, y, ) —+ X (x,y, ) —.
ox dy 9z

We consider the normally linear pawtX of X alongEo, that is

a ax" a X a
NX(-x7 yv Z):Xc(-x701 0)_+ (-x707 0)‘y (-x707 O)'Z_ (1)
dx z 0z

dy ay t3
which is called the ‘standard form’ irL[]. We developX in the form

M

9
X(x.y.0)=NX(x.y.20+ Y Qg (X)yP2
Ipl+lgl=1
S B 9 . ) 0
u o N
+ Z_ Agp (X) Y2 @+ Z_ ays(x)y7'z %
el +1B1=0 ly|18]=0
+O((y, 2)[M+h )

for given M € N, wherep, ¢, «, 8, y,§ are multi-indices. The quasipolynomial form
procedure consists of eliminating inductively the terms in these three summations by means
of Ck changes of variables, also called conjugacies. In geriecaln only be expected to

be finite, due to the ‘central’ behavior: sek [L5, 17, 18 We say that a function(x) is

N-flat at the origin if it is Q|x|¥*+1). Using formal normal form theorys] 7, 8, 11 we

can assume that, up to a polynomial change of variatdesmuting withr, the functions
a,,(x) etc. are as flat as needed.

Remark 2.If X is R-symmetric then so i8!717191X /ayP9z4(x, 0, 0).yPz¢ for all multi-
indices(p, ¢): we obtain this by taking the derivatives of the equality

R(X(x,y,2)) = X(Roox, R"y, R°z)

with respect toy andz. So we may, and do, assume that the terms in the development (2)
are R-symmetric.
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We shall assume that the symmeRys similar to an orthogonal matrix, that AR P~1
is orthogonal for some invertibl®; this includes the, often encountered, case of an
involution.

A first step in the quasipolynomial form procedure is the following.

THEOREM 1. Suppose thagr is similar to an orthogonal matrix. Let € N be given and
let Z be of the form

Z(x,y,2) = a(x)y”z"% with (&, (p,q)) # 0 (3
or
9 .
Z(x,y,2) =a(x)ypzqa—y with (X, (p, q)) # A, 4)
J

with (p,q) e N* xN*%, j =1,..., u+s and where: is aC” function defined ned € Ej.
Suppose that botWV X and Z are R-symmetric (cf. Remark 2). dfis r-flat at the origin,
then the vector field&¥ X 4+ Z and N X are locallyC” conjugate up to terms of order more
thanO(|y|?|z]?) by means of a change of variablegommuting withk.

Proof. We want to work with globally defined objects by multiplying the occurring vector
fields with aC* ‘cut off’ function ¢ : R" — [0, 1] which is equal to zero outside a given
‘small’ neighborhoodJ of the origin and equal to one on a smaller neighborhood. One
has to take care that this does not destroy the symmetry. Using the assumptirighat
similar to an orthogonal matrig, sayP R P~ = § for some invertibleP, we can proceed

as follows.

Lety : R — [0, 1] be aC® function which is zero outside an intervats, §] and
equal to one ofi—e¢, e] for ¢ < 8. Forv € R” we definep(v) = ¥ (| Pv|). Suppose that a
vector fieldX onR”" is R-symmetric. We check that := ¢.X is alsoR-symmetric using
the fact thatSw| = |w| for all w € R";

R.Y(v) = R.op(w)X (v)
=Y (|PV)R.X(v)
=Y (|SPv))X(Rv)
= (P 1SPv)X(Rv)
= ¢(Rv) X (Rv)
= Y(Rv).

Using such a cut off function we can replace the locally definétlandZ by globally
defined vector fields, which we give the same name. Moreover, the flows of f&vand
NX + Z are complete, i.e. defined for all timess R. Let NX; and(NX + Z); denote
the timer map of NX andNX + Z, respectively. We remark that these maps commute
with R.

Up to a possible multiplication of both vector fields byl, we can take care that
(A, (p,q)) < 0in case (3), respectivelir, (p,q)) —1; < 0in case (4). Consider for
eacht € R the diffeomorphismh; = (NX + Z)_; o NX;, which commutes withR.
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Denotej, 4h/(x, y,z) = (1/plg")d'PI+1alh, /ayPazd(x, 0,0).yPz%. As in Remark 2, this
still commutes withR.
From [4] it follows that, provided a suitable cut off function is chosen, the limit

h(xa Y, Z) = (.X, Y, Z)+ lim jp,qht(x7 ) Z) (5)
t—0o0

exists for all(x, y, z) € R" and is aC” diffeomorphism conjugatingg X to NX + Z up to
terms of order more than(@|?|z|9); it commutes withR. |

Terms in the development (2) for which (3) or (4) become equalities cannot be removed
by this method, and we call themmremovablgsuch equalities are called resonances on the
real parts of the eigenvalues. The process of eliminating terms like (3) or (4) is inductive
and leaves a development with only unremovable terms. This is the quasipolynomial form:

M
9
Xy, 2 = NX oy, D+ ) ap,(0yPed—

0x
Ipl+lgl=1
(p.q)es©

u+ts M N p 9
o
FY D P Ty (6)
j=1 la|+|pI=0
(@.B.)eS]
where (p,q) € S iff (1, (p,q)) = 0 and(a B,j) € Stiff (A, (@) = A,
j=1,...,u+s,and wherd'(x, y, z) = O(|(y, z)|M*1). We denotex?® = x1 — T.
In order to fix the ideas of the reader we give a simple example®bn

Example 1.Let X, be a family of vector fields defined near & R3 with linear part
A(pn) = dX,(0) = (A;j(W)o<i, j<2 such thatAd(0) = diagondl0, A, —A] andx > 0.
Suppose that the symmetry for eah is R(x, y, z) = (—x, y, —z). The only resonances
here arg(x, —4), (p, q)) = 0, ((x, =), (p, q)) = » and((%, —4), (p, q)) = —A, which
are equivalenttp = ¢, p = g+1, andp+1 = ¢, respectively. Hence the quasipolynomial
form in (6) is, for this example, up to a flat term

M
9 N 9
NXu(x,,2) +p£=:l(yz)” {ai(x, Wy TapE my g Fap, u)za—z}. (7

Note that, by Remark 2, the coefficient functions satisfy certain relations:

as(—x, p) = (=DPas(x, w),

ay(—x, w) = (=DPaj(x, ),

ap(=x, 1) = (=DPay(x, p).
PropPosITION1. X©leavesy = 0 andz = O invariant.

Proof. Terms of the formu(x)y?d/dy; with u + 1 < j < u + s satisfy(x, (p, 0)) # 1},
since(i, (p,0)) = A1p1+---+ r,p, = 0andr; < O (see Notation 1). Hence they can
be removed by Theorem 1. We can make the same observation for thexi@nzt/dy
withl<j <u. |
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The next step is to ‘cut off the taill’. We split this tail as a surfi = 71 + 7> with 71
respectivelyl» sufficiently flat iny respectively;, and take care that this does not destroy
the symmetry, i.e. both terms should commute witH\e treat two cases.

Case 1.Suppose that the initial vector field in Notation 1 leaves (at least) one of the
manifoldsy = 0 andz = O invariant. Then we can proceed as follows. By the construction
of 4 in Theorem 1 we can take th&/(+ 1)th partial derivative of” with respect tq'y, z),

and writeT as

1 1
T(x.y.2)= ﬁ/o A—OMal T (x, 8y, 52 ds(y, M ®)
1 / ! " <M+1)8M+1T
=), A9 _(x,&y,£2)dEyP2 (9)
Mt Jo |p\+|q2|=:M+1 p.q ) dyrazd

By taking the derivatives of the relatio®l” = T R we get, for|p| + |g| = M + 1,

glpi+lalr  glpli+laly

u s U\ND ¢ PS\] -
T AyPazP  dyPazd (Roox, Ry, R°2)(R)" (R (10)

let us denote

M+1
M+ 1) O T rev.endeyrd, (11

1t M
qu(xa Y, Z) = ﬁ\/(; (1_5) ( p.q aypazq

thenT = Z\p|+\q\:M+l Tpq. Using (10) and (11) it is straightforward to check that
RTpq = TpyR. We set

Ti= Y Ty Ta= Y. Ty (12)
Ipl=(M+1)/2 Ipl<(M+1)/2

andM1 = (M + 1)/2. One had1i(x, y, z) = O(ly|M) andTz(x, y, z) = O(|z|M1).

Let us suppose th& leavesy = 0 invariant; the case thaf leaves; = 0 invariant is
treated similarly.

THEOREM2. Suppose thar is similar to an orthogonal matrix. Let € N be given. If
M3 is large enough then there exist€a diffeomorphisnk commuting withR conjugating
X910 X0 + T near the origin, that ig, X° = X0 + T.

Proof. We first conjugateX© to X° + 7». In the same way as in the proof of Theorem 1,
we use cut off functions and replace the locally defined vector figdand X0 + 7
by globally defined vector fields, which we give the same name, and thertimaps
of these new vector fields are defined for alle R. Moreover, these time maps
commute withR. Note that, by Proposition Z, = 0 is invariant for both vector fields.
Hence we can apply] and it follows that forM; large enough the limig(x, y, z) =
liM;5 oo (XO0+T2)_; 0 X?(x, y, z) exists for all(x, y, z) € R” and is aC" diffeomorphism
conjugatingX® to X0 + 7>, i.e. g, X% = X0 + T>». Clearlyg commutes withg.

Next we reduce the elimination df; to a completely similar problem. Note that
g X0+ 1) = g7 Y (X0 + T + T2) = X0 + ¢ 171 As X0 andT; leavey = O invariant
and the same is assumed 0y we get thatl» also leaves = 0 invariant. Hence alsg
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andg*—lTl leavey = 0 invariant, considering the way is defined. It then also follows
thatg*—lTl is O(]y|M1), and by reversing the time we are led back to a problem analogous
to the one we have just solved.

Case 2.Here we do not assume that= 0 orz = 0 are invariant for the initial vector field

X. A difficulty is that the usual change of variables making the center-stable and center-
unstable invariant manifolds straight might not commute with the symnietiihis aspect

is sometimes overlooked when studying structure preserving normal forms.

The following assumption is made about the symm@try diagonalRoo, R”, R*].
Assumption A.Rpo, R* andR* are similar to an orthogonal matrix.

PROPOSITION2. Suppose that Assumption A is satisfied. There exigi§°amapping
A1 E* x Ef — [0, 1] with the following properties. For eac € N and for eachC
mapping? : R” — R” with T'(x, v, z) = O(|(y, 2)|¥*1) near(y, z) = (0, 0) one has:
() Tix,y,2) =i, 2T (x,y,2)isC¥ andr(y, 2)T(x,y,z) = O(ly[M+h);

(i) To(x,y,2):= A=A, 2)T(x,y, 2) =0(z|MH;

(i) if RT = TRthenRTy = ThR andRT> = T>R.

Proof. Fix a C* functiong : [0, co[— [0, 1] that is equal to one ofD, 1] and equal to
zero on 2, oo[. By Assumption A we can choose normsBtandE* such thatR” andR®
are norm-preserving. We defin€y, z) = ¢(|z|/|y|) for y # 0 andx(0, z) = 0. Observe
thatA(y, z) = Alay, az) foralla e R, o # 0.

The facts (i) and (ii) are now checked as #) Lemma 3.8]. We check (iii):

AMR"y, R'z) = ¢(IR*z|/IR"Y]D) = ¢(zl/IyD) = A(y, 2). (13)
It follows from RT = TR and (13) that

R.Ti(x,y,2)) = RA(y, )T (x,y,2)
=1(y,2).T(R(x,y,2))
= A(R"y, R*2).T (Roox, R"y, R°2)
= T1(Roox, R"y, R’z). (14)
]

We now come to the conjugacy &f° to X1 = X° 4 7. Using Proposition 2 we write
T = T1 + T». As X° and 7> leavez = 0 invariant, the conjugacy at® and X° + 7»
is handled precisely as in the first part of Theorem 2, that i ifn (6) is large enough
there is aC” diffeomorphismg, commuting withR, such thatg, X° = X° + 7»; hence
g 1(X% 4 T) = XO + g 171. By the construction in Proposition 2 the vector figlgdis
identically zero in a cone containing= 0 andM times flat. Hencg 171 = O(|y|¥*1)
and by reversing the time we are reduced to a problem analogous to the one that we have
just solved. We can summarize this in the following.

THEOREM 3. Suppose that the symmetfysatisfies Assumption A. Lek N be given. If
M is large enough in (6) then there exist€éa diffeomorphismk commuting withR such
that/, X% = X1 near the origin.
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So concerning Example 1 we can conclude thatMadiarge enough in (7), there exists
a C" change of variables(x, y,z, u) = (hu.(x,y,2), n) such thath, conjugates the
original family X, to (7) and such that, moreovéry, commutes with the symmeti.

Remark 3.Theorem 3 implies that we can find a change of variables commutingRvith
that makes the center-stable and center-unstable manifolds straight.

3. Thereversible case

As observed in the introduction, R is an invertible linear transformation andXf is a
vector field satisfyingR. X = —X then an eigenvalue # 0 of A = d X (0) is accompanied
by the eigenvalue-i. Let us recall quickly some facts from linear algebra. We puh
a block-diagonal fornA = diagonalAg, Ay, ..., A,] such thatdo has eigenvalues with
real part zero and; has eigenvalues with nonzero real gart—x; andi; # A; fori # j.
We perform a corresponding partitiagt = [R,-j]szo for R. The relationAR = —RA
yields A;R;; = —R;;A;, and as the spectra d@f; and—A; are disjoint we geR;; = 0
fori # j. We write, fori # 0, A; = diagonalA;", A;1, whereA;" respectivelyA; has
eigenvalue with real pa#t; respectively—2;, and we have a corresponding partition

Rii = [ﬁi’j g’r} .
123 123

The relationd; R;; = —R;; A; easily impliesR;}* = R;;~ = 0fori # 0. According to the

particular Jordan form af ", one could then further specil§== using Toeplitz matrices.

As R is assumed to be invertible, the Jordan block structureﬁ*oandAi‘ are the same.

Remark 4.The often studied case thad is an involution means here thaﬁj;‘ =
(R;Jr)*l; in this case we can assume, up to the linear change of variables

P =diagonall, I, R{;,... 1, R} "1,
thatRf,FqE = I, wherel denotes the appropriate identity.

We conclude thatt = diagonalAo, Ai“, A, ..., A;;, ALl and thatR has the form

[Roo O 0o ... 0 0
0o 0 R ... © 0
| 000
0 0 0 0 R
|0 0 0 RF 0 |

This partition corresponds to a splittii®))’ = Eq @ Ef ®E; - @ E;; ®E,. Let
(x,y) = (x, yf, V1 ...,y;;, ¥y, ) denote coordinate functions on it. Write
c 0 h 0
X(X’Y)ZX(X’)’)_+X (xay)_'
ax dy

The normally linear part ok alongEjg is

axh 9

NX(x,y) =X 0)i+—( 0).y—
x,y) = X, °x 3y X, .yay.
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We developx, abbreviating™ = (y;..... y}) andy™ = (y;.....y,):
M 3
X =NX@+ > ageH"07) =
X
ler|+1B1=1

Y dn @O O s Y a0 67
ly 1+181=0 YU yispl=0 y
+0(ly|"*h. (15)

Let us examine whaR-reversibility here means for the terms in this development.
Denote
glel+I8l x

Xap(x,y".y7) = p > 0.0 6T

a(yH)¥(
The relationR. X = —X is, in detalil,
RX(x,yt,y7) = —X(Roo, R" "y~ , R ty™)

whereR* = diagonalRy;, . .., RE¥]. By taking the derivatives the foregoing relation
with respect toy andz we find
glal+1Bl

R—
e
glBI+al y

D)

=———————(Roox, R"y ", R-Hy"H.(RTH*(RT)P (16)
Ay )*a(yhH)p
SO
R.Xop(x,y",y7) = —Xpa(Roox, RT"y™, R"Fy™); a7
we conclude that

Ry Xop = —Xga. (18)

Because of this equality the terms in the development (15) satisfy certain relations. Let us
be more specific in the case wheris an involution, where by Remark 4 we may, and do,
assume thaR (x, yT, y~) = (Roox, y~, yT). A straightforward computation shows that

Roodgg (x) = —ag, (Roox) (19)
ays_ (x) = —ag, , (Roox) (20)
ays, (x) = —ap,_(Roox). (21)

We try to proceed as in Theorem 1. Write= (A1,...,1,). The equivalent of
condition (3) here ig(A, —1), (¢, B)) # 0. This is obviously violated for allk = 8.
Condition (4) become&x, —A), (v, §)) # £A;, which is violated whery; = §; for all
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j #iandly;| = |8;] £ 1. Thus the terms of the form

(M/2]

_ _ ad
2 a@ODPED™ D ) o
la|=1 x
p_[(M=1)/2]
+ Y GNP
i=1 |y|=0
ad ad
h + h -
xla'l. (xX)ym"——4+a’. (x)y; — 22
<y,+( )Y; By F i (xX)y; 8y,-> (22)
are unremovable in the sense of §2. In the case whi&nan involution, (22) becomes by
(20)
(M2 5
> a0 O™ ) ) o
la|=1 x
p_[(M=1)/2]
+Y D ODGD GG
i=1 |y|=0
x(ah yt =2 —ah (Roor)y —= ) . (23)
yi+ i ayi-',- yi+ i ayi—

Assume that these atiee onlyviolations of the ‘nonresonance’ conditions (3) and (4). In
precisely the same way as in the proof of Theorem 1 we can eliminate all the other terms
in the development (15). In this case the quasipolynomial foriii @6 N X + (22), and
whenR is an involution it is more specificallv X + (23); all this up to terms of order
O(ly|M+1h.

Question.A question now is whether the changes of variables, obtained by the method
in Theorem 1, and eliminating successively the terms in the development (16) isf
commuting withR. We ignore this. Consider indeed a vector field of the form

_ _ ad
Z@,yt .y ) =amOH* 07—
ay;
with a # 0. This vector field is noR-reversible noR-symmetric. On the other hand, we
could try to eliminate ironestep theR-reversible vector field (for simplicity we describe
the case wheR*™~ = R~1 = I, but this is not essential)

Zx,y*y) = a(x)(yﬂ“(y—)’f‘% - a(ROOX)(y_)“(yJ“)’S%- (24)
For the first term on the right-hand side of (24), the condition in (4) is
(A, =2, (@, B)) — 2 #0, (25)
while for the second termit is
(A, =), (B, a)) + 4 #0. (26)
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As the left-hand sides of the inequalities (25) and (26) have opposite sign, the convergence
of the limit in (5) is problematic (cf.4]).

We meet a similar question in the ‘cut of the flat tail’ process (cf. Theorems 2 and 3),
even in the simpler case of a ‘purely’ hyperbolic singularity: from the usual methods of
proof of Sternberg-like theorem2,[15, 1§ it does not follow that one can find a change of
variables which eliminates flat terms and which, moreover, commutes with the reversing
symmetry. We did not find literature about this, although recent calculations of G. Belitskii
in a specific case (private communication) indicate that it might be true.
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