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Transience to instability in a liquid sheet
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Series solutions are found which describe the evolution to absolute and convective
instability in an inviscid liquid sheet flowing in a quiescent ambient gas and
subject to a localized perturbation. These solutions are used to validate asymptotic
stability predictions for sinuous and varicose disturbances. We show how recent
disagreements in growth predictions stem from assumptions made when arriving
at the Fourier integral response. Certain initial conditions eliminate or reduce the
order of singularities in the Fourier integral. If a Gaussian perturbation is applied
to both the position and velocity of a sheet when the Weber number is less than
one, we observe absolutely unstable sinuous waves which grow like t1/3. If only
the position is perturbed, we find that the sheet is stable and decays like t−2/3 at
the origin. Furthermore, if both the position and velocity of a sheet are perturbed in
the absence of ambient gas, we observe a new phenomenon in which sinuous waves
neither grow nor decay and varicose waves grow like t1/2 with a convective instability.

Key words: absolute/convective instability, capillary waves, thin films

1. Introduction
A brief history of the fluid dynamics of liquid sheets and its applications is given

in Lin & Jiang (2003). Here, we mention only the work that is directly relevant
to this study. As shown in the analysis of Rayleigh (1896), there are two linearly
independent wave modes of a liquid sheet. The sinuous mode moves the two free
surfaces of a sheet in phase. The varicose mode symmetrically moves the free surfaces
in opposite directions. These modes were later confirmed in the experiments of Taylor
(1959). The onset of wave instability was analysed by Squire (1953) through the use
of classical temporal stability theory. The classical theory predicts, for finite Q = ρg/ρl

(ρg and ρl being, respectively, the gas and liquid densities), that the sinuous wave
is only unstable if the Weber number is greater than one. The Weber number is
defined as We = ρlU

2h0/S, where U is the liquid velocity in the sheet, h0 is the
half-sheet thickness and S is the interfacial tension. The experiments of Brown
(1961) indicated instability for We < 1, which seemed to contradict the classical
theory. Around this time, a new stability theory was being developed to study
the complex roots of a dispersion relationship and to take into consideration the
possibility of both spatial and temporal growth (Sturrock 1958). Sturrock introduced
a method for determining the nature of spatio-temporal growth, and established that
the mapping between frequency and wavenumber in their corresponding complex
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Transience to instability in a liquid sheet 359

planes distinguishes whether or not an instability will convect away from its point
of origin. A convective instability describes such a wave, while an absolute instability
is not convected but instead grows in all directions. For an impulsively disturbed
flow, Gaster (1968) showed how the asymptotic behaviour along certain rays x/t =
constant in the Fourier integral solution can be used to classify the instability and
determine the growth rate. Gaster applied these methods to hydrodynamic flows in
what came to be known as spatio-temporal stability theory. Bers & Briggs (1964)
developed a method for determining if a flow is convectively or absolutely unstable
by examining the upstream and downstream propagating branches of the dispersion
relation in the complex wavenumber plane. For the case of merging upstream and
downstream propagating branches, a general relationship was derived by Bers (1983)
between the order of a specific singularity in the Fourier integral solution and the
long-term growth rate. This method was applied by Lin, Lian & Creighton (1990)
to predict neutral stability for sinuous disturbances in a liquid sheet when We < 1
and Q =0. In the context of spatio-temporal theory, this was coined pseudo-absolute
instability since the disturbance spreads in all directions. It was shown by De Luca
& Costa (1997) that a falling (spatially developing) liquid sheet, reformulated with a
slow length scale, behaves locally like a plane liquid sheet. The method of Bers (1983)
was then used by De Luca & Costa (1997) to predict stable sinuous disturbances
when We > 1 and Q =0, and to predict absolutely unstable sinuous disturbances
when We < 1 and Q �=0, which supports the findings of Brown (1961). The latter
result was disputed by Luchini (2004), who derived a Fourier integral solution which
predicts stable sinuous disturbances when We < 1 and Q �=0.

There are a few aspects of liquid sheet stability that have been endorsed across
the literature (Squire 1953; Lin et al. 1990; De Luca & Costa 1997), namely the
prediction that liquid sheets are unstable for We > 1 and Q �= 0. This instability has
since been classified as convective; the spatio-temporal analysis can be found in Lin
(2003). Another point of agreement has been that varicose waves are convectively
unstable for any We when Q �=0, but are stable for Q =0.

In this paper, we compare series solution predictions of transient growth in a liquid
sheet with classical and spatio-temporal stability predictions and develop a general
procedure for finding the asymptotic growth rate. The objective of this work is to
clarify the differences between the predictions of De Luca & Costa (1997) and Luchini
(2004) and also to bring forth some new results. This paper is organized as follows.
A description of the physical model, governing equations, and boundary conditions
is given in § 2. This section also includes the Fourier integral solution method for
sinuous and varicose disturbances. A review of classical and spatio-temporal stability
theory is given in § 3. Briggs’ method is also covered in this section, along with various
interpretations of the Green’s function. We develop series solutions in § 4 by solving
the boundary value problems associated with sinuous and varicose waves. These
solutions are evaluated in § 5 over a range of We and Q in order to examine their
effect on transient wave evolution. The asymptotic analysis of the Fourier integrals
is carried out in this section in order to directly compare with growth in the series
solution and to determine the reasons for the various disagreements discussed above.

2. Formulation
Consider the onset to instability of an inviscid liquid sheet of uniform thickness,

2h0, in an inviscid ambient gas of density, ρg . The gas is stationary and the liquid is
flowing at a constant velocity, U . At the onset of instability, the liquid flow, as well
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Figure 1. Definition sketch, a sheet with uniform thickness.

as the gas, are perturbed by two-dimensional disturbances. The fluids are assumed
incompressible and the perturbed flow is assumed to be irrotational, and thus the
flow potential, φj , is governed by the Laplace equation for the liquid and the gas

(∂xx + ∂yy)φl = 0, (2.1)

(∂xx + ∂yy)φj = 0 (j = 1, 2), (2.2)

where (x, y) are the Cartesian coordinates in the unit of half-sheet thickness, x being
the flow direction and y perpendicular to the flow. The indices j =1 and 2 refer,
respectively, to the gas above and below the liquid sheet (cf. figure 1).

Upon normalization of velocity by U and pressure by ρU 2, the pressure fields
according to the Bernoulli equation are given by

pl − p0 = 1
2
[1 − (1 + ∂xφl)

2 − (∂yφl)
2] − ∂tφl, (2.3)

pj − p0 = −Q
[
∂tφj + 1

2
(∂xφj )

2 + 1
2
(∂yφj )

2
]

(j = 1, 2), (2.4)

where p0 is the reference pressure and t is the time normalized with h0/U . The mean
curvature of the perturbed interface is given by

∂xxhj [1 + (∂xhj )
2]−3/2 (j = 1, 2), (2.5)

where h1 and h2 are the distances measured in the unit of h0 from the x-axis to the
upper and lower liquid–gas interfaces, respectively.

The linearized balance of pressure difference at each interface with the surface
tension force provides the linearized dynamic boundary condition

[Q∂tφj − (∂t + ∂x)φl]y=(−1)j+1 = (−1)jWe−1∂xxhj (j = 1, 2). (2.6)

The linearized kinematic boundary conditions are

[∂yφl]y=(−1)j+1 = (∂t + ∂x)hj , (2.7)

[∂yφj ]y=(−1)j+1 = ∂thj (j = 1, 2). (2.8)

The above equations can be solved by either a Fourier series or Fourier integral
approach. Here, we derive Fourier integral solutions which provide the long-time
behaviour of disturbance evolution. The Fourier series solutions are later developed
in § 4. We begin by Fourier transforming the dependent variables with respect to x

φj (x, y, t) → φ̂j (k, y, t) (j = 1, 2),

φl(x, y, t) → φ̂l(k, y, t),

hj (x, t) → ĥj (k, t) (j = 1, 2),

⎫⎪⎬
⎪⎭ (2.9)
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where

ĥj (k, t) =

∫ ∞

−∞
hj (x, t)e−ikx dx,

φ̂j (k, y, t) =

∫ ∞

−∞
φj (x, y, t)e−ikx dx,

φ̂l(k, y, t) =

∫ ∞

−∞
φl(x, y, t)e−ikx dx,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.10)

and k = kr+iki is a complex parameter. The system of equations we wish to solve is
given by (2.1), (2.2), (2.6), (2.7) and (2.8). The Fourier transforms of these equations
are given, respectively, as

(−k2 + ∂yy)φ̂l = 0, (2.11)

(−k2 + ∂yy)φ̂j = 0 (j = 1, 2), (2.12)

[Q∂t φ̂j − (∂t + ik)φ̂l]y=(−1)j+1 = (−1)j+1We−1k2ĥj (j = 1, 2), (2.13)

[∂yφ̂l]y=(−1)j+1 = (∂t + ik) ĥj , (2.14)

[∂yφ̂j ]y=(−1)j+1 = ∂t ĥj (j = 1, 2). (2.15)

The general solution to (2.12) contains two constants; one of which may be eliminated
by applying the boundedness condition, φ̂j [k, (−1)j+1∞, t] = 0, yielding

φ̂j = Cg(t) exp((−1)j sgn(kr )ky) (j = 1, 2). (2.16)

Here, we take sgn(kr ) to be the generalized signum function which is undefined at
kr = 0. This ensures that the solution is bounded in the gas above the liquid sheet
where y > 1 and below the liquid sheet where y < −1. This condition appears in
various forms throughout the literature and deserves some attention. In the classical
analysis of Squire (1953) and Hagerty & Shea (1955), k was a real parameter and so
the sgn(kr )k factor in (2.16) would have been replaced by |k|. In the spatio-temporal
analysis of Lin et al. (1990), k was a complex parameter, and the analysis was carried
out separately for kr < 0 and kr > 0. In the spatio-temporal analysis of De Luca &

Costa (1997), the sgn(kr )k factor was replaced by
√

k2, which is only correct if the
principle square root was taken and k �= 0. As pointed out by Luchini (2004), any
such factor was omitted by Lin & Jiang (2003), which invalidates their conclusions
for kr � 0. Here, we retain the sgn(kr )k factor throughout the analysis and show that,
despite this source of inaccuracy in the past, it is not the main cause for stability
disagreements in the literature. Applying the transformed kinematic condition (2.15)
to (2.16) gives

φ̂j =
exp(sgn(kr )k)∂t ĥj

(−1)j sgn(kr )k
exp((−1)j sgn(kr )ky) (j = 1, 2). (2.17)

There are two fundamental modes in which the liquid surface may move. We shall
now divide our attention between sinuous and varicose waves.

2.1. Sinuous waves

For the sinuous mode of solution, φl is an odd function and the two free surfaces move
in unison. Applying the Fourier transformed odd boundary condition, ∂yyφ̂l(k, 0, t) = 0,
to the general solution of (2.11) gives

φ̂l = Cl(t) sinh(ky). (2.18)
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Applying the transformed kinematic condition (2.14) to (2.18) gives

φ̂l =
(∂t + ik)ĥj

k cosh(k)
sinh(ky) (j = 1, 2). (2.19)

Substituting (2.17) and (2.19) into the transformed dynamic condition (2.13) gives a
characteristic equation for ĥ(k, t),

sgn(kr )Q∂tt ĥ + tanh(k)(∂t + ik)2ĥ = −We−1k3ĥ, (2.20)

which is identical for the top and bottom liquid surfaces. The Laplace transform
of (2.20) is

sgn(kr )Q[−ω2H (k, ω) + iωĥ(k, 0) − ∂t ĥ(k, 0)] + tanh(k){−ω2H (k, ω) + iωĥ(k, 0)

− ∂t ĥ(k, 0) + 2ik[−iωH (k, ω) − ĥ(k, 0)] − k2H (k, ω)} = −We−1k3H (k, ω), (2.21)

where

H (k, ω) =

∫ ∞

0

ĥ(k, t)eiωt dt. (2.22)

Solving for H (k, ω) in (2.21) gives

H (k, ω) =
[sgn(kr )Q + tanh(k)][iωĥ(k, 0) − ∂t ĥ(k, 0)] − 2i tanh(k)kĥ(k, 0)

−sgn(kr )Qω2 + tanh(k)(−ω2 + 2kω − k2) + We−1k3
. (2.23)

If we take the inverse Laplace and Fourier transforms of H (k, ω), the integral solution
is given by

h(x, t) = − 1

4π2

∫ ∞

−∞

∫ ∞+iτ0

−∞+iτ0

H (k, ω) exp(i(kx − ωt)) dω dk, (2.24)

where H (k, ω) may be written as the rational expression f (k, ω)/D(k, ω), where
f (k, ω) and D(k, ω) contain no poles of k or ω. Note that the path of the ω-integral
is parallel to the real axis, shifted by τ0. This comes from the general definition of the
inverse Laplace transform. The parameter τ0 is taken such that the integration path
passes above all singularities in the integrand. The dispersion relation

D(k, ω) = sgn(kr )Qω2 + tanh(k)(k − ω)2 − We−1k3, (2.25)

holds the significance of having ω and k roots which are singularities in (2.24). If
ki = 0 and kr > 0, (2.25) is equivalent to the dispersion relation obtained by Squire
(1953). The function f (k, ω) depends on initial conditions. When impulsively forced at
a single point in space, the response h(x, t) is also the Green’s function G(x, t) (Morse
& Feshbach 1953). This interpretation is clear when the impulse is taken as a non-
homogenuous term in the governing equation. However, it is convenient in stability
problems, such as this, to apply the impulse through the initial conditions in the
Fourier integral (2.24). We discuss this further in § 3.3. By evaluating the residues with
respect to ω in (2.24), we enclose all singularities and so τ0 in the limits of the inner
Laplace integral are accounted for. The Fourier integral solution for sinuous waves
is then

hF (x, t) =
1

2π

∫ ∞

−∞
eikx

2∑
n=1

Sn(k) dk, (2.26)
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where

Sn(k) = e−iωnt
[sgn(kr )Q + tanh(k)][ωn(k)ĥ(k, 0) + i∂t ĥ(k, 0)] − 2k tanh(k)ĥ(k, 0)

(∂D/∂ω)ωn(k)

,

(2.27)
and the two ωn poles are given by the two ω roots of (2.25)

ω1,2 =
k

sgn(kr )Q + tanh(k)

{
tanh(k)

± [kWe−1(sgn(kr )Q + tanh(k)) − sgn(kr )Q tanh(k)]1/2
}

. (2.28)

Alternatively, the Laplace integral could have been evaluated by taking the residues
with respect to k in (2.24); however, the Fourier integral is less demanding for a
few reasons. The evaluation of the residues with respect to k in (2.24) is not as
straightforward, since sgn(kr ) is not continuous along the kr =0 line. If the non-
analytic point, kr = 0, is ignored, the kn poles are given by the cubic k roots of (2.25);
this is done in Lin (2003). The quadratic ω roots used in the Fourier integral are far
more pliant, and lead to the same asymptotic result.

2.2. Varicose waves

For the varicose mode of solution, φl is an even function and the two free surfaces
move in opposite directions for all x. Applying the Fourier transformed even boundary
condition, ∂yφ̂l(k, 0, t) = 0, to the general solution of (2.11) gives

φ̂l = Cl(t) cosh(ky). (2.29)

Applying the transformed kinematic condition (2.14) to (2.29) gives

φ̂l =
(∂t + ik)ĥj

(−1)j+1k sinh(k)
cosh(ky) (j = 1, 2). (2.30)

Substituting (2.17) and (2.30) into the transformed dynamic condition (2.13) gives a
characteristic equation for ĥ(k, t)

sgn(kr )Q∂tt ĥ + coth(k)(∂t + ik)2ĥ = −We−1k3ĥ, (2.31)

which is identical for the top and bottom liquid surfaces. The only difference
between (2.20) and (2.31) is that tanh(k) has been replaced by coth(k). The derivation
then is identical to that of the sinuous case, except for the eventual removal of the
coth(k) function so that f (k, ω) and D(k, ω) contain no singularities. The dispersion
relation and Fourier integral solution for varicose waves are given, respectively, by

D(k, ω) = sinh(k)sgn(kr )Qω2 + cosh(k) (k − ω)2 − sinh(k)We−1k3 (2.32)

and

hF (x, t) =
1

2π

∫ ∞

−∞
eikx

2∑
n=1

Vn(k) dk, (2.33)

where

Vn(k) = e−iωnt
[sinh(k)sgn(kr )Q + cosh(k)][ωn(k)ĥ(k, 0) + i∂t ĥ(k, 0)]− 2k cosh(k)ĥ(k, 0)

(∂D/∂ω)ωn(k)

,

(2.34)
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Wave Q We Instability/growth

Either =0 Any Neutral
Sinuous �=0 <1 Neutral
Sinuous �=0 >1 Unstable, exp(max(ωi)t)
Varicose �=0 any Unstable, exp(max(ωi)t)

Table 1. Classical temporal stability predictions for sinuous and varicose waves.

and the two ωn poles are given by the ω roots of (2.32)

ω1,2 =
k

sinh(k)sgn(kr )Q + cosh(k)

{
cosh(k) ± [k sinh(k)We−1(sinh(k)sgn(kr )Q

+ cosh(k)) − sinh(k)sgn(kr )Q cosh(k)]1/2
}

. (2.35)

3. Stability analysis
Here we review the classical temporal stability theory for liquid sheets and outline

spatio-temporal theory in general.

3.1. Classical temporal predictions

In classical stability theory, the solution can be thought of as a superposition of
modes, each given by Ak exp(i(kx − ωt)), where Ak is the amplitude associated with
a particular mode. Here, k is a real parameter and ω = ωr + iωi is the complex wave
frequency. A positive ωi value leads to exponential growth in time; if ωi > 0, the
solution is temporally unstable. The temporal growth rate, ωi , is evaluated from the ω

roots of the dispersion relation, given for sinuous waves in (2.28) and for varicose
waves in (2.35). It can be shown that ωi is zero for all k when Q =0 for both types
of waves. Thus the sheet is predicted to be neutrally stable for any We in the absence
of ambient gas. It can also be shown for long sinuous waves (small k) and finite Q,
that ωi �=0 for We > 1, and ωi =0 for We < 1. This led to the conclusion of Squire
(1953) that sinuous waves in a liquid sheet can only become unstable for We > 1. For
long varicose waves and finite Q, the classical theory predicts instability for any We.
A detailed review of the classical analysis can be found in Lin (2003). The classical
stability predictions are listed in table 1 for reference.

Unstable waves grow at the rate exp(max(ωi)t), where max(ωi) is determined by
plotting the branches of either (2.28) or (2.35). These temporal amplification plots are
shown in figure 2 for both sinuous and varicose waves. The maximum growth rates
are indicated on each plot. In § 5, these rates are compared with growth in the series
solution. As shown in figures 2(a) and 2(c), the growth rate is greater for sinuous
waves than for varicose waves. For this reason, sinuous waves have been considered
the dominant mode for breakup when Q �= 0. A few limitations of classical theory are
that only exponential growth is considered and the type of growth is not predicted.
In § 3.2, we review absolute and convective instability. In § 5, we show how algebraic
growth may also be predicted.

If we make the long-wave approximation (k → 0), it can be shown for Q =0 that the
group velocity is dωr/dkr =1 ± We−1/2 for sinuous waves and dωr/dkr = 1 ± 2We−1/2k

for varicose waves. For We > 1, a sinuous disturbance splits into two downstream
propagating packets. For We < 1, a sinuous disturbance splits into one downstream
propagating packet and one upstream propagating packet. By including the ambient
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(b) (c)

kr kr

−0.05 0 0.05
−4

−2

0

2

4(a)
(×10−3)

(×10−3)

ωi

ωi

kr

max(ωi) = 0.0025

−0.05 0 0.05

−5

0

5

(×10−5) (×10−5)

−5 0 5

max(ωi) = 4.9 × 10–5

−3

−2

−1

0

1

2

3
max(ωi) = 1.55 × 10–5

Figure 2. (a) Temporal amplification curves for sinuous waves given by (2.28): Q = 0.0013,
We = 20 (—–); Q = 0.13, We = 0.02 (�). Temporal amplification curves for varicose waves
given by (2.35): (b) Q = 0.0013, We = 20; (c) Q = 0.13, We = 0.02.

gas (Q �= 0), the group velocity of sinuous waves is altered, but the propagation
directions are preserved. This can be seen when comparing the ωr versus kr

slopes in figure 3(a,b) for Q =0 (—–) and Q �=0 (− −). These plots are obtained
directly from (2.28), where a long-wave approximation has not been made. For
We < 1(figure 3b), upstream and downstream waves are present for all krs if Q =0,
indicated by the positive and negative slopes. For We > 1 (figure 3a), two downstream
waves are present for all krs if Q =0. However, for We > 1 and Q �= 0, it can be seen
that the branches converge to a single group velocity over a specific kr range; this is
the same range of kr responsible for growth, as indicated in figure 2. This can also
be confirmed for varicose waves in figure 3(c,d ). This indicates that exponentially
growing disturbances travel at a single group velocity.

3.2. Review of spatio-temporal stability theory

In general, there are three stability states for a propagating wave, defined by the
long-time behaviour of (2.24). Here, we take the wave to be initiated by an impulsive
disturbance. As t → ∞, neutrally stable, stable and unstable waves are, respectively,
defined by ‖G(x, t)‖∞ = constant, ‖G(x, t)‖∞ → 0 and ‖G(x, t)‖∞ → ∞ where the
norm is the L∞ norm, which is the maximum of the function over x. If a wave
is either neutral or unstable, the long time behaviour can be further classified as
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Figure 3. Propagation curves for sinuous waves (a, b) given by (2.28) and varicose waves
(c,d ) given by (2.35) . (a, c) We = 20 and Q = 0.0013 (—–), Q = 0 (− −); (b, d ) We = 0.02 and
Q =0.13 (—–), Q = 0 (− −).

convective if G(x = 0, t) → 0 or absolute if G(x =0, t) → ∞ as t → ∞ (Bers & Briggs
1964). While these provide general definitions for instability, it is convenient to treat
the disturbance as a wavepacket and examine the growth along specific rays x/t =
constant when evaluating the Fourier integrals in § 5. To this end, we build upon the
definitions of Huerre & Monkewitz (1990). A sufficient condition for neutral stability
is that

G (x, t) is non-vanishing along at least one ray
x

t
= constant

and there are no rays upon which G(x, t) is growing. (3.1)

If the response to an impulse disturbance decays in time for all x, it is considered a
linearly stable travelling wave. The long-time behaviour is given by

lim
t→∞

G (x, t) = 0 along all rays
x

t
= constant. (3.2)

If the response grows in time, it is considered a linearly unstable travelling wave,
given by

lim
t→∞

G (x, t) → ∞ along at least one ray
x

t
= constant. (3.3)

Once the response has been classified as unstable, the type of instability may also be
determined. If the disturbance grows but is convected away from the location of the
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initial impulse, the long-time behaviour is also given by

lim
t→∞

G (x, t) = 0 along the ray
x

t
= 0. (3.4)

Limits (3.3) and (3.4) together describe a convectively unstable wave, while limits (3.1)
and (3.4) describe a convectively neutral wave. If the disturbance grows but is not
convected away from its origin, the long-time behaviour is given by

lim
t→∞

G (x, t) → ∞ along the ray
x

t
= 0, (3.5)

which defines an absolutely unstable wave. An absolutely neutral wave, also described
as pseudo-absolute instability (Lin et al. 1990), is defined by (3.1) and

lim
t→∞

G (x, t) is non-vanishing along the ray
x

t
= 0. (3.6)

An alternative way of viewing the instability is through a spatial amplification plot ,
where the ωi contours of D(k, ω) are plotted over the ki–kr plane. Along isocontours
of ωi , each wavenumber, kr , is associated with a spatial growth rate, ki . The ωi > 0
isocontours represents unstable modes which grow exponentially in time. The ωi =0
isocontour represents modes which do not grow exponentially, and so instability
arises only if these modes grow algebraically in time, as determined by the Fourier
integral. For t > 0, the ωi < 0 contours represent decaying modes, which do not lead
to instability. One can determine whether the instability is convective or absolute
by separately examining the downstream (or upstream) propagating ωi isocontours
in the ki–kr plane as they approach ωi =0. This is equivalent to lowering the ω

integration path in (2.24), by decreasing τ0. We use this process, known as Briggs’
method, in § 5 to support the asymptotic analysis. A detailed explanation of this
method can be found in Briggs (1964), Bers (1983) and Huerre & Monkewitz (1990).
Some pedagogic examples are given in Huerre (1987), Schmid & Henningson (2001)
and Barlow et al. (2010).

3.3. Response to impulsive initial conditions

The Fourier integral solution is still a general solution, as it is subject to the choice
of initial conditions h(x, 0) and ∂th(x, 0). A clear choice for an impulse response is
h(x, 0) = δ(x). A source of disparity in the literature stems from the veiled and perhaps
involuntary choice for the initial disturbance velocity, ∂th(x, 0). Here, we examine the
response to the conditions h(x, 0) = δ(x) and ∂th(x, 0) = 0 and designate the solution
as Gstat (x, t), the static Green ′s function . We designate the actual Green’s function,
G(x, t), as the response to h(x, 0) = ∂th(x, 0) = δ(x). This coincides with the impulse
response of a second-order system, physically interpreted as a jump in velocity and
position at t = 0. Another choice for the initial disturbance velocity can be obtained
by setting the initial vertical velocity along the liquid interface ([∂yφl]y = (−1)j+1) to
zero, reducing the kinematic condition (2.7) to ∂th(x, 0) = −∂xh(x, 0). This causes
symmetric wave propagation and was used in Lin (2003) to clearly show the upstream
and downstream propagating waves for We < 1 and Q =0. We designate the solution
to these conditions as Gsym(x, t), the symmetric response. The Fourier transformed
responses are given in table 2 so that we may later apply them to the Fourier integral
solution.
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Response ĥ(k, 0) ∂t ĥ(k, 0)

Gstat 1 0
G 1 1
Gsym 1 −ik

Table 2. Types of initial conditions to be examined.

4. Series solutions
We find series solutions for sinuous and varicose waves using a collection of spatial

modes. This is done to compare the behaviour of a disturbance defined on a bounded
domain with growth predictions of the Fourier integral solution, which is defined on
an unbounded domain. We utilize the method developed by Barlow et al. (2010) in
order to represent solutions using any horizontal line in the complex ki–kr plane. The
analysis of these solutions is then given in § 5, where we compare the disturbance
growth rates with the classical and asymptotic predictions.

We wish to solve (2.1) and (2.2) as boundary value problems. To carry out
the separation of variables for the gas phase, we assume the form φj (x, y, t) =
X(x, t)Y (y, t), which transforms (2.2) into

Y ′′(y, t)

Y (y, t)
= −X′′(x, t)

X(x, t)
= k2, (4.1)

where the complex separation constant is given by k = kr + iki . The boundary
conditions for φj (x, y, t) are given by

φj (L, y, t) = Bφj (0, y, t),

∂xφj (L, y, t) = B∂xφj (0, y, t)

}
(4.2)

and

φj [x, (−1)j+1∞, t] = 0 (bounded in y), (4.3)

where L is the domain length and B is a real parameter representing the jump in
magnitude of the solution across the boundary. For B = 1, the domain is periodic.
For B �=1, the domain is jump periodic. Jump-periodic boundary conditions allow for
spatially growing or decaying modes in the solution. If the disturbance width is taken
to be much smaller than L, the boundary conditions should be inconsequential to
disturbance growth. As long as there is a quiescent region between the disturbance
and the boundaries, we should be able to compare with impulse response growth
predictions. For X, we have the ordinary differential equation, X′′ + k2X = 0
with the general solution, X(x, t) =C1(t) cos(kx) + C2(t) sin(kx). Applying boundary
conditions (4.2) leads to a non-trivial solution if cos(kr ) cosh(ki) = 1/2B + B/2 and
sinh(ki) sin(kr ) = 0. Hence, kr is the wavenumber defined by

kr,n = 2nπ, n = 0, ±1, ±2, . . . (4.4)

and ki = cosh−1(1/2B +B/2) is the spatial growth at the boundary. Thus, by choosing
different values of B , we are essentially using modes with complex wavenumbers taken
from the horizontal line ki = cosh−1(1/2B + B/2) in the complex plane. For Yn(y, t),
we have the ordinary differential equation, Y ′′

n − k2
nYn = 0. The general solution can

be written like Yn =C3n(t)e
kny +C4n(t)e

−kny . Applying the boundedness condition (4.3)
reduces this to Yn =Cn(t) exp((−1)j sgn(kr,n)kny). If we also cast X(x, t) in complex

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

44
16

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004416


Transience to instability in a liquid sheet 369

exponential form, the general solution, φj (x, y, t) =X(x, t)Y (y, t), can be written with
a single constant, Cg,n(t), per mode as

φj (x, y, t) =

N/2∑
n=−N/2

Cg,n(t) exp(iknx) exp((−1)j sgn(kr,n)kny) (j = 1, 2), (4.5)

where N is the number of modes chosen to represent the solution and kn = kr,n + ki .
Applying the kinematic condition (2.8) to a single mode of (4.5) gives

φj,n(x, y, t) =
exp(sgn(kr,n)k)∂thj,n

(−1)j sgn(kr,n)kn

exp((−1)j sgn(kr,n)kny) (j = 1, 2), (4.6)

which matches its Fourier transformed counterpart (2.17). To carry out the separation
of variables for the liquid phase, we assume the form φl(x, y, t) =X(x, t)Y (y, t) and
apply the jump-periodic conditions

φl(L, y, t) = Bφl(0, y, t),

∂xφl (L, y, t) = B∂xφl(0, y, t).

}
(4.7)

We also apply odd and even boundary conditions

∂yyφl(x, 0, t) = 0,

∂yφl(x, 0, t) = 0,

}
(4.8)

used, respectively, for sinuous and varicose motions along the liquid interfaces. The
solution for φl(x, y, t) =X(x, t)Y (y, t) is then

φl(x, y, t) =

N/2∑
n=−N/2

Cl,n(t)e
iknx sinh(kny), (4.9)

for the sinuous mode and

φl(x, y, t) =

N/2∑
n=−N/2

Cl,n(t)e
iknx cosh(kny), (4.10)

for the varicose mode. Applying the kinematic condition (2.7) to a single mode of (4.9)
and (4.10) gives

φl,n(x, y, t) =
(∂t + ∂x) hj,n

kn cosh(kn)
sinh(kny) (j = 1, 2), (4.11)

for the sinuous mode and

φl,n(x, y, t) =
(∂t + ∂x) hj,n

(−1)j+1kn sinh(kn)
cosh(kny) (j = 1, 2), (4.12)

for the varicose mode. If we take the solution form for interface displacement to be

hj (x, t) =

N/2∑
n=−N/2

Ch,n(t)e
iknx (j = 1, 2), (4.13)

and substitute (4.6) and (4.11)/(4.12) into the dynamic condition (2.6), we obtain the
ordinary differential equation

as/v,n

d2Ch,n

dt2
+ bs/v,n

dCh,n

dt
+ cs/v,nCh,n = 0, (4.14)
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which is identical for the top and bottom liquid surfaces. The coefficients for sinuous
waves are given by

as,n = sgn(kr,n)Q + tanh(kn), (4.15)

bs,n = 2ik tanh(kn), (4.16)

cs,n = −k2 tanh(kn) + We−1k3
n, (4.17)

and the coefficients for varicose waves are given by

av,n = sgn(kr,n)Q sinh(kn) + cosh(kn), (4.18)

bv,n = 2ik cosh(kn), (4.19)

cv,n = −k2 cosh(kn) + We−1k3
n sinh(kn). (4.20)

The solution to (4.14) is then given by

h(x, t) =
∑

|n|<N/2

[(
Ch1,ne

r+,nt + Ch2,ne
r−,nt

)
eiknx

]
+

[
Ch1,0 + tCh2,0

]
n=0

, (4.21)

where r±,n = (−bs,n ±
√

b2
s,n − 4as,ncs,n)/(2as,n) �= 0 for sinuous waves and

r±,n = (−bv,n ±
√

b2
v,n − 4av,ncv,n)/(2av,n) �= 0 for varicose waves. The first term

in (4.21) corresponds with all distinct roots, while the second term corresponds
with the double root at k = r±,n = 0. For t =0, (4.21) is the complex Fourier series (as
N → ∞) and the coefficients are obtained by solving

Ch1,n�=0 + Ch2,n�=0 = Ch1,0 =
1

L

∫ L

0

h0(x) e−ikr,nx dx,

r+,nCh1,n�=0 + r−,nCh2,n�=0 = Ch2,0 =
1

L

∫ L

0

[∂th]t=0 (x) e−ikr,nx dx,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.22)

where h0(x) is the initial disturbance shape and [∂th]t=0(x) is the initial disturbance
velocity. The initial impulsive disturbance is approximated by a Gaussian centred at
x = 0 and given by

h0(x) = hδ(x) = 0.1 exp(−x2/100), (4.23)

which is an order of magnitude wider than the unit sheet thickness and thus a
reasonable approximation for long waves on thin sheet. The initial disturbance velocity
is approximated by either

[∂th]t=0 (x) = 0,

[∂th]t=0 (x) = hδ(x),

or

[∂th]t=0 (x) = −dh0

dx
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.24)

in order to simulate the responses Gstat (x, t), G(x, t) and G(x, t)sym described in § 3.3.
For the analysis shown in § 5, we let ki =0 (B = 1), meaning that we have a purely
periodic domain. For ki �= 0, we previously showed (Barlow et al. 2010) that the
solutions are identical for any ki as long as the perturbation does not reach the
boundary.
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5. Asymptotic predictions and transient solutions
We shall now find the asymptotic (t → ∞) behaviour of the Fourer integrals (2.26)

and (2.33), which describe sinuous and varicose waves, and compare it with the series
solutions constructed using (4.21). When Q =0, the Fourier integrals can be simplified
and the analysis becomes clearer. In § 5.1, we take advantage of this and illustrate the
details of the asymptotic method, which is then applied for Q �=0 in § 5.2.

5.1. Absence of ambient gas (Q = 0)

The classical theory predicts stable waves for both sinuous and varicose disturbances
in the absence of ambient gas (Squire 1953; Hagerty & Shea 1955). Using asymptotic
analysis, Lin et al. (1990) also determined that sinuous waves are stable for We < 1,
but predicted that they are neutrally stable for We > 1. In the aforementioned works,
the long-wavelength approximation was not used, and so these predictions generalize
to thin and thick sheets. In the present work, we apply asymptotic analysis to show
that, for Q =0 and any We, long sinuous waves are convectively neutral. Although
the long-wave approximation is used to obtain the stability results, the predictions
agree well with the series solutions presented here, where no such approximation is
used.

It has been stated by Lin et al. (1990) and De Luca & Costa (1997) that varicose
waves are stable for any We in the absence of ambient gas. Here, we show how
varicose waves in the absence of ambient gas become algebraically convectively
unstable when subjected to an impulsive initial disturbance velocity.

For long waves (small k) we let sinh(k) → k and cosh(k) → 1. By letting Q = 0, the
sinuous (2.25) and varicose (2.32) dispersion relations reduce to

D(k, ω) = k (k − ω)2 − We−1k3 (5.1)

and

D(k, ω) = (k − ω)2 − We−1k4, (5.2)

and the ± branches of the sinuous (2.26) and varicose (2.33) Fourier integrals reduce
to

h±(x, t) =
1

2π

∫ ∞

−∞

ĥ(k, 0)k[ω±(k) − 2k] + ik∂t ĥ(k, 0)

(∂D/∂ω)ω±(k)

eψ(k)t dk (5.3)

and

h±(x, t) =
1

2π

∫ ∞

−∞

ĥ(k, 0)[ω±(k) − 2k] + i∂t ĥ(k, 0)

(∂D/∂ω)ω±(k)

eψ(k)t dk, (5.4)

where ω±(k) = k ± kWe−1/2 for long sinuous waves, ω±(k) = k ± k2We−1/2 for long
varicose waves and ψ(k) = i[k(x/t) − ω±(k)] is the phase.

We shall first examine long sinuous waves. In the absence of ambient gas, a sinuous
wavepacket moves at a group velocity of dωr/dkr = 1 ± We−1/2. The phases which
correspond to x/t = 0 and x/t = 1 ± We−1/2 are ψ(k) = −ik(1 ± We−1/2) and ψ(k) = 0.
After evaluating (5.3) along these rays, we obtain

[h(t)]x/t=0 =
1

4π

∫ ∞

−∞
ĥ(k, 0)[exp(−ik(1 + We−1/2)t) + exp(−ik(1 − We−1/2)t)] dk

+
iWe1/2

4π

∫ ∞

−∞

∂t ĥ(k, 0)

k
[exp(−ik(1+We−1/2)t) − exp(−ik(1 −We−1/2)t)] dk

(5.5)
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and

[h(t)]x/t=1±We−1/2 =
1

2π

∫ ∞

−∞
ĥ(k, 0) dk = [h0(x)]x=0, (5.6)

where

h0(ξ ) =
1

2π

∫ ∞

−∞
ĥ(k, 0)e−kξ dk (5.7)

is the initial disturbance. The variable ξ generalizes (5.7) for further use. Since there
is no time dependence in (5.6), the response along x/t = 1 ± We−1/2 is given by

G(x, t) = Gstat (x, t) = Gsym(x, t) = constant (5.8)

for any initial condition. If we subject (5.5) to the initial conditions in table 2 and
make use of (5.7), the responses along x/t =0 become

Gstat (x, t) =
1

2
δ[−(1 + We−1/2)t] +

1

2
δ[−(1 − We−1/2)t],

Gsym(x, t) =

(
1

2
+

We−1/2

4π

)
δ[−(1 + We−1/2)t] +

(
1

2
+

We−1/2

4π

)
× δ[−(1 − We−1/2)t],

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5.9)

and

G(x, t) =
1

2
δ[−(1 + We−1/2)t] +

1

2
δ[−(1 − We−1/2)t]

+
We1/2

2π

∫ ∞

0

sin[k(1 − We−1/2)t] − sin[k(1 + We−1/2)t]

k
dk, (5.10)

where h0(ξ ) has been replaced by the delta function δ(ξ ) = (1/2π)
∫ ∞

−∞ e−kx dk,
which is zero for ξ �=0. Also, Euler’s identity and even/odd relations have
been applied to the integral in (5.10) in order to make use of the relation∫ ∞

0
(sin(βk)/k) dk = (π/2)sgn(β) (Seeley 1966). The long-time responses along x/t = 0

now become
lim
t→∞

Gstat (x, t) = lim
t→∞

Gsym(x, t) = 0

and

lim
t→∞

G(x, t) =

{
0 if We > 1,

constant if We < 1.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.11)

By definitions (3.1) and (3.4), (5.8) and (5.11) predict that the response G(x, t) is
convectively neutral for We > 1 and the responses Gstat and Gsym are convectively
neutral for any Weber number. This differs from the analysis of De Luca & Costa
(1997) and Lin (2003), where stable sinuous waves are predicted for We > 1. By
definitions (3.1) and (3.6), the response G(x, t) predicts absolutely neutral waves for
We < 1, which agrees with the analysis of Lin et al. (1990).

For the remaining Green’s functions obtained in this section, it is useful to have an
approximation for infinite and semi-infinite integrals which lead to algebraic growth,
such as

I (k, t) =

∫
C

eγ kmt

ks
dk ≈ t (s−1)/m, m �= 0, (5.12)

where γ is some constant. This result can be shown for s < 1 using the gamma
function, where

∫
C

is
∫ ∞

0
(Bender & Orszag 1978). If there is symmetry about kr =0,
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Figure 4. The real-valued roots of D(k, ω) (—–), ∂kD(k, ω) (− −) and ∂ωD(k, ω) (�) for
sinuous waves with Q = 0 and We =20. The three saddle points of (2.25) are shown.

as seen in figures 2 and 3, (5.12) may be obtained for any value of s using Hankel’s

formula, where
∫

C
is

∫ 0+

−∞ (Copson 1962).
To clarify the differences for We > 1, we shall remove the long-wave constraint and

re-examine the analysis done by De Luca & Costa (1997) and Lin (2003) by looking
at the behaviour near the saddle points of D(k, ω). The Taylor expansion about a
saddle point leads to the relation (ω −ω0)

n ≈ (k −k0)
p+2, allowing the Fourier integral

to be simplified. Examples of this procedure can be found in both Bers (1983) and
Lin (2003). Eventually, a change of variable and the use of (5.12) leads to

G(x, t) ≈ t ν−1 exp(i(k0x − ω0t)), (5.13)

where ν = n((p + 1)/(p + 2)). This relation is especially useful when the Fourier
integral cannot immediately be cast in the form of (5.12). If there are multiple saddle
points, the one with the maximum growth rate is used when evaluating the response.

In the ω roots of D(k, ω) (—–) given by (2.25), ∂kD(k, ω) (− −) and ∂ωD(k, ω)(�)
are obtained for real values of k and plotted in figure 4 for Q =0 and We = 20.
For the roots of D(k, ω), this is essentially a wider view of figure 3(a). It can be
seen that, for shorter waves (larger kr ), the group velocity is no longer constant
and actually reverses direction. At the saddle points (ks1,s2, ωs1,s2) ≈ (±9, ±3),
D(k, ω) = ∂kD(k, ω) = 0, but ∂ωD(k, ω) �= 0 and ∂kkD(k, ω) �= 0. A Taylor expansion
of D(k, ω) about this point gives to the lowest order (k − ks1,s2)

2 ≈ (ω − ωs1,s2).
Recall from (2.25) that there is no exponential growth for Q =0 since Im(ω) = 0
for all real k. By utilizing (5.13), the response to the contribution of (ks1,s2, ωs1,s2)
becomes G(x, t) ≈ t−1/2, which is why it is stated in De Luca & Costa (1997) and Lin
(2003) that these waves are actually stable for We > 1 and Q =0. However, it can be
seen that the group velocity is zero at (ks1,s2, ωs1,s2), and so G(x, t) ≈ t−1/2 is only
valid along the ray x/t = dωr/dkr = 0. There is a finite group velocity at the saddle
point (ks3, ωs3) = (0, 0), where D(k, ω) = ∂kD(k, ω) = ∂ωD(k, ω) = 0, ∂ωωD(k, ω) �= 0 and
∂kkD(k, ω) �= 0. It should be pointed out that this is also the only saddle point that
arises when the long-wave approximation is used for any We. A Taylor expansion
of D(k, ω) about this point gives to the lowest order (k − ks3)

2 ≈ (ω − ωs3)
2. Again,

utilizing (5.13), the response becomes G(x, t) ≈ t0 along the ray x/t = dωr/dkr �= 0.
Since decay occurs along x/t = 0 but not along x/t �=0, the stability should be
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Figure 5. Evolution of a sinuous wave for We = 20, Q = 0. The solution (4.21) is constructed
on a periodic domain of normalized length L = 400 using N =800 modes for a duration
of 400 time units. The initial disturbance velocity is given by (a) [∂th]t=0(x) = −(dh0/dx),
(b) [∂th]t=0(x) = 0 and (c) [∂th]t=0(x) =hδ(x).

considered convectively neutral by definitions (3.1) and (3.4). Previous analyses
overlooked this piece of information, that only waves of zero group velocity decay.
This led to the erroneous prediction of stability for We > 1 and Q =0.

To summarize, sinuous waves in the absence of ambient gas are predicted, by
both the generalized (De Luca & Costa 1997; Lin 2003) and long-wave asymptotic
analysis, to be absolutely neutral for We < 1 and Q =0. For We > 1, both analyses
predict convective neutrality. Long sinuous waves are predicted to leave behind an
origin that is exactly zero, whereas the generalized analysis predicts t−1/2 decay at
the origin. These predictions hold for any of the initial conditions listed in table 2.

Series solutions of sinuous wave evolution for Q = 0 are given in figure 5 for
We =20 and in figure 6 for We = 0.02. The solution (4.21) is constructed on a domain
of normalized length L =400 using N = 800 modes for both cases. The resolution is
designed to accurately evolve disturbances that are longer than the sheet thickness. For
We =20, the Gaussian initial condition (4.23) and initial disturbance velocities (4.24)
are chosen to simulate the responses Gsym(x, t) (figure 5a), Gstat (x, t) (figure 5b)
and G(x, t) (figure 5c) for a duration of 400 time units. For We = 0.02, these initial
conditions are used to simulate the responses Gsym(x, t) (figure 6a, —–), Gstat (x, t)
(figure 6a, − −) and G(x, t) (figure 6b) for a duration of 20 time units. For We = 20
(figure 5), the initial disturbance expands along two downstream characteristics, as
predicted in figure 3(a). For We = 0.02 (figure 6), the initial disturbance expands along
upstream and downstream characteristics, as predicted in figure 3(b). In figures 5(a)
and 6(a) (—–), the split is symmetric about the point of separation. In figures 5(b)
and 6(a) (− −), the split is asymmetric about the point of separation, however there is
still a quiescent region between each separated wave. The impulse response, G(x, t), in
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Figure 6. Evolution of a sinuous wave for We = 0.02, Q = 0. The solution (4.21) is constructed
on a periodic domain of normalized length L = 400 using N = 800 modes for a duration of
20 time units. The initial disturbance velocity is given by (a) [∂th]t=0(x) = −(dh0/dx) (—–),
[∂th]t=0(x) = 0 (− −) and (b) [∂th]t=0(x) =hδ(x). The inset of (a) indicates the asymmetry of
the response when [∂th]t=0(x) = 0.

figures 5(c) and 6(b) shows no quiescent region between waves; this is reminiscent of
the waveforms presented by Rosenbluth, White & Liu (1973) and Nicholson (1975)
for impulsive forcing. The waves neither grow nor decay for all three responses,
as indicated in figure 7(a) for We =20 and in figure 7(b) for We = 0.02, where
the maximum amplitudes (�, �, �) of each response are plotted against time. This
is in agreement with the neutrally stable prediction of classical theory. The origin
amplitudes of G(x, t)(�), Gstat (x, t)(�) and Gsym(�) all decay for We = 20 (figure 7a),
which agrees with the asymptotic prediction of convective neutrality for We > 1.
For We = 0.02 (figure 7b), the origin neither grows nor decays, agreeing with the
absolutely neutral prediction of asymptotic analysis for We < 1. As seen in both
plots of figure 7, the origin amplitude of the responses Gstat (x, t) and Gsym decays
for all Weber numbers, which also agrees with the asymptotic analysis. For We > 1,
the particular t−1/2 decay at the origin predicted by the generalized analysis was not
detected. This is a consequence of approximating the impulsive disturbance with a
Gaussian. The wavenumbers used to construct the Gaussian are collected near the
origin in figure 4, where all modes have a finite group velocity and the decaying
stationary modes (ks1,s2) are out of range. An investigation for large k showed
dispersive waves that decay like t−1/2. However, that is beyond the focus of this
paper, to examine thin sheets (k 	 1).

We now examine the stability of varicose waves in the absence of ambient gas.
Here, the long-wave approximation does not eliminate saddle points as it does in the
sinuous case, but it does simplify the analysis. First, we wish to find the response
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Figure 7. Growth of a sinuous wave for Q =0 and (a) We = 20 (convectively neutral), (b)
We =0.02 (absolutely neutral). The maximum amplitude (solid symbols) and origin amplitude
(open symbols) in the series solution are compared for different initial disturbance velocities:
[∂th]t=0(x) = −(dh0/dx) (�, �), [∂th]t=0(x) = 0 (�, �) and [∂th]t=0(x) =hδ(x) (�, �).

along the ray x/t =0. To do this, we identify the wavenumber associated with zero
group velocity. The dispersive group velocity, dωr/dkr = 1 ± 2We−1/2k, is zero for
modes of wavenumber ks1,s2 = ±We1/2/2, which corresponds with ωs1,s2 = ±We1/2/4
for D(k, ω) = 0 in (5.2). A Taylor expansion of D(k, ω) about this point gives to the
lowest order (k − ks1,s2)

2 ≈ (ω − ωs1,s2). Then if we substitute ω = ωs1,s2 + C1(k − k1,2)
2

into (5.4) and evaluate along the ray x/t = 0, the response becomes

[h±(t)]x/t=0 = C2

∫ ∞

−∞
f (k) exp(−i[ωs1,s2 + C1(k − ks1,s2)

2]t) dk, (5.14)

where C1 and C2 are functions of We only and f (k) contains no singularities. By
applying a change in variable and utilizing relation (5.12) we obtain

Gstat (x, t) ≈ G(x, t) ≈ Gsym(x, t) ≈ t−1/2 along the ray
x

t
= 0. (5.15)

To find the response along any ray x/t = [(dωr/dkr )(k)]kd
�= 0 (kd �= k1,2), the group

velocity of a single mode, [(dωr/dkr )(k)]kd
=1 ± 2We−1/2kd , is directly substituted into
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the phase of a single mode to obtain ψ(kd) = ±iWe−1/2k2
d . The integral (5.4) is then

evaluated for all non-stationary modes, kd:

[h±(t)]x/t �=0 = C1

∫ ∞

−∞
ĥ(kd, 0)eC3k

2
d t dkd + C2

∫ ∞

−∞

ĥ(kd, 0)

kd

eC3k
2
d t dkd

− iC2

∫ ∞

−∞

∂t ĥ(kd, 0)

k2
d

eC3k
2
d t dkd, (5.16)

where C1, C2 and C3 are functions of We only. The integrals above are set apart
by the order of their kd poles. By relation (5.12), higher order poles lead to higher
order algebraic growth. If the initial disturbance velocity is impulsively perturbed
(∂t ĥ(kd, 0) = 1), the second order pole in the third term of (5.16) dominates the
asymptotic behaviour. However, if the initial disturbance velocity is zero, the third
term vanishes and the response is dominated by the first order pole in the second term
of (5.16), effectively diminishing the response growth. Finally, if the initial disturbance
velocity is given by [∂th]t=0(x) = −dh0/dx (∂t ĥ(kd, 0) = −ik), the second and third
terms cancel and the response is dominated by the first term of (5.16), which contains
no poles. If we subject (5.16) to the initial conditions in table 2 and make use of
relation (5.12), the leading behaviour of the responses becomes

Gstat (x, t) ≈ t0 along all rays
x

t
�= 0,

G(x, t) ≈ t1/2 along all rays
x

t
�= 0,

Gsym(x, t) ≈ t−1/2 along all rays
x

t
�= 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.17)

Here, the initial conditions greatly affect the response. By applying definitions (3.2)–
(3.5) to (5.15) and (5.17), we find that Gstat (x, t) is convectively neutral, G(x, t) is
convectively unstable and Gsym(x, t) is stable. We can also examine the behaviour
of varicose waves using Briggs’ criterion (Briggs 1964). Spatial amplification curves
(ki versus kr ) of (5.2) with Q =0 are shown in figure 8 for (a) We = 20 and (b)
We = 0.02. All ωi isocontours correspond to downstream propagating branches since
dωr/dkr > 0 for the range of kr shown; this can be verified in figure 3(c,d ) for
ωi = 0. In figure 8, the ωi > 0 isocontours are lowered until they cross ki = 0; this
indicates the possibility of downstream propagating convectively unstable waves.
Since the cross is made at ωi = 0, exponential growth can be ruled out. Therefore,
the convective instability is only possible if there is algebraic growth, which we have
confirmed as t1/2. To summarize, long varicose waves in the absence of ambient
gas are convectively unstable for any Weber number. This only holds for the
response, G(x, t), which is initiated by impulsively disturbing both the position and
velocity.

Series solutions of varicose wave evolution for Q =0 and We = 0.02 are given
in figure 9. The solution (4.21) is constructed on a domain of normalized length
L = 2 × 104 using N = 4000 modes. The Gaussian initial condition (4.23) and initial
disturbance velocities (4.24) are chosen to simulate the responses Gsym(x, t) (figure 9a),
Gstat (x, t) (figure 9b) and G(x, t) (figure 9c) for a duration of 2000 time units. The
initial disturbance travels downstream, as predicted in figure 3(d ). For all responses,
the origin amplitude decays, as predicted by (5.15). In figure 9(a), the disturbance
decays as predicted by Gsym(x, t) ≈ t−1/2 in (5.17). This is confirmed in figure 10, where
the maximum (�) and origin (�) amplitudes in the series solution fall along prediction
curves At−0.5. The amplitude, A, is specific to each curve. Both the amplitudes
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Figure 8. Spatial amplification plots of (5.2) for varicose waves with Q = 0 and (a) We = 20,
(b) We = 0.02. The branches are reduced from ωi > 0 to ωi = 0. The crossing of ki = 0 at ωi = 0
indicates the possibility of algebraically convectively unstable waves.

and growth rates are found using a best fit which minimizes ||∆||∞, where ∆ is
the difference between the prediction curves and the actual growth obtained from
the series solution. In figure 9(b), the origin amplitude decays, but the maximum
amplitude of the disturbance remains constant, as predicted by Gstat (x, t) in (5.17).
This is confirmed in figure 10, where the maximum amplitude (�) appears to level
off, and the origin amplitude (�) follows a prediction curve At−0.5. In figure 9(c),
the maximum amplitude of the disturbance grows, as predicted by G(x, t) ≈ t1/2

in (5.17). This rate is confirmed in figure 10, where the maximum amplitude in the
series solution (�) falls along a prediction curve At0.5 and the origin amplitude (�)
falls along a curve At−0.5.

The series simulation of Gstat (x, t) is in agreement with the convectively neutral
prediction of asymptotic theory, presented here for long varicose waves in the absence
of ambient gas. The decay inferred by De Luca & Costa (1997) and Lin (2003), as a
general prediction, was only detected at the origin. The series simulation of G(x, t) is
in agreement with the convectively unstable prediction of asymptotic theory, presented
here for long varicose waves in the absence of ambient gas. This is a new type of
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Figure 9. Evolution of a varicose wave for We = 0.02, Q = 0. The solution (4.21) is constructed
on a periodic domain of normalized length L = 2 × 104 using N = 4000 modes for a duration
of 2000 time units. The initial disturbance velocity is given by (a) [∂th]t=0(x) = −(dh0/dx), (b)
[∂th]t=0(x) = 0 and (c) [∂th]t=0(x) =hδ(x). For clarity, the evolution has been truncated to 100
time units in (a).
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Figure 10. Growth of a varicose wave for Q = 0 and We = 0.02. The maximum amplitude
(solid symbols) and origin amplitude (open symbols) in the series solution are compared for
different initial disturbance velocities: [∂th]t=0(x) = −(dh0/dx) (�, �), [∂th]t=0(x) = 0 (�, �)
and [∂th]t=0(x) =hδ(x) (�, �). The spatio-temporal prediction curves (—–) are given (from
bottom to top) by At−0.5, At−0.5, At−0.5, At−0.5 and At0.5. The amplitude A is specific to each
curve.

algebraic instability for convective growth, similar to the algebraic instability for
absolute growth discovered by De Luca & Costa (1997) and examined later in § 5.2.
While this is in disagreement with all previous predictions, it should be mentioned
that, although Squire (1953), De Luca & Costa (1997) and Lin (2003) indicate that
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varicose waves do not become unstable for Q =0, the actual analysis is always left
for the reader, since the focus has been the ‘dominant’ sinuous mode. We have shown
here that, in the absence of ambient gas, the varicose mode is actually the dominant
mode for instability. The series simulation of Gsym(x, t) is stable, which is also in
agreement with the asymptotic predictions. This response illustrates that certain
initial conditions can affect the growth rate by reducing the order of singularities
in the Fourier integral. For the remaining results, only Gstat (x, t) and G(x, t) are
examined, as Gsym(x, t) provides no additional insight within the scope of this work.

5.2. Presence of ambient gas (Q �= 0)

With the inclusion of ambient gas, direct computation of the Fourier integrals becomes
exhaustive, and the long-wave approximation does little to reduce the complexity. We
instead, examine the behaviour near the saddle points of (2.25) and (2.32). For sinuous
or varicose waves, the ± branches of the Fourier integrals (2.26) and (2.33) can be
written like

h±(x, t) =

∫ ∞

−∞

[
f1(k) ĥ(k, 0) +

f2(k)∂t ĥ(k, 0)

(∂D/∂ω)ω±(k)

]
eψ(k)t dk, (5.18)

where f1(k) contains no non-removable singularities, f2(k) contains no singularities
and is non-zero at k =0 and ψ(k) = i[k(x/t) − ω±(k)].

The real components of the ω roots of D(k, ω) (—–), ∂kD(k, ω) (− −) and ∂ωD(k, ω)
(�) are obtained for real values of k and plotted in figure 11 for sinuous waves
and in figure 12 for varicose waves with We =20 and Q =0.0013 (water–air). The
imaginary component of ω is given in figure 2. The behaviour appears similar
to the Q =0 behaviour in figure 4, as they share the (ks1,s2, ωs1,s2) ≈ (±9, ±3) saddle
point. However, the magnification in figure 11(b) shows that an additional saddle point
pair is found at (ks3,s4, ωs3,s4) ≈ (±0.025, ±0.023+±i0.0025). For all four saddle points,
D(k, ω) = ∂kD(k, ω) = 0 but ∂ωD(k, ω) �= 0 and ∂kkD(k, ω) �= 0. A Taylor expansion of
D(k, ω) about these points gives to the lowest order (k − ks1−s4)

2 ≈ (ω − ωs1−s4), which
reduces (5.18) to

hj (x, t) =

∫ ∞

−∞
f (k) exp(i[k(x/t) − ωj − C(k − ksj )

2]t) dk (j = 1, 2, 3, 4), (5.19)

where f (k) contains no singularities and C is a function of We and Q only. The
points (ks1,s2, ωs1,s2) are valid along the ray x/t = dωr/dkr =0. Since ωs1,s2 is real,
there is no exponential growth. By utilizing (5.12) and applying a change of variable
to (5.19), the behaviour of the responses becomes

G(x, t) ≈ Gstat (x, t) ≈ t−1/2 along the ray
x

t
=

dωr

dkr

= 0. (5.20)

The points (ks3,s4, ωs3,s4) are valid along the ray x/t =dωr/dkr �= 0. By utilizing (5.12)
and a change of variable, the behaviour of the responses becomes

G(x, t) ≈ Gstat (x, t) ≈ t−1/2 exp(max [Im(ωs3)] t) along the ray x/t = dωr/dkr �= 0,

(5.21)

where max[Im(ωs3)] > 0. The above responses describe a convectively unstable
disturbance, given by definitions (3.3) and (3.4). This not only applies to sinuous
and varicose waves for We > 1 and Q �=0, but also to varicose waves with We < 1
and Q �=0. The exponential growth rate, max[Im(ωs3)], can be obtained from figure 2
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Figure 11. The real component of the ω roots of D(k, ω) (—–), ∂kD(k, ω) (− −) and ∂ωD(k, ω)
(�) plotted against real k values for sinuous waves with Q = 0.0013 and We = 20. The four
saddle points of (2.25) are shown. The imaginary component of ω is given in figure 2(a).

for each case. These stability predictions have been previously stated by De Luca &
Costa (1997) and Lin (2003).

The series solutions in figures 13–15 are constructed using N = 4000
modes and given the Gaussian initial condition (4.23) and initial disturbance
velocity [∂th]t=0(x) = 0 in order to simulate the response Gstat (x, t). A simulation
of the response G(x, t), which is associated with the initial disturbance velocity
[∂th]t=0(x) = hδ(x), is not shown here because, for the following cases, the behaviour
is qualitatively the same. Nevertheless, the actual growth is recorded in figure 16 for
both initial disturbance velocities, [∂th]t=0(x) = 0 (�) and [∂th]t=0(x) = hδ(x) (�).

A series solution of sinuous wave evolution for We = 20 and Q =0.0013 is shown
in figure 13. The solution is constructed on a domain of normalized length L =5000
and evolved for a duration of 104 time units. The disturbance travels downstream, as
predicted in figure 3(a), and convectively grows like t−1/2e0.0025t , as predicted by (5.21)
and figure 2(a). This rate is confirmed in figure 16(a), where the maximum amplitude
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Figure 12. The real component of the ω roots of D(k, ω) (—–), ∂kD(k, ω) (− −) and ∂ωD(k, ω)
(�) plotted against real k values for varicose waves with Q = 0.0013 and We = 20. The four
saddle points of (2.25) are shown. The inset shows the nearly vertical ‘line’ of ∂kD(k, ω) as
actually two lines, which form saddle points (ks3,s4, ωs3,s4). The imaginary component of ω is
given in figure 2(b).
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Figure 13. Evolution of a sinuous wave for We = 20, Q = 0.0013. The solution (4.21) is
constructed on a periodic domain of normalized length L = 5000 using N = 4000 modes for
a duration of 104 time units. The initial disturbance velocity is given by [∂th]t=0(x) = 0. For
clarity, the evolution has been truncated to 5000 time units.
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Figure 14. Evolution of a varicose wave for We = 20, Q = 0.0013. The solution (4.21) is
constructed on a periodic domain of normalized length L =2 × 104 using N = 4000 modes for
a duration of 2 × 105 time units. The initial disturbance velocity is given by [∂th]t=0(x) = 0.
For clarity, evolution has been truncated to 5 × 104 time units.
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Figure 15. Evolution of a varicose wave for We = 0.02, Q = 0.13. The solution (4.21) is
constructed on a periodic domain of normalized length L =2 × 105 using N = 4000 modes for
a duration of 1.2 × 106 time units. The initial disturbance velocity is given by [∂th]t=0(x) = 0.
For clarity, evolution has been truncated to 2.4 × 105 time units.

in the series solution is compared with the classical (− −) and asymptotic (—–)
prediction curves, Ae0.0025t and At0.5e0.0025t .

A series solution of varicose wave evolution for We = 20 and Q =0.0013 is shown
in figure 14. The solution is constructed on a domain of normalized length L = 2 × 104

and evolved for a duration of 2 × 105 time units. The disturbance travels downstream,
as predicted in figure 3(c), and convectively grows like t−1/2e4.9 × 10−5t , as predicted
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Figure 16. The maximum amplitude in the series solution is compared for initial disturbance
velocities, [∂th]t=0(x) = 0 (�) and [∂th]t=0(x) =hδ(x) (�). (a) Sinuous, We = 20, Q = 0.0013,
max(ωi) = 0.0025 (cf. figure 2a) ; (b) varicose, We = 20, Q = 0.0013, max(ωi) = 4.9 × 10−5 (cf.
figure 2b); (c) varicose, We = 0.02, Q = 0.13, max(ωi) = 1.55 × 10−5 (cf. figure 2c). Classical
(− −) and asymptotic (—–) prediction curves in each plot are given (from bottom to top) by
Aemax(ωi )t , At0.5emax(ωi )t , Aemax(ωi )t and At0.5emax(ωi )t . The amplitude, A, is specific to each curve.
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Figure 17. The real component of the ω roots of D(k, ω) (—–), ∂kD(k, ω) (− −), ∂ωD(k, ω) (�)
and ∂kkD(k, ω) (�) for sinuous waves with Q = 0.13 and We = 0.02. The imaginary component
of ω is zero, as indicated figure 2(a).

by (5.21) and figure 2(b). This rate is confirmed in figure 16(b), where the maximum
amplitude in the series solution is compared with the classical (− −) and asymptotic
(—–) prediction curves, A exp(4.9 × 10−5t) and At0.5 exp(4.9 × 10−5t).

A series solution of varicose wave evolution for We = 0.02 and Q =0.13 is
shown in figure 15. The solution is constructed on a domain of normalized length
L = 2 × 105 and evolved for a duration of 1.2 × 106 time units. The disturbance
travels downstream, as predicted in figure 3(d ), and convectively grows like
t−1/2 exp(1.55 × 10−5t), as predicted by (5.21) and figure 2(c). This rate is confirmed
in figure 16(c), where the maximum amplitude in the series solution is compared with
the classical (− −) and asymptotic (—–) prediction curves, A exp(1.55 × 10−5t) and
At0.5 exp(1.55 × 10−5t).

The series solutions in figures 13–15 are all convectively unstable and grow
exponentially as predicted by classical and asymptotic stability theory. As seen in
figure 16, the additional t−1/2 decay is also resolved, which lends more credit to
the asymptotic theory for predicting the transient behaviour. While the growth
rates remain identical for either initial disturbance velocity, the initial condition
[∂th]t=0(x) = hδ(x) causes a larger disturbance amplitude, which can be seen when
comparing the upper and lower curves in figure 16.

We shall now examine the stability of sinuous waves in the presence of
ambient gas with We < 1. The real components of the ω roots of D(k, ω)
(—), ∂kD(k, ω) (− −), ∂ωD(k, ω)(�) and ∂kkD(k, ω)(�) are obtained for real k

values and plotted in figure 17 for We = 0.02 and Q =0.13. The imaginary
component of ω is zero, as shown in figure 2(a). There is an apparent saddle
point at (k0, ω0) = (0, 0), where D(k, ω) = ∂kD(k, ω) = ∂kkD(k, ω) = ∂ωD(k, ω) = 0 but
∂ωωD(k, ω) �= 0 and ∂kkkD(k, ω) �= 0. It should be noted, however, that the dispersion
relation (2.25) is non-smooth at kr = 0 because of the sgn(kr ) term. It is more accurate
to say that the saddle point exists at (k0, ω0) = (0±, 0±), which is valid along the ray
x/t = dωr/dkr = 0. Since ω0 is real, there is no exponential growth. A Taylor expansion
of D(k, ω) about this point gives, to the lowest order, (k − k0)

3 ≈ (ω − ω0)
2, which
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reduces (5.18) to

[h±(x, t)]x/t=0 =

∫ ∞

−∞

[
f1(k) ĥ(k, 0) +

f2(k)∂t ĥ(k, 0)

2k3/2

]
e−ik3/2t dk, (5.22)

where f1(k) = sgn(kr )Q + k − 2k1/2 and f2(k) = i[sgn(kr )Q + k]. The even symmetry
of the integrand allows us to replace

∫ ∞
−∞ with 2

∫ ∞
0

so that (5.22) may be evaluated
using Hankel’s formula (Copson 1962). This effectively bypasses the non-analytic
point kr = 0. If the initial disturbance velocity is zero (∂t ĥ(k, 0) = 0), the second term
in (5.22) vanishes, leading to a Green’s function with no singularities. This is the
assumption made in Luchini (2004, equation (3)). However, if the initial disturbance
velocity is impulsively perturbed (∂t ĥ(k, 0) = 1), the second term remains and the k3/2

singularity leads to growth. If we subject (5.22) to the initial conditions in table 2
and make use of relation (5.12), the leading behaviour of the responses along the ray
x/t = 0 becomes

Gstat (x, t) ≈ t−2/3 along the ray
x

t
=

dωr

dkr

= 0,

G(x, t) ≈ t1/3 along the ray
x

t
=

dωr

dkr

= 0.

⎫⎪⎪⎬
⎪⎪⎭ (5.23)

It can be shown by applying the method of stationary phase to (5.18) and remembering
that ωi = 0 for all real k (figure 2a) that

Gstat (x, t) ≈ t−1/2 along the ray
x

t
=

dωr

dkr

�= 0. (5.24)

The response, G(x, t), describes an absolutely unstable wave, as defined by (3.5),
which is the result previously obtained by De Luca & Costa (1997) and derived
in (Lin 2003). The static response, Gstat (x, t), describes a stable wave, which is the
result obtained by Luchini (2004). We can also examine the behaviour using Briggs’
criterion (Briggs 1964). A spatial amplification curve of (2.25) with Q =0.13 and
We =0.02 is shown in figure 18. The downstream (—–) and upstream (− −) branches
associated with each ωi isocontour are reduced from ωi > 0 to the ‘pinch’ point, where
the branches coalesce (dωr/dkr = 0). A temporally growing wave with zero group
velocity describes an absolutely unstable wave, as defined by (3.5). Since ωi = 0 at
the pinch point, the absolute instability is only possible if there is algebraic growth,
which we have confirmed as t1/3.

It should be noted that Luchini (2004) remarks on the existence of a zero-
wavenumber time-growing solution for the d’Alembert wave equation, when the
velocity is impulsively perturbed. As he states, this is a non-physical solution. In
contrast to the wave equation, however, the integral solution for a planar liquid sheet
with We < 1 and Q �=0 has convergent behaviour near the origin of wavenumber
space, as shown in figure 17. Furthermore, it is the accumulation of modes which
leads to t1/3 growth, and not the contribution of any single mode. In fact, the results
given below were obtained by excluding the k = 0 mode, because it is undefined in
the sgn(kr ) function.

Series solutions of sinuous wave evolution for We = 0.02 and Q =0.13 are
constructed using N = 4000 modes on a domain of normalized length L =2 × 104 and
are shown in figure 19 for a magnified region. The Gaussian initial condition (4.23)
and initial disturbance velocities [∂th]t=0(x) = 0 and [∂th]t=0(x) = hδ(x) are chosen to
simulate the responses Gstat (x, t) (figure 19a) and G(x, t) (figure 19b) for a duration
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Figure 18. Spatial amplification plot of (2.25) for sinuous waves with Q = 0.13 and We = 0.02.
The downstream (—–) and upstream (− −) branches are reduced from ωi > 0 to ωi = 0.
The branches meet at a pinch point where ωi = 0, indicating the possibility of algebraically
absolutely unstable waves.
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Figure 19. Evolution of a sinuous wave for We =0.02, Q = 0.13. The solution (4.21) is
constructed on a periodic domain of normalized length L =2 × 104 using N = 4000 modes for
a duration of 1200 time units. The initial disturbance velocity is given by (a) [∂th]t=0(x) = 0
and (b) [∂th]t=0(x) =hδ(x). For clarity, the evolution for both responses has been truncated to
30 time units and the domain has been magnified.

of 1200 time units. For either case, the disturbance spreads both upstream and
downstream, as predicted in figure 3(b). For the case where the initial disturbance
velocity is [∂th]t=0(x) = 0, the maximum (�) and origin (�) amplitudes are plotted
against time in figure 20. The maximum amplitude falls along the curve At−0.5,
as predicted by (5.24). The origin amplitude falls along the curve At−0.6667, as
predicted by Gstat (x, t) in (5.23). For the case where the initial disturbance velocity is
[∂th]t=0(x) = hδ(x), the maximum (�) and origin (�) amplitudes are also plotted against
time in figure 20. The origin amplitude falls along the curve At0.3333 as predicted by
G(x, t) in (5.23). Here, the maximum amplitude is the origin amplitude.

For the case of We < 1 and Q �=0, the series solutions do not agree with the neutral
stability prediction of classical stability theory. The response Gstat (x, t) agrees with
the stable (decaying) prediction of Luchini (2004), while the response G(x, t) agrees
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Growth along Growth along
Wave Q We x/t = 0 x/t = constant Spatio-temporal behaviour

Sinuous =0 >1 0 t0 Convectively neutral
Sinuous =0 <1 t0, 0 t0 Neutral (absolutely,

convectively)
Sinuous �= 0 >1 t−1/2 t−1/2emax(ωi )t Convectively unstable
Sinuous �=0 <1 t1/3, t−2/3 t1/3, t−1/2 Absolutely unstable, stable
Varicose =0 Any t−1/2 t1/2, t−1/2 Convectively unstable, stable
Varicose �=0 Any t−1/2 t−1/2emax(ωi )t Convectively unstable

Table 3. Asymptotic growth predictions for sinuous and varicose waves in a thin sheet with an
initial disturbance given by either {h(x, 0) = ∂th(x, 0) = δ(x)} or {h(x, 0) = δ(x), ∂th(x, 0) = 0}.
Two growth rates and stability types are provided where the response to these condition differ.

0 500 1000

10–4

10–2

100

h

t

Figure 20. Growth of a sinuous wave for We = 0.02, Q =0.13. The maximum amplitude
(solid symbols) and origin amplitude (open symbols) in the series solution are shown for
initial disturbance velocities, [∂th]t=0(x) = 0 (�, �) and [∂th]t=0(x) =hδ(x) (�, �). These are
compared with the spatio-temporal prediction curves: At−0.6667 (bottom), At−0.5 (middle) and
At0.3333 (top). The amplitude, A, is specific to each curve.

with the absolutely unstable prediction of De Luca & Costa (1997). A review of the
asymptotic stability predictions of this section are given in table 3.

6. Conclusions
Series solutions not only confirm the asymptotic predictions listed in table 3 for

thin sheets, but also allow us to assess the general value of classical versus spatio-
temporal linear stability theory and the interpretation of asymptotic predictions.
Classical theory has the limitation of only being able to predict exponential growth.
If the growth is in fact algebraic, the classical theory falsely interprets this as neutral
stability. Another limitation of the classical theory is that it is blind to the nature of
growth (convective or absolute). These points have been made as early as Sturrock
(1958) and as recently as Lin & Wang (2008). Here, the series solutions provide actual
validation. The long-term algebraic growth arises from the accumulation of Fourier
modes. This contrasts with exponential growth, which can be paired with a specific
mode on a temporal stability plot.
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Spatio-temporal theory relies on the asymptotic evaluation of the Green’s function,
taken here as the Fourier integral solution subject to an initial impulse. Recent
disagreements in the literature stem from each author’s interpretation of the Green’s
function and whether or not it contains singularities. Here, we show that the order
of singularities in the Green’s function is directly related to the choice of initial
conditions.

Series solutions of varicose waves confirm that, for Q = 0, an initial Gaussian
perturbation of position leads to neutral stability, whereas a perturbation of both
position and velocity leads to convective instability where the disturbance grows like
t1/2. This is true for any Weber number. It should be pointed out that this t1/2 growth
is a new result. None of the previous linear analyses predict instability for varicose
waves when Q = 0 (Squire 1953; Hagerty & Shea 1955; De Luca & Costa 1997; Lin
2003). Since sinuous waves do not grow at all for Q =0, varicose waves would appear
to be the dominant mode in the absence of ambient gas.

For sinuous waves where Q �= 0 and We < 1, series solutions confirm that an initial
Gaussian perturbation of position leads to decay like t−1/2 away from the origin and
t−2/3 at the origin, which corresponds with the prediction of Luchini (2004). If both
the position and velocity are perturbed, the disturbance becomes absolutely unstable
and grows in all directions like t1/3, which is the prediction of De Luca & Costa
(1997). The question then becomes: which initial conditions accurately represent a
physical disturbance? Evidence suggests that this may depend on the experimental
configuration.

The experiments of Brown (1961) seem to indicate absolute instability for We < 1
in lacquer sheets, which suggests that the initial conditions leading to growth are
more relevant. Also, Crapper et al. (1973) observed non-exponential growth of waves
in plane water sheets, which they linked to boundary layer separation. In a nonlinear
stability analysis of plane sheets, Jazayeri & Li (2000) found that higher-order
harmonics of the solution may be responsible for sheet breakup. Nevertheless, the
transient push towards nonlinear growth and atomization could still be attributed to
an algebraic absolute instability. This explanation was given by Lin & Jiang (2003)
to describe the instability that leads to the rupture and termination of a radially
expanding liquid sheet.

On the other hand, Roche et al. (2006) observed ruptures in falling sheets with
We < 1 that subsequently heal, returning the sheet to a stable state. In the experiments
of Le Grand-Piteira et al. (2006), falling sheets were reported to withstand relatively
high amplitude sinuous oscillations without sheet rupture. Since these experiments
seem to contradict linear analyses, the authors conjectured that a nonlinear approach
is the only practical method of explanation. Another possible explanation, suggested
by De Luca & Costa (1997) , is that viscosity may act as a stabilizing agent, suppressing
the algebraic growth that leads to breakup. It is clear that more experiments are
necessary, as well as an analysis including both viscous and nonlinear effects.

This work was supported in part by NSF Grant No. CTS-0138057.
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