

Navigation of multiple mobile robots using a neural network and
a Petri Net model
D.T. Pham and Dayal R. Parhi
Intelligent Systems Laboratory, Manufacturing Engineering Centre, School of Engineering, Cardiff University,
Cardiff CF24 3TE (UK)

(Received in Final Form: August 22, 2002)

SUMMARY
This paper describes the use of a hybrid system comprising
a multi-layer perceptron and a Petri Net model to control the
navigation of multiple mobile robots in an unknown and
cluttered environment. The multi-layer perceptron is trained
with examples representing the typical static obstacles to
be encountered by the robots and the evasive actions to be
taken. The Petri Net model embodies the rules describing
how the robots should move in order to avoid colliding
against one another. The hybrid system has been imple-
mented in simulation software as well as in actual mobile
robots. The paper presents the results of simulation and
practical tests that demonstrate the ability of groups of
robots incorporating the proposed navigation system to
negotiate various types of obstacles and find targets
successfully.

KEYWORDS: Multiple mobile robots; Navigation; Neural net-
work; Petri Net

1. INTRODUCTION
Mobile robot research has spanned some four decades.
Initially, efforts focussed on building individual units able to
navigate autonomously.1–3 These units grew in intelligence
and capabilities as computer and sensor technologies
developed.4–6 A new direction of work started in the last
decade with the design of systems involving multiple
robots.7 The aim of such systems is, through collaboration
between different robots, to perform tasks that individual
robots cannot.

In a multiple robot system, navigation control is clearly
more difficult than in single mobile robots. This paper
describes a system for controlling the navigation of several
mobile robots in an unknown and cluttered environment
containing many obstacles. The system employs a multi-
layer perceptron (MLP) neural network and a Petri Net
model.

The function of the MLP, which resides in the controller
of each robot, is to compute the steering angle for the robot
to enable it to avoid static obstacles. The advantage of
adopting a neural network for this task is that it can readily
be trained to handle different kinds of obstacles using a
limited training set of typical scenarios. This advantage has
been recognised by other researchers who have also
experimented with neural-network-based navigation con-

trol, though not in the context of multiple robot
navigation.8–10

The much simpler and better defined task of ensuring that
the robots do not collide against one another is implemented
with a Petri Net model. The latter is eminently suitable for
representing the deterministic collision avoidance rules
involved in this task. However, as far as the authors are
aware, this method of achieving collision-free navigation in
a multiple robot environment has not been attempted
previously.

The remainder of this paper is organised as follows.
Section 2 describes the MLP developed for static obstacle
negotiation. Section 3 discusses the Petri Net model for
inter-robot collision avoidance. Section 4 describes the
testing, in simulation and with actual mobile robots,
of the proposed hybrid navigation system. Section 5
concludes the paper.

2. ANALYSIS OF NAVIGATION METHOD

2.1. Obstacle avoidance and target seeking
The neural network used is a four-layer perceptron.11 The
chosen number of layers, was found empirically to facilitate
training. The input layer has four neurons, three for
receiving the values of the distances from obstacles in front
and to the left and right of the robot and one for the target
bearing. If no target is detected, the input to the fourth
neuron is set to 0. The output layer has a single neuron,
which produces the steering angle to control the direction of
movement of the robot. The first hidden layer has 10
neurons and the second hidden layer has 3 neurons. These
numbers of hidden neurons were also found empirically.
Figure 1 depicts the neural network with its input and output
signals.

The neural network is trained to navigate by presenting it
with 200 patterns representing typical scenarios, some of
which are depicted in Figure 2. For example, Figure 2a
shows a robot advancing towards an obstacle, another
obstacle being on its right hand side. There are no obstacles
to the left of the robot and no target within sight. The neural
network is trained to output a command to the robot to steer
towards its left.

Robotica (2003) volume 21, pp. 79–93. © 2003 Cambridge University Press
DOI: 10.1017/S0263574704526 Printed in the United Kingdom

https://doi.org/10.1017/S0263574702004526 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004526

During training and during normal operation, the input
patterns fed to the neural network comprise the following
components:

y{1}
1 =Left obstacle distance from the robot (1a)

y{1}
2 =Front obstacle distance from the robot (1b)

y{1}
3 =Right obstacle distance from the robot (1c)

y{1}
4 =Target bearing (1d)

These input values are distributed to the hidden neurons
which generate outputs given by [11]:

y{lay}
j = f(V{lay}

j) (2)

where

V{lay}
j =�

i

W{lay}
ji . y{lay�1}

i (3)

lay = layer number (2 or 3)

j = label for jth neuron in hidden layer ‘lay’

i = label for ith neuron in hidden layer ‘lay�1’

W{lay}
ji = weight of the connection from neuron i in layer

‘lay�1’ to neuron j in layer ‘lay’

Fig. 1. Four-layer neural network for robot navigation.

Neural network80

https://doi.org/10.1017/S0263574702004526 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004526

f(.) = activation function, chosen in this work as the
hyperbolic tangent function:

f(x)=
ex �e�x

ex +e�x (4)

During training, the network output �actual may differ from
the desired output �desired as specified in the training pattern
presented to the network. A measure of the performance of
the network is the instantaneous sum-squared difference
between �desired and �actual for the set of presented training

Fig. 2. Example training patterns.

Neural network 81

https://doi.org/10.1017/S0263574702004526 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004526

patterns:

Err=
1

2 �
all training

patterns

(�desired ��actual)
2 (5)

The error back propagation method is employed to train the
network.11 This method requires the computation of local
error gradients in order to determine appropriate weight
corrections to reduce Err. For the output layer, the error
gradient �{4} is:

�{4} =f �(V{4}
j)(�desired ��actual) (6)

The local gradient for neurons in hidden layer {lay} is given
by:

�{lay}
j = f�(V{lay}

j)��
k

�{lay+1}
k W{lay+1}

kj � (7)

The synaptic weights are updated according to the following
expressions:

Wji(t+1)=Wji(t)+�Wji(t+1) (8)

and

�Wji(t+1)=��Wji(t)+��{lay}
j y{lay�1}

i (9)

Fig. 3. Petri Net model for avoiding inter robot collision.

Neural network82

https://doi.org/10.1017/S0263574702004526 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004526

Fig. 4. Robot navigation software package.

N
eural netw

ork
83

https://doi.org/10.1017/S0263574702004526 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0263574702004526

where

a = momentum coefficient (chosen empirically as 0.2 in
this work)

� = learning rate (chosen empirically as 0.35 in this work)

t = iteration number, each iteration consisting of the
presentation of a training pattern and correction of the
weights.

The final output from the neural network is:

�actual = f(V{4}
1) (10)

where

V{4}
1 =�

i

W{4}
li y{3}

i (11)

Fig. 5. A mobile robot.

Neural network84

https://doi.org/10.1017/S0263574702004526 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004526

Fig. 6. (a) Target seeking by 66 mobile robots (initial state); (b) Target seeking by 66 mobile robots (intermediate state).

Neural network 85

https://doi.org/10.1017/S0263574702004526 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004526

2.2. Inter robot collision avoidance
Petri Net modelling was developed by C. A. Petri12 as a
means of representing the behaviour of a dynamical system.
Figure 3 depicts the Petri Net model built into each robot to
enable it to avoid collision with other robots. The model
comprises 6 states (or Tasks). The location of the token
indicates the current state of the robot.

It is assumed that, initially, the robots are in a cluttered
environment, without any prior knowledge of one another or
of the targets and obstacles. This means each robot is in
state “Task 1” (“Wait for the start signal”) or the token is at
location “Task 1” (see Figure 3).

Once the robots have received a command to start
searching for the targets, they will try to locate them while
avoiding obstacles and one another. The robots are thus in
state “Task 2” (“Moving, avoiding obstacles and searching
for targets”).

During navigation, if the path of a robot is obstructed by
another robot, then a conflict situation is detected (state
“Task 3”: “Detecting Conflict”). Two robots in conflict will
negotiate with each other to decide which one has priority.
The lower-priority robot will be treated as a static obstacle
and the higher-priority robot as a proper mobile system
(state “Task 4”: “Negotiating”). As soon as a conflict is
resolved, the robots will look for other conflicts and if there
are none they will execute their movements (state “Task 5”:
“Checking for conflict and executing movements”).

If a robot meets two other robots already in a conflict
situation, then its priority will be lowest and it will be
treated as a static obstacle (state “Task 6”: “Waiting”) until
the conflict is resolved. When this is done, the robot will re-
enter state “Task 2”.

3. DEMONSTRATIONS
The neural-network-based navigation controller and the
Petri Net obstacle avoidance model have been implemented
in simulation and in a system of actual mobile robots.

The Windows-based simulation software developed ena-
bles groups of up to 1000 robots to be generated and
controlled in an artificial environment containing static
targets as well as static obstacles (straight walls and
polygonal convex and concave objects). Figure 4 shows a
typical screen produced by the software. It can be noted
that, in addition to the neural-network-based navigation, the
software also allows other navigation control techniques
(for example, fuzzy logic and neuro-fuzzy-based tech-
niques) to be simulated.

Figure 5 depicts one of the experimental mobile robots
employed in this study. The robot hardware used was
developed by Beutler13 but the hardware control software
was new.14 Each mobile robot consists of:

(i) Three wheels, two of which are driven by stepper
motors and the third is free.

Fig. 6. (c) Target seeking by 66 mobile robots (final state).

Neural network86

https://doi.org/10.1017/S0263574702004526 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004526

Fig. 7. (a) Wall following (initial state); (b) Wall following (final state).

Neural network 87

https://doi.org/10.1017/S0263574702004526 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004526

Fig. 8. (a) Collision free movements (initial state); (b) Collision free movements (neural controller).

Neural network88

https://doi.org/10.1017/S0263574702004526 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004526

Fig. 9. (a) View of an environment consisting of one thousand mobile robots; (b) View of an environment consisting of one thousand
mobile robots during navigation.

Neural network 89

https://doi.org/10.1017/S0263574702004526 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004526

Fig. 10. (a) Escape from dead ends (initial state); (b) Escape from dead ends (final state).

Neural network90

https://doi.org/10.1017/S0263574702004526 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004526

Fig. 11. (a) Experiment with one robot; (b) Experiment with four robots.

Neural network 91

https://doi.org/10.1017/S0263574702004526 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004526

(ii) A PC mother board (386 SX, 33 MHz, 2MB RAM).
(iii) Six ultrasonic transmitters and receivers for measuring

distances from obstacles around the robot.
(iv) Six infrared transmitters and eight infrared receivers

for detecting the targets.
(v) A radio modem card for communication of commands

with other robots and also with other computers.
(vi) Two touch sensors, one at the front and one at the rear

of the robot.

3.1. Simulation results
• Target seeking behaviour. This exercise demonstrates

successful tracking by multiple mobile robots controlled
using the proposed hybrid technique. Figure 6a illustrates
the situation at the beginning of the exercise where 66
robots, grouped into six units of 11 robots each, are
placed at different locations in a cluttered environment.
Figure 6b shows that some targets in the environment
have been found. Figure 6c depicts the final situation with
all the targets located by the robots.

• Wall following. This exercise demonstrates the ability of
the robots to follow a wall. For ease of visualisation, only
four robots are employed. Figure 7a shows the state at the
beginning of the exercise when the robots are located in a
corridor. There are two targets to be reached both of
which are hidden from the robots. Figure 7b depicts the
final state as well as the trajectories of the four robots. It
can be noted that both targets have been attained and that
two of the robots reach them after following the walls of
the corridor.

• Inter-robot collision avoidance. Figures 8a and 8b
relate to an exercise designed to demonstrate that the
robots reach their targets in a highly cluttered environ-
ment without colliding with obstacles or one another.
Figure 8a depicts the beginning and Figure 8b the end of
the exercise. Again, for ease of visualisation, only four
robots are employed in the exercise.

• Navigation of one-thousand mobile robots. Obstacle
avoidance by one thousand mobile robots is shown in
Figures 9a and 9b. Figure 9a depicts the state at the
beginning of the exercise. Figure 9b shows the situation
some time after the exercise has begun. It can be noted
that the robots stay well away from the obstacles.

• Escape from dead ends. Figures 10a and 10b show the
ability of the robots to escape from dead ends. Figure 10a
depicts the situation at the beginning of the exercise.
Fourteen robots are involved in the exercise. Two of the
obstacles are U-shaped with the bottom of each U

representing a dead end. From Figure 10b, it can be seen
that the robots can negotiate dead ends and find the target
successfully.

3.2. Results of experiments with actual robots
Figures 11a and 11b show experimental results obtained for
one and four mobile robots respectively. The positions of
the robots are marked on the floor by a pen (attached to the
front of the robots) as they move. The experimentally
obtained paths follow closely those traced by the robots
during simulation. From these figures, it is seen that the
robots can indeed avoid obstacles and reach the targets.
Table I shows the time taken by the robots in simulation and
in the practical tests to complete their tasks of finding the
targets. The results given are the averages of 100 experi-
ments.

4. CONCLUSION
This paper has described a system for controlling the
navigation of multiple mobile robots in a cluttered unknown
environment. The system involves training a neural network
in each robot to enable it to handle different generic types of
static obstacles. Another component of the system is the use
of a Petri Net model embedded in the robots to describe the
behaviour required to avoid colliding among themselves.

The proposed system is simple to implement as it only
needs the collecting of examples of static obstacles to train
the neural network and a simple set of collision avoidance
rules for the Petri Net model. The system has been tested in
simulation and with actual mobile robots. The tests have
shown that the system enables multiple robots to navigate
and locate targets successfully in environments with several
obstacles.

In addition to the system reported in this paper, work is
also being conducted on different navigation techniques to
determine the most appropriate paradigms for multiple
mobile robot control.

ACKNOWLEDGEMENT
This work was part of the ITEE and SUPERMAN projects
funded by the Welsh Assembly and the European Commis-
sion under the Objective 2 ERDF Programme for Industrial
South Wales and the Objective 1 Programme for West Wales
and the Valleys. The authors are grateful to the sponsors for
their support.

References
1. N.J. Nilsson, Learning Machines: foundations of trainable

pattern-classifying systems (McGraw-Hill, New York, 1965).
2. E. Sacerdoti, “Planning in a hierarchy of abstraction spaces,”

Artificial Intelligence 5, No. 2, 115–135 (1974).
3. T. Lozano-Perez and M.A. Wesley, “An algorithm for

planning collision free paths among polyhedral obstacles,”
ACM22, No. 10, 560–570 (1979).

4. R.A. Brooks, “A robust layered control system for a mobile
robot,” IEEE Transactions on Robotics and Automation 2(1),
14–23 (1986).

Table I. Time taken by robots in simulation and experiment to
reach targets.

Number of
robots

Time during
simulation

Time during
experiment

(Seconds) (Seconds)

1 19.23 20.39
2 24.23 25.17
4 27.44 28.95

Neural network92

https://doi.org/10.1017/S0263574702004526 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004526

5. J.L. Crowley and J. Coutaj, “Navigation et modelisation pour
un robot mobile,” Technique et Science Informatiques 5(5),
391–402 (1986).

6. R.C. Luoc and M.G. Kay, “Multisensor integration and fusion
in intelligent system,” IEEE Transactions on Systems, Man
and Cybernetics 19, No. 5, 901–931 (1989).

7. M. Benreguieg, P. Hoppenot, H. Maaref, E. Colle and C.
Barret, “Fuzzy navigation strategy: Application to two distinct
autonomous mobile robots” Robotica 15, Part 6, 609–615
(1997).

8. P.K. Pal and A. Kar, “Sonar-based mobile robot navigation
through supervised learning on a neural-net,” Autonomous
Robots 3, No. 4, 355–374 (1996).

9. G.W. Wang, N. Fuziwara and Y. Bao, “Feed-forward multi-
layer neural network model for vehicle lateral guidance
control,” Advanced Robotics 12, No. 7-8, 735–753 (1999).

10. J.A. Janet, R. Gutierrez, T.A. Chase, M.W. White and J.C.
Sulton, “Autonomous mobile robot global self-localization
using Kohonen and region-feature neural network,” Journal of
Robotic Systems 14, No. 4, 263–282 (1997).

11. D.T. Pham and X. Liu, Neural Networks for Identification,
Prediction and Control. 4th Printing (Springer Verlag, London
and Heidelberg, 1999).

12. J.L. Peterson, Petri Net theory and the Modelling of Systems
(Prentice-Hall, Englewood Cliff, N.J., 1981).

13. J. Beutler, “A novel framework for creating agent societies,”
Ph.D. Thesis (Cardiff School of Engineering, University of
Wales, UK, 1999).

14. D.R. Parhi, “Navigation of multiple mobile robots in an
unknown environment,” Ph.D. Thesis (Cardiff School of
Engineering, University of Wales, UK, 2000).

Neural network 93

https://doi.org/10.1017/S0263574702004526 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004526

