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We consider the boundary-value problem

−Δu + u = λeu in Br0 ,

∂νu = 0 on ∂Br0 ,

where Br0 is the ball of radius r0 in R
N , N � 2, λ > 0 and ν is the outer normal

derivative at ∂Br0 . This problem is equivalent to the stationary Keller–Segel system
from chemotaxis. We show the existence of a solution concentrating at the boundary
of the ball as λ goes to 0.

1. Introduction

We consider a system of partial differential equations modelling chemotaxis. Chemo-
taxis is the movement of cells in response to the gradient of a chemical, which
explains the aggregation of cells that move towards a high concentration of a chemi-
cal secreted by themselves. The basic model was introduced by Keller and Segel [16],
and a simplified form of it reads as

vt = Δv − ∇(v∇u) in Ω,

τut = Δu − u + v in Ω,

∂νu = ∂νv = 0 on ∂Ω,

u(x, 0) = u0(x), v(x, 0) = v0(x),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (1.1)

where u = u(x, t) � 0 and v = v(x, t) � 0 are the concentration of the species and
the chemical, respectively. Here, Ω is a bounded smooth domain in R

N and N � 2.
The cases N = 2 or N = 3 are of particular interest. In (1.1), ν denotes the unit
outward vector normal at ∂Ω, and τ is a positive constant.

After the seminal works of Nanjudiah [20] and Childress and Percus [3], many
contributions have been made to the understanding of different analytical aspects
of this system and its variations. We refer the reader, for instance, to [2,5,6,12–20,
22–27].
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In this paper, we study steady states of (1.1), namely, solutions to the system

Δv − ∇(v∇u) = 0 in Ω,

Δu − u + v = 0 in Ω,

∂νu = ∂νv = 0 on ∂Ω.

⎫⎪⎬
⎪⎭ (1.2)

As pointed out in [18], stationary solutions to the Keller–Segel system are of basic
importance for the understanding of the global dynamics of the system.

This problem was first studied by Schaaf [21] in the one-dimensional case. In
the higher-dimensional case, Biler [1] proved the existence of a non-trivial radially
symmetric solution to (1.2) for the case in which Ω is a ball. In the general two-
dimensional case, Wang and Wei [28] and Senba and Suzuki [22] proved that, for
any μ ∈ (0, 1/|Ω| + μ1) \ {4πm : m � 1}, problem (1.2) has a non-constant solution
such that

∫
Ω

v(x) dx = μ|Ω|. Here, μ1 is the first eigenvalue of −Δ with Neumann
boundary conditions. Del Pino and Wei [4] reduced system (1.2) to a scalar equation.
Indeed, it is easy to check that (u, v) solves system (1.2) if and only if v = λeu for
some positive constant λ and u solves the equation

−Δu + u = λeu in Ω,

∂νu = 0 on ∂Ω.

}
(1.3)

Using this point of view, they proved, for any integers k and �, that there exists a
family of solutions (uλ, vλ) to (1.2) such that vλ exhibits k Dirac measures inside
the domain, and � Dirac measures on the boundary of the domain, as λ → 0, i.e.

vλ ⇀

k∑
i=1

8πδξi +
�∑

i=1

4πδηi as λ → 0,

where ξ1, . . . , ξk ∈ Ω and η1, . . . , η� ∈ ∂Ω. In particular, the solution has bounded
mass, i.e.

lim
λ→0

∫
Ω

vλ(x) dx = lim
λ→0

∫
Ω

λeuλ(x) dx = 4π(2k + �).

In particular, when Ω is a ball their argument allows us to find a radial solution to
the system (1.2) that exhibits a Dirac measure at the centre of the ball with mass
8π when λ goes to 0.

In the present paper, we find a new radial solution to the system (1.2) for the
case in which Ω is a ball with unbounded mass. Our main result reads as follows.

Theorem 1.1. Let Ω = B(0, r0) be a ball centred at the origin with radius r0. There
exists λ0 such that, for any λ ∈ (0, λ0), the problem (1.3) has a radial solution
(uλ, vλ) such that, as λ → 0,

lim
λ→0

∫
Ω

vλ(x) dx = lim
λ→0

∫
Ω

λeuλ(x) dx = +∞. (1.4)

Moreover, for a suitable choice of positive numbers ελ (see (2.3)) with ελ → 0 as
λ → 0, we have

lim
λ→0

ελuλ =
√

2
U ′(r0)

U C0-uniformly on compact sets of Ω. (1.5)
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Here U is the positive radial solution to the problem (see also lemma 2.1)

−ΔU + U = 0 in B(0, r0),
U = 1 on ∂B(0, r0).

}
(1.6)

To find the solution uλ to (1.3), we use a fixed-point argument. More precisely, we
look for a solution to (1.3) of the form uλ = ūλ + φλ, where the leading term ūλ

must be accurately defined. Once one has a good approximating solution ūλ, a
simple contraction mapping argument leads to the higher-order term φλ.

The difficulty with the construction of the approximate solution ūλ is due to the
fact that ūλ shares the behaviour of U (which solves (1.6)) in the inner part of the
ball, but shares the behaviour of the function wε (see (1.7)) near the boundary of
the ball. Here

wε(r) = ln
4
ε2

e
√

2(r−r0)/ε

(1 + e
√

2(r−r0)/ε)2
, r ∈ R, ε > 0, (1.7)

which solves the one-dimensional limit problem

−w′′ = ew in R. (1.8)

We have to expend a lot of effort, therefore, to glue the two functions together.
It is important remark on the analogy existing between our result and some

recent results obtained by Grossi [7–10]. In particular, Grossi and Gladiali [10]
studied the asymptotic behaviour as λ goes to 0 of the radial solution zλ to the
Dirichlet problem

−Δz = λez in Ω,

z = 0 on ∂Ω,

when Ω = {x ∈ R
n : a < |x| < b} is the annulus in R

n. In particular, they proved
that, for a suitable choice of positive numbers δλ with δλ → 0 as λ → 0, zλ satisfies

lim
λ→0

δλzλ(r) = 2
√

2G(r, r∗) C0-uniformly on compact sets of (a, b),

where G(·, r∗) is the Green function of the radial Laplacian with Dirichlet boundary
condition, and r∗ is suitably chosen in (a, b). Moreover, a suitable scaling of zλ in a
neighbourhood of r∗ converges (as λ goes to 0) at a solution of the one-dimensional
limit problem (1.8).

The paper is organized as follows. The definition of ūλ is given in § 2, while the
construction of a good approximation near the boundary of the ball is carried out
in § 3. In § 4 we estimate the error term and in § 5 we apply the contraction mapping
argument.

2. The approximated solution

We look for a radial solution to (1.3), so we are led to consider the ordinary differ-
ential equation problem

−u′′ − N − 1
r

u′ + u = λeu in (0, r0),

u′(r0) = 0, u′(0) = 0.

⎫⎬
⎭ (2.1)
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We construct a solution to (2.1) as ūλ + φλ, where the leading term ūλ is defined
as

ūλ(r) :=

⎧⎪⎨
⎪⎩

u1(r) in (r0 − δ, r0),
u2(r) in [r0 − 2δ, r0 − δ],
u3(r) in (0, r0 − 2δ),

(2.2)

and u1, u2 and u3 are defined as follows.
Basic cells in the construction of the approximate solution u1 near r0 are the

functions wε defined in (1.7). The rate of the concentration parameter ε := ελ with
respect to λ is deduced by the relation

λ =
4
ε2

λ

e−(a1/ελ+a2+a3ελ), i.e. ln
4
ε2

λ

− lnλ =
a1

ελ
+ a2 + a3ελ, (2.3)

where a1, a2 and a3 are positive constants given in (4.2).
The correct expression of u1 is given in (3.1). The construction of u1 is quite

involved and it will be carried out in § 3.
The approximate solution u3 far away from r0 is built from the function U that

solves (1.6) and whose properties are stated in lemma 2.1.
More precisely,

u3(r) =
(

A1

ελ
+ A2 + A3ελ

)
U(r), (2.4)

where A1, A2 and A3 are positive constants given in (4.2).
We point out that the choice of λ in (2.3) is strictly related to the value of u3

on r0. Indeed, since u3 is written as a third-order expansion in ελ, we need an
expansion of ελ with respect to λ up to the third term.

Finally, the approximate solution u2 in the interspace is simply given by

u2(r) := χ(r)u1(r) + (1 − χ(r))u3(r), (2.5)

where χ ∈ C2([0, r0]) is a cut-off such that

χ ≡ 1 in (r0 − δ, r0), χ ≡ 0 in (0, r0 − 2δ),

|χ(r)| � 1, |χ′(r)| � c

δ
, |χ′′(r)| � c

δ2 ,

⎫⎬
⎭ (2.6)

where the size of the interface δ := δλ goes to 0 with respect to ε (or, equivalently,
with respect to λ) as

δλ = εη
λ, η ∈ ( 2

3 , 1). (2.7)

The choice of η will be made such that lemma (4.2) holds. We remark that u2 is a
good approximation of the solution in the interspace if u1 and u3 perfectly glue in
a left neighbourhood of r0; this motivates the choice of the constants A1, A2, A3,
a1, a2 and a3 made in lemma 4.1.

Lemma 2.1. There exists a unique solution to the problem

−U ′′ − N − 1
r

U ′ + U = 0 in (0, r0),

U ′(0) = 0, U(r0) = 1.

⎫⎬
⎭ (2.8)
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Moreover,

0 � U(r) � 1 and U ′(r) > 0 for any r ∈ (0, r0].

Proof. The proof relies on standard arguments, so we omit it.

3. The approximation near the boundary

The function wε − lnλ is not a good approximation for our solution near r0. We
build some additional correction terms that improve the approximation near r0.
More precisely, we define the approximation near the point r0. We define

u1(r) = wε(r) − lnλ + αε(r)︸ ︷︷ ︸
1st-order
approx.

+ vε(r) + βε(r)︸ ︷︷ ︸
2nd-order
approx.

+ zε(r)︸ ︷︷ ︸
3rd-order
approx.

, (3.1)

where αε is defined in lemma 3.1, vε is defined in lemma 3.2, βε is defined in
lemma 3.4 and zε is defined in lemma 3.5.

The first term we have to add is a sort of projection of the function wε, namely,
the function αε given in the next lemma.

Lemma 3.1.

(i) The Cauchy problem

−α′′
ε,N − N − 1

r
α′

ε,N =
N − 1

r
w′

ε(r) − wε(r) + lnλ in (0, r0),

αε(r0) = α′
ε(r0) = 0

⎫⎬
⎭ (3.2)

has the solution

αε(r) := −
∫ r

r0

1
tN−1

∫ t

r0

τN−1
[
N − 1

τ
w′

ε(τ) − wε(τ) + lnλ

]
dτ dt.

(ii) The following expansion holds:

αε(εs + r0) = εα1(s) + ε2α2(s) + O(ε3s4), (3.3)

where

α1(s) := −N − 1
r0

∫ s

0
w(σ) dσ + 1

2a1s
2 (3.4)

and

α2(s) :=
∫ s

0

∫ σ

0
[w(ρ) − ln 4] dρ dσ +

(N − 1)(N − 2)
r2
0

∫ s

0

∫ σ

0
w(ρ) dρ dσ

+
N − 1

r2
0

∫ s

0
σw(σ) dσ − N − 1

6r0
a1s

3 + 1
2a2s

2. (3.5)
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(iii) For any r ∈ (0, r0 − δ),

αε(r) = − (N − 1) ln 4
r0

(r − r0)

+
[
(N − 1)2 ln 4

r2
0

−
√

2(N − 1)
εr0

+ ln
4
ε2 − lnλ

]
(r − r0)2

2

+
[
N(N − 1)

√
2

εr2
0

+
√

2
ε

− N − 1
r0

(
ln

4
ε2 − lnλ

)]
(r − r0)3

6

+ O

(
(r − r0)4

ε

)
+ O((r − r0)3). (3.6)

Proof. (i) It is just a straightforward computation.

(ii) Setting t = εσ + r0 and τ = ερ + r0, we find

αε(εs + r0) = −ε2
∫ s

0

1
(εσ + r0)N−1

∫ σ

0
(ερ + r0)N−1

×
[

N − 1
ερ + r0

1
ε
w′(ρ) − [w(ρ) − ln 4] + lnλ − ln

4
ε2

]
dσ dρ

= −ε2
∫ s

0

(
1

rN−1
0

− N − 1
rN
0

εσ

) ∫ σ

0
(rN−1

0 + (N − 1)rN−2
0 ερ)

×
[
(N − 1)

(
1
r0

− 1
r2
0
ερ

)
1
ε
w′(ρ)

− [w(ρ) − ln 4] + lnλ − ln
4
ε2

]
dσ dρ + O(ε3s4).

Here we used that

wε(r) = ln
4
ε2 + w

(
r − r0

ε

)
− ln 4 and w′

ε(r) =
1
ε
w′

(
r − r0

ε

)
.

The claim follows by (2.3).

(iii) Set w̄ε(r) := wε(r) − ln(1/ε2). We have

αε(r) = −
∫ r

r0

1
tN−1

∫ t

r0

τN−1
[
N − 1

τ
w′

ε(τ) − wε(τ) + lnλ

]
dτ dt

= −
∫ r

r0

1
tN−1

∫ t

r0

τN−1
[
N − 1

τ
w̄′

ε(τ) − w̄ε(τ) +
(

lnλ − ln
1
ε2

)]
dτ dt

= −(N − 1)
∫ r

r0

w̄ε(t)
t

dt

+
∫ r

r0

1
tN−1

∫ t

r0

[(N − 1)(N − 2)τN−3 + τN−1]w̄ε(τ) dτ dt
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+
(

lnλ − ln
1
ε2

)
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2N

(r2
0 − r2) +

r2
0

2
ln

r

r0
if N = 2,

1
2N

(r2
0 − r2)

+
rN
0

N(N − 2)

(
1

rN−2
0

− 1
rN−2

)
if N � 3.

Now, we observe that in [r0 − 2δ, r0 − δ] we have

ln
r

r0
= ln

(
1 +

r − r0

r0

)
=

r − r0

r0
− (r − r0)2

2r2
0

+
(r − r0)3

3r3
0

+ O((r − r0)4) (3.7)

1
rN−2 =

1
rN−2
0

− N − 2
rN−1
0

(r − r0) +
(N − 2)(N − 1)

rN
0

(r − r0)2

2

− N(N − 1)(N − 2)
rN+1
0

(r − r0)3

6
+ O((r − r0)4) (3.8)

and also

w̄ε(s) = ln 4 +
√

2
ε

(s − r0) + O(e−|s−r0|/ε). (3.9)

A tedious but straightforward computation proves our claim.

The function wε(r) − lnλ + αε(r) is still a bad approximation of the solution
near the boundary point r0. We have to add a correction term vε (given in the next
lemma) that solves a linear problem and kills the ε-order term in (3.3).

Lemma 3.2.

(i) There exists a solution v of the linear problem (see (3.4))

−v′′ − ewv = ewα1 in R,

v(0) = v′(0) = 0

}
(3.10)

such that

v(s) = ν1s + ν2 + O(es) and v′(s) = ν1 + O(es) as s → −∞,

where

ν1 := −2(N − 1)
r0

(1 − ln 2) + a1
√

2 ln 2, (3.11)

ν2 ∈ R is a constant that only depends on a1, and a1 is given in (3.5).

(ii) In particular, the function vε(r) := εv((r − r0)/ε) is a solution of the linear
problem

−v′′
ε − ewεvε = εewε(r)α1

(
r − r0

ε

)
in R (3.12)

such that, if r ∈ [0, r0 − δ], it satisfies

vε(r) = ν1(r − r0) + ν2ε + O(e−|r−r0|/ε) and v′
ε(r) = ν1 + O(e−|r−r0|/ε)

(3.13)
as ε → 0.
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Proof. The result immediately follows by lemma 3.3. In our case

ν1 :=
1√
2

∫ 0

−∞

(
−N − 1

r0

∫ r

0
w(y) dy + a1

r2

2

)
w′(r)ew(r) dr

and

ν2 := −
∫ 0

−∞

(
2

1 − e
√

2r
+

r√
2

)(
−N − 1

r0

∫ r

0
w(y) dy + a1

r2

2

)
w′(r)ew(r) dr.

A straightforward computation proves (3.11).

Lemma 3.3 (Grossi [9, lemma 4.1]). Let h : R → R be a continuous function. The
function

Y (t) = w′(t)
∫ t

0

1
w′(s)2

( ∫ 0

s

h(z)w′(z)ew dz

)
ds (3.14)

is a solution to
−Y ′′ − ew = hew in R,

Y (0) = Y ′(0) = 0.

}
(3.15)

Moreover,

Y (t) = tυ−
1 + υ−

2 + O(et) and Y ′(t) = υ−
1 + O(et) as t → −∞,

where

υ−
1 :=

1√
2

∫ 0

−∞
h(r)w′(r)ew dr,

υ−
2 := −

∫ 0

−∞

(
2

1 − e
√

2s
+

s√
2

)
h(s)w′(s)ew ds,

and

Y (t) = tυ+
1 + υ+

2 + O(e−t), and Y ′(t) = υ+
1 + O(e−t) as t → +∞,

where

υ+
1 :=

1√
2

∫ +∞

0
h(r)w′(r)ew dr

and

υ+
2 := −

∫ +∞

0

(
2

1 − e
√

2s
+

s√
2

)
h(s)w′(s)ew ds.

As we have done for the function wε, we have to add the projection of the
function vε, namely, the function βε given in the next lemma.

Lemma 3.4.

(i) The Cauchy problem

−β′′
ε − N − 1

r
β′

ε =
N − 1

r
v′

ε(r),

βε(r0) = β′
ε(r0) = 0

⎫⎬
⎭ (3.16)
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has the solution

βε(r) = −(N − 1)
∫ r0

r

1
tN−1

∫ r0

t

τN−2v′
ε(τ) dτ dt.

(ii) The following expansion holds:

βε(εs + r0) = ε2β1(s) + O(ε3s3), β1(s) := −N − 1
r0

∫ s

0

∫ σ

0
v′(ρ) dρ dσ.

(3.17)

(iii) For any r ∈ (0, r0 − δ),

βε(r) = − (N − 1)ν1

r0

(r − r0)2

2
+ O((r − r0)3). (3.18)

Proof. We argue as in lemma 3.1.

Unfortunately, the function wε,r0(r) − lnλ + αε(r) + vε(r) + βε(r) is still a bad
approximation of the solution near the boundary point r0. We have to add an extra
correction term zε, given in the next lemma, that solves a linear problem and kills
all the ε2-order terms (in particular, those in (3.3) and in (3.17)).

Lemma 3.5.

(i) There exists a solution z of the linear problem (see equations (3.4), (3.5),
(3.17) and (3.10))

−z′′ − ewz = ez[α2(s) + β1(s) + 1
2 (α1(s) + v(s))2] in R,

z(0) = z′(0) = 0

}
(3.19)

such that

z(s) = ζ1s + ζ2 + O(es) and z′(s) = ζ1 + O(es) as s → −∞,

where ζ1, ζ2 ∈ R are constants that only depend on a1 and a2.

(ii) In particular, the function zε(r) := ε2z((r − r0)/ε) is a solution of the linear
problem

− z′′
ε − ewεzε = ε2ewε

{
α2

(
r − r0

ε

)
+ β1

(
r − r0

ε

)

+
1
2

[
α1

(
r − r0

ε

)
+ v

(
r − r0

ε

)]2}
(3.20)

such that, if r ∈ [0, r0 − δ], it satisfies

zε(r) = εζ1(r − r0) + ζ2ε
2 + O(ε2e−|r−r0|/ε) as ε → 0. (3.21)

Proof. The result immediately follows by lemma 3.3, arguing as in the proof of
lemma 3.2.
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4. The error estimate

Let us define the error term

Rλ(ūλ) = −ū′′
λ − N − 1

r
ū′

λ + ūλ − λeūλ , (4.1)

where ūλ is defined as in (2.2).
First of all, it is necessary to choose constants a, b and c in (2.3), and A1, A2

and A3 in (2.4), such that the approximate solutions in the neighbourhood of the
boundary and inside the interval join up.

Lemma 4.1. If

A1 :=
√

2
U ′(r0)

, A2 :=
1

U ′(r0)

(
ln 4

U ′(r0)
− 2

N − 1
r0

)
, A3 :=

ζ1

U ′(r0)
(4.2)

a1 := A1, a2 := A2, a3 =: A3 − ν2 (4.3)

(ζ1 and ν2 are given in lemma 3.2 and lemma 3.5, respectively), then, for any
r ∈ [r0 − 2δ, r0 − δ], we have

u1(r) − u3(r) = O(e−|r−r0|/ε) + O(ε2) + O(ε(r − r0)2)

+ O((r − r0)3) + O

(
(r − r0)4

ε

)
,

u′
1(r) − u′

3(r) = O

(
1
ε
e−|r−r0|/ε

)
+ O(ε) + O(ε(r − r0))

+ O((r − r0)2) + O

(
(r − r0)3

ε

)
.

Proof. Let us prove the first estimate. The proof of the second estimate is similar.
By (2.3), (3.6), (3.13), (3.18) and (3.21), we deduce that if r ∈ [r0 −2δ, r0 − δ], then

u1(r) =
[

ln
4
ε2 − lnλ + ν2ε

]
+

[√
2

ε
− (N − 1) ln 4

r0
+ ν1 + ζ1ε

]
(r − r0)

+
[
(N − 1)2 ln 4

r2
0

−
√

2(N − 1)
r0

1
ε

+ ln
4
ε2 − lnλ − ν1(N − 1)

r0

]
(r − r0)2

2

+
[
N(N − 1)

√
2

r2
0

1
ε

+
√

2(N − 1)
1
ε

− N − 1
r0

(
ln

4
ε2 − lnλ

)]
(r − r0)3

6

+ O(e−|r−r0|/ε) + O(ε2) + O

(
(r − r0)4

ε

)
+ O((r − r0)3)

=
[
a1

ε
+ a2 + a3ε + ν2ε

]
+

[√
2

ε
− 2(N − 1)

r0
+ a1

√
2 ln 2 + ζ1ε

]
(r − r0)

+
[
− (N − 1)

√
2

r0

1
ε

+
a1

ε
+ a2 + 2

(N − 1)2

r2
0

− a1(N − 1)
√

2 ln 2
r0

]
(r − r0)2

2
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+
[
N(N − 1)

√
2

r2
0

1
ε

+
√

2
ε

− a1(N − 1)
r0

1
ε

]
(r − r0)3

6

+ O(e−|r−r0|/ε) + O(ε2) + O

(
(r − r0)4

ε

)
+ O((r − r0)3). (4.4)

On the other hand, by the mean-value theorem, we deduce that

U(r) = U(r0) + U ′(r0)(r − r0) + U ′′(r0)
(r − r0)2

2
+ U ′′′′(r0)

(r − r0)3

6
+ O((r − r0)4)

with U(r0) = 1,

U ′′(r0) = −N − 1
r0

U ′(r0) + U(r0) = −N − 1
r0

U ′(r0) + 1

U ′′′(r0) = −N − 1
r0

U ′′(r0) +
N − 1

r2
0

U ′(r0) + U ′(r0)

=
N(N − 1)

r2
0

U ′(r0) + U ′(r0) − N − 1
r0

.

These relations easily follow by differentiating (2.8). Therefore, if r ∈ [r0−2δ, r0−δ],
we have

u3(r) =
(

A1

ε
+ A2 + A3ε

)
U(r)

=
(

A1

ε
+ A2 + A3ε

)
+

(
A1

ε
+ A2 + A3ε

)
U ′(r0)(r − r0)

+ U ′′(r0)
(

A1

ε
+ A2

)
(r − r0)2

2
+ U ′′′(r0)

A1

ε

(r − r0)3

6

+ O(ε(r − r0)2) + O((r − r0)3) + O

(
(r − r0)4

ε

)
. (4.5)

If (4.2) holds, then, combining (4.4) and (4.5), we easily get the claim.

Lemma 4.2. There exist C > 0 and λ0 > 0 such that, for any λ ∈ (0, λ0), we have

‖Rλ‖L1 = O(ε1+σ
λ ) for some σ > 0.

Proof. Step 1 (evaluation of the error in (r0 − δ, r0)). We use the estimate

1 − et = −t − ( 1
2 t2) + O(t3)

and we get

Rλ(u1) = −u′′
1 − N − 1

r
u′

1 + u1 − λeu1

= −w′′
ε − N − 1

r0
w′

ε + wε − lnλ − α′′
ε − N − 1

r
α′

ε

+ αε − v′′
ε − N − 1

r
v′

ε + vε − β′′
ε − N − 1

r
β′

ε + βε

− z′′
ε − N − 1

r
z′
ε + zε − λewε−ln λ+αε+vε+βε+zε
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= αε + vε + βε + zε − N − 1
r

z′
ε

+ ewε

{
1 − eαε+vε+βε+zε + vε + zε + εα1

(
r − r0

ε

)

+ ε2
[
α2

(
r − r0

ε

)
+ β1

(
r − r0

ε

)

+
1
2

(
α1

(
r − r0

ε

)
+ v

(
r − r0

ε

))2]}

= αε + vε + βε + zε − N − 1
r

z′
ε

+ ewε

{
−αε − βε − 1

2 (αε + vε)2 + εα1

(
r − r0

ε

)

+ ε2
[
α2

(
r − r0

ε

)
+ β1

(
r − r0

ε

)

+
1
2

(
α1

(
r − r0

ε

)
+ v

(
r − r0

ε

))2]}
+ O(ewε |αε + vε + βε + zε|3) + O(ewε |βε + zε|2)

+ O(ewε |(αε + vε)(βε + zε)|), (4.6)

because αε solves (3.2), vε solves (3.12), βε solves (3.16) and zε solves (3.20).
We have∫ r0

r0−δ

|αε + vε + βε + zε|(r) dr = O

( ∫ r0

r0−δ

(r − r0)2

ε
dr

)
= O

(
δ3

ε

)
= O(ε3η−1),

because, by (3.3), (3.17), the properties of vε in lemma 3.2 and those of zε in
lemma 3.5, we deduce that

αε(r) = O

(
(r − r0)2

ε

)
, βε(r) = O((r − r0)2),

vε(r) = O(|r − r0| + ε), zε(r) = O(ε|r − r0| + ε2).

By lemma 3.5, we also deduce that z′
ε(r) = O(ε), and so∫ r0

r0−δ

∣∣∣∣1r z′
ε(r)

∣∣∣∣ dr = O(εδ) = O(ε1+η).

Moreover, we scale by s = εr + r0 and we get∫ r0

r0−δ

ewε

∣∣∣∣ − αε − βε − 1
2 (αε + vε)2 + εα1

(
r − r0

ε

)

+ ε2
[
α2

(
r − r0

ε

)
+ β1

(
r − r0

ε

)

+
1
2

(
α1

(
r − r0

ε

)
+ v

(
r − r0

ε

))2]∣∣∣∣ dr
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=
1
ε

∫ 0

−δ/ε

ew(s)| − αε(εs + r0) − βε(εs + r0)

− 1
2 (αε(εs + r0) + εv(s))2 + εα1(s)

+ ε2[α2(s) + β1(s) + 1
2 (α1(s) + v(s))2]| ds

= O

(
ε2

∫
R

ew(s)s3 ds

)
= O(ε2).

Finally, we scale by s = εr + r0 and obtain∫ r0

r0−δ

ewε |αε + vε + βε + zε|3 dr = O

( ∫ r0

r0−δ

ewε(|αε|3 + |vε|3 + |βε|3 + |zε|3) dr

)

= O

(
ε2

∫
R

ew(s)s6 ds + ε2
∫

R

ew(s)v3(s) ds

+ ε5
∫

R

ew(s)s6 ds + ε5
∫

R

ew(s)z3(s) ds

)
= O(ε2),∫ r0

r0−δ

ewε |βε + zε|2 dr = O

(
ε3

∫
R

ew(s)s4 ds + ε3
∫

R

ew(s)z2 ds

)
= O(ε3),∫ r0

r0−δ

ewε |(αε + vε)(βε + zε)| dr = O

(
ε2

∫
R

ew(s)(s2 + |v|)(s2 + |z|) ds

)
= O(ε2),

because, by (3.3) and (3.17), we deduce that

αε(εs + r0) = O(εs2), βε(εs + r0) = O(ε2s2).

Collecting all the previous estimates and taking into account the choice of η
in (2.7), we get

‖Rλ‖L1((r0−δ,r0)) = O(ε1+σ) for some σ > 0. (4.7)

Step 2 (evaluation of the error in (0, r0 − 2δ)). First of all, if δ is small enough
(that is, ε is small enough), we have

U(r) � U(r0 − 2δ) = U(r0) + U ′(r0)(−2δ) + 1
2U ′′(r0 − 2θδ)(2δ)2 � 1 − 2U ′(r0)δ

because U is increasing (see lemma 2.1) and the mean-value theorem applies for
some θ ∈ (0, 1).

Therefore, by (2.3), (2.7) and (4.2), we get

Rλ(u3) = −u′′
3 − N − 1

r
u′

3 + u3 − λeu3

= −λe(A1/ε+A2+A3ε)U(r)

= − 4
ε2 e(A3−a3)εe(A1/ε+A2+A3ε)[U(r)−1]

= O

(
1
ε2 e−2A1U ′(r0)(δ/ε)

)

= O

(
1
ε2 e−2

√
2(1/ε1−η)

)
.
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This implies that

‖Rλ(u3)‖L1((0,r0−2δ)) = O(ε1+σ) for any σ > 0. (4.8)

Step 3 (evaluation of the error in [r0 − 2δ, r0 − δ]). We recall that

u2 = χu1 + (1 − χ)u3

and hence,

Rλ(u2) = χ

[
−u′′

1 − N − 1
r

u′
1 + u1

]
+ (1 − χ)

[
−u′′

3 − N − 1
r

u′
3 + u3

]

− 2χ′(u′
1 − u′

3) +
[
−χ′′ − N − 1

r
χ′ + χ

]
(u1 − u3) − λeχ(u1−u3)+u3

= χRλ(u1) + (1 − χ)Rλ(u3) − λχeu1 [e(χ−1)(u1−u3) − 1] + λ(1 − χ)eu3

− 2χ′(u′
1 − u′

3) +
[
−χ′′ − N − 1

r
χ′ + χ

]
(u1 − u3).

By lemma (4.1), we immediately get (taking into account the choice of η in (2.7))∫ r0−δ

r0−2δ

|χ′(r)(u′
1(r) − u′

3(r))| dr = O(δ2) = O(ε1+σ),

∫ r0−δ

r0−2δ

∣∣∣∣
[
−χ′′(r) − N − 1

r
χ′(r) + χ(r)

]
(u1(r) − u3(r))

∣∣∣∣(r) dr = O(δ2) = O(ε1+σ)

and ∫ r0−δ

r0−2δ

|λχeu1(r)[e(χ(r)−1)(u1(r)−u3(r)) − 1]| dr

= O

( ∫ r0−δ

r0−2δ

λeu1(r)|u1(r) − u3(r)| dr

)
= O(λε2)

because et − 1 = O(t). Arguing exactly as in step 1, one proves that∫ r0−δ

r0−2δ

χ(r)|Rλ(u1)(r)| dr = O(ε1+σ),

and arguing exactly as in step 2, one proves that∫ r0−δ

r0−2δ

(1 − χ(r))|Rλ(u3)(r)| dr = O(ε1+σ)

and ∫ r0−δ

r0−2δ

λ(1 − χ(r))eu3(r) dr = O(ε1+σ).

Collecting all the previous estimates, we get

‖Rλ(u2)‖L1((r0−2δ,r0−δ)) = O(ε1+σ) for some σ > 0. (4.9)

The claim follows by (4.7), (4.8) and (4.9).
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Lemma 4.3. It holds that

λε2
λeuλ(ελs+r0) → ew(s) C0-uniformly on compact sets of (−∞, 0] as λ → 0,

(4.10)
and that

λελ

∫ r0

0
euλ(r) dr →

∫
R

ew(s) ds as λ → 0. (4.11)

Proof. Let [a, b] ⊂ (−∞, 0]. If λ is small enough, then

uλ(ελs + r0) = u1(ελs + r0) for any s ∈ [a, b].

On the other hand, by (3.3), (3.17), the properties of vε in lemma 3.2 and those
of zε in lemma 3.5, we deduce that

αε(εs + r0) + εv(s) + βε(εs + r0) + ε2z(s)

= O(ε2) + O(ε|s| + ε) + O(ε2s2) + O(ε2|s| + ε2),

and so
u1(εs + r0) = w(s) + ln

1
ε2 − lnλ + O(δ|s| + δ).

Therefore,
λε2

λeuλ(ελs+r0) = ew(s)+O(δ|s|+δ) (4.12)

and (4.10) follows, since s ∈ [a, b].
Moreover, since w(s) =

√
2s + O(e

√
2s) as s goes to −∞, we also deduce that if

λ (and also δ) is small enough, then there exist a, b > 0 such that

λε2eu1(εs+r0) � be−a|s| for any s ∈ (−∞, 0]. (4.13)

Now, we have (scaling by r = εs+ r0 in the first integral and arguing as in step 3
of lemma 4.2 to estimate the second and third integrals)

λελ

∫ r0

0
euλ(r) dr = λελ

∫ r0

r0−δ

eu1(r) dr + λελ

∫ r0−δ

r0−2δ

eu2(r) dr

+ λελ

∫ r0−2δ

0
eu3(r) dr

= λε2
λ

∫ 0

−δ/ε

eu1(ελs+r0) dr + O(ε1+σ)

→
∫

R

ew(s) ds as λ → 0

because of (4.12), (4.13) and Lebesgue’s dominated convergence theorem. We have
now proved (4.11).

5. A contraction mapping argument and the proof of the main theorem

First of all we point out that uλ + φλ is a solution to (2.1) if and only if φλ is a
solution of the problem

Lλ(φλ) = Nλ(φλ) + Rλ(uλ) in (0, r0),
φ′

λ(0) = φ′
λ(r0) = 0,

}
(5.1)
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where Rλ(uλ) is given in (4.1),

Lλ(φλ) := −φ′′
λ − N − 1

r
φ′

λ + φλ − λeuλφλ

and
Nλ(φλ) := λeuλ+φλ − λeuλ − λeuλφλ.

The next results state that the linearized operator Lλ is uniformly invertible.

Proposition 5.1. There exist λ0 > 0 and C > 0 such that, for any λ ∈ (0, λ0) and
for any h ∈ L1((0, r0)), there exists a φ ∈ W 2,2((0, r0)) that is a unique solution of

Lλ(φ) = h,

φ′(0) = φ′(r0) = 0

that satisfies
‖φ‖∞ � C‖h‖L1 .

Proof. Attempting a contradiction, we assume that there exist sequences λn → 0,
hn ∈ L1((0, r0)) and φn ∈ W 2,2((0, r0)) that solve

−φ′′
n − N − 1

r
φ′

n + φn − λneuλn φn = hn in (0, r0),

φ′
n(0) = φ′

n(r0) = 0

⎫⎬
⎭ (5.2)

and
‖φn‖∞ = 1, ‖hn‖L1 → 0. (5.3)

Let ψn(s) = φn(εns + r0). Then ψn solves

− ψ′′
n − N − 1

εns + r0
εnψ′

n + ε2
nψn

− λnε2
neun(εns+r0)ψn = ε2

nhn(εns + r0) in (−r0/εn, 0),

ψ′
n(−r0/εn) = ψ′

n(0) = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (5.4)

which can also be written as

− ((εns + r0)N−1ψ′
n)′

= (εns + r0)N−1(−ε2
nψn + λnε2

neun(εns+r0)ψn + ε2
nhn(εns + r0))

in s ∈ (−r0/εn, 0),

ψ′
n(−r0/εn) = ψ′

n(0) = 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(5.5)

Now, let us fix a < 0. By (5.5) we immediately deduce that, for any σ ∈ [a, 0],

(εnσ + r0)N−1ψ′
n(σ)

=
∫ 0

σ

(εns + r0)N−1(−ε2
nψn + λnε2

neun(εns+r0)ψn + ε2
nhn(εns + r0)) ds,

which implies that supσ∈[a,0] |ψ′
n(σ)| = O(εn), because ψn is bounded in L∞,

‖hn‖L1 → 0 and (4.11) holds. The Ascoli–Arzelá theorem then implies that ψn → ψ
uniformly on compact sets of (−∞, 0].
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Hence, we multiply the equation in (5.4) by a C∞
0 test function, integrate and

use (4.10) to deduce that ψ solves

−ψ′′ − ewψ = 0 in (−∞, 0),
‖ψ‖∞ � 1,

ψ′(0) = 0.

⎫⎪⎬
⎪⎭ (5.6)

A straightforward computation shows (see [9]) that there exist a and b such that

ψ(s) = a
e
√

2s − 1
e
√

2s + 1
+ b

(
−2 +

√
2s

e
√

2s − 1
e
√

2s + 1

)
.

It is immediate to check that b = 0 (since ‖ψ‖∞ � 1), and then

ψ(s) = a
e
√

2s − 1
e
√

2s + 1
.

By using the condition ψ′(0) = 0 we also get that a = 0.
We claim that ‖φn‖∞ = o(1). This immediately gives a contradiction since, by

assumption, ‖φn‖∞ = 1. Let G be the Green function of the operator −u′′ −
((N − 1)/r)u′ + u with Neumann boundary condition, whose properties can be
found in Grossi [9, appendix A] (see also Grossi and Noris [11]).

By (5.2), we deduce that

φn(r) =
∫ r0

0
G(r, t)λneuλn φn(t) dt +

∫ r0

0
G(r, t)hn(t) dt

= εnλn

∫ 0

−r0/εn

G(r, εns + r0)euλn (εns+r0)ψn(s) ds +
∫ r0

0
G(r, t)hn(t) dt

= G(r)εnλn

∫ 0

−r0/εn

euλn (εns+r0)ψn(s) ds +
∫ r0

0
G(r, t)hn(t) dt

+ εnλn

∫ 0

−r0/εn

[G(r, εns + r0) − G(r)]euλn (εns+r0)ψn(s) ds.

Since G is bounded, it is immediate to check that
∫ r0

0 G(r, t)hn(t) dt = o(1). We
also want to show that

εnλn

∫ 0

−r0/εn

[G(r, εns + r0) − G(r)]euλn (εns+r0)ψn(s) ds = o(1). (5.7)

If this is true, then
φn(r) = G(r)Kn + o(1),

where
Kn := εnλn

∫
−r0/εn

euλn (εns+r0)ψn(s) ds.

We compute
G(r0)Kn + o(1) = φn(r0) = ψn(0) = o(1),

and hence Kn = o(1) since G(r0) 
= 0. Then ‖φn‖∞ = o(1) and this gives a
contradiction.
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It remains to prove (5.7). We have that∣∣∣∣εnλn

∫
−r0/εn

[G(r, εns + r0) − G(r)]euλn (εns+r0)ψn(s) ds

∣∣∣∣
� ε2

nλn

∫ 0

−r0/εn

|s|euλn (εns+r0)|ψn(s)| ds

= ε2
nλn

∫ −2δn/εn

−r0/εn

|s|eu3
n(εns+r0)|ψn(s)| ds︸ ︷︷ ︸

(I)

+ ε2
nλn

∫ −δn/εn

−2δn/εn

|s|eu2
n(εns+r0)|ψn(s)| ds︸ ︷︷ ︸

(II)

+ ε2
nλn

∫ 0

−δn/εn

|s|eu1
n(εns+r0)|ψn(s)| ds.︸ ︷︷ ︸

(III)

Now, arguing as in step 3 of lemma 4.2, we get that

(I) = O

( ∫ −2δn/εn

−r0/εn

|s|e−|s||ψn(s)| ds

)
= O

( ∫ 0

−∞
|s|e−|s||ψn(s)| ds

)
= o(1)

because ψn → 0 pointwise in (−∞, 0) and ‖ψn‖∞ � 1. Moreover, as in step 2 of
lemma 4.2,

(II) = O

( ∫ −δn/εn

−2δn/εn

|s|e−|s||ψn(s)| ds

)
= O

( ∫ 0

−∞
|s|e−|s||ψn(s)| ds

)
= o(1).

By (4.13) we deduce that

(III) = O

( ∫ 0

−∞
|s|e−a|s||ψn(s)| ds

)
= o(1)

for some a > 0.

Finally, we are in position to use a contraction mapping argument to prove the-
orem 1.1.

Proof of theorem 1.1. By proposition 5.1, we deduce that the linear operator Lλ is
uniformly invertible, and so problem (5.1) can be rewritten as

φ = Tλ(φ) := L−1
λ [Rλ(ūλ) + Nλ(φ)]. (5.8)

For a given number ρ > 0 let us consider the closed set

Aρ := {φ ∈ L∞(0, r0) : ‖φ‖∞ � ρε1+σ},

where σ > 0 is given in lemma 4.2.
We will prove that if λ is small enough, then Tλ : Aρ → Aρ is a contraction map.
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First of all, by (4.11), we get

‖Nλ(φ)‖L1 � ‖λeuλ‖L1‖φ‖2
∞ � C

ε
‖φ‖2

∞ for any φ ∈ Aρ

and also

‖Nλ(φ1) − Nλ(φ2)‖L1 � C

ε

(
max
i=1,2

‖φi‖∞

)
‖φ1 − φ2‖∞ for any φ1, φ2 ∈ Aρ

for some C > 0.
By lemma 4.2 we deduce that, for some ρ > 0,

‖Tλ(φ)‖∞ � C(‖Rλ(uλ)‖L1 + ‖Nλ(φ)‖L1) � ρε1+σ,

and so Tλ maps Aρ into itself. Moreover,

‖Tλ(φ1) − Tλ(φ2)‖∞ � C‖Nλ(φ1) − Nλ(φ2)‖L1 � Cεσ‖φ1 − φ2‖∞,

which proves that, for ε small enough, Tλ is a contraction mapping on Aρ for a
suitable ρ.

Therefore, a unique fixed point of Tλ has a unique fixed point in Aρ, namely,
there exists a unique solution φ = φλ ∈ Aρ of (5.8) or, equivalently, there exists a
unique solution um + φm of (2.1).

Estimate (1.5) follows by the definition of um, which coincides with u3 far away
from r0. Indeed, if [a, b] is a compact set in (0, r0 − 2δ), we get that, for λ small
enough,

ε(uλ(r) + φm(r)) = (A1 + A2ε + A3ε
2)U(r) + εφm(r)

→
√

2
U ′(r0)

U(r) as λ → 0

because of (4.2) and the fact that ‖φ‖∞ → 0 as λ → 0.
Finally, (1.4) follows by (4.11), taking into account that ‖φ‖∞ → 0 as λ → 0.
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