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The dynamics of coherent columnar vortices and their interactions in an oscillatory
flow past an obstacle are examined experimentally. The main focus is on the low
Keulegan–Carpenter number range (0.2 <KC < 2), where KC is the ratio between
the fluid particle excursion during half an oscillation cycle and the obstacle size,
and for moderate Reynolds numbers (700< Rev < 7500). For this parameter range, a
periodic unidirectional vortex pair ejection regime is observed, in which the direction
of vortex propagation is set by the initial conditions of the oscillations. These vortex
pairs provide a direct mechanism for the transfer of momentum and enstrophy
to the outer region of rough oscillating boundary layers. Vortices are observed to
be short-lived relative to the oscillation time scale, which limits their propagation
distance from the boundary. The instability mechanisms leading to vortex decay
are elucidated via flow visualizations and digital particle image velocimetry (DPIV).
Dye visualizations reveal complex three-dimensional vortex interactions resulting in
rapid vortex destruction. These visualizations suggest that one of the instabilities
affecting the spanwise vortices is an elliptical instability of the strained vortex cores.
This is supported by DPIV measurements which identify the spatial structure of
the perturbations associated with the elliptical instability in the divergence field. We
also identify regions in the periphery of the vortex cores which are unstable to the
centrifugal instability. Vortex longevity is quantified via a vortex decay time scale,
and the results indicate that vortex pair lifetimes are of the order of an oscillation
period T .
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1. Introduction
Oscillating flows past bluff bodies are often characterized by coherent vortex

structures which have a profound effect on the turbulence dynamics. A classical
example is the interaction of an oscillating flow with a cylinder with its axis orthogonal
to the flow velocity. If the oscillation amplitude is large with respect to the cylinder
diameter, flow separation and vortex shedding occurs, frequently leading to vortex
pair formation (Graham 1980). In the coastal ocean, similar dynamics occur during
the interaction between the oscillating flows caused by surface gravity waves and
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Vortex dynamics in oscillatory flow 409

the rippled seabed (Mei & Liu 1993). It is widely accepted that vortex shedding is
a dominant process in sediment transport (Mei & Liu 1993). Coherent vortices can
suspend sediment into the water column, and this sediment may then be transported
by currents. Depending on the flow parameters, vortices may be shed during both
stages of the oscillatory flow and may pair up into vortex dipoles. While a large body
of work has concentrated on quantifying the associated sediment transport, a detailed
study into the three-dimensional (3-D) structure and dynamics of these vortices has
been lacking. The present paper is a first step towards increasing our understanding
of the 3-D vortex dynamics.

The two-dimensional (2-D) problem was studied analytically by Longuet-Higgins
(1981), who found that vortex pairs could escape away from the region where vorticity
is generated. Full-scale observations of vortex generation over movable sediment ripple
beds have confirmed the presence of intense coherent vortices (Nichols & Foster 2007).
Williams et al. (2007) conducted laboratory observations for waves over vortex ripples
with height h and found that vortex pairs can suspend sediment up to heights of 10h

above the seabed. These coherent vortices also strongly influence the structure of the
bottom boundary layer, since their formation provides a direct convective mechanism
for momentum transfer to the outer region of the boundary layer. Experimental results
have suggested that their dynamics can directly set the height of rough oscillating
boundary layers (Krstic & Fernando 2001). Scandura, Vittori & Blondeaux (2000)
investigated the onset of three-dimensional structures in oscillating flows past vortex
ripples for moderate Reynolds numbers, by means of direct numerical simulation
(DNS). They found that coexisting mushroom (Görtler) vortices and vortices with
spanwise coherence quickly lead to a strongly nonlinear turbulent flow. Blondeaux,
Scandura & Vittori (2004) conducted DNS of oscillating flow past vortex ripples at
low to moderate Reynolds numbers and also noted the complex three-dimensionality
of the flow. They showed the existence of streamwise ribs in the strain-dominated
regions, which would then wrap around the main spanwise vortex tubes. These studies
have shed light on the abundance of 3-D structures in oscillating flows past vortex
ripples, but have not directly addressed the question of how the main spanwise
vortices lose their coherence.

In realistic vortex-dominated oscillating flows, nominally 2-D vortices quickly
develop a complex three-dimensional structure and are short-lived. The process
by which these vortices decay so effectively and systematically suggests that some
fundamental, repeatable mechanisms are at play. Columnar distributions of vorticity
have been extensively studied for well over a century. Since the seminal study of Kelvin
(1880), it is well known that columnar vortices can act as waveguides (Chandrasekhar
1981). He investigated analytically the inviscid linear behaviour of a Rankine vortex,
with a circular cross-section, to 3-D infinitesimal perturbations, and found them to
be neutrally stable. The addition of a strain field, however, can cause instability. A
theoretical analysis of the instability of idealized strained vortices to short waves, of
the order of the vortex core size, was carried out by Moore & Saffman (1975) and
Tsai & Widnall (1976). They found that instability occurs for wavenumbers that result
in non-rotating, stationary waves on the vortex, which allows them to become tuned
to the strain field acting on the vortex columns. The same type of instability also affects
the flow within a rotating cylinder when a strain is imposed on the flow by deforming
the cylinder (Eloy, Le Gal & Le Dizès 2000). This strain-induced short-wave instability
is now better known as the elliptical instability, and is a generic mechanism in which
the resonant interaction between two inertial waves, with azimuthal wavenumbers
m1 =m and m2 = m ± 2, and an underlying strain field lead to exponential growth

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

11
00

00
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112011000012


410 M. Canals and G. Pawlak

of perturbations on a vortex column. Other instabilities such as the centrifugal
instability are also known to destabilize vortex columns (Bayly 1986; Sipp & Jacquin
2000).

The present article is concerned with the three-dimensional dynamics of the
coherent vortices present in an oscillatory, fully separated flow. Our experiments
have been designed to examine the fundamental features of such flows in an idealized
setting. These features include vortex pair formation and the periodic generation
of new vortices with spanwise coherence at each half-cycle. In § 2, we describe the
experimental set-up and the flow visualization techniques. In § 3, we examine the large-
scale vortex dynamics and the associated vortex pair formation. The vortex instability
mechanisms are elucidated in § 4 using flow visualizations and velocity measurements,
and the results are then interpreted using existing hydrodynamic instability theories,
with a focus on the qualitative features of the problem. The nonlinear dynamics and
the transition to turbulence are examined in § 5. Vortex evolution is quantified via a
vortex decay time scale in § 6, and concluding remarks are given in § 7.

2. Experimental set-up and analysis
2.1. Laboratory set-up

Experiments were conducted in a Plexiglas tank with dimensions of 2.1 × 1 × 0.6 m3,
with optical access available from all sides and with water as the working fluid. A
sketch of the experimental set-up is shown in figure 1. A stepper motor and pulley
system was developed to create smooth oscillations of an idealized boundary in an
otherwise still fluid. The boundary consisted of a smooth Plexiglas plate with a flap
of length η attached orthogonal to the plate. The plate was 1.6 m long and 0.6 m tall,
with just enough clearance to enable oscillations of the flap, which ranged in size from
η = 2 to 10 cm. The boundary was painted black to avoid laser reflections and increase
the resolution of the velocity measurements close to the boundary, so that the unsteady
dynamics of the separating shear layer could be adequately resolved. The vortices
resulting from oscillatory flow separation had aspect ratios (height/diameter) of about
30–65. Experiments were designed to isolate the fundamental vortex dynamics and
avoid end effects on the dynamics of the vortex columns. The no-slip condition
at the top and bottom boundaries can induce axial flows which can propagate as
vortex shocks and subsequently lead to vortex breakdown. For most experimental
runs, no modifications were needed since the time scale for boundary-induced vortex
breakdown was much larger than the time scale for the development of the instabilities
which are the subject of this article. This difference in time scales was determined
from dye visualizations which will be described below. For some cases, a 5 cm layer
of dense salt water (ρ ≈ 1150 kg m−3) was added to dampen the vortex shocks as well
as the turbulence which was created at the 3mm wide junction between the bottom
Plexiglas wall and the moving boundary.

The oscillation mechanism consisted of a computer-controlled stepper motor
connected to a pulley system attached to the moving boundary, which rested on linear
bearings enabling smooth movements. A sinusoidal function U (t) = U0 sin[(2π/T )t]
was approximated using a piecewise continuous signal in 0.02 s time steps using a
computer interface which controlled the motor via serial commands. The oscillation
period, T , was varied from 1 to 4 s, and typical values for U0 ranged from
1.5 to 6 cm s−1, leading to values of the Keulegan–Carpenter number, defined as
KC = (U0T )/(πη), from 0.2 <KC < 2.
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View 1

U(t)

View 2
HLS

VLS

UV lamp

Stepper motor

0.6 m

1 m 2.1 m

Nd:YAG laser

Figure 1. Overview of the experimental set-up. The UV lamp was used for volumetric
visualizations using UV-induced fluorescence (UVIF). The Nd:YAG laser was used for digital
particle image velocimetry (DPIV) measurements. View 1 corresponds to DPIV measurements
of the spanwise vorticity with an HLS. A vertical laser sheet (VLS) was used in view 2 to
examine the axial structure of the vortices and their horizontal vorticity. A counter-rotating
vortex pair is sketched.

2.2. DPIV measurements

Velocity measurements were obtained using digital particle image velocimetry (DPIV).
A double-pulsed Nd:YaG laser was used to produce a laser sheet to illuminate the
flow, which was seeded with reflecting particles. The particles used were Sphericel
hollow glass spheres, with diameter ranging from 11 to 18 µm and a density of
approximately 1.1 g cm−3. These particles were small enough with respect to the scales
of the flow (∼1–5 cm) so as to correctly follow the flow under examination. Image
pairs were acquired with a high-resolution digital camera (Pixelfly QE, Cooke Corp.)
of 1392 × 1024 pixels, separated by a time interval �t . The optimal �t , corresponding
to the separation between subsequent laser pulses, was determined from the expected
maximum velocity gradients of the flow (Meunier & Leweke 2003). A cross-correlation
algorithm was then employed to obtain velocity fields from the image pairs (Fincham
& Spedding 1997). Interrogation windows of 32 × 32 pixels were used, with 50 %
overlap (16 pixel spacing), resulting in velocity fields of 86 × 60 vectors. A five-point
median filter was applied to this velocity field to eliminate any spurious vectors. An
open-source MATLAB package, DPIVsoft (Meunier et al. 2004), was used to carry
out the computations using an improved DPIV algorithm, developed by Meunier &
Leweke (2003), for flows with high velocity gradients.

Two planes were used to obtain velocity measurements, one orthogonal and one
parallel to the spanwise vortex tubes, as sketched in figure 1. The horizontal laser
sheet (HLS) was used to resolve spanwise vorticity, and images were obtained with
the laser sheet located at mid-depth (z ≈ 27.5 cm). The camera was attached to the
moving Plexiglas plate so that the velocity measurements were obtained in a reference
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frame fixed with respect to the oscillating boundary. For this plane, a laser sheet
thickness of 3 mm was used so that the highest velocity gradients could be adequately
resolved. Typical values of �t for this plane ranged from 3 to 12 ms, depending on
the expected flow velocities.

A vertical laser sheet (VLS) was used to obtain measurements of horizontal vorticity.
For some experiments the laser sheet thickness for this plane was increased slightly
to 4 mm to reduce the in-plane loss of particle pairs, since the largest velocity
component was the out of plane velocity, and values of �t ranged from 2 to 10 ms.
For the VLS, the frame of reference was not fixed to the oscillating boundary, but
moved sinusoidally relative to the flap, since the boundary moved back and forth and
the laser sheet stayed fixed. Experiments were started with the laser sheet parallel to
the flap, and the phase at which the velocity fields were taken was determined from
fitting a sinusoid with an oscillation period obtained from Fourier analysis of the
spatially averaged velocity.

The repeatable aspects of the vortex dynamics were examined using phase averaging.
Velocity fields from at least 20 cycles, ignoring the first cycle, were sorted into bins of
0.2 radians and averaged. At a sampling frequency of 3.3 velocity fields per second,
and for the typical periods of the oscillations, a total of 150–400 velocity fields were
used to obtain the phase-averaged flow structure of a single cycle. The end result is a
periodic 2-D velocity field which is representative of the robust structures of the flow.

2.3. Dye visualizations

The three-dimensional structure of the coherent vortices was visualized via UV-
induced fluorescence (UVIF). The blacklight beam from a 400 W super-high output
UV cannon (American DJ) was directed at the area of interest from a distance
of 2m. Two-colour UVIF was produced using fluorescein and rhodamine-B dyes.
The dye was released as a line source by using a cotton thread saturated with the
respective dyes, with the thread embedded into thin slits carved on the surface of
the flap, positioned slightly upstream from the separation point. In the separated
flow, the resulting scalar field can be interpreted as red (green) dye corresponding to
positive (negative) vorticity, although this is only valid in a qualitative sense. Only the
first three cycles could be photographed before the dye fully covered the volume of
interest, making further visualizations impossible. The vortices produced during the
first cycle were not considered since they are subject to transient effects that do not
adequately represent the periodically generated structures which are the focus of this
article. The initial vortex pairs also propagated in different directions than those on
subsequent cycles, usually towards the boundary at y/η = 0.

2.4. Relevant length scales

For a typical run, a representative vortex core size, a, was obtained from a nonlinear
least-squares fitting algorithm, which fits an elliptical Gaussian vortex patch of
the form

ωls = ω0 exp

{(
(x − x0) cos ς − (y − y0) sin ς

LA

)2

+

(
(x − x0) sin ς − (y − y0) cos ς

LB

)2
}

(2.1)

to the vorticity data, where ς is the angle of rotation of the semi-major axis of the
vortex with respect to the x-axis. The parameters {x0, y0, LA, LB, ω0, ς} were obtained
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Figure 2. Typical DPIV results for a vortex pair and relevant length scales for the highest
Reynolds number case, Rev = 7200. (a) Velocity field of 86 × 60 vectors showing vortex pair
propagation at an angle close to 45◦ to the free stream. Note the strong jet inclined at the
same angle. (b) The filled contours represent the vorticity of the rectangular region in (a),
and the dashed contours represent the least-squares fit using a Gaussian elliptical vortex with
maximum vorticity ω0 (given by the darkest shade of grey). The solid line represents the
e-folding vorticity contour, and the length scales LA and LB are sketched.

from the fitting algorithm. The equivalent core size is then given by a =
√

LALB and
corresponds to the core radius a of a Lamb–Oseen vortex when LA = LB , in which
case the maximum vorticity is given by ω0 = Γ/(πa2). The scale, a, was obtained from
the vortex cores once the shear layer was completely rolled up into a coherent vortex.
From the vorticity scale, ω0, and the equivalent core size, a, the vortex circulation, Γ ,
can be obtained, and a vortex Reynolds number can be defined as Rev = Γ/ν. From
the coordinates of the vortex centre, the distance, b, between two vortices in a given
pair can be obtained.

In figure 2, we show typical DPIV results obtained in the HLS for Rev = 7200
and KC = 0.42. The velocity field is shown in figure 2(a), showing a vortex pair
propagating away from the boundary at an angle close to 45◦. In figure 2(b), we
show the vorticity field for the rectangular region outlined in figure 2(a), with darker
shading indicating stronger positive vorticity. The dashed lines correspond to the
vorticity contours for a least-squares fit of the elliptical Gaussian vortex (defined
by (2.1)) to the vorticity data. The solid line corresponds to the e-folding vorticity
contour (ωls = ω0 e−1), which forms an ellipse centred at (x0, y0) with its semi-major
and semi-minor axes given by LB and LA, respectively, and its semi-major axis rotated
by an angle ς from the x-axis.

The error associated with this fit is related to the departure of the measured
vorticity distribution from the elliptical Gaussian morphology of our model. Errors
in the measurements of the vortex core size a can be estimated by comparing the
e-folding vorticity contour from the DPIV data with the e-folding contour from the
Gaussian fit to the DPIV data. The area inside the e-folding vorticity contour from
the experimental data can be used to obtain an equivalent circular vortex core of
radius ac. The error associated with the fit can then be estimated by comparing the
value of a from the Gaussian fit with the value of ac. For each experiment, this error
varied from 3% to 9 %.
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3. Observations
All experimental runs were carried out at values of KC for which vortex pair

formation was expected (0.2 < KC < 2). Reynolds numbers ranged from 700 to 7500,
at which all vortices were observed to become unstable. The instability mechanisms
were robust and will be illustrated via flow visualizations and 2-D quantitative
measurements. In this section, we characterize the vortex pair dynamics associated
with oscillatory flow separation and examine the 3-D structure of the spanwise vortex
tubes.

3.1. Vortex pair dynamics

For low KC, vortex pair formation is an important mechanism which has been
related to sediment transport and to the energetics of oscillating boundary layers. It
has previously been noted that in regular oscillatory flow, vortex pairs will propagate
at an angle to the free-stream velocity (Graham 1980). This angle is usually around
30◦–60◦ and varies as a function of KC, depending on the degree of asymmetry of
the resulting vortex pairs, as well as the trajectory of the initial vortex of each pair
(Tao & Thiagarajan 2003).

In figure 3, we show a sequence of the phase-averaged velocity and vorticity fields
from DPIV data for Rev = 3800 and KC = 1.07, showing the typical vortex interactions
which develop. During one part of the cycle, the shear layer rolls up into a coherent
vortex. As the flow turns, another vortex with opposite-signed vorticity forms. The
two vortices then pair up and rapidly propagate away from the boundary under
mutual advection. It can be seen that coherent vortex pairs propagate to distances
of y/η > 2 from the boundary. For this experiment, the vortex pairs only propagated
in the positive x/η direction, and the shedding direction remained stable for all
subsequent cycles. The stability of this regular asymmetric mechanism was observed
experimentally by Singh (1979). Graham (1980) gave a semi-analytical model of this
phenomenon using conformal mapping.

It is notable that the direction of unidirectional vortex pair propagation depends
on the initial conditions of the oscillations. For the case shown in figure 3, all
vortex pairs propagated in the positive x-direction. For experiments with oscillations
starting in the opposite direction, vortex pairs propagated in the negative x-direction.
The unidirectional propagation is a well-known feature in regular oscillatory flow,
with the memory of the initial conditions retained as t → ∞ (Singh 1979). This
unidirectional regime was a robust feature for all the values of KC which were
examined (0.2 < KC < 2), in agreement with previous studies (Singh 1979; Graham
1980). These strongly asymmetric vortex dynamics can generate asymmetric mean
flows due to vortex pair ejection.

Vortex pairs were observed to decay fairly quickly, and only last as coherent
structures for about an oscillation period T or less after they propagate away from
the boundary. Vortex trajectories were very repeatable for each case and the observed
phased-averaged vortex decay is representative of the instantaneous vortex dynamics,
as will be demonstrated in § 6. The structures quickly lose coherence and break
down into small scales in a repeatable manner, with every pair undergoing the same
cycle of pair formation and rapid demise. This suggests that some fundamental 3-D
mechanism quickly leads to the loss of spanwise coherence.

3.2. Observations of three-dimensional structures

The DPIV measurements shown above suggest rapid vortex destabilization
associated with vortex interactions. Figure 4 shows a sequence of the development
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–1

0
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y/η 

y/η 

y/η 

Figure 3. Sequence of phase-averaged spanwise vorticity and velocity vectors showing vortex
pair formation for Rev = 3800 and KC = 1.07. The phase of the oscillation, θ , is given in
degrees at the top of each frame. Note the ejection of a single vortex pair in the positive x/η
direction, which is a repeatable feature for each cycle.

of three-dimensional structures for KC =0.9 and Rev = 1800. The most recent vortex
pair is shown by white arrows in frame b. Spanwise undulations can be seen growing
in one of the vortices, while a new vortex is forming to its left, leading to the
formation of a vortex pair in frame c. The remains of the first vortex pair, which
has a different trajectory than the initial pair, as described above, can also be seen
to the right. Axially periodic perturbations take the form of sinusoidal displacements
of the vortex core as well as secondary ring-like structures in the periphery of the
vortices. These perturbations quickly grow and break down the vortices, usually in
less than an oscillation period after the vortex is fully formed, as suggested by the
DPIV measurements of spanwise vorticity shown in figure 3.

3.3. Wavelength of the observed instabilities

Before seeking a physical explanation for the instability, it is instructive to examine the
dominant wavelengths of the perturbations. The purpose of this simple analysis is to
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new pair

(a) (b) (c)

Figure 4. Dye visualizations of the onset of three-dimensionality of the spanwise vortex
columns for KC = 0.9 and Rev = 1800, for the second oscillation cycle at (a) θ ≈ 140◦,
(b) θ ≈ 180◦ and (c) θ ≈ 220◦. The arrows in (b) point to the most recent vortex pair. To
the right of this pair are the remnants of the pair formed in the initial cycle.

measure the axial wavelengths present regardless of the specific instability mechanism
causing these perturbations. A measurement of the instability wavelength, λ, may
be obtained directly from the spectra of vertical profiles of the velocity magnitude√

v2 + w2 within the perturbed vortex cores, taken using the VLS, as illustrated in
figure 5. We define an average core size a for each experiment by taking the mean of
all the core sizes of the vortices from the horizontal plane measurements. The radius
of each vortex was measured when the vortex was deemed to be fully formed. This
was determined as the time at which the vorticity was a maximum over the vortex
lifetime. We assume that the vortex radius does not change significantly between that
time and the time at which the instability sets in. That time difference was small
enough that viscous effects, which would tend to increase the vortex size through
diffusion, were considered negligible. The ratio λ/a is shown in figure 5(d ), with the
error bars showing one standard deviation. The observed axial wavelengths are in the
range of 2 < λ/a < 5, and there is a decrease in λ/a for increasing Rev , which is to be
expected since as the Reynolds number increases the viscous damping of the smaller
scales decreases. In the next section, we will relate these observations to well-defined
instability mechanisms.

4. Instability mechanisms
In the preceding section, we saw that the flow is populated by periodic vortices

with spanwise coherence which then break down into turbulence. Dye visualizations
and DPIV measurements (figures 4 and 5) suggest that instabilities with well-defined
axial wavelengths initiate the transition to turbulence. In this section, we analyse what
types of instabilities are responsible for this rapid transition to 3-D turbulence.

4.1. Elliptical instability

The first candidate for instability we will examine is the well-known elliptical instability
of a vortex column subject to a strain field. We are motivated to consider this
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Figure 5. Measurements of the instability wavelength from DPIV measurements in the vertical

plane. (a) Contours of the velocity magnitude |u| =
√

v2 + w2 in the vertical plane (VLS). The
black rectangle denotes the location of the flap. (b) Vertical profile of the velocity magnitude
along the white dashed line in (a). Note the axially periodic perturbations. (c) Spectra of the
profile in (a). The wavelength of maximum energy represents the dominant axial wavelength
λ. (d ) Non-dimensional wavelength λ/a from DPIV measurements as a function of Rev . Error
bars indicate one standard deviation.

instability due to the strong vortex interactions as seen in figure 3, which usually
induce a strain field on the interacting vortices, and the sinusoidal perturbations of
the vortex cores seen in the dye visualizations. Here we briefly review the analytical
solution given by Waleffe (1990), giving just enough detail to compare our observations
with elliptical instability theory. He considered a straight vortex tube immersed in a
strain field orthogonal to its axis. The velocity field U2D of the base flow is given by
the superposition of solid body rotation around the vertical (z) axis and potential
stagnation point flow with stretching in the −45◦ direction:

U2D = −y

(
ωz

2
+ ε

)
î + x

(
ωz

2
− ε

)
ĵ , (4.1)

where ωz is the constant vertical vorticity of the solid body rotation, ε is the uniform

strain rate, and î and ĵ are the unit vectors in the x- and y-directions, respectively. The
streamfunction is given by ψ(x) = −1/2[(ωz/2 − ε)x2 + (ωz/2 + ε)y2], and the aspect
ratio of the streamlines is given by E =

√
(ωz/2 + ε)/(ωz/2 − ε). The streamfunction

and strain fields for this flow are shown in figure 6(a). Waleffe (1990) linearized the
Euler equations about this base flow, and used normal mode perturbations of the
form

[u′, p′] = [f (t), g(t)] ei(k·x) (4.2)

where u′ and p′ are the velocity and pressure perturbations, respectively, f (t) and
g(t) represent their respective time dependence and k is the wavenumber vector. A
superposition of Fourier modes was carried out by Waleffe (1990) to build localized
solutions which maximize the growth rate of the perturbations. In elliptico-polar
coordinates (x =[x, y, z] = [r∗E cos θ, r∗ sin θ, z]), r∗ is constant along a streamline,
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Figure 6. Structure of the perturbation fields associated with the elliptical instability of an
unbounded vortex with ω̄z > 0 and E = 1.2. (a) Streamfunction (shading) and the velocity field
associated with the pure straining flow. The stretching direction is inclined at an angle of
3π/4 from the semi-major axis of the ellipse. (b) Perturbation vorticity ω′

z. (c) Divergence field
∇h · u′

h associated with the perturbation. The coordinates have been non-dimensionalized by
the axial wavelength λ of the perturbation.

and the perturbation velocity and vorticity fields take the form

u′ =

⎧⎪⎨
⎪⎩

u′
r∗

u′
θ

u′
z

⎫⎪⎬
⎪⎭

T

= C eσet

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
3

2

[
J0(Υ ) +

1

3
J2(Υ )

]
cos(kzz) sin

(
θ +

π

4

)
√

3

2

[
J0(Υ ) − 1

3
J2(Υ )

]
cos(kzz) cos

(
θ +

π

4

)

J1(Υ ) sin(kzz) sin
(
θ +

π

4

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

T

, (4.3)

ω′ =

⎧⎪⎨
⎪⎩

ω′
r∗

ω′
θ

ω′
z

⎫⎪⎬
⎪⎭

T

= C eσet

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
3kz

[
J0(Υ ) +

1

3
J2(Υ )

]
sin(kzz) cos

(
θ +

π

4

)

−
√

3kz

[
J0(Υ ) − 1

3
J2(Υ )

]
sin(kzz) sin

(
θ +

π

4

)

−2kzJ1(Υ ) cos(kzz) cos
(
θ +

π

4

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

T

, (4.4)

where Jn corresponds to the nth-order Bessel function of the first kind, Υ =
√

3kzr
∗

is the argument of the Bessel functions, σe corresponds to the growth rate of the
instability, kz =2π/λz is the axial wavenumber and C is a constant. The phase shift
of π/4 which appears in all expressions is due to the fact that the stationary inertial
modes are aligned in the direction of extensional strain, so that instability can occur
as a result of vortex stretching. In the limit of vanishing strain (E → 1), the growth
rate for the elliptical instability is given by σe = (9/16)ε − νk2

o , where the constant
ko = 2kz (Landman & Saffman 1987; Waleffe 1990). The viscous correction was given
by Craik & Criminale (1986) and corresponds to the viscous damping of individual
inertial waves. The spatial structure given by (4.3) and (4.4) has been identified in
previous experiments involving vortex columns (Leweke & Williamson 1998; Meunier
& Leweke 2005).
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4.1.1. Quantitative observational evidence of the elliptical instability

We now seek quantitative evidence of the perturbation fields associated with the
elliptical instability in the structure of the vortices under investigation. Previous
experimental studies have shown good agreement between theory and experiment in
idealized open flows such as co-rotating and counter-rotating vortex pairs. Leweke
& Williamson (1998) and Meunier & Leweke (2005) used DPIV measurements to
extract the perturbation fields associated with the growing elliptical instability in
symmetric vortex pairs. They exploited the inherent symmetries and anti-symmetries
associated with their base flow to decompose the flow into a background state and
the associated perturbation. Their results revealed a very good agreement with the
perturbation spanwise vorticity ω′

z given in (4.4), with the perturbation fields aligned
in the stretching direction of the strain field. The complexity of the flow in our
case does not allow for extraction of perturbation quantities using such symmetry
arguments, so we will need to identify perturbation quantities measurable with DPIV.
We will exploit the fact that an elliptical vortex column with a purely horizontal
velocity field and no spanwise bending has zero divergence of its horizontal velocity
field, e.g. ∇h · U2D = 0, where the subscript h stands for the horizontal component
of a vector. The divergence of the velocity field composed of the superposition of
an unbounded elliptical vortex column, with its velocity field given by U2D and the
perturbation velocity field u′ (4.3) associated with the elliptical instability, is given by

∇h · uh = ∇h · (U2D + u′
h) = −∂u′

z

∂z
= −Ckz eσetJ1(

√
3kzr

∗) cos(kzz) sin
(
θ +

π

4

)
. (4.5)

The structure of the perturbation spanwise vorticity and the divergence field are
shown in figure 6. The perturbation spanwise vorticity ω′

z is shown in figure 6(b).
Note that the dipolar pattern is aligned with the stretching direction shown in
figure 6(a), which is consistent with the vortex core being displaced sinusoidally in that
direction. This means that the perturbation vorticity is aligned with the eigenvector
of the strain rate tensor that denotes extensional strain, which is the fundamental
mechanism leading to vortex stretching and perturbation growth. The divergence field
∇h · u′

h is shown in figure 6(c). Note that the pattern shows a π/2 phase shift with
respect to the spanwise vorticity and the stretching direction of the strain field, and this
pattern is inclined at an angle π/2 from the semi-major axis of the elliptical streamlines.

In order to understand the alignment between the coherent patterns in the
divergence field with the local flow topology, we consider the structure of the local
strain rate tensor S. The structure of S can be described in terms of its principal
eigenvalues γ , β and χ (where γ > β > χ) and the corresponding eigenvectors eγ , eβ

and eχ . For an incompressible flow, we have ∇ · u =0, which requires that γ +β+χ = 0.
If the flow is purely horizontal (2-D), we obtain that χ = 0 and γ = −β , where γ is
always positive and denotes extensional strain. Since we only have a 2-D slice of the
velocity field from DPIV measurements, our use of S is restricted to the vortex cores,
where the flow is assumed to be approximately two-dimensional but weakly divergent.
We assume that the principal axes of the strain rate tensor lie approximately in the
horizontal plane, and that γ ≈ −β , so eγ corresponds to the direction of extensional
strain. For the base flow U2D defined in (4.1), with ωz > 0, the eigenvector field eγ

at the vortex centre is inclined at an angle of 3π/4 from the semi-major axis of the
elliptical streamlines, as can be deduced from figure 6(a). In a realistic vortex which
is elliptically unstable, and if the perturbation vorticity were aligned with the strain,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

11
00

00
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112011000012


420 M. Canals and G. Pawlak

−1 0 1

1

2

3

−1 0 1

0.5

1.0

1.5

2.0

−0.8 −0.6 −0.4 −0.2 0

0.8

1.0

1.2

1.4

0.2 0.4 0.6 0.8

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

1.1

1.3

1.5

 

 

(a)

−1

0

1

(c)

(b)

(d)

(e) ( f )

x/η x/η 

y/η 

y/η 

Figure 7. Perturbation fields associated with instability as detected from DPIV measurements.
(a) Velocity and vorticity fields for KC = 0.91 and Rev = 2300 at θ ≈ 180◦ for the eighth cycle.
(b) Same as in (a) but for KC =0.42 and Rev = 7200 at θ ≈ 350◦ for cycle number 12. Only
every other vector has been plotted for visual clarity. (c)–(d ) Vorticity contours of the vortices
outlined in (a) and (b), respectively. (e)–(f ) Eigenvector field eγ (x) denoting the local direction
of extensional strain, and the divergence field ∇h · uh (contours) of the vortices in (c) and (d ),
respectively. The colourbar represents the normalized divergence field shown in (e) and (f ).

we would expect an angle of approximately π/2 between the eigenvectors eγ in the
vortex centre and a perturbation of azimuthal wavenumber 1 in the divergence field.

Figure 7 shows the instantaneous vorticity and divergence fields from DPIV for
typical vortex structures for KC =0.91, Rev =2300 and KC = 0.42, Rev = 7200. The
velocity and vorticity field at two different phases of the oscillations are plotted in
figures 7(a) and 7(b). The vorticity contours for the vortex with ωz > 0 (red) outlined
in figure 7(a) are shown in figure 7(c), while the contours for the vortex with ωz < 0
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(blue) in 7(b) are shown in 7(d ). The divergence field and the eigenvectors denoting
the direction of local extensional strain for the vortices in figures 7(c) and 7(d ) are
shown in figures 7(e) and 7(f ), respectively. We emphasize that the eigenvectors are
only an approximation of the direction of the extensional strain within the vortex
core, since a non-zero divergence field exists within the core. The divergence field
shows a dipolar structure which is remarkably similar to the divergence field shown
in figure 6. The patterns are inclined, as expected from the instability theory, at an
angle close to π/2 from the orientation of most of the eigenvectors near the vortex
centre. This implies that the vortex core is displaced in the direction of extensional
strain, which leads to the stretching of perturbation horizontal vorticity and to the
growth of the instability. The white line corresponds to the e-folding vorticity contour,
and is shown to illustrate the localization of the perturbation field within the vortex
core. This localization agrees with the numerical simulations carried out by Le Dizès
& Laporte (2002). The divergence pattern we have observed has been previously
noted by Pradeep & Hussain (2001), who conducted direct numerical solutions of the
bending waves caused by the elliptical instability of a Rankine vortex column. They
find that the dipolar pattern in the divergence field is oriented in the direction of
compressional strain, as can be seen in their figure 27. This is in agreement with our
observations and with the analytical solution of Waleffe (1990) outlined earlier.

4.1.2. Elliptical instability growth rate

It was not possible to compute growth rates from the DPIV measurements of the ei-
genmode since the temporal resolution of the laser was insufficient to resolve the linear
growth of the instability. However, we can use existing elliptical instability theory to
estimate growth rates. The elliptical instability growth rate σe = (9/16)ε−νk2

o is propor-
tional to the value of the strain at the location of maximum vorticity within an unstable
vortex core (Julien, Ortiz & Chomaz 2004) minus a viscous contribution. Using the
DPIV velocity fields, we have computed ε at the location of maximum vorticity, which
usually corresponds to the vortex centre. These strain values represent a five-point
average taken around the point of maximum vorticity within the vortex core. The non-
dimensional viscous contribution can be estimated from the wavelength measurements
shown in § 3 and yields non-dimensional damping values of νk2

oT between 0.3 and
1. We provide an estimate of the non-dimensional theoretical growth rate σeT based
on the values of the strain at the vortex centre, which is expected to characterize the
growth of axial perturbations on the vortex columns. In figure 8 we show the values
of σeT for the same values of Rev and KC as the sequence in figure 3. We only plot
the values of σeT at locations within the vortex cores since it is well known that the
elliptical instability only affects vorticity-dominated regions with closed streamlines.
Each core has a single value of σeT since it is the strain rate at the vortex centre which
sets the growth rate of the instability (Julien et al. 2004), as explained above. Values
as large as σeT = 7 occur, which suggests that infinitesimal perturbations may grow
in amplitude by a factor of up to e7 in an oscillation cycle, assuming linear growth. In
§ 4.4 we show the time dependence of the quantity σeT for different cases and compare
it with the growth rates of the centrifugal instability, which is explained below.

4.2. Centrifugal instability

Another candidate for instability is the centrifugal instability which arises due to
an unstable arrangement of angular momentum (Chandrasekhar 1981). A vortex
which has a monotonic vorticity distribution is centrifugally stable. In our case,
since vorticity is generated continuously at the flap, opposite-signed vorticity may get
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Figure 8. Values of the phase-averaged, non-dimensional theoretical growth rates
σeT = (9/16)εT −νk2

o for Rev =3800 and KC = 1.07. The black lines denote e-folding vorticity
contours to mark the location of the vortex cores.

wrapped around the vortex columns leading to a centrifugally unstable scenario. For
an arbitrary 2-D flow, the Rayleigh criterion (Chandrasekhar 1981) for centrifugal
instability can be stated in terms of local flow properties as follows (Leblanc &
Cambon 1997; Sipp & Jacquin 2000):

Φ =
2‖u‖ωz

R
< 0, (4.6)

on a closed streamline ψ0, where ‖u‖ is the velocity norm, ωz is the local vorticity
and R is the algebraic radius of curvature of the streamline. The algebraic radius of
curvature is given by R = 1/κ , where κ is the signed curvature of the streamlines. If
in some region of the flow there is anticlockwise rotation then R > 0, while a region
with clockwise rotation has R < 0. Equation (4.6) is a sufficient condition for the
development of the centrifugal instability in an inviscid planar flow. When Φ < 0, the
local vorticity has an opposite sign to the curvature of the streamlines. This can lead
to the growth of 3-D short-wave perturbations which are manifested as secondary
ring structures in the periphery of the vortex cores.

Note that streamline geometry depends on the frame of reference, and while
coherent vortices are expected to show closed streamlines, the vortex pair is
propagating at some speed from the flap, so that streamlines appear open in the
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Figure 9. Top row: instantaneous dimensional vorticity (contours in s−1) and velocity vectors
for oscillation cycle number 13 for Rev = 2300 and KC = 0.91 at (a) θ = 72◦, (b) θ = 180◦ and
(c) θ =288◦. Bottom row: (d )–(f ) the dimensional Rayleigh discriminant Φ(x, y) (contours
in s−2) for the same instances as above. The grey lines represent instantaneous streamlines.

frame of reference used here, which is fixed to the flap. If we relax the criteria for
closed streamlines in (4.6), we can look for regions which are susceptible to the
centrifugal instability using the DPIV velocity fields. This would give a conservative
estimate for the degree of instability of these regions. We have computed streamlines
and determined their curvature κ as a function of distance along each streamline.
From a large quantity of streamlines, we can then interpolate over the DPIV field of
view and obtain a 2-D function R(x, y) = 1/κ , from which we can then determine the
value of Φ(x, y). Figure 9 shows the formation of a typical vortex pair for oscillation
cycle number 13 for Rev = 2300 and KC = 0.91. The top row depicts the velocity and
vorticity fields, while the bottom row shows the value of Φ(x, y) for each instance,
with some streamlines overlaid as black lines. Shades of red are regions for which
Φ > 0 and are thus centrifugally stable. Most of the domain appears stable, including
the vortex cores. Regions in which Φ < 0, indicating the potential for centrifugal
instability, are shown in varying shades of blue. The magnitude of Φ did not vary
significantly using a frame of reference fixed to the vortex pairs. The streamlines are
shown to visualize which streamlines are approximately closed and which most closely
obey the criterion in (4.6). Despite the fact that the function Φ , as a second derivative
quantity, is subject to noise, and that it is difficult to identify closed streamlines
in which the discriminant is always negative, there are some regions which appear
unstable, particularly in the periphery of the cores.

4.2.1. Centrifugal instability growth rates

Using the Rayleigh discriminant Φ , we can compute the theoretical centrifugal
instability growth rate for the flow. In the limit of very short axial wavelengths and
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Figure 10. Phase-averaged, non-dimensional theoretical growth rates for centrifugal
instability, σcT =

√
−ΦT ∈ Re for Rev =3800 and KC =1.07. The black lines denote e-folding

vorticity contours to mark the location of the vortex cores.

for inviscid flow, the centrifugal instability growth rate is given by σc =
√

−Φ (Bayly
1988; Leblanc & Cambon 1997). In figure 10 we show non-dimensional values of
the real part of σcT for the phase-averaged flow for Rev = 3800 and KC = 1.07 at
selected phases of an oscillation cycle. Note that the vortex cores are centrifugally
stable, while their periphery is unstable. This is because opposite-signed vorticity gets
wrapped around the vortex tubes leading to a centrifugally unstable situation in which
the local vorticity is opposite to the local streamline curvature. Coherent regions with
σcT = 10 or higher can be seen, indicative of the potential for rapidly growing 3-D
instabilities. Similar values of σcT have been observed experimentally by Teinturier
et al. (2010) in an island wake in a rotating environment, where the period T used
in their case corresponds to the vortex shedding period. They find unstable regions
in the shear layer emanating from the obstacle as well farther downstream, in the
periphery of the unstable vortex columns.

4.3. Hyperbolic instability

The strain-dominated regions between the vortex cores are expected to be subject
to a hyperbolic instability. This has been observed by Blondeaux et al. (2004) to
generate complex streamwise structures which wrap around the vortex cores. Julien
et al. (2004) have investigated the secondary instability mechanisms in the wake of
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Figure 11. Time dependence of phase-averaged, non-dimensional theoretical growth rates for
elliptical (� and ∗ symbols) and centrifugal (solid black line) instabilities for two different
cases. The dashed line represents the quantity (9/16)T Γ/(2πb2) for each case, where Γ and b
are the average values for each run.

a flat plate. They find that both the elliptic and hyperbolic instabilities can coexist
since they correspond to different regions of the flow. Compared to the elliptical
instability, they observe that the hyperbolic instability exhibits transient growth, and
that the elliptic instability of the vortex cores sets the global growth rate. In our
case, the hyperbolic regions are probably unstable, but the most important instability
is expected to be the elliptic instability, since it destabilizes the vortex cores which
account for most of the enstrophy and the kinetic energy of the flow.

4.4. Comparison of growth rates

Figure 11 shows a comparison of the theoretical phase-averaged elliptical and
centrifugal growth rates for two runs at different parameter values as a function
of the oscillation phase θ . The first two lines represent the theoretical growth rates
based on the measured strain rate and the expected viscous damping for vortices with
positive (◦ symbols) and negative (∗ symbols) vorticity. The dashed line represents the
quantity (9/16)εtT , where the quantity εt = Γ/(2πb2) is the strain rate that a vortex
with circulation Γ would induce at a distance b from that vortex. This indicates the
order of magnitude of the expected strain rate that one vortex would induce on the
other in a vortex pair, although the real strain rate felt by a vortex is usually up to
twice this value (Leweke & Williamson 1998). It is evident that doubling this value
would lead to excellent agreement with the values of σeT shown.

The line with ∗ symbols represents the real part of the phase-averaged theoretical
centrifugal instability growth rate σcT =

√
−ΦT as a function of θ . This value has

been obtained by taking the median of all real values within a distance equal to
three times the vortex radius from the centre of each vortex in a given pair. This
quantity reaches a maximum close to θ = 180◦, which is when the flow reverses and
opposite-signed vorticity is generated, which then wraps around the first vortex of
each pair, as outlined earlier. It is important to note that the magnitude of σcT is very
similar to those of σeT , indicating that both instabilities appear to grow rapidly and
at about the same rate, leading to a very unstable situation which quickly develops
into incoherent turbulence.
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4.5. Expected instability wavelengths

Given the evidence for both elliptical and centrifugal instabilities, it is useful to
compare the expected wavelengths for both mechanisms given the observed flow
parameters. There is experimental evidence that the axial wavelength of the elliptical
instability is of the order of 2–6 times the vortex core size (Leweke & Williamson
1998; Meunier & Leweke 2005), consistent with the observations in figure 5. The
axial wavelength for the centrifugal instability is usually smaller than the elliptical
instability wavelength at the same Rev . Kloosterziel, Carnevale & Orlandi (2007)
carried out numerical simulations to examine the effects of Reynolds number and
stratification on the axial wavelength selection of the centrifugal instability. For zero
stratification and Rev = 5000, which is within our parameter range, they find that
the axial wavelength is about half the vortex radius (λ/a ≈ 1/2). As the Reynolds
number increases, the axial wavelengths become much shorter. They also observe
that the radial extent of the overturning motions is restricted to the region in
which the Rayleigh discriminant is negative. It is thus likely that the observed
wavelengths shown in figure 5 in the range 2 < λ/a < 5 are those associated with the
elliptical instability. Since the wavelengths plotted represent those with the highest
spectral energy, it is possible that shorter scale instabilities are present, while the
elliptical instability produces the largest core displacements which correspond to
the dominant spectral peaks. The short wavelengths associated with the centrifugal
instability may be more difficult to capture with the DPIV measurements given their
very short axial extent, although they are visible in dye visualizations such as those
in figure 4. Both instabilities are probably occurring simultaneously, leading to the
observed rapid destruction of the vortices.

5. Visualizations of the transition to turbulence
In the previous section, we presented evidence of specific instabilities with similar

non-dimensional growth rates which act to destabilize the vortex columns in a very
effective way. In this section, we examine the transition to full 3-D turbulence using
dye visualizations and DPIV measurements.

5.1. Dye visualizations

Dye visualizations of the transition to turbulence for KC = 0.7 and Rev = 2500 are
shown in figure 12. Red (rhodamine) represents positive spanwise vorticity and green
(fluorescein) represents negative spanwise vorticity. The dipole shown corresponds
to the second vortex pair after initiation of motion, in which the vortex in red was
formed before the vortex shown in green. In figure 12(a), the vortex in red already has
perturbations growing on its core. As time goes on, the perturbations on the red vortex
grow, while the vortex in green starts to develop waves of its own. By figure 12(c), the
perturbations on the red vortex become stretched and wrapped around the vortex in
green, while the latter also develops fine-scale structure. Dye from previous and new
vortex tubes can be seen in the background. This sequence illustrates an important
aspect of the instability of vortex pairs in oscillating flow. One of the vortices will
start to feel a strain even before the other vortex has completely formed. Each
newly formed vortex tube will become unstable to spanwise perturbations due to the
strain induced by the preceding vortex column, which itself has already experienced
instability.

5.2. DPIV observations in a plane parallel to the spanwise vortex tubes

Velocity measurements in a plane parallel to the dominant spanwise vorticity were
conducted to examine the evolution of horizontal vorticity and its relation to vortex
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(a) (b) (c)

Figure 12. Fluorescent dye visualizations for the second oscillation cycle for KC = 0.7 and
Rev = 2500 at (a) θ ≈ 144◦, (b) θ ≈ 205◦ and (c) θ ≈ 265◦. Red (green) corresponds to positive
(negative) spanwise vorticity.

decay. The measurements show a sudden increase in horizontal vorticity at the expense
of coherence of the initially spanwise vortices. Figure 13(a–c) shows a sequence of
the velocity magnitude

√
v2 + w2, for the eighth oscillation cycle for parameter values

for KC = 0.27 and Rev = 5740, starting at θ = 200◦, with an interval of 40◦ between
frames. The black rectangle on the left-hand side of each frame denotes the extent
in the y/η direction of the flap, but does not imply that the flap was present in that
plane when the measurement was obtained. The inset in each frame represents the
phase-averaged spanwise vorticity from DPIV measurements of a different experiment
at the same parameter values. This vorticity is shown to illustrate the average location
of the coherent vortices at the phase at which the instantaneous measurements of
the velocity magnitude are shown. The black dashed line represents the approximate
location of the vertical slice formed by the laser sheet. It can be seen that, as the vortex
pair forms, it propagates away from the boundary; this is evident in both the phase-
averaged and instantaneous plots. The older vortex in the pair is contained in the
vertical slice, and its core appears sinuously deformed even before it has completely
paired with the younger vortex tube, although it is already under the influence of
the strain produced by the rolling up of the shear layer at the separation point. In
figure 13(d–f ), we show the instantaneous streamwise vorticity ωx from the velocity
fields shown in figure 13(a–c), respectively. In these plots we have used the same
colour scale for the vorticity magnitude as the inset plots showing the phase-averaged
spanwise vorticity. For frames (d ) and (e) the horizontal vorticity is weak, but in
frame (f ) the horizontal vorticity increases dramatically at the same time that the
spanwise coherence in frame (c) breaks down.
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Figure 13. Observations of transition to turbulence from DPIV measurements in a vertical
plane (VLS), for the eighth oscillation cycle for parameter values for KC = 0.27 and Rev = 5740.

(a)–(c) Contours of velocity magnitude
√

v2 + w2, starting at θ = 200◦, with an interval of
40◦ between frames. Note the sinuously deformed vortex core in (a). The insets represent
the phase-averaged spanwise vorticity at the phase of each frame, obtained in a different
experiment for the same parameter values. The dashed line indicates the approximate location
of the laser sheet. (d )–(f ) Horizontal vorticity ωx for the snapshots in (a)–(c), respectively. As
mentioned in the text, the colour scale for the values of ωx is the same as the one used in the
insets in (a)–(c) which show the phase-averaged spanwise vorticity.

The sudden increase in horizontal vorticity is most likely due to the tilting of
the spanwise vorticity into the horizontal direction, due to the stretching of the
perturbations which initially grew due to the elliptical and centrifugal instabilities.
Note that the magnitude of ωx is equal to or larger than the value of the phase-
averaged spanwise vorticity, indicative of strong tilting of vorticity and also of vortex
stretching. Alternating positive (red) and negative (blue) values of ωx are indicative
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of streamwise vortex loops which are probably being wrapped around the younger
unstable vortex tube. This transition mechanism was observed to be a robust feature
and occurred at every cycle, in a qualitatively similar manner for all values of Rev

and KC in the experiments.

6. Vortex decay time scales
The instability mechanisms we have discussed in the preceding sections lead to rapid

vortex decay. In all experiments, vortices were observed to last as coherent structures
for less than an oscillation period. In this section, we seek to quantify vortex lifetimes
by defining a vortex decay time scale, td , which characterizes vortex longevity in
oscillatory separated flows. This time scale is important since it determines vortex
propagation distances and affects boundary layer turbulence.

The Gaussian fitting we have used to obtain vortex parameters such as core size
and maximum vorticity is not appropriate to examine vortex decay since it assumes a
Gaussian morphology. The vortex dynamics revealed by DPIV measurements indicate
that these vortex tubes break down into smaller disorganized scales that cannot be
analysed by Gaussian fitting. We now seek a way to quantify the breakdown of scales
of the order of the vortex core size into smaller structures, indicative of the transition
to three-dimensional turbulence, which eventually leads to energy dissipation.

6.1. Enstrophy decay

To quantify vortex decay, we take two-dimensional spectra of the vorticity magnitude
within a square of size 8a × 8a, where a is the core size of the vortices, obtained from
the Gaussian fit described in § 2. The spectral energy at each wavenumber represents
the enstrophy density, ω2

z , at that wavenumber, which we shall denote as Q. The
energy is then averaged in space to obtain a distribution of Q within that square as a
function of wavenumber. The process is repeated by calculating spectra in squares in
a reference frame moving with the vortex pair. The analysis begins as a vortex pair is
formed and may extend up to nearly an oscillation period before the vorticity signal
is no longer discernible. Time is non-dimensionalized by the oscillation period T , and
the time origin, t/T =0, is taken to be the time at which Q reaches a maximum,
which typically occurs around 0.75T after maximum oscillation amplitude. We then
compute the evolution of Q within a wavenumber bandwidth �k = km representative
of the vortex core size. It is necessary to consider a wavenumber band instead of a
discrete wavenumber to take into account viscous effects which may tend to distribute
enstrophy to lower wavenumbers.

For a given vortex and within a wavenumber bandwidth �k = km, however,
viscosity can only redistribute vorticity so that the integrated energy will remain
approximately the same. The temporal distribution of enstrophy density, Qm(t), within
that wavenumber band is given by

Qm(t) =

∫ km+1/2km

km−1/2km

Q(k, t) dk. (6.1)

In figure 14(a), we show normalized values of Qm(t) for several vortex pairs for
Rev = 1240 and KC =0.9. It can be seen that Qm(t) decreases steadily with time,
almost vanishing completely in a time interval t/T =0.8. All vortex pairs are observed
to follow a similar decay in Qm(t), which confirms the repeatability of vortex instability
and decay over several cycles for a single experiment. It should be noted that this
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Figure 14. (a) Distribution of enstrophy density Qm(t) within a bandwidth �k for Rev = 1240
and KC =0.9. Each coloured line represents Qm(t) for a single vortex pair. (b) Non-dimensional
vortex decay time scale td as a function of Rev . Error bars denote one standard deviation, and
the grey shade of each symbol represents the value of KC for that experiment.

decay reflects the large-scale decay of the vortex columns and does not necessarily
reflect energy dissipation at the viscous scales.

We now define a vortex decay time scale as the time it takes for Qm(t) to reach
a value of e−1 times the maximum energy during the vortex pair’s lifetime. This
time scale represents the decay of the vortex pair collectively and does not represent
the decay of individual vortices. The non-dimensional time td is found by linear
interpolation, with the calculation carried out for several experiments at different
values of Rev and KC. Only experiments with oscillation periods larger than 3 s have
been used in the calculation, since the DPIV sampling frequency is approximately
3.4 Hz. This was necessary in order to have at least 10 data points in a single oscillation
period T , so that the vortex lifetimes are adequately resolved in time. Vortex pairs in
the experiments with T < 3 s were observed to break down in a time interval similar
to the experimental runs discussed below.

In figure 14(b), we show values of td for several experiments, with error bars which
denote one standard deviation. It is clear that td does not vary significantly with Rev ,
and that vortex pairs never survive longer than an oscillation cycle, as is also evident
in figure 14(a). This has implications related to the vertical extent of rough oscillating
boundary layers at low KC, since the propagation distance of vortex pairs will be
strongly limited due to their rapid demise.

The observation that td does not vary greatly with increasing Rev highlights the
fact that the three-dimensional elliptical and centrifugal instabilities are very effective
in breaking down vortex columns, even at relatively low values of Rev . Vortex pair
formation is a common feature of oscillating flow past a rough seabed at low values
of KC. For oscillating flow past vortex ripples at low KC, vortex pairs are expected
to decay quickly and, as was observed in the preceding sections, they are unlikely to
propagate distances larger than y/η = 3 from the seabed. Different oscillation periods
were used for similar values of Rev , yet vortex decay time scales consistently scale
with the oscillation time. This indicates that vortex longevity is greatly influenced by
vortex interactions, which provide the necessary strain fields and residual opposite-
signed vorticity to lead to instability and turbulence via the elliptical and centrifugal
instabilities.
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7. Conclusions
We have examined the three-dimensional dynamics of coherent vortices in an

oscillatory separated flow. Flow visualization and digital particle imaging velocimetry
have been used to elucidate the vortex dynamics. The flow is dominated by the
unidirectional propagation of a new vortex pair at each cycle. The direction of
propagation of the vortex pair depends on the initial conditions, and once the
pattern is established it remains stable for all subsequent cycles. The vortex pairs
were observed to break down rapidly, which limits the distance to which they can
propagate as coherent structures under mutual advection.

An elliptical instability has been observed which breaks down the spanwise
coherence of these vortices. The physical mechanism for instability is the stretching
of perturbation vorticity by the strain field that vortices induce on each other. This
instability leads to growing spanwise undulations which are axially periodic. The
spatial structure of the instability was identified in the divergence field and showed
good agreement with elliptical instability theory. At any instant, the growth of the
inertial waves is more advanced in one of the vortices, because one vortex forms before
the other, and may become unstable before the other vortex of each pair is formed
completely. These results have thus identified the spatial structure of the perturbation
field associated with the elliptical instability in a realistic, vortex-dominated, open
flow, without artificial spanwise forcing.

We also identify regions in which the flow may be centrifugally unstable. In this
complicated flow, vorticity is generated continuously throughout the oscillation cycle,
and vorticity of opposite sign gets wrapped around the vortex columns, leading
to a centrifugally unstable flow. A comparison of the theoretical growth rates,
which have been estimated based on the flow properties extracted from the DPIV
measurements, suggests that the instabilities grow rapidly. Both instabilities have
comparable growth rates, which indicates that both are simultaneously present and
lead to the observed destruction of the vortices and the transition to turbulence.
Although the interaction between the two instability modes was not analysed, we
can hypothesize that the centrifugal instability may reinforce the elliptical instability
by providing finite amplitude perturbations that can grow rapidly via the vortex
stretching mechanism characteristic of the elliptical instability. Further laboratory
and numerical studies are necessary to better understand the feedback between the
instability modes.

A vortex decay time scale is used to quantify the destruction of the vortices. The
results confirm that the vortex pairs are short-lived and do not survive more than an
oscillation period T after they are formed. This has important implications for rough
oscillating boundary layers, since the short vortex lifetimes limit the height to which
vortex pairs can propagate and affect the boundary layer structure.

This study was supported by the National Science Foundation under grant
OCE–04255893. David ‘Araña’ Carrero provided invaluable help with the
experimental set-up, and Rudolf Kloosterziel provided useful comments which
improved the quality of the article. Comments from two anonymous reviewers greatly
improved an earlier draft of the paper and, in particular, were helpful in identifying
the potential role of the centrifugal instability.
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