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Turbulence locally created in laminar pipe flows shows sudden decay or splitting after a
stochastic waiting time. In laboratory experiments, the mean waiting time was observed to
increase double-exponentially as the Reynolds number (Re) approaches its critical value.
To understand the origin of this double-exponential increase, we perform many pipe flow
direct numerical simulations of the Navier–Stokes equations, and measure the cumulative
histogram of the maximum axial vorticity field over the pipe (turbulence intensity). In
the domain where the turbulence intensity is not small, we observe that the histogram
is well-approximated by the Gumbel extreme value distribution. The smallest turbulence
intensity in this domain roughly corresponds to the transition value between the locally
stable turbulence and a metastable (edge) state. Studying the Re dependence of the fitting
parameters in this distribution, we derive that the time scale of the transition between
these two states increases double-exponentially as Re approaches its critical value. On
the contrary, in smaller turbulence intensities below this domain, we observe that the
distribution is not sensible to the change of Re. This means that the decay time of
the metastable state (to the laminar state) is stochastic but Re-independent in average.
Our observation suggests that the conjecture made by Goldenfeld et al. to derive the
double-exponential increase of turbulence decay time is approximately satisfied in the
range of Re we studied. We also discuss using another extreme value distribution, Fréchet
distribution, instead of the Gumbel distribution to approximate the histogram of the
turbulence intensify, which reveals interesting perspectives.
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1. Introduction

The laminar to turbulent transition in pipe flow is one of the most important problems in
fluid mechanics (Eckhardt et al. 2007), initiated by O. Reynolds in 1887 (Reynolds 1883).
The flow in a pipe is characterised by a non-dimensional parameter, the Reynolds number
defined as Re = UR/ν where U is the flow velocity, R the diameter of the pipe and ν the
dynamic viscosity of the fluid. The question about the critical Reynolds number Rec is
the following: At which Reynolds number does the flow in a pipe become turbulent from
laminar (and vice versa)? Though its apparent simplicity, answering this question was not
straightforward due to a number of technical reasons (see Eckhardt (2009) for a historical
review of the critical Reynolds number). After the 2000s, a localised turbulent state
(figure 1) called ‘puff’ (Wygnanski & Champagne 1973) created by a local perturbation
to laminar flows has been studied in detail. The puff shows a sudden decay or splitting
after a stochastic waiting time, following a memoryless exponential distribution (Hof,
Westerweel, Schneider & Eckhardt 2006; Hof, de Lozar, Kuik & Westerweel 2008; de
Lozar & Hof 2009; Avila, Willis & Hof 2010; Kuik, Poelma & Westerweel 2010). These
studies culminated in the estimation of the critical Reynolds number in 2011 (Avila et al.
2011), where Rec was determined as the Re at which the two typical times of the decay and
splitting become equal. The obtained Rec was approximately 2040 (Avila et al. 2011).

The critical Reynolds number was determined in laboratory experiments using long
pipes. In direct numerical simulations (DNS) of the Navier–Stokes equations, the
observation of the critical Reynolds number has not yet been achieved because of too high
computational costs. The current state of the art is to measure decay events up to Re =
1900 and splitting events down to 2100 (Avila et al. 2011). There are several important
benefits in measuring these decay and splitting events in DNS. First, in experiments,
unknown background noise that affects the results could exist. See, for example, Eckhardt
(2009) for a history of the struggle to determine the upper critical Reynolds number due
to small background fluctuations. In DNS on the other hand, we know all the origins of
the artificial noise, such as insufficient mesh sizes or periodic boundary effects, which
can be easily controlled. Second, the quantities that are measurable in experiments are
limited. For example, to determine the critical Reynolds number, a double-exponential
fitting curve was heuristically used (Hof et al. 2006, 2008; Avila et al. 2011). The
origin of this double-exponential law was discussed using the extreme value theory
(Goldenfeld, Guttenberg & Gioia 2010; Goldenfeld & Shih 2017), where Goldenfeld et al.
conjectured that the cumulative distribution function (CDF) of maximum kinetic energy
fluctuations has a certain form. Measurements of this probability function are out of reach
in experiments, but can be achieved in DNS.

In this article by using high performance computing resources described in the
acknowledgments, we study the statistics of turbulence decay in pipe flows with DNS. We
perform more than 1000 independent pipe flow simulations in parallel (see appendix A)
and determine the decay time up to Re = 2000. Especially, our aim is to investigate if the
CDF of a maximum turbulence intensity is described by the double-exponential Gumbel
distribution as conjectured by (Goldenfeld et al. 2010; Goldenfeld & Shih 2017) to derive
the double-exponential law.

2. Set-up

We consider three-dimensional pipe flows (with pipe length L and pipe diameter D) where
the boundaries are periodic for the z-axis and no-slip along the pipe (figure 1). The mean
flow speed in the z direction is denoted by Ub and we use the basic unit of length and
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D

L

Turbulent ‘puff ’

Pipe f low (periodic boundary in z-axis) Base laminar flow (z-axis)

Figure 1. A pipe flow simulation with a diameter D and length L, containing a single turbulent puff, is
considered. In the figure, the velocity component perpendicular to the figure is visualised using a colourmap.
We perform many pipe flow simulations during a certain time interval, where the initial conditions are slightly
different from each other (so that the dynamics are independent after a relaxation time). We consider the sum
of all the durations of the simulations (where the initial relaxation intervals and the intervals after the puff
decays are subtracted). We denote this total duration by T and also the total number of decay events observed
in all the simulations by nd . From this pair of quantities, we estimate the typical decay time τd as T/nd and its
error bars by using Bayesian inference as detailed in the main text. See also appendix A for more details of the
simulation architecture.

time as D and D/Ub throughout this paper. The velocity field is denoted by u(r, t) and we
simulate its evolution by solving the Navier–Stokes equations using an open source code
(openpipeflow Willis (2017)) whose validity has been widely tested in many works (see
appendix A for the simulation detail). We simulate pipe flows for the Reynolds numbers
below the critical value Re < Rec ∼ 2040, where the flows tend to be laminar. We start
the simulations with initial conditions where localised turbulence, i.e. a turbulent puff,
exists (see appendix A for more details). If the Reynolds number is not too small (say,
Re > 1850), localised turbulent dynamics are sustained (figure 1). It quickly forgets their
initial conditions and eventually decays after the stochastic time t, following an exponential
distribution function (Hof et al. 2006, 2008; de Lozar & Hof 2009; Avila et al. 2010; Kuik
et al. 2010): pd(t) = (1/τd) exp(−t/τd), where τd is the typical decay time. This time scale
τd is our target.

3. Results

3.1. Measurements of τd

To measure τd, we perform many pipe flow simulations and measure the total time T of all
the simulations (ignoring initial relaxation intervals) and the number of decay events nd
that we observe during all the simulations. The typical decay time τd can be estimated as
T/nd. This estimate converges to the true value as we observe more decay events. Since we
observe only a few decay events when the Reynolds number is large (as shown in table 1),
it is then important to calculate accurately the statistical errors of this estimate. To this
end, we use Bayesian inference as detailed as follows: since the decay time is distributed
exponentially (Hof et al. 2006, 2008; de Lozar & Hof 2009; Avila et al. 2010; Kuik et al.
2010), the probability of observing nd decay events during a time interval T follows the
Poisson distribution

ppoisson(nd) = e−λdT

nd!
(λdT)nd , (3.1)

912 A38-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
50

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1150


T. Nemoto and A. Alexakis

M K Kconv nd T

(L = 50D)

Re = 1900 96 13 days 1780.8 76 170 958
Re = 1925 192 13 days 1825.7 53 350 528
Re = 1950 384 10 days 1404.8 23 539 445
Re = 1975 508 47.75 days 2766.3 12 1 405 280
Re = 2000 762 27 days 1471.0 1 1 120 879
Re = 2040 576 18.7 days ∼2400 0 1 382 400

(L = 100D)

Re = 1900 192 10 days 522.1 39 100 241
Re = 1925 192 36 days 2087.0 44 400 705
Re = 1950 384 32 days 1869.2 18 717 760
Re = 1975 1530 22.3 days 1005.5 4 1 538 470

Table 1. The number of threads M, the simulation time interval for each thread (K in wall time and Kconv in
convective units D/Ub), the number of decaying events nd (for all threads during the simulation interval K)
and the total simulation interval T in convective units (for all threads during the simulation time K, excluding
the initial relaxation time). Here Kconv slightly fluctuates depending on the thread, so the average value over all
the threads is used (i.e. Kconv ≡ T/M). Note also that Kconv do not include the initial relaxation time, while K
does. For the simulations, we used two cluster machines: CINES OCCIGEN and TGCC Joliot Curie KNL
Irene, where (Re, L) = (1900, 50), (1925, 50), (1950, 50), (1900, 100), (1925, 100), (1950, 100), (2040, 50)

used CINES OCCIGEN, while (Re, L) = (1975, 50), (2000, 50) used TGCC-IreneKNL and (Re, L) =
(1975, 100) used the combined data obtained from both machines.

where λd ≡ 1/τd. To derive a probability distribution of the rate λd from this Poisson
distribution, we use Bayes’ rule. It allows us to construct a posterior probability
distribution pposterior(λd | nd), i.e. the probability distribution of the parameter λd for a
given observed data nd, as follows:

Pposterior(λd | nd) ∝ ppoisson(nd)Qprior(λd). (3.2)

Here Qprior(λd) is a prior probability distribution that represents the initial guess of the
parameter distribution. In our case, as we do not know the probability of λd a priori, we
use a Jeffreys prior (an uninformative prior) defined as the square root of the determinant
of the Fisher information (Box & Tiao 2011), Qprior(λd) ∝ 1/

√
λd. With this posterior

distribution Pposterior(λd | nd), we define the error bars using 95 % confidence intervals:
we define 2.5th percentile λ2.5

d and 97.5th percentile λ97.5
d as the values of λd at which

the cumulative posterior probability distribution takes 0.025 and 0.975, respectively, i.e.∫ λ2.5
d

0 dλd Pposterior(λd | nd) = 0.025 and
∫ λ97.5

d
0 dλd Pposterior(λd|nd) = 0.975. Using these

percentiles, the 95 % confidence interval is then defined as λ2.5
d < λd < λ97.5

d .
We show in figure 2 the obtained τd for different pipe lengths L = 50D, L = 100D

(red circles and blue squares, respectively) together with the experimentally fitted
double-exponential (yellow dashed) curve used in Avila et al. (2011). For the Reynolds
number up to 1900 (which has been studied so far using DNS), τd does not depend on
the pipe length, and the results for both pipe lengths agree very well with the experimental
data. However, as the Reynolds number increases, we observe that the results for L = 100D
deviate from those for L = 50D and for the experiments. In DNS, periodic boundary
conditions introduce confinement effects on the puff: an insufficient pipe length in DNS
prevents the puff from fully developing as it would in an infinite pipe. In the range of the
pipe length we studied, this confinement facilitates decay events (i.e. as the pipe length

912 A38-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
50

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://www.cines.fr/calcul/materiels/occigen/
http://www-hpc.cea.fr/fr/complexe/tgcc-JoliotCurie.htm
https://doi.org/10.1017/jfm.2020.1150


Do extreme events trigger turbulence decay?

103

104

105

106

10

15

1900 1950 2000 2050

1900 1950

Re

τd

2000 2050

20 log τd

107

108

109

Figure 2. The typical decay time τd of turbulent puff in pipe flows obtained from DNS (red dots for L = 50D
and blue squared for L = 100D). Double-exponential curves fitted to experiments (Avila et al. 2011) plotted as
a yellow dashed line, and our theoretical lines (3.10) are also plotted as red and blue solid lines. The error bars
show 95 % confidence interval (see the main text for the definition). The inset shows the same data but with
log τd .

increases, the average decay time also increases). Note that the experimental results are
of the same order as the DNS result for L = 50D, even though the pipe lengths used
for the experiments were much longer (Avila et al. 2011). Further numerical studies are
necessary to understand the convergence of the decay time as the pipe length increases.
Below we discuss the derivation of the double-exponential formula for each fixed L = 50D
and L = 100D.

3.2. Statistical property of the maximum turbulence intensity
For the Reynolds number dependence of the time scale τd, a double-exponential fitting
curve exp[exp(αRe + β)] (with fitting parameters α, β) was heuristically used (Avila
et al. 2011). Although this function can fit well to the experimentally observed time
scale τd, the origin of this double exponential form is still conjectural. In the conjecture
made by Goldenfeld et al. (2010), they assumed that the maximum of the kinetic energy
fluctuations over the pipe is distributed double-exponentially (the Gumbel distribution
function) due to the extreme value theory (Fisher & Tippett 1928; Gumbel 1935). When
this maximum goes below a certain threshold, turbulence decays. Assuming the linear
dependence on Re of the parameters in the Gumbel distribution function, they thus
derived the double-exponential increase of the time scale τd. Mathematically proving
the validity of the extreme value theory and the linear scaling of the fitting parameters
seems impossible, thus verifications in experiments or numerical simulations are needed.
In laboratory experiments, the verification of this extreme value theory is not easy, as
obtaining the maximum of a velocity field within a tiny turbulent puff is a non-trivial
procedure. In this respect, numerical simulations have a strong advantage, because velocity
fields are precisely tractable and the maximum of the fields is well-defined.

To this goal, we characterise the intensity of turbulence by using the squared
z-component of vorticity H(r, t) = (∇ × u)2

z . (Note that there are other quantities that
can characterise the turbulence intensity, such as the kinetic energy fluctuations – see
appendix B for the result obtained using this latter quantity.) We then consider the
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maximum value of this turbulence intensity over the pipe (maximum turbulence intensity),

hmax(t) = max
r

H(r, t). (3.3)

Once this quantity goes below a certain threshold hth, hmax(t) monotonically decreases,
leading to a quick exponential decay of the puff (i.e. the puff dynamics shows transient
chaos (Hof et al. 2008; Barkley 2011)). See figure 3(a) for a decaying trajectory of hmax(t).
In order to measure the CDF of hmax(t) in our numerical simulations, we save the value
of hmax(t) for every fixed time interval δt (we stop saving hmax(t) once a value of hmax(t)
satisfying hmax(t) < hth is saved). We denote by (hmax(ti))N

i=1 the data obtained from all
the simulations with the number of saving points N. By using this data, we then define a
CDF P(h) as the probability that hmax(t) takes a value less than or equal to h

P(h) =
N∑

i=1

Θ(h − hmax(ti))
N

(3.4)

with a Heaviside step function Θ(h). Note that the number of decay events nd is equal to
NP(hth) because nd = ∑N

i=1 Θ(hth − hmax(ti)) = NP(hth). This indicates that the decay
time τd ≡ (Nδt)/nd is expressed as (Nemoto & Alexakis 2018)

τd = δt
P(hth)

, (3.5)

when N is sufficiently large. We set hth = 0.1 throughout this article. Precisely, the
threshold value hth should be defined as the value below which puffs always decay
monotonically, but above which puffs have a certain probability to grow up and survive,
even if this probability is very small. In reality, it is not easy to determine this precise
value h∗

th from numerical simulations. Fortunately, the magnitude of the errors (due to
an underestimation of hth < h∗

th) does not depend on the Reynolds number and it is
proportional to log(h∗

th/hth) because of the exponential decay of puffs when hth is very
small. When we consider Re close to its critical value, these errors are negligible as τd
increases super-exponentially.

We measure this CDF P(h) in DNS, rescale it by the threshold probability P(hth), and
plot it in figure 3(b). When h is smaller than a certain value hx (> hth), the overlap of
P(h)/P(hth) between different Reynolds numbers is observed, i.e. P(h)/P(hth) � Π(h)

for h < hx with a Re-independent function Π(h). Note that hx � 6.5 for L = 50D and
hx � 7.5 for L = 100D from figure 3(b). From this tendency, we expect that hx increases
gradually as L increases, which eventually converges to a certain value. This convergence
can be studied in numerical simulations with the Reynolds number that is relatively far
away from the critical value (e.g. Re = 1900) – this is an interesting topic for future
study. When hmax(t) is smaller than hx, dynamics are in a metastable state where the
puff is hovering between death and life (see figure 3a). This overlap indicates that the
dynamics in this metastable state are independent of (or less sensitive to) the change of the
Reynolds number. On the other hand, when h is greater than this value, we find that P(h)

is well-described by the Gumbel distribution function PRe,

PRe(h) ≡ exp[− exp(−γ (h − h0))], (3.6)
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Figure 3. (a) A trajectory of the maximum turbulence intensity hmax(t) for L = 50D and Re = 1900, where
the puff decays when t � 1000. We set hth = 0.1, below which the maximum turbulence intensity always
monotonically decreases (i.e. puffs always decay). This threshold line is shown as a black dotted line. (b) The
CDF of the maximum turbulence intensity P(h) (3.4) divided by its minimum value P(hth), obtained from
numerical simulations (solid coloured lines). The measurement interval δt is set to 1/4. The pipe length is set
to L = 50D. (For L = 100D, similar results are obtained.) Below a certain value hx, the function P(h)/P(hth)

becomes independent of Reynolds number. This hx is shown as a vertical red dotted line, being around 6.5 for
L = 50D and 7.5 for L = 100D. For h > hx, P(h) is well approximated by the Gumbel function PRe(h) (3.6):
we fit PRe(h)/P(hth) to P(h)/P(hth) for h > hx and show them as coloured dashed lines. See table 2 for the
fitting parameters γ and h0 used in this figure. Note that the value of 1/P(hth) is represented as the length of
the double-headed arrow (for Re = 1975). From this figure, we estimate Π(hx) ≡ P(hx)/P(hth) � 158.8 for
L = 50D and 219.2 for L = 100D.

Re = 1900 Re = 1925 Re = 1950 Re = 1975

L = 50D
γ 0.0935183 0.0943595 0.0936482 0.0965271
h0 21.401 23.9516 26.2484 27.9671

L = 100D
γ 0.0891413 0.092231 0.0940843 —
h0 22.6871 25.211 27.4782 —

Table 2. Fitting parameters γ and h0 for the Gumbel function (3.6) used in figure 3(b).

where γ , h0 are fitting parameters depending on Re. In summary, we have confirmed that
the scaled probability P(h)/P(hth) is well approximated as

P(h)

P(hth)
�

{
Π(h) h ≤ hx

PRe(h)/P(hth) h > hx.
(3.7)

Based on this observation, the double-exponential increase of the mean decay time is
justified as follows. From the continuity condition of (3.7) at h = hx, we get Π(hx) =
PRe(hx)/P(hth). Using the relation (3.5) that connects the decay time τd and P(hth), we
then derive

τd = δt/P(hth) = δtΠ(hx) exp[exp (γ (h0 − hx))]. (3.8)

In the right-hand side of this expression, the Re-dependence only comes from γ and h0,
because hx does not depend on Re (at least in the range of Re we consider). In order to
study the Re-dependence on γ and h0, we next plot these quantities as a function of Re in
figure 4(a). The figure indicates that, within the examined range, these parameters depend
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L = 50D
h0 (Re)/h0(1900) γ (Re) [h0(Re) – hx]

γ (Re) /γ (1900)

L = 100D
1.3
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2.2

2.0

1.8
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1940 1980 1880 1920 1960 2000
Re Re

(b)(a)

Figure 4. (a) The fitting parameters γ and h0 in the Gumbel function (3.6), used in figure 3(b), as a function of
Re. Red circles, yellow diamonds, blue squares and green triangles correspond to h0 with L = 50D, γ with L =
50D, h0 with L = 100D and γ with L = 100D, respectively. To plot them together in the same panel, we divide
each γ (Re) and h0(Re) by γ (1900) and h0(1900). They show linear dependence on Reynolds number: the solid
and dashed straight lines are the linear fit. See table 3 for the slopes and intercepts of these linear lines. Note that
the slopes of the fitting lines for h0/h0(1900) are much larger than those for γ /γ (1900). (b) γ (Re)[h0(Re) − hx]
as a function of Re, where γ (Re) and h0(Re) use the same values in panel (a), and hx = 6.5 for L = 50D and
hx = 7.5 for L = 100D. We find a linear dependence γ (Re)[h0(Re) − hx] = a Re + b (3.9). Here a and b are
determined as a = 0.00895442, b = −15.6087 for L = 50D and a = 0.0105166, b = −18.6222 for L = 100D.

linearly on Re. Especially, we can see that the slope of the linear fitting curve for γ is much
smaller than that for h0, which means we can approximate γ h0 as a linear function of Re.
We thus get

γ (h0 − hx) � a Re + b (3.9)

with coefficients a and b. In figure 4(b), we confirm this linear approximation by plotting
the left-hand side of (3.9) as a function of Re. We also determine the coefficients a and b
from this figure, and summarise them in the caption of figure 4(b). Finally, using (3.9) in
(3.8), we derive the double-exponential formula

τd � δtΠ(hx) exp[exp (a Re + b)]. (3.10)

Using δt = 1/4 and the values of Π(hx) measured in figure 3(b) (together with a, b
obtained in figure 4b), we plot this double exponential formula in figure 2 as red and blue
solid lines. These theoretical lines are consistent with the direct measurements (red circles
and blue squares). Note that the parameters γ, h0 are determined from the measurements
up to Re = 1975 for L = 50D and up to Re = 1950 for L = 100D. But the obtained curves
agree with the direct measurements for Re = 2000 with L = 50D and for Re = 1975 with
L = 100D. This observation indicates that our method can be used to infer statistical
properties in higher Reynolds numbers from the data obtained in lower Reynolds numbers.

3.3. Relevance with the extreme value theory
Our formula (3.10) is the product of (i) the double exponential term exp[exp(aRe + b)]
and (ii) the constant term (independent of Re) Π(hx)δt. The first double-exponential term
is attributed to the probability of the event in which hmax of a fully developed puff is
weakened to hx. After this event, the weakened puff undergoes metastable dynamics
as shown in the time series in figure 3(a). These metastable dynamics are known as
edge states (de Lozar et al. 2012). On the other hand, the second term corresponds
to the average time for these metastable puffs to completely decay. In the original
conjecture in Goldenfeld et al. (2010) and Goldenfeld & Shih (2017), this second term
was not considered. However, when the Reynolds number is close to its critical value,
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Slope S Intercept I

L = 50D
γ̄ 0.000356 0.322
h̄0 0.00411 −6.80

L = 100D
γ̄ 0.00111 −1.10
h̄0 0.00422 −7.02

Table 3. Fitting parameters determined in figure 4(a). A linear function S Re + I with a slope S and an
intercept I is fitted to γ̄ (Re) ≡ γ (Re)/γ (1900) and h̄0(Re) ≡ h0(Re)/h0(1900). See table 2 for the values of
γ (1900), h0(1900).

we expect that the double-exponential term becomes dominant, so that their argument is
still reasonable.

As seen in the previous subsection, the first term (i) was derived from the
Gumbel distribution function introduced in the approximation (3.7). The validity of
this Gumbel distribution is where the extreme value theory could be relevant: the
Fisher–Tippett–Gnedenko (FTG) theorem ensures that the CDF of the maximum value of
a set of independent stochastic variables becomes either the Gumbel distribution function
(3.6), Fréchet distribution function or Weibull distribution function (Fisher & Tippett
1928; Gumbel 1935). Inspired by this theorem, Goldenfeld et al conjectured in Goldenfeld
et al. (2010) and Goldenfeld & Shih (2017) that the Gumbel distribution function described
the maximum turbulence intensity. In this work, we confirmed that this conjecture was
approximately satisfied.

3.4. Close-up of the Gumbel distribution approximation
The approximation of the CDF using the Gumbel distribution (3.7) was the key to the
derivation of the double-exponential formula (3.10). Interestingly, in a detailed look at
figure 3(b), we detect small errors in this approximation (for h larger than 20), though
the errors are too small to affect the derivation of (3.10). In general, approximations are
better in CDFs than in probability distribution functions (p.d.f.s) defined as the derivative
of CDFs, because taking the derivative magnifies the errors. In this subsection, we thus
investigate the corresponding p.d.f. in order to understand the origin of these errors. This
is important for future studies to apply the same formulation to different problems or to
investigate the same problem with a higher Reynolds number.

We study the p.d.f. of the maximum turbulence intensity dP(h)/dh, by plotting
it together with the corresponding Gumbel probability distribution dPRe(h)/dh in
figure 5(a). We can detect clear discrepancies between the p.d.f. and the Gumbel
distribution function for h > 20, to which we attribute two reasons. First, the condition
of the FTG theorem may not be exactly satisfied. For example, the turbulence-intensify
field is not spatially independent, whereas the independence is required for the FTG
theorem to be applied. (The original FTG theorem requires the variables to be independent
but this condition can be weakened (Charras-Garrido & Lezaud 2013). It is anyway
difficult to justify it with our turbulence intensify a priori.) Second, assuming the FTG
theorem is applicable, the Gumbel distribution function may not be the correct one:
it may be either the Fréchet distribution function or the Weibull distribution function
describing the maximum turbulence intensify fluctuations. We can easily rule out the
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Figure 5. Probability distribution function of the maximum turbulence intensity dP(h)/dh (where P(h) is the
CDF defined in (3.4)). The Gumbel distribution function (3.6) and the Fréchet distribution function (3.11) are
fitted to these curves and plotted, respectively, in panel (a) and in panel (b) as dashed lines.

Weibull distribution, as it is for random variables with an upper bound (which is not true
in our turbulence-intensity field). The Fréchet distribution is defined as

PF
Re(h) ≡ exp[−κ(h − η)−ζ ], (3.11)

where κ, η, ζ are parameters. A characteristic of the Fréchet distribution is the power
law decay of the logarithm of the CDF (cf. the exponential decay in the case of the
Gumbel distribution). The FTG theorem states that, when the distribution function of
each variable (the turbulence intensity field for each position in our problem) decays in
power laws, the maximum among these variables is described by the Fréchet distribution
with ζ equal to the decay exponent of each variable (cf. when the distribution function
of each variable decays exponentially, the maximum among these variables is described
by the Gumbel distribution). We fit the Fréchet distribution to our p.d.f. of the maximum
turbulence intensity dP(h)/dh by tuning the three parameters κ, η, ζ . Surprisingly, the
agreement in the Fréchet distribution is far better than the Gumbel distribution function,
as shown in figure 5(b). The p.d.f., dP(h)/dh, clearly shows a presence of the power law
decay for large turbulence intensity that can be explained by the Fréchet distribution, but
not by the Gumbel distribution. (The p.d.f. of the Gumbel distribution is γ exp[−γ (h −
h0) − e−γ (h−h0)] that decays exponentially when h is large, while the p.d.f. of the Fréchet
distribution is κζ(h − η)−1−ζ exp[−κ(h − η)−ζ ] that decays in power law when h is large.
In figure 5, we can clearly see that dP(h)/dh decays slower than exponential (and decays
in a power law).)

Nevertheless, as long as we consider the decay time, the errors in the Gumbel
distribution approximation in p.d.f. are not important, because the CDF, which plays
a key role in the derivation of the decay time (for example, as seen from (3.5), τd is
directly related to 1/P(hth) (as indicated as the double-headed arrow in figure 3b), which is
hardly affected by tiny deviations between the Gumbel distribution and the CDF) is hardly
affected by these errors. Indeed, replacing the Gumbel distribution function by the Fréchet
distribution function in the argument of § 3.2 still leads to the same result (3.10) (see
appendix C). But in the future, when we study the same problem with higher precisions
(more statistics), or when we study the problem in higher Reynolds numbers, we could
possibly detect the deviations from the double-exponential formula (3.10). In that case,
using the Fréchet distribution function for more accurate analysis will be interesting.
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4. Conclusion

In this paper, using a large number of DNS, we measure the decay time of turbulent puff
in pipe flows up to Re = 2000. In DNS, periodic boundary conditions are employed in the
axial direction, so that the insufficient length of the pipe introduces confinement effects on
puff dynamics. Our numerical simulations show that, as the length of the pipe increases
(i.e. as the confinement effects disappear), the obtained decay times increase, resulting
in values larger than those used in Avila et al. (2011) for large Reynolds numbers (that
were not previously studied using DNS). We also note that the curvature of the double
exponential curves between our theoretical line (3.8) and the one used in Avila et al.
(2011) is slightly different. Indeed in the inset of figure 2, log τd shows a straight line
in the form used by Avila et al. (2011), while our theoretical expression (3.10) shows
a lightly curved line. The difference between the two formulae is a constant term c by
which the double-exponential form is multiplied: c exp[exp[a Re + b]] (with parameters
a, b) where c = 1 for the form used in Avila et al. (2011), while c = δtΠ(hx) for our
expression (log{log{c exp{exp[a Re + b]}}} = log[log c + exp[aRe + b]], which becomes
a linear function of Re only when c = 1). Note that the value of the constant term changes
in a different time unit, which indicates that c = 1 in the convective time unit (D/Ub) used
in Avila et al. (2011) is an approximation.

It was conjectured in Goldenfeld et al. (2010) and Goldenfeld & Shih (2017) that the
double-exponential formula of the mean decay time could be derived using the Gumbel
distribution function of maximum kinetic energy fluctuations based on the extreme value
theory. We measure the CDF of the maximum turbulence intensity (3.3) and show that
the function is indeed approximately described by the Gumbel distribution function (3.6),
demonstrating that their conjecture is reasonable, in the range of the Reynolds number
between 1900 and 2000. In § 3.4, we also study the corresponding p.d.f., and find that
another extreme value distribution, the Fréchet distribution (3.11), fits better than the
Gumbel distribution, indicating the presence of the power law decay in the distribution
of the turbulence intensity field. This finding implies that the double-exponential formula
of the decay time could be merely an approximation. It will be interesting to study the
same problem with more detailed statistics or with a higher Reynolds number, as the true
expression of the mean decay time could be possibly discovered using the same approach
developed in this article.

Our approach will be also important for the future study in different problems
of turbulence, where the extreme events trigger transitions. For example, a similar
turbulence-decay problem has been studied in a different geometry (channel flows) in
Shimizu, Kanazawa & Kawahara (2019), where they observed the agreement between
the probability distribution of a turbulence intensity and the Gumbel distribution in a
linear-scale plot. It would be interesting to ask if the Fréchet distribution fits better in their
case as well with more detailed statistics. Furthermore, turbulent transitions between two-
and three-dimensional dynamics have been long studied (Smith, Chasnov & Waleffe 1996;
Celani, Musacchio & Vincenzi 2010; Benavides & Alexakis 2017; Musacchio & Boffetta
2017; Alexakis & Biferale 2018), where a super-exponential increase of the transition time
was observed in thin-layer turbulent condensates (van Kan, Nemoto & Alexakis 2019).
This super-exponential increase could be also studied using the extreme value theory.

Studying these super exponential problems in DNS is computationally demanding. A
brute force approach using a large number of DNS is efficient as proved in this work. But
exploiting so-called rare event sampling methods could be also helpful. Such sampling
methods include instanton methods based on Freidlin–Wentzell theory (Chernykh &
Stepanov 2001; Heymann & Vanden-Eijnden 2008; Grafke, Grauer & Schäfer 2015a;

912 A38-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
50

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1150


T. Nemoto and A. Alexakis

Grafke et al. 2015b; Grigorio et al. 2017) as well as splitting methods that simulate
several copies in parallel (Allen, Warren & ten Wolde 2005; Giardinà, Kurchan & Peliti
2006; Cérou & Guyader 2007; Tailleur & Kurchan 2007; Nemoto et al. 2016; Teo et al.
2016; Lestang et al. 2018; Bouchet, Rolland & Simonnet 2019). These methods have been
successfully applied to many high-dimensional chaotic dynamics and proved invaluable.
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Appendix A. Simulation detail

We used an open source code openpipeflow (Willis 2017), which simulates flows in a
cylindrical domain by solving the Navier–Stokes equations. Below are the summary of the
parameters and the settings we used.

(i) For azimuthal and longitudinal directions of the pipe, the spectral decomposition
is used to evaluate the derivatives, for which we use 24 variables for the azimuthal
direction and 384 variables (for L = 50D) or 768 variables (for L = 100D) for the
longitudinal directions. For the radial direction, a finite-element method is used, for
which the radial space is divided into 64 points using Chebyshev polynomials.

(ii) The code can solve the Navier–Stokes equations under two conditions: fixed flux
conditions and fixed pressure conditions. In the present study we used the fixed flux
condition for the simulations.

(iii) For the time step, the algorithm uses a second-order predictor–corrector scheme with
automatic time-step control with courant number 0.5.

(iv) We define that a puff decays when hmax < 0.1 is satisfied. We never observed that a
puff regenerates once hmax < 0.1 is observed.

(v) To prepare initial velocity fields, we use a configuration where a single steady puff
already exists. We added a small Gaussian noise to this configuration, and simulate
it during a time interval 50 or 100. These time intervals are our initial relaxation time
– see figure 6 for how the trajectories of hmax with different initial conditions deviate
with each other. From the figure, we confirm that t = 20 ∼ 30 for Re = 1900 and
less for Re > 1900 could be large enough to make the dynamics independent, so that
our initial relaxation interval (50 or 100) is reasonable. We also checked that both
initial relaxation intervals (50 and 100) show consistent (almost the same) results
for Re ≥ 1900. (When an initial relaxation interval is sufficiently large, the time at
which we observe the decay of puff (measured from the initial relaxation time) is
distributed as the memoryless exponential probability. This memoryless distribution
leads to the Poisson distribution for the number of decays, as we used in the main
text (3.1). Increasing further the initial relaxation time simply results in reducing the
amount of data we gathered.)

(vi) We set the time interval of saving data δt to be 1/4 (in units of D/Ub) for
the simulations in figure 3(b). Note that P(hth) = 1/N (from (3.4)), where N
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Figure 6. Plots of 30 different hmax trajectories starting from different initial conditions for Re = 1900 and
L = 50D. We add a small Gaussian noise to a configuration containing a single puff, to generate different
initial conditions. After the Lyapunov time, the effect of the small noise becomes exponentially important and
make the dynamics with slightly different initial conditions be independent. Here we see that t = 20 ∼ 30 is
large enough to make the dynamics independent. For the Reynolds numbers higher than 1900, we expect that
the Lyapunov time is much smaller, as the dynamics is more chaotic.
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Figure 7. The CDF P(h) for different saving times δt for Re = 1900, L = 50D. We observe that changing
δt only affects the functional shape of P(h) close to hth without changing P(h) for h ≥ hx. In this figure,
P(hth)|δt=1/4 = 0.0001113 and P(hth)|δt=1/2 = 0.0002226, so we get 2P(hth)|δt=1/4 = P(hth)|δt=1/2. This
relation is generally true as explained in the last bullet point of appendix A: multiplying δt by an arbitrary
factor results in multiplying P(hth) by the same factor. This means that the average decay time τd(= δt/P(hth))

(3.5) is independent of the value of δt.

is the number of saving points. Since N is inversely proportional to the saving
interval δt, we find that multiplying δt by an arbitrary factor c simply changes the
probability P(hth) to P(hth)c. The decay time τd is then independent of δt, because
τd = δt/P(hth) (3.5). Furthermore, in our theoretical expression of τd in (3.8), the
change of δt is compensated by the change of Π(hx) without affecting the double
exponential term. This can be seen from a numerical example of P(h) in figure 7
– changing δt only alters the functional shape of P(h) close to hth, which leaves
P(h) for h ≥ hx unchanged. Multiplying δt by an arbitrary factor c thus changes
Π(hx)(≡ P(hx)/P(hth)) to Π(hx)/c, which compensates the change of δt in (3.8).

A.1. Parallelisation
Although the open source code openpipeflow has an option to use multiple threads for
a single pipe flow simulation, relying on it when we use a considerably larger number
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M threads

Thread 1 (pipe f low 1)

Decay of turbulence

Start a new simulation

Simulation time K

Thread 2 (pipe f low 2)

Thread 3 (pipe f low 3)

Thread 4 (pipe f low 4)

Figure 8. We simultaneously simulate M pipe flow simulations with different initial conditions in M threads,
where each pipe flow simulation is allocated to a single thread. When a decay of puff is observed in a thread,
we immediately launch another pipe flow simulation in that thread with a different initial condition. The
simulations continue during a time interval K. The values of these M and K are summarised in table 1.

of threads would not be efficient. What we are interested in are the statistical properties
of the decay events of the puff, which can be accumulated in independent simulations.
Instead of parallelising a single pipe flow simulation, we thus simulate many pipe flows in
an embarrassingly parallel way, where each thread is used to simulate a single pipe flow.
Here we explain the detail of the architecture of this parallelisation.

As shown in figure 8, we perform M independent pipe flow simulations. Each pipe flow
simulation is allocated to a single thread, thus M threads are required for these simulations.
The initial conditions of these simulations are slightly different from each other, so that
the simulations become independent after an initial relaxation interval. During these
simulations, when a puff decays in a thread, we immediately launch another pipe flow
simulation in that thread using a new initial condition (that contains a developed puff but
different from the other initial conditions that have been already used). All threads are thus
always occupied. We continue these simulations for a computational time interval K (or
Kconv in convective time units). We summarise in table 1 the values of M and K we use,
as well as the number of decay events nd we observe.

Appendix B. CDF of the maximum kinetic energy fluctuations

We define the kinetic energy fluctuations E as the kinetic energy of the flow fields without
the contribution of the laminar flow ulam: E(r, t) = [u(r, t) − ulam]2. Similarly to hmax(t),
we define the maximum value of this kinetic energy fluctuations over the pipe as

emax(t) = max
r

E(r, t). (B1)

The CDF of this emax(t) is defined in the same way as in (3.4), denoted by P(e). We
measure P(e) in numerical simulations and show it in figure 9. It shows qualitatively
similar structures as those in figure 4(b), namely the function is composed of the two
parts: (i) the part that can be approximately described by the Gumbel distribution and (ii)
the relatively flat part that is related to the dynamics of a metastable puff.

Appendix C. Using the Fréchet distribution function still leads to (3.10)

The approximation errors from the Gumbel distribution in the p.d.f. do not affect
the double-exponential formula (3.10), as long as the errors are well-hidden in the
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Figure 9. The CDF of the maximum kinetic energy fluctuations emax(t) defined in (B1), obtained from
numerical simulations (solid line) with Re = 1900, L = 50D. The Gumbel distribution function (3.6) is
fitted to this data and shown as a yellow dashed line. The parameters in the fitting curve are determined as
γ = 26.27, h0 = 0.2073.
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Figure 10. (a) The CDF of the maximum turbulence intensity P(h)/P(hth) in solid lines, together with the
fitted Fréchet distribution function in dashed lines (cf. the same CDF with the fitted Gumbel distribution
function in figure 3a). The pipe length is L = 50D in this figure and a similar graph is obtained with L =
100D. The values of hx, Π(hx)(≡ PF

Re(hx)/P(hth)) are (8, 108.2) for L = 50D and (8.5, 130.8) for L = 100D,
respectively. (b) Here log[κ(hx − η)−ζ ] as a function of Re, where κ, η, ζ are the fitting parameters of the
Fréchet distribution function (3.11) determined in panel (a) for each Re. A straight line (C3) is fitted to each
plot and shown as a red solid line (L = 50D) and a blue solid line (L = 100D). The fitting parameters (ã, b̃)

are determined as (−14.1817, 0.00825304) for L = 50D and (−17.0837, 0.00976833) for L = 100D. (c) The
mean decay time τd obtained from DNS are plotted as red dots (L = 50D) and blue squares (L = 100D). This
is the same plot as figure 2 except for the formula derived from the Fréchet distribution (C4), which is plotted
as a red solid line (L = 50D) and a blue solid line (L = 100D).

corresponding CDF. This indicates that, even if we use the Fréchet distribution to
approximate P(h), this will still leads to the same double exponential formula (3.10), at
least as an approximation. We demonstrate it in this appendix.

We fit the Fréchet distribution function (3.11) to the CDF of the maximum turbulence
intensity P(h) (3.4) and plot it in figure 10(a). The figure indicates that P(h) is
approximated as

P(h)

P(hth)
�

{
Π(h) h ≤ hx

PF
Re(h)/P(hth) h > hx

(C1)
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with an Re-independent function Π(h) (cf. (3.7) using the Gumbel distribution function).
We observe slightly larger discrepancies in this approximation close to h = hx than in
(3.7) (yet, we observe better agreement for h > 20 – see the explanation in § 3.4). For this
technical reason, hx is defined as the value that makes PF

Re(hx)/P(hth) the same for all Re
we study. These values are provided in the caption of figure 10(a) together with the values
of Π(hx)(≡ PF

Re(hx)/P(hth)). Following the same argument below (3.6), we then derive

τd = δtΠ(hx) exp[κ(hx − η)−ζ ]. (C2)

We next plot log[κ(hx − η)−ζ ] in figure 10(b) as a function of Re, which shows a linear
relationship,

log[κ(hx − η)−ζ ] � ã Re + b̃. (C3)

Here the values of the parameters ã, b̃ are provided in the caption of figure 10(b). We thus
again arrive at

τd � δtΠ(hx) exp[exp(ã Re + b̃)], (C4)

which is the same as (3.10). Though the parameters in this expression (Π(hx), ã, b̃) are
slightly different from the ones in (3.10), this (C4) still produces very similar lines to the
ones plotted in figure 2 as shown in figure 10(c).
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