Steady states with unbounded mass of the Keller–Segel system

Angela Pistoia and Giusi Vaira

Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Universitá La Sapienza, Via A. Scarpa 14, 00185 Roma, Italy (angela.pistoia@sbai.uniroma1.it; giusi.vaira@sbai.uniroma1.it)

(MS received 12 March 2013; accepted 18 December 2013)

We consider the boundary-value problem

$$-\Delta u + u = \lambda e^u \quad \text{in } B_{r_0}, \\ \partial_{\nu} u = 0 \qquad \text{on } \partial B_{r_0},$$

where B_{r_0} is the ball of radius r_0 in \mathbb{R}^N , $N \ge 2$, $\lambda > 0$ and ν is the outer normal derivative at ∂B_{r_0} . This problem is equivalent to the stationary Keller–Segel system from chemotaxis. We show the existence of a solution concentrating at the boundary of the ball as λ goes to 0.

1. Introduction

We consider a system of partial differential equations modelling chemotaxis. Chemotaxis is the movement of cells in response to the gradient of a chemical, which explains the aggregation of cells that move towards a high concentration of a chemical secreted by themselves. The basic model was introduced by Keller and Segel [16], and a simplified form of it reads as

$$\begin{array}{l}
 v_t = \Delta v - \nabla(v\nabla u) \quad \text{in } \Omega, \\
\tau u_t = \Delta u - u + v \quad \text{in } \Omega, \\
\partial_{\nu} u = \partial_{\nu} v = 0 \quad \text{on } \partial\Omega, \\
u(x,0) = u_0(x), \quad v(x,0) = v_0(x),
\end{array}$$
(1.1)

where $u = u(x,t) \ge 0$ and $v = v(x,t) \ge 0$ are the concentration of the species and the chemical, respectively. Here, Ω is a bounded smooth domain in \mathbb{R}^N and $N \ge 2$. The cases N = 2 or N = 3 are of particular interest. In (1.1), ν denotes the unit outward vector normal at $\partial \Omega$, and τ is a positive constant.

After the seminal works of Nanjudiah [20] and Childress and Percus [3], many contributions have been made to the understanding of different analytical aspects of this system and its variations. We refer the reader, for instance, to [2,5,6,12–20, 22–27].

© 2015 The Royal Society of Edinburgh

In this paper, we study steady states of (1.1), namely, solutions to the system

$$\Delta v - \nabla (v \nabla u) = 0 \quad \text{in } \Omega,
\Delta u - u + v = 0 \quad \text{in } \Omega,
\partial_{\nu} u = \partial_{\nu} v = 0 \quad \text{on } \partial\Omega.$$
(1.2)

As pointed out in [18], stationary solutions to the Keller–Segel system are of basic importance for the understanding of the global dynamics of the system.

This problem was first studied by Schaaf [21] in the one-dimensional case. In the higher-dimensional case, Biler [1] proved the existence of a non-trivial radially symmetric solution to (1.2) for the case in which Ω is a ball. In the general twodimensional case, Wang and Wei [28] and Senba and Suzuki [22] proved that, for any $\mu \in (0, 1/|\Omega| + \mu_1) \setminus \{4\pi m \colon m \ge 1\}$, problem (1.2) has a non-constant solution such that $\int_{\Omega} v(x) dx = \mu |\Omega|$. Here, μ_1 is the first eigenvalue of $-\Delta$ with Neumann boundary conditions. Del Pino and Wei [4] reduced system (1.2) to a scalar equation. Indeed, it is easy to check that (u, v) solves system (1.2) if and only if $v = \lambda e^u$ for some positive constant λ and u solves the equation

$$\begin{array}{cc} -\Delta u + u = \lambda e^{u} & \text{in } \Omega, \\ \partial_{\nu} u = 0 & \text{on } \partial \Omega. \end{array} \right\}$$
(1.3)

Using this point of view, they proved, for any integers k and ℓ , that there exists a family of solutions $(u_{\lambda}, v_{\lambda})$ to (1.2) such that v_{λ} exhibits k Dirac measures inside the domain, and ℓ Dirac measures on the boundary of the domain, as $\lambda \to 0$, i.e.

$$v_{\lambda}
ightarrow \sum_{i=1}^{k} 8\pi \delta_{\xi_{i}} + \sum_{i=1}^{\ell} 4\pi \delta_{\eta_{i}} \quad \text{as } \lambda \to 0,$$

where $\xi_1, \ldots, \xi_k \in \Omega$ and $\eta_1, \ldots, \eta_\ell \in \partial \Omega$. In particular, the solution has bounded mass, i.e.

$$\lim_{\lambda \to 0} \int_{\Omega} v_{\lambda}(x) \, \mathrm{d}x = \lim_{\lambda \to 0} \int_{\Omega} \lambda \mathrm{e}^{u_{\lambda}(x)} \, \mathrm{d}x = 4\pi (2k+\ell).$$

In particular, when Ω is a ball their argument allows us to find a radial solution to the system (1.2) that exhibits a Dirac measure at the centre of the ball with mass 8π when λ goes to 0.

In the present paper, we find a new radial solution to the system (1.2) for the case in which Ω is a ball with unbounded mass. Our main result reads as follows.

THEOREM 1.1. Let $\Omega = B(0, r_0)$ be a ball centred at the origin with radius r_0 . There exists λ_0 such that, for any $\lambda \in (0, \lambda_0)$, the problem (1.3) has a radial solution $(u_{\lambda}, v_{\lambda})$ such that, as $\lambda \to 0$,

$$\lim_{\lambda \to 0} \int_{\Omega} v_{\lambda}(x) \, \mathrm{d}x = \lim_{\lambda \to 0} \int_{\Omega} \lambda \mathrm{e}^{u_{\lambda}(x)} \, \mathrm{d}x = +\infty.$$
(1.4)

Moreover, for a suitable choice of positive numbers ε_{λ} (see (2.3)) with $\varepsilon_{\lambda} \to 0$ as $\lambda \to 0$, we have

$$\lim_{\lambda \to 0} \varepsilon_{\lambda} u_{\lambda} = \frac{\sqrt{2}}{\mathcal{U}'(r_0)} \mathcal{U} \quad C^0 \text{-uniformly on compact sets of } \Omega.$$
(1.5)

Here \mathcal{U} is the positive radial solution to the problem (see also lemma 2.1)

$$\begin{array}{cc} -\Delta \mathcal{U} + \mathcal{U} = 0 & \text{in } B(0, r_0), \\ \mathcal{U} = 1 & \text{on } \partial B(0, r_0). \end{array} \right\}$$
(1.6)

To find the solution u_{λ} to (1.3), we use a fixed-point argument. More precisely, we look for a solution to (1.3) of the form $u_{\lambda} = \bar{u}_{\lambda} + \phi_{\lambda}$, where the leading term \bar{u}_{λ} must be accurately defined. Once one has a good approximating solution \bar{u}_{λ} , a simple contraction mapping argument leads to the higher-order term ϕ_{λ} .

The difficulty with the construction of the approximate solution \bar{u}_{λ} is due to the fact that \bar{u}_{λ} shares the behaviour of \mathcal{U} (which solves (1.6)) in the inner part of the ball, but shares the behaviour of the function w_{ε} (see (1.7)) near the boundary of the ball. Here

$$w_{\varepsilon}(r) = \ln \frac{4}{\varepsilon^2} \frac{e^{\sqrt{2}(r-r_0)/\varepsilon}}{(1+e^{\sqrt{2}(r-r_0)/\varepsilon})^2}, \quad r \in \mathbb{R}, \ \varepsilon > 0,$$
(1.7)

which solves the one-dimensional limit problem

$$-w'' = e^w \quad \text{in } \mathbb{R}. \tag{1.8}$$

We have to expend a lot of effort, therefore, to glue the two functions together.

It is important remark on the analogy existing between our result and some recent results obtained by Grossi [7–10]. In particular, Grossi and Gladiali [10] studied the asymptotic behaviour as λ goes to 0 of the radial solution z_{λ} to the Dirichlet problem

$$-\Delta z = \lambda e^z \quad \text{in } \Omega,$$
$$z = 0 \qquad \text{on } \partial\Omega,$$

when $\Omega = \{x \in \mathbb{R}^n : a < |x| < b\}$ is the annulus in \mathbb{R}^n . In particular, they proved that, for a suitable choice of positive numbers δ_{λ} with $\delta_{\lambda} \to 0$ as $\lambda \to 0$, z_{λ} satisfies

$$\lim_{\lambda \to 0} \delta_{\lambda} z_{\lambda}(r) = 2\sqrt{2}G(r, r^{*}) \quad C^{0} \text{-uniformly on compact sets of } (a, b),$$

where $G(\cdot, r^*)$ is the Green function of the radial Laplacian with Dirichlet boundary condition, and r^* is suitably chosen in (a, b). Moreover, a suitable scaling of z_{λ} in a neighbourhood of r^* converges (as λ goes to 0) at a solution of the one-dimensional limit problem (1.8).

The paper is organized as follows. The definition of \bar{u}_{λ} is given in §2, while the construction of a good approximation near the boundary of the ball is carried out in §3. In §4 we estimate the error term and in §5 we apply the contraction mapping argument.

2. The approximated solution

We look for a radial solution to (1.3), so we are led to consider the ordinary differential equation problem

$$-u'' - \frac{N-1}{r}u' + u = \lambda e^u \quad \text{in } (0, r_0), \\ u'(r_0) = 0, \quad u'(0) = 0.$$

$$(2.1)$$

We construct a solution to (2.1) as $\bar{u}_{\lambda} + \phi_{\lambda}$, where the leading term \bar{u}_{λ} is defined as

$$\bar{u}_{\lambda}(r) := \begin{cases} u_1(r) & \text{in } (r_0 - \delta, r_0), \\ u_2(r) & \text{in } [r_0 - 2\delta, r_0 - \delta], \\ u_3(r) & \text{in } (0, r_0 - 2\delta), \end{cases}$$
(2.2)

and u_1 , u_2 and u_3 are defined as follows.

Basic cells in the construction of the approximate solution u_1 near r_0 are the functions w_{ε} defined in (1.7). The rate of the concentration parameter $\varepsilon := \varepsilon_{\lambda}$ with respect to λ is deduced by the relation

$$\lambda = \frac{4}{\varepsilon_{\lambda}^2} e^{-(a_1/\varepsilon_{\lambda} + a_2 + a_3\varepsilon_{\lambda})}, \quad \text{i.e. } \ln \frac{4}{\varepsilon_{\lambda}^2} - \ln \lambda = \frac{a_1}{\varepsilon_{\lambda}} + a_2 + a_3\varepsilon_{\lambda}, \tag{2.3}$$

where a_1 , a_2 and a_3 are positive constants given in (4.2).

The correct expression of u_1 is given in (3.1). The construction of u_1 is quite involved and it will be carried out in § 3.

The approximate solution u_3 far away from r_0 is built from the function \mathcal{U} that solves (1.6) and whose properties are stated in lemma 2.1.

More precisely,

$$u_3(r) = \left(\frac{A_1}{\varepsilon_\lambda} + A_2 + A_3\varepsilon_\lambda\right) \mathcal{U}(r), \qquad (2.4)$$

where A_1 , A_2 and A_3 are positive constants given in (4.2).

We point out that the choice of λ in (2.3) is strictly related to the value of u_3 on r_0 . Indeed, since u_3 is written as a third-order expansion in ε_{λ} , we need an expansion of ϵ_{λ} with respect to λ up to the third term.

Finally, the approximate solution u_2 in the interspace is simply given by

$$u_2(r) := \chi(r)u_1(r) + (1 - \chi(r))u_3(r), \qquad (2.5)$$

where $\chi \in C^2([0, r_0])$ is a cut-off such that

$$\chi \equiv 1 \text{ in } (r_0 - \delta, r_0), \qquad \chi \equiv 0 \text{ in } (0, r_0 - 2\delta), \\ |\chi(r)| \leqslant 1, \quad |\chi'(r)| \leqslant \frac{c}{\delta}, \quad |\chi''(r)| \leqslant \frac{c}{\delta^2}, \end{cases}$$

$$(2.6)$$

where the size of the interface $\delta := \delta_{\lambda}$ goes to 0 with respect to ε (or, equivalently, with respect to λ) as

$$\delta_{\lambda} = \varepsilon_{\lambda}^{\eta}, \quad \eta \in (\frac{2}{3}, 1). \tag{2.7}$$

The choice of η will be made such that lemma (4.2) holds. We remark that u_2 is a good approximation of the solution in the interspace if u_1 and u_3 perfectly glue in a left neighbourhood of r_0 ; this motivates the choice of the constants A_1 , A_2 , A_3 , a_1 , a_2 and a_3 made in lemma 4.1.

LEMMA 2.1. There exists a unique solution to the problem

$$-\mathcal{U}'' - \frac{N-1}{r}\mathcal{U}' + \mathcal{U} = 0 \quad in \ (0, r_0), \\ \mathcal{U}'(0) = 0, \quad \mathcal{U}(r_0) = 1.$$
(2.8)

Moreover,

$$0 \leq \mathcal{U}(r) \leq 1$$
 and $\mathcal{U}'(r) > 0$ for any $r \in (0, r_0]$.

Proof. The proof relies on standard arguments, so we omit it.

3. The approximation near the boundary

The function $w_{\varepsilon} - \ln \lambda$ is not a good approximation for our solution near r_0 . We build some additional correction terms that improve the approximation near r_0 . More precisely, we define the approximation near the point r_0 . We define

$$u_{1}(r) = \underbrace{w_{\varepsilon}(r) - \ln \lambda + \alpha_{\varepsilon}(r)}_{\substack{\text{1st-order} \\ \text{approx.}}} + \underbrace{v_{\varepsilon}(r) + \beta_{\varepsilon}(r)}_{\substack{\text{2nd-order} \\ \text{approx.}}} + \underbrace{z_{\varepsilon}(r)}_{\substack{\text{3rd-order} \\ \text{approx.}}}, \quad (3.1)$$

where α_{ε} is defined in lemma 3.1, v_{ε} is defined in lemma 3.2, β_{ε} is defined in lemma 3.4 and z_{ε} is defined in lemma 3.5.

The first term we have to add is a sort of projection of the function w_{ε} , namely, the function α_{ε} given in the next lemma.

Lemma 3.1.

(i) The Cauchy problem

$$-\alpha_{\varepsilon,N}'' - \frac{N-1}{r} \alpha_{\varepsilon,N}' = \frac{N-1}{r} w_{\varepsilon}'(r) - w_{\varepsilon}(r) + \ln \lambda \quad in \ (0, r_0), \\ \alpha_{\varepsilon}(r_0) = \alpha_{\varepsilon}'(r_0) = 0$$

$$(3.2)$$

has the solution

$$\alpha_{\varepsilon}(r) := -\int_{r_0}^r \frac{1}{t^{N-1}} \int_{r_0}^t \tau^{N-1} \left[\frac{N-1}{\tau} w_{\varepsilon}'(\tau) - w_{\varepsilon}(\tau) + \ln \lambda \right] \mathrm{d}\tau \, \mathrm{d}t.$$

(ii) The following expansion holds:

$$\alpha_{\varepsilon}(\varepsilon s + r_0) = \varepsilon \alpha_1(s) + \varepsilon^2 \alpha_2(s) + O(\varepsilon^3 s^4), \tag{3.3}$$

where

$$\alpha_1(s) := -\frac{N-1}{r_0} \int_0^s w(\sigma) \,\mathrm{d}\sigma + \frac{1}{2}a_1 s^2 \tag{3.4}$$

and

$$\alpha_{2}(s) := \int_{0}^{s} \int_{0}^{\sigma} [w(\rho) - \ln 4] \,\mathrm{d}\rho \,\mathrm{d}\sigma + \frac{(N-1)(N-2)}{r_{0}^{2}} \int_{0}^{s} \int_{0}^{\sigma} w(\rho) \,\mathrm{d}\rho \,\mathrm{d}\sigma + \frac{N-1}{r_{0}^{2}} \int_{0}^{s} \sigma w(\sigma) \,\mathrm{d}\sigma - \frac{N-1}{6r_{0}} a_{1}s^{3} + \frac{1}{2}a_{2}s^{2}.$$
(3.5)

(iii) For any $r \in (0, r_0 - \delta)$,

$$\begin{aligned} \alpha_{\varepsilon}(r) &= -\frac{(N-1)\ln 4}{r_0}(r-r_0) \\ &+ \left[\frac{(N-1)^2\ln 4}{r_0^2} - \frac{\sqrt{2}(N-1)}{\varepsilon r_0} + \ln\frac{4}{\varepsilon^2} - \ln\lambda\right] \frac{(r-r_0)^2}{2} \\ &+ \left[\frac{N(N-1)\sqrt{2}}{\varepsilon r_0^2} + \frac{\sqrt{2}}{\varepsilon} - \frac{N-1}{r_0} \left(\ln\frac{4}{\varepsilon^2} - \ln\lambda\right)\right] \frac{(r-r_0)^3}{6} \\ &+ O\left(\frac{(r-r_0)^4}{\varepsilon}\right) + O((r-r_0)^3). \end{aligned}$$
(3.6)

Proof. (i) It is just a straightforward computation.

(ii) Setting $t = \varepsilon \sigma + r_0$ and $\tau = \varepsilon \rho + r_0$, we find

$$\begin{split} \alpha_{\varepsilon}(\varepsilon s+r_0) &= -\varepsilon^2 \int_0^s \frac{1}{(\varepsilon\sigma+r_0)^{N-1}} \int_0^{\sigma} (\varepsilon\rho+r_0)^{N-1} \\ &\times \left[\frac{N-1}{\varepsilon\rho+r_0} \frac{1}{\varepsilon} w'(\rho) - [w(\rho) - \ln 4] + \ln \lambda - \ln \frac{4}{\varepsilon^2} \right] \mathrm{d}\sigma \,\mathrm{d}\rho \\ &= -\varepsilon^2 \int_0^s \left(\frac{1}{r_0^{N-1}} - \frac{N-1}{r_0^N} \varepsilon\sigma \right) \int_0^{\sigma} (r_0^{N-1} + (N-1)r_0^{N-2}\varepsilon\rho) \\ &\times \left[(N-1) \left(\frac{1}{r_0} - \frac{1}{r_0^2} \varepsilon\rho \right) \frac{1}{\varepsilon} w'(\rho) \\ &- [w(\rho) - \ln 4] + \ln \lambda - \ln \frac{4}{\varepsilon^2} \right] \mathrm{d}\sigma \,\mathrm{d}\rho + O(\varepsilon^3 s^4). \end{split}$$

Here we used that

$$w_{\varepsilon}(r) = \ln \frac{4}{\varepsilon^2} + w\left(\frac{r-r_0}{\varepsilon}\right) - \ln 4 \text{ and } w'_{\varepsilon}(r) = \frac{1}{\varepsilon}w'\left(\frac{r-r_0}{\varepsilon}\right).$$

The claim follows by (2.3).

(iii) Set $\bar{w}_{\varepsilon}(r) := w_{\varepsilon}(r) - \ln(1/\varepsilon^2)$. We have

$$\begin{split} \alpha_{\varepsilon}(r) &= -\int_{r_0}^r \frac{1}{t^{N-1}} \int_{r_0}^t \tau^{N-1} \left[\frac{N-1}{\tau} w_{\varepsilon}'(\tau) - w_{\varepsilon}(\tau) + \ln \lambda \right] \mathrm{d}\tau \, \mathrm{d}t \\ &= -\int_{r_0}^r \frac{1}{t^{N-1}} \int_{r_0}^t \tau^{N-1} \left[\frac{N-1}{\tau} \bar{w}_{\varepsilon}'(\tau) - \bar{w}_{\varepsilon}(\tau) + \left(\ln \lambda - \ln \frac{1}{\varepsilon^2} \right) \right] \mathrm{d}\tau \, \mathrm{d}t \\ &= -(N-1) \int_{r_0}^r \frac{\bar{w}_{\varepsilon}(t)}{t} \, \mathrm{d}t \\ &+ \int_{r_0}^r \frac{1}{t^{N-1}} \int_{r_0}^t [(N-1)(N-2)\tau^{N-3} + \tau^{N-1}] \bar{w}_{\varepsilon}(\tau) \, \mathrm{d}\tau \, \mathrm{d}t \end{split}$$

Steady states with unbounded mass of the Keller–Segel system 209

$$+\left(\ln\lambda - \ln\frac{1}{\varepsilon^2}\right) \begin{cases} \frac{1}{2N}(r_0^2 - r^2) + \frac{r_0^2}{2}\ln\frac{r}{r_0} & \text{if } N = 2\\ \frac{1}{2N}(r_0^2 - r^2) & \\ +\frac{r_0^N}{N(N-2)}\left(\frac{1}{r_0^{N-2}} - \frac{1}{r^{N-2}}\right) & \text{if } N \ge 3 \end{cases}$$

Now, we observe that in $[r_0 - 2\delta, r_0 - \delta]$ we have

$$\ln \frac{r}{r_0} = \ln \left(1 + \frac{r - r_0}{r_0} \right) = \frac{r - r_0}{r_0} - \frac{(r - r_0)^2}{2r_0^2} + \frac{(r - r_0)^3}{3r_0^3} + O((r - r_0)^4) \quad (3.7)$$
$$\frac{1}{r^{N-2}} = \frac{1}{r_0^{N-2}} - \frac{N - 2}{r_0^{N-1}}(r - r_0) + \frac{(N - 2)(N - 1)}{r_0^N} \frac{(r - r_0)^2}{2}$$
$$- \frac{N(N - 1)(N - 2)}{r_0^{N+1}} \frac{(r - r_0)^3}{6} + O((r - r_0)^4) \quad (3.8)$$

and also

$$\bar{w}_{\varepsilon}(s) = \ln 4 + \frac{\sqrt{2}}{\varepsilon}(s - r_0) + O(\mathrm{e}^{-|s - r_0|/\varepsilon}).$$
(3.9)

A tedious but straightforward computation proves our claim. $\hfill \Box$

The function $w_{\varepsilon}(r) - \ln \lambda + \alpha_{\varepsilon}(r)$ is still a bad approximation of the solution near the boundary point r_0 . We have to add a correction term v_{ε} (given in the next lemma) that solves a linear problem and *kills* the ε -order term in (3.3).

Lemma 3.2.

(i) There exists a solution v of the linear problem (see (3.4))

such that

$$v(s) = \nu_1 s + \nu_2 + O(e^s)$$
 and $v'(s) = \nu_1 + O(e^s)$ as $s \to -\infty$,

where

$$\nu_1 := -\frac{2(N-1)}{r_0}(1-\ln 2) + a_1\sqrt{2}\ln 2, \qquad (3.11)$$

 $\nu_2 \in \mathbb{R}$ is a constant that only depends on a_1 , and a_1 is given in (3.5).

(ii) In particular, the function $v_{\varepsilon}(r) := \varepsilon v((r-r_0)/\varepsilon)$ is a solution of the linear problem

$$-v_{\varepsilon}'' - e^{w_{\varepsilon}} v_{\varepsilon} = \varepsilon e^{w_{\varepsilon}(r)} \alpha_1 \left(\frac{r - r_0}{\varepsilon}\right) \quad in \ \mathbb{R}$$
(3.12)

such that, if $r \in [0, r_0 - \delta]$, it satisfies

$$v_{\varepsilon}(r) = \nu_1(r - r_0) + \nu_2 \varepsilon + O(e^{-|r - r_0|/\varepsilon}) \quad and \quad v'_{\varepsilon}(r) = \nu_1 + O(e^{-|r - r_0|/\varepsilon})$$

$$(3.13)$$

$$as \ \varepsilon \to 0.$$

Proof. The result immediately follows by lemma 3.3. In our case

$$\nu_1 := \frac{1}{\sqrt{2}} \int_{-\infty}^0 \left(-\frac{N-1}{r_0} \int_0^r w(y) \, \mathrm{d}y + a_1 \frac{r^2}{2} \right) w'(r) \mathrm{e}^w(r) \, \mathrm{d}r$$

and

210

$$\nu_2 := -\int_{-\infty}^0 \left(\frac{2}{1 - \mathrm{e}^{\sqrt{2}r}} + \frac{r}{\sqrt{2}}\right) \left(-\frac{N-1}{r_0} \int_0^r w(y) \,\mathrm{d}y + a_1 \frac{r^2}{2}\right) w'(r) \mathrm{e}^w(r) \,\mathrm{d}r.$$

A straightforward computation proves (3.11).

A straightforward computation proves (3.11).

LEMMA 3.3 (Grossi [9, lemma 4.1]). Let $h: \mathbb{R} \to \mathbb{R}$ be a continuous function. The function

$$Y(t) = w'(t) \int_0^t \frac{1}{w'(s)^2} \left(\int_s^0 h(z)w'(z)e^w \, dz \right) ds$$
(3.14)

is a solution to

Moreover,

$$Y(t) = tv_1^- + v_2^- + O(e^t)$$
 and $Y'(t) = v_1^- + O(e^t)$ as $t \to -\infty$,

where

$$\begin{split} v_1^- &:= \frac{1}{\sqrt{2}} \int_{-\infty}^0 h(r) w'(r) \mathrm{e}^w \, \mathrm{d}r, \\ v_2^- &:= -\int_{-\infty}^0 \left(\frac{2}{1 - \mathrm{e}^{\sqrt{2}s}} + \frac{s}{\sqrt{2}} \right) h(s) w'(s) \mathrm{e}^w \, \mathrm{d}s, \end{split}$$

and

$$Y(t) = tv_1^+ + v_2^+ + O(e^{-t}), \quad and \quad Y'(t) = v_1^+ + O(e^{-t}) \quad as \ t \to +\infty,$$

where

$$v_1^+ := \frac{1}{\sqrt{2}} \int_0^{+\infty} h(r) w'(r) \mathrm{e}^w \,\mathrm{d}r$$

and

$$v_2^+ := -\int_0^{+\infty} \left(\frac{2}{1 - e^{\sqrt{2}s}} + \frac{s}{\sqrt{2}}\right) h(s)w'(s)e^w \, \mathrm{d}s.$$

As we have done for the function w_{ε} , we have to add the projection of the function $v_{\varepsilon},$ namely, the function β_{ε} given in the next lemma.

Lemma 3.4.

(i) The Cauchy problem

$$-\beta_{\varepsilon}'' - \frac{N-1}{r}\beta_{\varepsilon}' = \frac{N-1}{r}v_{\varepsilon}'(r), \\ \beta_{\varepsilon}(r_0) = \beta_{\varepsilon}'(r_0) = 0$$

$$(3.16)$$

has the solution

$$\beta_{\varepsilon}(r) = -(N-1) \int_{r}^{r_0} \frac{1}{t^{N-1}} \int_{t}^{r_0} \tau^{N-2} v_{\varepsilon}'(\tau) \,\mathrm{d}\tau \,\mathrm{d}t.$$

(ii) The following expansion holds:

$$\beta_{\varepsilon}(\varepsilon s + r_0) = \varepsilon^2 \beta_1(s) + O(\varepsilon^3 s^3), \qquad \beta_1(s) := -\frac{N-1}{r_0} \int_0^s \int_0^\sigma v'(\rho) \,\mathrm{d}\rho \,\mathrm{d}\sigma.$$
(3.17)

(iii) For any $r \in (0, r_0 - \delta)$,

$$\beta_{\varepsilon}(r) = -\frac{(N-1)\nu_1}{r_0} \frac{(r-r_0)^2}{2} + O((r-r_0)^3).$$
(3.18)

Proof. We argue as in lemma 3.1.

Unfortunately, the function $w_{\varepsilon,r_0}(r) - \ln \lambda + \alpha_{\varepsilon}(r) + v_{\varepsilon}(r) + \beta_{\varepsilon}(r)$ is still a bad approximation of the solution near the boundary point r_0 . We have to add an extra correction term z_{ε} , given in the next lemma, that solves a linear problem and *kills* all the ε^2 -order terms (in particular, those in (3.3) and in (3.17)).

Lemma 3.5.

(i) There exists a solution z of the linear problem (see equations (3.4), (3.5), (3.17) and (3.10))

$$-z'' - e^w z = e^z [\alpha_2(s) + \beta_1(s) + \frac{1}{2}(\alpha_1(s) + v(s))^2] \quad in \mathbb{R},$$

$$z(0) = z'(0) = 0$$
(3.19)

such that

$$z(s) = \zeta_1 s + \zeta_2 + O(e^s)$$
 and $z'(s) = \zeta_1 + O(e^s)$ as $s \to -\infty$,

where $\zeta_1, \zeta_2 \in \mathbb{R}$ are constants that only depend on a_1 and a_2 .

(ii) In particular, the function $z_{\varepsilon}(r) := \varepsilon^2 z((r-r_0)/\varepsilon)$ is a solution of the linear problem

$$-z_{\varepsilon}^{\prime\prime} - e^{w_{\varepsilon}} z_{\varepsilon} = \varepsilon^{2} e^{w_{\varepsilon}} \left\{ \alpha_{2} \left(\frac{r - r_{0}}{\varepsilon} \right) + \beta_{1} \left(\frac{r - r_{0}}{\varepsilon} \right) + \frac{1}{2} \left[\alpha_{1} \left(\frac{r - r_{0}}{\varepsilon} \right) + v \left(\frac{r - r_{0}}{\varepsilon} \right) \right]^{2} \right\}$$
(3.20)

such that, if $r \in [0, r_0 - \delta]$, it satisfies

$$z_{\varepsilon}(r) = \varepsilon \zeta_1(r - r_0) + \zeta_2 \varepsilon^2 + O(\varepsilon^2 \mathrm{e}^{-|r - r_0|/\varepsilon}) \quad as \ \varepsilon \to 0.$$
(3.21)

Proof. The result immediately follows by lemma 3.3, arguing as in the proof of lemma 3.2. $\hfill \Box$

4. The error estimate

Let us define the error term

$$\mathcal{R}_{\lambda}(\bar{u}_{\lambda}) = -\bar{u}_{\lambda}^{\prime\prime} - \frac{N-1}{r}\bar{u}_{\lambda}^{\prime} + \bar{u}_{\lambda} - \lambda e^{\bar{u}_{\lambda}}, \qquad (4.1)$$

where \bar{u}_{λ} is defined as in (2.2).

First of all, it is necessary to choose constants a, b and c in (2.3), and A_1 , A_2 and A_3 in (2.4), such that the approximate solutions in the neighbourhood of the boundary and inside the interval join up.

LEMMA 4.1. *If*

$$A_{1} := \frac{\sqrt{2}}{\mathcal{U}'(r_{0})}, \qquad A_{2} := \frac{1}{\mathcal{U}'(r_{0})} \left(\frac{\ln 4}{\mathcal{U}'(r_{0})} - 2\frac{N-1}{r_{0}}\right), \qquad A_{3} := \frac{\zeta_{1}}{\mathcal{U}'(r_{0})} \qquad (4.2)$$
$$a_{1} := A_{1}, \qquad a_{2} := A_{2}, \qquad a_{3} =: A_{3} - \nu_{2} \qquad (4.3)$$

 $(\zeta_1 \text{ and } \nu_2 \text{ are given in lemma } 3.2 \text{ and lemma } 3.5, \text{ respectively}), \text{ then, for any } r \in [r_0 - 2\delta, r_0 - \delta], \text{ we have}$

$$u_1(r) - u_3(r) = O(e^{-|r-r_0|/\varepsilon}) + O(\varepsilon^2) + O(\varepsilon(r-r_0)^2) + O((r-r_0)^3) + O\left(\frac{(r-r_0)^4}{\varepsilon}\right), u_1'(r) - u_3'(r) = O\left(\frac{1}{\varepsilon}e^{-|r-r_0|/\varepsilon}\right) + O(\varepsilon) + O(\varepsilon(r-r_0)) + O((r-r_0)^2) + O\left(\frac{(r-r_0)^3}{\varepsilon}\right).$$

Proof. Let us prove the first estimate. The proof of the second estimate is similar. By (2.3), (3.6), (3.13), (3.18) and (3.21), we deduce that if $r \in [r_0 - 2\delta, r_0 - \delta]$, then

$$\begin{split} u_1(r) &= \left[\ln \frac{4}{\varepsilon^2} - \ln \lambda + \nu_2 \varepsilon \right] + \left[\frac{\sqrt{2}}{\varepsilon} - \frac{(N-1)\ln 4}{r_0} + \nu_1 + \zeta_1 \varepsilon \right] (r-r_0) \\ &+ \left[\frac{(N-1)^2 \ln 4}{r_0^2} - \frac{\sqrt{2}(N-1)}{r_0} \frac{1}{\varepsilon} + \ln \frac{4}{\varepsilon^2} - \ln \lambda - \frac{\nu_1(N-1)}{r_0} \right] \frac{(r-r_0)^2}{2} \\ &+ \left[\frac{N(N-1)\sqrt{2}}{r_0^2} \frac{1}{\varepsilon} + \sqrt{2}(N-1) \frac{1}{\varepsilon} - \frac{N-1}{r_0} \left(\ln \frac{4}{\varepsilon^2} - \ln \lambda \right) \right] \frac{(r-r_0)^3}{6} \\ &+ O(\mathrm{e}^{-|r-r_0|/\varepsilon}) + O(\varepsilon^2) + O\left(\frac{(r-r_0)^4}{\varepsilon} \right) + O((r-r_0)^3) \\ &= \left[\frac{a_1}{\varepsilon} + a_2 + a_3\varepsilon + \nu_2 \varepsilon \right] + \left[\frac{\sqrt{2}}{\varepsilon} - \frac{2(N-1)}{r_0} + a_1\sqrt{2}\ln 2 + \zeta_1 \varepsilon \right] (r-r_0) \\ &+ \left[-\frac{(N-1)\sqrt{2}}{r_0} \frac{1}{\varepsilon} + \frac{a_1}{\varepsilon} + a_2 + 2\frac{(N-1)^2}{r_0^2} \right] \\ &- \frac{a_1(N-1)\sqrt{2}\ln 2}{r_0} \left] \frac{(r-r_0)^2}{2} \end{split}$$

Steady states with unbounded mass of the Keller–Segel system 213

$$+ \left[\frac{N(N-1)\sqrt{2}}{r_0^2}\frac{1}{\varepsilon} + \frac{\sqrt{2}}{\varepsilon} - \frac{a_1(N-1)}{r_0}\frac{1}{\varepsilon}\right]\frac{(r-r_0)^3}{6} + O(e^{-|r-r_0|/\varepsilon}) + O(\varepsilon^2) + O\left(\frac{(r-r_0)^4}{\varepsilon}\right) + O((r-r_0)^3).$$
(4.4)

On the other hand, by the mean-value theorem, we deduce that

$$\mathcal{U}(r) = \mathcal{U}(r_0) + \mathcal{U}'(r_0)(r - r_0) + \mathcal{U}''(r_0)\frac{(r - r_0)^2}{2} + \mathcal{U}''''(r_0)\frac{(r - r_0)^3}{6} + O((r - r_0)^4)$$

with $\mathcal{U}(r_0) = 1$,

$$\begin{aligned} \mathcal{U}''(r_0) &= -\frac{N-1}{r_0} \mathcal{U}'(r_0) + \mathcal{U}(r_0) = -\frac{N-1}{r_0} \mathcal{U}'(r_0) + 1\\ \mathcal{U}'''(r_0) &= -\frac{N-1}{r_0} \mathcal{U}''(r_0) + \frac{N-1}{r_0^2} \mathcal{U}'(r_0) + \mathcal{U}'(r_0)\\ &= \frac{N(N-1)}{r_0^2} \mathcal{U}'(r_0) + \mathcal{U}'(r_0) - \frac{N-1}{r_0}. \end{aligned}$$

These relations easily follow by differentiating (2.8). Therefore, if $r \in [r_0 - 2\delta, r_0 - \delta]$, we have

$$u_{3}(r) = \left(\frac{A_{1}}{\varepsilon} + A_{2} + A_{3}\varepsilon\right)\mathcal{U}(r)$$

$$= \left(\frac{A_{1}}{\varepsilon} + A_{2} + A_{3}\varepsilon\right) + \left(\frac{A_{1}}{\varepsilon} + A_{2} + A_{3}\varepsilon\right)\mathcal{U}'(r_{0})(r - r_{0})$$

$$+ \mathcal{U}''(r_{0})\left(\frac{A_{1}}{\varepsilon} + A_{2}\right)\frac{(r - r_{0})^{2}}{2} + \mathcal{U}'''(r_{0})\frac{A_{1}}{\varepsilon}\frac{(r - r_{0})^{3}}{6}$$

$$+ O(\varepsilon(r - r_{0})^{2}) + O((r - r_{0})^{3}) + O\left(\frac{(r - r_{0})^{4}}{\varepsilon}\right).$$
(4.5)

If (4.2) holds, then, combining (4.4) and (4.5), we easily get the claim. \Box LEMMA 4.2. There exist C > 0 and $\lambda_0 > 0$ such that, for any $\lambda \in (0, \lambda_0)$, we have $\|\mathcal{R}_{\lambda}\|_{L^1} = O(\varepsilon_{\lambda}^{1+\sigma})$ for some $\sigma > 0$.

Proof. STEP 1 (evaluation of the error in $(r_0 - \delta, r_0)$). We use the estimate

$$1 - e^{t} = -t - (\frac{1}{2}t^{2}) + O(t^{3})$$

and we get

$$\begin{aligned} \mathcal{R}_{\lambda}(u_{1}) &= -u_{1}^{\prime\prime} - \frac{N-1}{r}u_{1}^{\prime} + u_{1} - \lambda e^{u_{1}} \\ &= -w_{\varepsilon}^{\prime\prime} - \frac{N-1}{r_{0}}w_{\varepsilon}^{\prime} + w_{\varepsilon} - \ln\lambda - \alpha_{\varepsilon}^{\prime\prime} - \frac{N-1}{r}\alpha_{\varepsilon}^{\prime} \\ &+ \alpha_{\varepsilon} - v_{\varepsilon}^{\prime\prime} - \frac{N-1}{r}v_{\varepsilon}^{\prime} + v_{\varepsilon} - \beta_{\varepsilon}^{\prime\prime} - \frac{N-1}{r}\beta_{\varepsilon}^{\prime} + \beta_{\varepsilon} \\ &- z_{\varepsilon}^{\prime\prime} - \frac{N-1}{r}z_{\varepsilon}^{\prime} + z_{\varepsilon} - \lambda e^{w_{\varepsilon} - \ln\lambda + \alpha_{\varepsilon} + v_{\varepsilon} + \beta_{\varepsilon} + z_{\varepsilon}} \end{aligned}$$

$$= \alpha_{\varepsilon} + v_{\varepsilon} + \beta_{\varepsilon} + z_{\varepsilon} - \frac{N-1}{r} z_{\varepsilon}'$$

$$+ e^{w_{\varepsilon}} \left\{ 1 - e^{\alpha_{\varepsilon} + v_{\varepsilon} + \beta_{\varepsilon} + z_{\varepsilon}} + v_{\varepsilon} + z_{\varepsilon} + \varepsilon \alpha_{1} \left(\frac{r-r_{0}}{\varepsilon} \right) \right.$$

$$+ \varepsilon^{2} \left[\alpha_{2} \left(\frac{r-r_{0}}{\varepsilon} \right) + \beta_{1} \left(\frac{r-r_{0}}{\varepsilon} \right) \right.$$

$$+ \frac{1}{2} \left(\alpha_{1} \left(\frac{r-r_{0}}{\varepsilon} \right) + v \left(\frac{r-r_{0}}{\varepsilon} \right) \right)^{2} \right] \right\}$$

$$= \alpha_{\varepsilon} + v_{\varepsilon} + \beta_{\varepsilon} + z_{\varepsilon} - \frac{N-1}{r} z_{\varepsilon}'$$

$$+ e^{w_{\varepsilon}} \left\{ -\alpha_{\varepsilon} - \beta_{\varepsilon} - \frac{1}{2} (\alpha_{\varepsilon} + v_{\varepsilon})^{2} + \varepsilon \alpha_{1} \left(\frac{r-r_{0}}{\varepsilon} \right) \right.$$

$$+ \varepsilon^{2} \left[\alpha_{2} \left(\frac{r-r_{0}}{\varepsilon} \right) + \beta_{1} \left(\frac{r-r_{0}}{\varepsilon} \right) \right.$$

$$+ \frac{1}{2} \left(\alpha_{1} \left(\frac{r-r_{0}}{\varepsilon} \right) + v \left(\frac{r-r_{0}}{\varepsilon} \right) \right)^{2} \right] \right\}$$

$$+ O(e^{w_{\varepsilon}} |\alpha_{\varepsilon} + v_{\varepsilon} + \beta_{\varepsilon} + z_{\varepsilon}|^{3}) + O(e^{w_{\varepsilon}} |\beta_{\varepsilon} + z_{\varepsilon}|^{2})$$

$$+ O(e^{w_{\varepsilon}} |(\alpha_{\varepsilon} + v_{\varepsilon})(\beta_{\varepsilon} + z_{\varepsilon})|), \qquad (4.6)$$

because α_{ε} solves (3.2), v_{ε} solves (3.12), β_{ε} solves (3.16) and z_{ε} solves (3.20). We have

$$\int_{r_0-\delta}^{r_0} |\alpha_{\varepsilon} + v_{\varepsilon} + \beta_{\varepsilon} + z_{\varepsilon}|(r) \,\mathrm{d}r = O\left(\int_{r_0-\delta}^{r_0} \frac{(r-r_0)^2}{\varepsilon} \,\mathrm{d}r\right) = O\left(\frac{\delta^3}{\varepsilon}\right) = O(\varepsilon^{3\eta-1}),$$

because, by (3.3), (3.17), the properties of v_ε in lemma 3.2 and those of z_ε in lemma 3.5, we deduce that

$$\begin{aligned} \alpha_{\varepsilon}(r) &= O\bigg(\frac{(r-r_0)^2}{\varepsilon}\bigg), \qquad \beta_{\varepsilon}(r) = O((r-r_0)^2), \\ v_{\varepsilon}(r) &= O(|r-r_0|+\varepsilon), \qquad z_{\varepsilon}(r) = O(\varepsilon|r-r_0|+\varepsilon^2). \end{aligned}$$

By lemma 3.5, we also deduce that $z_{\varepsilon}'(r)=O(\varepsilon),$ and so

$$\int_{r_0-\delta}^{r_0} \left| \frac{1}{r} z_{\varepsilon}'(r) \right| \mathrm{d}r = O(\varepsilon\delta) = O(\varepsilon^{1+\eta}).$$

Moreover, we scale by $s = \varepsilon r + r_0$ and we get

$$\begin{split} \int_{r_0-\delta}^{r_0} \mathrm{e}^{w_{\varepsilon}} \bigg| &-\alpha_{\varepsilon} - \beta_{\varepsilon} - \frac{1}{2}(\alpha_{\varepsilon} + v_{\varepsilon})^2 + \varepsilon \alpha_1 \bigg(\frac{r-r_0}{\varepsilon} \bigg) \\ &+ \varepsilon^2 \bigg[\alpha_2 \bigg(\frac{r-r_0}{\varepsilon} \bigg) + \beta_1 \bigg(\frac{r-r_0}{\varepsilon} \bigg) \\ &+ \frac{1}{2} \bigg(\alpha_1 \bigg(\frac{r-r_0}{\varepsilon} \bigg) + v \bigg(\frac{r-r_0}{\varepsilon} \bigg) \bigg)^2 \bigg] \bigg| \, \mathrm{d}r \end{split}$$

Steady states with unbounded mass of the Keller–Segel system 215

$$= \frac{1}{\varepsilon} \int_{-\delta/\varepsilon}^{0} e^{w(s)} |-\alpha_{\varepsilon}(\varepsilon s + r_{0}) - \beta_{\varepsilon}(\varepsilon s + r_{0}) \\ - \frac{1}{2} (\alpha_{\varepsilon}(\varepsilon s + r_{0}) + \varepsilon v(s))^{2} + \varepsilon \alpha_{1}(s) \\ + \varepsilon^{2} [\alpha_{2}(s) + \beta_{1}(s) + \frac{1}{2} (\alpha_{1}(s) + v(s))^{2}] | ds$$
$$= O\left(\varepsilon^{2} \int_{\mathbb{R}} e^{w(s)} s^{3} ds\right) = O(\varepsilon^{2}).$$

Finally, we scale by $s = \varepsilon r + r_0$ and obtain

$$\begin{split} \int_{r_0-\delta}^{r_0} \mathrm{e}^{w_{\varepsilon}} |\alpha_{\varepsilon} + v_{\varepsilon} + \beta_{\varepsilon} + z_{\varepsilon}|^3 \, \mathrm{d}r &= O\bigg(\int_{r_0-\delta}^{r_0} \mathrm{e}^{w_{\varepsilon}} (|\alpha_{\varepsilon}|^3 + |v_{\varepsilon}|^3 + |\beta_{\varepsilon}|^3 + |z_{\varepsilon}|^3) \, \mathrm{d}r\bigg) \\ &= O\bigg(\varepsilon^2 \int_{\mathbb{R}} \mathrm{e}^{w(s)} s^6 \, \mathrm{d}s + \varepsilon^2 \int_{\mathbb{R}} \mathrm{e}^{w(s)} v^3(s) \, \mathrm{d}s \\ &\quad + \varepsilon^5 \int_{\mathbb{R}} \mathrm{e}^{w(s)} s^6 \, \mathrm{d}s + \varepsilon^5 \int_{\mathbb{R}} \mathrm{e}^{w(s)} z^3(s) \, \mathrm{d}s\bigg) \\ &= O(\varepsilon^2), \\ \int_{r_0-\delta}^{r_0} \mathrm{e}^{w_{\varepsilon}} |\beta_{\varepsilon} + z_{\varepsilon}|^2 \, \mathrm{d}r = O\bigg(\varepsilon^3 \int_{\mathbb{R}} \mathrm{e}^{w(s)} s^4 \, \mathrm{d}s + \varepsilon^3 \int_{\mathbb{R}} \mathrm{e}^{w(s)} z^2 \, \mathrm{d}s\bigg) = O(\varepsilon^3), \\ \int_{r_0-\delta}^{r_0} \mathrm{e}^{w_{\varepsilon}} |(\alpha_{\varepsilon} + v_{\varepsilon})(\beta_{\varepsilon} + z_{\varepsilon})| \, \mathrm{d}r = O\bigg(\varepsilon^2 \int_{\mathbb{R}} \mathrm{e}^{w(s)} (s^2 + |v|)(s^2 + |z|) \, \mathrm{d}s\bigg) = O(\varepsilon^2), \end{split}$$

because, by (3.3) and (3.17), we deduce that

$$\alpha_{\varepsilon}(\varepsilon s + r_0) = O(\varepsilon s^2), \qquad \beta_{\varepsilon}(\varepsilon s + r_0) = O(\varepsilon^2 s^2).$$

Collecting all the previous estimates and taking into account the choice of η in (2.7), we get

$$\|\mathcal{R}_{\lambda}\|_{L^{1}((r_{0}-\delta,r_{0}))} = O(\varepsilon^{1+\sigma}) \quad \text{for some } \sigma > 0.$$

$$(4.7)$$

STEP 2 (evaluation of the error in $(0, r_0 - 2\delta)$). First of all, if δ is small enough (that is, ε is small enough), we have

$$\mathcal{U}(r) \leq \mathcal{U}(r_0 - 2\delta) = \mathcal{U}(r_0) + \mathcal{U}'(r_0)(-2\delta) + \frac{1}{2}\mathcal{U}''(r_0 - 2\theta\delta)(2\delta)^2 \leq 1 - 2\mathcal{U}'(r_0)\delta$$

because $\mathcal U$ is increasing (see lemma 2.1) and the mean-value theorem applies for some $\theta \in (0,1).$

Therefore, by (2.3), (2.7) and (4.2), we get

$$\begin{aligned} \mathcal{R}_{\lambda}(u_{3}) &= -u_{3}'' - \frac{N-1}{r}u_{3}' + u_{3} - \lambda e^{u_{3}} \\ &= -\lambda e^{(A_{1}/\varepsilon + A_{2} + A_{3}\varepsilon)\mathcal{U}(r)} \\ &= -\frac{4}{\varepsilon^{2}}e^{(A_{3} - a_{3})\varepsilon}e^{(A_{1}/\varepsilon + A_{2} + A_{3}\varepsilon)[\mathcal{U}(r) - 1]} \\ &= O\left(\frac{1}{\varepsilon^{2}}e^{-2A_{1}\mathcal{U}'(r_{0})(\delta/\varepsilon)}\right) \\ &= O\left(\frac{1}{\varepsilon^{2}}e^{-2\sqrt{2}(1/\varepsilon^{1-\eta})}\right). \end{aligned}$$

This implies that

$$|\mathcal{R}_{\lambda}(u_3)||_{L^1((0,r_0-2\delta))} = O(\varepsilon^{1+\sigma}) \quad \text{for any } \sigma > 0.$$
(4.8)

STEP 3 (evaluation of the error in $[r_0 - 2\delta, r_0 - \delta]$). We recall that

$$u_2 = \chi u_1 + (1 - \chi) u_3$$

and hence,

$$\begin{aligned} \mathcal{R}_{\lambda}(u_{2}) &= \chi \left[-u_{1}'' - \frac{N-1}{r}u_{1}' + u_{1} \right] + (1-\chi) \left[-u_{3}'' - \frac{N-1}{r}u_{3}' + u_{3} \right] \\ &- 2\chi'(u_{1}' - u_{3}') + \left[-\chi'' - \frac{N-1}{r}\chi' + \chi \right] (u_{1} - u_{3}) - \lambda e^{\chi(u_{1} - u_{3}) + u_{3}} \\ &= \chi \mathcal{R}_{\lambda}(u_{1}) + (1-\chi) \mathcal{R}_{\lambda}(u_{3}) - \lambda \chi e^{u_{1}} [e^{(\chi-1)(u_{1} - u_{3})} - 1] + \lambda (1-\chi) e^{u_{3}} \\ &- 2\chi'(u_{1}' - u_{3}') + \left[-\chi'' - \frac{N-1}{r}\chi' + \chi \right] (u_{1} - u_{3}). \end{aligned}$$

By lemma (4.1), we immediately get (taking into account the choice of η in (2.7))

$$\int_{r_0-2\delta}^{r_0-\delta} |\chi'(r)(u_1'(r) - u_3'(r))| \,\mathrm{d}r = O(\delta^2) = O(\varepsilon^{1+\sigma}),$$
$$\int_{r_0-2\delta}^{r_0-\delta} \left| \left[-\chi''(r) - \frac{N-1}{r}\chi'(r) + \chi(r) \right] (u_1(r) - u_3(r)) \right| (r) \,\mathrm{d}r = O(\delta^2) = O(\varepsilon^{1+\sigma})$$

and

$$\int_{r_0-2\delta}^{r_0-\delta} |\lambda \chi e^{u_1(r)} [e^{(\chi(r)-1)(u_1(r)-u_3(r))} - 1] | dr$$

= $O\left(\int_{r_0-2\delta}^{r_0-\delta} \lambda e^{u_1(r)} |u_1(r) - u_3(r)| dr\right)$
= $O(\lambda \varepsilon^2)$

because $e^t - 1 = O(t)$. Arguing exactly as in step 1, one proves that

$$\int_{r_0-2\delta}^{r_0-\delta} \chi(r) |\mathcal{R}_{\lambda}(u_1)(r)| \, \mathrm{d}r = O(\varepsilon^{1+\sigma}),$$

and arguing exactly as in step 2, one proves that

$$\int_{r_0-2\delta}^{r_0-\delta} (1-\chi(r)) |\mathcal{R}_{\lambda}(u_3)(r)| \,\mathrm{d}r = O(\varepsilon^{1+\sigma})$$

and

$$\int_{r_0-2\delta}^{r_0-\delta} \lambda(1-\chi(r)) \mathrm{e}^{u_3}(r) \,\mathrm{d}r = O(\varepsilon^{1+\sigma}).$$

Collecting all the previous estimates, we get

$$\|\mathcal{R}_{\lambda}(u_2)\|_{L^1((r_0-2\delta,r_0-\delta))} = O(\varepsilon^{1+\sigma}) \quad \text{for some } \sigma > 0.$$

$$(4.9)$$

The claim follows by (4.7), (4.8) and (4.9).
$$\hfill \Box$$

https://doi.org/10.1017/S0308210513000619 Published online by Cambridge University Press

LEMMA 4.3. It holds that

$$\lambda \varepsilon_{\lambda}^{2} e^{u_{\lambda}(\varepsilon_{\lambda} s + r_{0})} \to e^{w(s)} \quad C^{0} \text{-uniformly on compact sets of } (-\infty, 0] \text{ as } \lambda \to 0,$$
(4.10)

and that

$$\lambda \varepsilon_{\lambda} \int_{0}^{r_{0}} \mathrm{e}^{u_{\lambda}(r)} \,\mathrm{d}r \to \int_{\mathbb{R}} \mathrm{e}^{w(s)} \,\mathrm{d}s \quad as \ \lambda \to 0.$$
(4.11)

Proof. Let $[a, b] \subset (-\infty, 0]$. If λ is small enough, then

 $u_{\lambda}(\varepsilon_{\lambda}s + r_0) = u_1(\varepsilon_{\lambda}s + r_0)$ for any $s \in [a, b]$.

On the other hand, by (3.3), (3.17), the properties of v_{ε} in lemma 3.2 and those of z_{ε} in lemma 3.5, we deduce that

$$\alpha_{\varepsilon}(\varepsilon s + r_0) + \varepsilon v(s) + \beta_{\varepsilon}(\varepsilon s + r_0) + \varepsilon^2 z(s) = O(\varepsilon^2) + O(\varepsilon |s| + \varepsilon) + O(\varepsilon^2 s^2) + O(\varepsilon^2 |s| + \varepsilon^2),$$

and so

$$u_1(\varepsilon s + r_0) = w(s) + \ln \frac{1}{\varepsilon^2} - \ln \lambda + O(\delta|s| + \delta).$$

Therefore,

$$\lambda \varepsilon_{\lambda}^{2} \mathrm{e}^{u_{\lambda}(\varepsilon_{\lambda}s+r_{0})} = \mathrm{e}^{w(s)+O(\delta|s|+\delta)}$$
(4.12)

and (4.10) follows, since $s \in [a, b]$.

Moreover, since $w(s) = \sqrt{2}s + O(e^{\sqrt{2}s})$ as s goes to $-\infty$, we also deduce that if λ (and also δ) is small enough, then there exist a, b > 0 such that

$$\lambda \varepsilon^2 e^{u_1(\varepsilon s + r_0)} \leqslant b e^{-a|s|} \quad \text{for any } s \in (-\infty, 0].$$
(4.13)

Now, we have (scaling by $r = \varepsilon s + r_0$ in the first integral and arguing as in step 3 of lemma 4.2 to estimate the second and third integrals)

$$\begin{split} \lambda \varepsilon_{\lambda} \int_{0}^{r_{0}} \mathrm{e}^{u_{\lambda}(r)} \, \mathrm{d}r &= \lambda \varepsilon_{\lambda} \int_{r_{0}-\delta}^{r_{0}} \mathrm{e}^{u_{1}(r)} \, \mathrm{d}r + \lambda \varepsilon_{\lambda} \int_{r_{0}-2\delta}^{r_{0}-\delta} \mathrm{e}^{u_{2}(r)} \, \mathrm{d}r \\ &+ \lambda \varepsilon_{\lambda} \int_{0}^{r_{0}-2\delta} \mathrm{e}^{u_{3}(r)} \, \mathrm{d}r \\ &= \lambda \varepsilon_{\lambda}^{2} \int_{-\delta/\varepsilon}^{0} \mathrm{e}^{u_{1}(\varepsilon_{\lambda}s+r_{0})} \, \mathrm{d}r + O(\varepsilon^{1+\sigma}) \\ &\to \int_{\mathbb{R}} \mathrm{e}^{w(s)} \, \mathrm{d}s \quad \text{as } \lambda \to 0 \end{split}$$

because of (4.12), (4.13) and Lebesgue's dominated convergence theorem. We have now proved (4.11). $\hfill \Box$

5. A contraction mapping argument and the proof of the main theorem

First of all we point out that $u_{\lambda} + \phi_{\lambda}$ is a solution to (2.1) if and only if ϕ_{λ} is a solution of the problem

where $\mathcal{R}_{\lambda}(u_{\lambda})$ is given in (4.1),

$$\mathcal{L}_{\lambda}(\phi_{\lambda}) := -\phi_{\lambda}'' - \frac{N-1}{r}\phi_{\lambda}' + \phi_{\lambda} - \lambda e^{u_{\lambda}}\phi_{\lambda}$$

and

218

$$\mathcal{N}_{\lambda}(\phi_{\lambda}) := \lambda \mathrm{e}^{u_{\lambda} + \phi_{\lambda}} - \lambda \mathrm{e}^{u_{\lambda}} - \lambda \mathrm{e}^{u_{\lambda}} \phi_{\lambda}$$

The next results state that the linearized operator \mathcal{L}_{λ} is uniformly invertible.

PROPOSITION 5.1. There exist $\lambda_0 > 0$ and C > 0 such that, for any $\lambda \in (0, \lambda_0)$ and for any $h \in L^1((0, r_0))$, there exists a $\phi \in W^{2,2}((0, r_0))$ that is a unique solution of

$$\mathcal{L}_{\lambda}(\phi) = h,$$

$$\phi'(0) = \phi'(r_0) = 0$$

 $that \ satisfies$

$$\|\phi\|_{\infty} \leqslant C \|h\|_{L^1}.$$

Proof. Attempting a contradiction, we assume that there exist sequences $\lambda_n \to 0$, $h_n \in L^1((0, r_0))$ and $\phi_n \in W^{2,2}((0, r_0))$ that solve

$$-\phi_n'' - \frac{N-1}{r}\phi_n' + \phi_n - \lambda_n e^{u_{\lambda_n}}\phi_n = h_n \quad \text{in } (0, r_0), \\ \phi_n'(0) = \phi_n'(r_0) = 0$$
(5.2)

and

$$\|\phi_n\|_{\infty} = 1, \qquad \|h_n\|_{L^1} \to 0.$$
 (5.3)

Let $\psi_n(s) = \phi_n(\varepsilon_n s + r_0)$. Then ψ_n solves

$$-\psi_n'' - \frac{N-1}{\varepsilon_n s + r_0} \varepsilon_n \psi_n' + \varepsilon_n^2 \psi_n - \lambda_n \varepsilon_n^2 e^{u_n(\varepsilon_n s + r_0)} \psi_n = \varepsilon_n^2 h_n(\varepsilon_n s + r_0) \quad \text{in } (-r_0/\varepsilon_n, 0), \psi_n'(-r_0/\varepsilon_n) = \psi_n'(0) = 0,$$
(5.4)

which can also be written as

$$-((\varepsilon_n s + r_0)^{N-1}\psi'_n)' = (\varepsilon_n s + r_0)^{N-1}(-\varepsilon_n^2\psi_n + \lambda_n\varepsilon_n^2 e^{u_n(\varepsilon_n s + r_0)}\psi_n + \varepsilon_n^2h_n(\varepsilon_n s + r_0))$$

in $s \in (-r_0/\varepsilon_n, 0),$
 $\psi'_n(-r_0/\varepsilon_n) = \psi'_n(0) = 0.$ (5.5)

Now, let us fix a < 0. By (5.5) we immediately deduce that, for any $\sigma \in [a, 0]$,

$$(\varepsilon_n \sigma + r_0)^{N-1} \psi'_n(\sigma)$$

= $\int_{\sigma}^0 (\varepsilon_n s + r_0)^{N-1} (-\varepsilon_n^2 \psi_n + \lambda_n \varepsilon_n^2 e^{u_n(\varepsilon_n s + r_0)} \psi_n + \varepsilon_n^2 h_n(\varepsilon_n s + r_0)) ds,$

which implies that $\sup_{\sigma \in [a,0]} |\psi'_n(\sigma)| = O(\varepsilon_n)$, because ψ_n is bounded in L^{∞} , $||h_n||_{L^1} \to 0$ and (4.11) holds. The Ascoli–Arzelá theorem then implies that $\psi_n \to \psi$ uniformly on compact sets of $(-\infty, 0]$.

Hence, we multiply the equation in (5.4) by a C_0^{∞} test function, integrate and use (4.10) to deduce that ψ solves

$$\begin{aligned} -\psi'' - e^w \psi &= 0 \quad \text{in } (-\infty, 0), \\ \|\psi\|_{\infty} &\leq 1, \\ \psi'(0) &= 0. \end{aligned}$$
 (5.6)

A straightforward computation shows (see [9]) that there exist a and b such that

$$\psi(s) = a \frac{e^{\sqrt{2}s} - 1}{e^{\sqrt{2}s} + 1} + b \left(-2 + \sqrt{2}s \frac{e^{\sqrt{2}s} - 1}{e^{\sqrt{2}s} + 1} \right).$$

It is immediate to check that b = 0 (since $\|\psi\|_{\infty} \leq 1$), and then

$$\psi(s) = a \frac{\mathrm{e}^{\sqrt{2}s} - 1}{\mathrm{e}^{\sqrt{2}s} + 1}.$$

By using the condition $\psi'(0) = 0$ we also get that a = 0.

We claim that $\|\phi_n\|_{\infty} = o(1)$. This immediately gives a contradiction since, by assumption, $\|\phi_n\|_{\infty} = 1$. Let G be the Green function of the operator -u'' - ((N-1)/r)u' + u with Neumann boundary condition, whose properties can be found in Grossi [9, appendix A] (see also Grossi and Noris [11]).

By (5.2), we deduce that

$$\begin{split} \phi_n(r) &= \int_0^{r_0} G(r,t) \lambda_n \mathrm{e}^{u_{\lambda_n}} \phi_n(t) \,\mathrm{d}t + \int_0^{r_0} G(r,t) h_n(t) \,\mathrm{d}t \\ &= \varepsilon_n \lambda_n \int_{-r_0/\varepsilon_n}^0 G(r,\varepsilon_n s + r_0) \mathrm{e}^{u_{\lambda_n}(\varepsilon_n s + r_0)} \psi_n(s) \,\mathrm{d}s + \int_0^{r_0} G(r,t) h_n(t) \,\mathrm{d}t \\ &= G(r) \varepsilon_n \lambda_n \int_{-r_0/\varepsilon_n}^0 \mathrm{e}^{u_{\lambda_n}(\varepsilon_n s + r_0)} \psi_n(s) \,\mathrm{d}s + \int_0^{r_0} G(r,t) h_n(t) \,\mathrm{d}t \\ &+ \varepsilon_n \lambda_n \int_{-r_0/\varepsilon_n}^0 [G(r,\varepsilon_n s + r_0) - G(r)] \mathrm{e}^{u_{\lambda_n}(\varepsilon_n s + r_0)} \psi_n(s) \,\mathrm{d}s. \end{split}$$

Since G is bounded, it is immediate to check that $\int_0^{r_0} G(r,t)h_n(t) dt = o(1)$. We also want to show that

$$\varepsilon_n \lambda_n \int_{-r_0/\varepsilon_n}^0 [G(r,\varepsilon_n s + r_0) - G(r)] \mathrm{e}^{u_{\lambda_n}(\varepsilon_n s + r_0)} \psi_n(s) \,\mathrm{d}s = o(1). \tag{5.7}$$

If this is true, then

$$\phi_n(r) = G(r)K_n + o(1),$$

where

$$K_n := \varepsilon_n \lambda_n \int_{-r_0/\varepsilon_n} e^{u_{\lambda_n}(\varepsilon_n s + r_0)} \psi_n(s) \, \mathrm{d}s.$$

We compute

$$G(r_0)K_n + o(1) = \phi_n(r_0) = \psi_n(0) = o(1),$$

and hence $K_n = o(1)$ since $G(r_0) \neq 0$. Then $\|\phi_n\|_{\infty} = o(1)$ and this gives a contradiction.

It remains to prove (5.7). We have that

$$\begin{aligned} \left| \varepsilon_n \lambda_n \int_{-r_0/\varepsilon_n} [G(r, \varepsilon_n s + r_0) - G(r)] e^{u_{\lambda_n}(\varepsilon_n s + r_0)} \psi_n(s) \, \mathrm{d}s \right| \\ &\leq \varepsilon_n^2 \lambda_n \int_{-r_0/\varepsilon_n}^0 |s| e^{u_{\lambda_n}(\varepsilon_n s + r_0)} |\psi_n(s)| \, \mathrm{d}s \\ &= \underbrace{\varepsilon_n^2 \lambda_n \int_{-r_0/\varepsilon_n}^{-2\delta_n/\varepsilon_n} |s| e^{u_n^3(\varepsilon_n s + r_0)} |\psi_n(s)| \, \mathrm{d}s}_{(I)} \\ &+ \underbrace{\varepsilon_n^2 \lambda_n \int_{-2\delta_n/\varepsilon_n}^{-\delta_n/\varepsilon_n} |s| e^{u_n^2(\varepsilon_n s + r_0)} |\psi_n(s)| \, \mathrm{d}s}_{(II)} \\ &+ \underbrace{\varepsilon_n^2 \lambda_n \int_{-\delta_n/\varepsilon_n}^0 |s| e^{u_n^1(\varepsilon_n s + r_0)} |\psi_n(s)| \, \mathrm{d}s}_{(III)} \\ \end{aligned}$$

Now, arguing as in step 3 of lemma 4.2, we get that

$$(I) = O\left(\int_{-r_0/\varepsilon_n}^{-2\delta_n/\varepsilon_n} |s| \mathrm{e}^{-|s|} |\psi_n(s)| \,\mathrm{d}s\right) = O\left(\int_{-\infty}^0 |s| \mathrm{e}^{-|s|} |\psi_n(s)| \,\mathrm{d}s\right) = o(1)$$

because $\psi_n \to 0$ pointwise in $(-\infty, 0)$ and $\|\psi_n\|_{\infty} \leq 1$. Moreover, as in step 2 of lemma 4.2,

$$(II) = O\left(\int_{-2\delta_n/\varepsilon_n}^{-\delta_n/\varepsilon_n} |s| \mathrm{e}^{-|s|} |\psi_n(s)| \,\mathrm{d}s\right) = O\left(\int_{-\infty}^0 |s| \mathrm{e}^{-|s|} |\psi_n(s)| \,\mathrm{d}s\right) = o(1).$$

By (4.13) we deduce that

$$(III) = O\left(\int_{-\infty}^{0} |s| e^{-a|s|} |\psi_n(s)| \, \mathrm{d}s\right) = o(1)$$

for some a > 0.

Finally, we are in position to use a contraction mapping argument to prove theorem 1.1.

Proof of theorem 1.1. By proposition 5.1, we deduce that the linear operator \mathcal{L}_{λ} is uniformly invertible, and so problem (5.1) can be rewritten as

$$\phi = \mathcal{T}_{\lambda}(\phi) := \mathcal{L}_{\lambda}^{-1}[\mathcal{R}_{\lambda}(\bar{u}_{\lambda}) + \mathcal{N}_{\lambda}(\phi)].$$
(5.8)

For a given number $\rho > 0$ let us consider the closed set

$$A_{\rho} := \{ \phi \in L^{\infty}(0, r_0) \colon \|\phi\|_{\infty} \leqslant \rho \varepsilon^{1+\sigma} \},\$$

where $\sigma > 0$ is given in lemma 4.2.

We will prove that if λ is small enough, then $\mathcal{T}_{\lambda} \colon A_{\rho} \to A_{\rho}$ is a contraction map.

First of all, by (4.11), we get

$$\|\mathcal{N}_{\lambda}(\phi)\|_{L^{1}} \leqslant \|\lambda e^{u_{\lambda}}\|_{L^{1}} \|\phi\|_{\infty}^{2} \leqslant \frac{C}{\varepsilon} \|\phi\|_{\infty}^{2} \quad \text{for any } \phi \in A_{\rho}$$

and also

$$\|\mathcal{N}_{\lambda}(\phi_1) - \mathcal{N}_{\lambda}(\phi_2)\|_{L^1} \leqslant \frac{C}{\varepsilon} \Big(\max_{i=1,2} \|\phi_i\|_{\infty}\Big) \|\phi_1 - \phi_2\|_{\infty} \quad \text{for any } \phi_1, \phi_2 \in A_{\rho}$$

for some C > 0.

By lemma 4.2 we deduce that, for some $\rho > 0$,

$$\|\mathcal{T}_{\lambda}(\phi)\|_{\infty} \leqslant C(\|\mathcal{R}_{\lambda}(u_{\lambda})\|_{L^{1}} + \|\mathcal{N}_{\lambda}(\phi)\|_{L^{1}}) \leqslant \rho \varepsilon^{1+\sigma},$$

and so \mathcal{T}_{λ} maps A_{ρ} into itself. Moreover,

$$\|\mathcal{T}_{\lambda}(\phi_1) - \mathcal{T}_{\lambda}(\phi_2)\|_{\infty} \leqslant C \|\mathcal{N}_{\lambda}(\phi_1) - \mathcal{N}_{\lambda}(\phi_2)\|_{L^1} \leqslant C\varepsilon^{\sigma} \|\phi_1 - \phi_2\|_{\infty},$$

which proves that, for ε small enough, \mathcal{T}_{λ} is a contraction mapping on A_{ρ} for a suitable ρ .

Therefore, a unique fixed point of \mathcal{T}_{λ} has a unique fixed point in A_{ρ} , namely, there exists a unique solution $\phi = \phi_{\lambda} \in A_{\rho}$ of (5.8) or, equivalently, there exists a unique solution $u_m + \phi_m$ of (2.1).

Estimate (1.5) follows by the definition of u_m , which coincides with u_3 far away from r_0 . Indeed, if [a, b] is a compact set in $(0, r_0 - 2\delta)$, we get that, for λ small enough,

$$\varepsilon(u_{\lambda}(r) + \phi_m(r)) = (A_1 + A_2 \varepsilon + A_3 \varepsilon^2) \mathcal{U}(r) + \varepsilon \phi_m(r)$$
$$\rightarrow \frac{\sqrt{2}}{\mathcal{U}'(r_0)} \mathcal{U}(r) \quad \text{as } \lambda \to 0$$

because of (4.2) and the fact that $\|\phi\|_{\infty} \to 0$ as $\lambda \to 0$.

Finally, (1.4) follows by (4.11), taking into account that $\|\phi\|_{\infty} \to 0$ as $\lambda \to 0$. \Box

Acknowledgements

The authors were partly supported by GNAMPA funding (2013).

References

- 1 P. Biler. Local and global solvability of some parabolic system modelling chemotaxis. *Adv. Math. Sci. Appl.* **8** (1998), 715–743.
- 2 M. P. Brenner, P. Constantin, L. P. Kadanoff, A. Schenkel and S. C. Venkataramani. Diffusion, attraction and collapse. *Nonlinearity* **12** (1999), 1071–1098.
- 3 S. Childress and J. K. Percus. Nonlinear aspects of chemotaxis. Math. Biosci. 56 (1981), 217–237.
- 4 M. del Pino and J. Wei. Collapsing steady states of the Keller–Segel system. *Nonlinearity* **19** (2006), 661–684.
- 5 J. I. Diaz and T. Nagai. Symmetrization in a parabolic–elliptic system related to chemotaxis. Adv. Math. Sci. Appl. 5 (1995), 659–680.
- 6 H. Gajewski and K. Zacharias. Global behavior of a reaction-diffusion system modelling chemotaxis. Math. Nachr. 195 (1998), 77–114.

https://doi.org/10.1017/S0308210513000619 Published online by Cambridge University Press

- 7 M. Grossi. Asymptotic behaviour of the Kazdan–Warner solution in the annulus. J. Diff. Eqns **223** (2006), 96–111.
- 8 M. Grossi. Existence of radial solutions for an elliptic problem involving exponential nonlinearities. *Discrete Contin. Dynam. Syst.* **21** (2008), 221–232.
- 9 M. Grossi. Radial solutions for the Brezis–Nirenberg problem involving large nonlinearities. J. Funct. Analysis 254 (2008), 2995–3036.
- 10 M. Grossi and F. Gladiali. Singular limit of radial solutions in an annulus. Asymp. Analysis 55 (2007), 73–83.
- 11 M. Grossi and B. Noris. Positive constrained minimizers for supercritical problems in the ball. Proc. Am. Math. Soc. 140 (2012), 2141–2154.
- 12 M. A. Herrero and J. J. L. Velázquez. Singularity patterns in a chemotaxis model. Math. Annalen 306 (1996), 583–623.
- 13 M. A. Herrero and J. J. L. Velázquez. Chemotactic collapse for the Keller–Segel model. J. Math. Biol. 35 (1996), 177–194.
- 14 M. A. Herrero and J. J. L. Velázquez. A blow-up mechanism for a chemotaxis model. Annali Scuola Norm. Sup. Pisa 24 (1997), 633–683.
- 15 W. Jäger and S. Luckhaus. On explosions of solutions to a system of partial differential equations modelling chemotaxis. *Trans. Am. Math. Soc.* **329** (1992), 819–824.
- 16 E. F. Keller and L. A. Segel. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970), 399–415.
- T. Nagai. Global existence and blowup of solutions to a chemotaxis system. Nonlin. Analysis 47 (2001), 777–787.
- 18 T. Nagai, T. Senba and K. Yoshida. Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. *Funkcial. Ekvac.* 40 (1997), 411–433.
- 19 T. Nagai, T. Senba and T. Suzuki. Chemotactic collapse in a parabolic system of mathematical biology. *Hiroshima Math. J.* 30 (2000), 463–497.
- 20 V. Nanjudiah. Chemotaxis, signal relaying and aggregation morphology. J. Theor. Biol. 42 (1973), 63–105.
- 21 R. Schaaf. Stationary solutions of chemotaxis systems. Trans. Am. Math. Soc. 292 (1985), 531–556.
- 22 T. Senba and T. Suzuki. Some structures of the solution set for a stationary system of chemotaxis. Adv. Math. Sci. Appl. 10 (2000), 191–224.
- 23 T. Senba and T. Suzuki. Time global solutions to a parabolic–elliptic system modelling chemotaxis. Asymp. Analysis 32 (2002), 63–89.
- 24 T. Senba and T. Suzuki. Weak solutions to a parabolic–elliptic system of chemotaxis. J. Funct. Analysis 191 (2002), 17–51.
- 25 J. J. L. Velázquez. Stability of some mechanisms of chemotactic aggregation. SIAM J. Appl. Math. 62 (2002), 1581–1633.
- 26 J. J. L. Velázquez. Point dynamics in a singular limit of the Keller–Segel model. 2. Formation of the concentration regions. SIAM J. Appl. Math. 64 (2004), 1224–1248.
- 27 J. J. L. Velázquez. Well-posedness of a model of point dynamics for a limit of the Keller– Segel system. J. Diff. Eqns 206 (2004), 315–352.
- 28 G. Wang and J. Wei. Steady state solutions of a reaction-diffusion system modeling chemotaxis. Math. Nachr. 233 (2002), 221–236.

(Issued 6 February 2015)