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Abstract

We study the so-called frog model on Z with two types of lazy frogs, with parameters
p1, p2 ∈ (0, 1] respectively, and a finite expected number of dormant frogs per site. We
show that for any such p1 and p2 there is positive probability that the two types coexist
(i.e. that both types activate infinitely many frogs). This answers a question of Deijfen,
Hirscher, and Lopes in dimension one.
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1. Introduction and main result

Frog models are growth models that have been studied in various guises for about two
decades. They are also related to activated random walks (see, e.g., [7]) with sleep rate 0. The
name has been attributed to R. Durrett, but the first occurrence of this class of models in print
seems to be [9]. In such models, on a graph G = (V, E), at each site v ∈ V there are η(v) dormant
frogs, where (η(v))v∈V are independent and identically distributed (i.i.d.) Z+ = {0, 1, . . . }-
valued random variables with law ν. Let μ=E[η(x)] denote the mean of ν. Some chosen finite
collection of sites (often just the origin), and all dormant frogs located at them, are activated at
time 0. Each active frog moves independently of all others according to a simple (symmetric)
random walk, and remains active thereafter. On the first visit of any (active) frog to a site v ∈ V ,
that site, and all dormant frogs there, are instantly activated.

In this paper time is discrete, and an active frog can only move at times n ∈N= {1, 2, . . . }
after being activated. In the lazy frog model, each active frog moves according to a lazy
(symmetric) simple random walk, i.e. it moves with probability p ∈ (0, 1] on any given step
(independent of previous steps and other frogs). The reader will hopefully excuse the awkward
terminology here—that active frogs are lazy walkers! By applying the subadditive ergodic the-
orem, shape theorems are known for such models (see, e.g., [1] when there is exactly one
frog per site, and [2] more generally). In general dimensions the shape theorem describes the
set of sites ξn that have been visited by time n, and takes the following form: there exists
a non-empty convex set A ⊂R

d such that, for any ε > 0, we almost surely (a.s.) have that
(1 − ε)A ⊂ n−1ξn ⊂ (1 + ε)A for all n sufficiently large.

Received 30 November 2020; revision received 7 September 2021; accepted 24 September 2021.
∗ Postal address: School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia.
Email: holmes.m@unimelb.edu.au
∗∗ Postal address: Department of Mathematical Sciences, The University of Bath, Claverton Down, Bath, BA2 7AY.
Email: d.kious@bath.ac.uk

© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust.

702

https://doi.org/10.1017/jpr.2021.86 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.86
https://orcid.org/0000-0003-2709-4003
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jpr.2021.86&domain=pdf
https://doi.org/10.1017/jpr.2021.86


Coexistence of lazy frogs on Z 703

−5 −4 −3 −2 −1 0 1 2 3 4 5

FIGURE 1. Our default initial configuration. Frogs at the origin are activated at time 0 (at least one of
each type), and all other frogs are dormant.

We assume throughout this paper that G =Z (with nearest-neighbour edges) and that μ ∈
(0,∞). In this setting ξn ⊂Z and the shape theorem takes a simpler form. Let Rn = max ξn

denote the rightmost point visited by time n, and Ln = min ξn denote the leftmost point. As
stated in [4, Theorem 1.2], for p> 0 there exists a constant A = A(ν, p)> 0 such that

n−1Rn → A and n−1Ln → −A as n → ∞, almost surely.

As the authors point out in [4], the proof of this result (where for p< 1 the frogs are lazy)
requires only minor modifications of the case p = 1 handled in [1, 2].

Deijfen, Hirscher, and Lopes [4] introduced a model with two types of (lazy) frogs. Active
frogs of type i have probability pi ∈ (0, 1] of moving on any given step, independent of all other
frogs, but again an active frog never becomes dormant. When a frog of type i ∈ {1, 2} visits a
site containing dormant frogs (i.e. a site previously unvisited by active frogs), all of the dormant
frogs at that site become active frogs of type i. Since the model is defined in discrete time, it is
possible that a site y containing dormant frogs is simultaneously visited by active frogs of two
different types, in which case a tiebreaker rule is specified to decide which active frog is the
one that activates the dormant frogs at y. Although it does not affect the validity of our main
results, for definiteness we will assume that ‘the’ activator is chosen uniformly at random (and
independent of the past) from among those frogs that are first to arrive at a site. The locations
of the active frogs at time 0 will also be largely unimportant for us, but elements of our proof
require that there is a finite number of active frogs of each type initially. To fix ideas, we will
assume that at time 0 there are η(x) dormant frogs at each x �= 0 and ηi(0) active frogs of type
i ∈ {1, 2} at the origin, and we will condition on η1(0) ∧ η2(0)> 0 (see Fig. 1). However, as a
tool for proving our main result, we will compare the evolution of the model with this initial
distribution of active and dormant frogs with 1-type or 2-type frog models with different initial
distributions.

Let Nn(i) denote the number of (active) frogs of type i at time n. Let Gi = {Nn(i) → ∞}.
We say that there is coexistence of frogs of types 1 and 2 if G1 ∩ G2 occurs. Deijfen et al.
[4] showed that if p1 = p2 > 0 then there is coexistence on Z

d with positive probability. They
asked [4, Section 1.3] what happens when p1 �= p2, and surmised that if μ<∞ then there is
coexistence with positive probability if and only if A(p1) = A(p2) (where A(p) denotes the linear
growth rate of the rightmost visited point of a one-type lazy frog model with parameter p). In
[5], it is shown that the initial configuration of active frogs (as long as it is finite) does not affect
whether there is coexistence with positive probability. Our main result is the following theorem.

Theorem 1. Let G =Z and μ ∈ (0,∞). For any p1, p2 ∈ (0, 1], P(G1 ∩ G2)> 0, i.e. with
positive probability there will be infinitely many frogs of each kind.
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This resolves the open problem of [4] on Z (we do not know what happens in more than
one dimension), except that it is a priori possible that A(p) does not depend on p. Thus, to
ensure that our theorem has new content, we should provide examples where A(p) �= A(p′) if
p �= p′. Trivially, A(p) ≤ 1 for all p. A simple coupling argument (see, e.g., Lemma 1) shows
that A(p) ≤ A(p′) when p< p′. We expect that the inequality is strict if A(p′)< 1. We do not
prove this here, but instead show that arbitrarily small growth rates are possible by taking p
close to 0. This then gives us the aforementioned examples (for any p′ > 0 one can find p< p′
such that A(p)< A(p′)).

Proposition 1. If μ ∈ (0,∞) then A(p) ↓ 0 as p ↓ 0.

Proposition 1 follows from an elementary relation between the frog model and a particular
branching random walk, together with standard bounds on the expected speed of the maxi-
mum of a branching random walk (see Section 5). As indicated above, from Theorem 1 and
Proposition 1 we have the following corollary.

Corollary 1. For any ν such that μ ∈ (0,∞) and any p> 0, there exists p′ ∈ (0, p) with 0<
A(p′)< A(p) such that there is coexistence for the corresponding 2-type frog model on Z with
positive probability.

Concepts of coexistence (or lack thereof) of two or more types of interacting particles have
been considered in various other settings as well, including the setting of first passage perco-
lation; see, e.g., the survey [3] and more recently [6]. Our results give a small and relatively
simple contribution to the literature in this general area.

To prove Theorem 1, we will consider the one-sided one-type model with η(x) dormant
frogs at x> 0 and 0 frogs at y< 0 (and, e.g., η(0) active frogs at 0 at time 0). Let A+(p) =
lim infn→∞ n−1Rn ≥ 0 denote the lim inf linear growth rate of the rightmost activated site,
and A−(p) = lim infn→∞ n−1Ln ≤ 0 the lim inf linear growth rate of the leftmost. A simple
coupling argument (see Lemma 1) shows that the lim sup linear growth rate lim supn→∞ n−1Rn

is at most A(p). Note that A+(p) and A−(p) are a priori random, whereas A(p) has been proved
to be deterministic. We will prove that, almost surely, A+(p) = A(p) and A−(p) = 0. Assuming
that this is true, it is fairly easy to see how to proceed; one then shows that, with positive
probability, both of the following happen:

• type 1 frogs only ever activate frogs to the right of 0, with the rightmost (resp. leftmost)
site visited by type 1 frogs up to time n being roughly nA(p1) (resp. not growing linearly
with time);

• type 2 frogs only ever activate frogs to the left of 0, with the leftmost (resp. rightmost)
site visited by type 2 frogs up to time n being roughly −nA(p2) (resp. not growing
linearly with time).

This then proves Theorem 1. Of course, one needs to start with an active frog at time 0 to
ensure that A(p)> 0, so we will always (implicitly or explicitly) condition on having at least
one active frog at 0 at time 0.

In Section 2 we state and prove a simple monotonicity result (for one-type frog models) that
will be used in other parts of the proof. In Section 3 we prove that A+(p) = A(p) and A−(p) = 0.
Proposition 1 is proved in Section 5. Two-type frog models appear only in Section 4, where
Theorem 1 is proved.
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2. Frog domination

We use the notation (x, l) to denote the lth frog at location x at time zero, where l ≤ η(x).
For p ∈ (0, 1], η = (η(x))x∈Z ∈Z

Z+ , and (finite or infinite) S ⊂Z, we will denote by
X(p, η, S) a (one-type) frog process on Z with initial configuration η and initial activated set
of sites S.

For η, η′ ∈Z
Z+ , we write η ≤ η′ if η(x) ≤ η′(x) for every x ∈Z. We have the following

straightforward monotonicity result. Although this result is undoubtedly well known, we will
apply it often so we include a proof for completeness.

Lemma 1. For any η, η′ such that η ≤ η′, and any S, S′ such that S ⊂ S′, there exists a probabil-
ity space (�,F , P) on which, for every 0< p ≤ p′ ≤ 1, we can define frog processes X(p, η, S)
and X′(p′, η′, S′) such that ξn ⊂ ξ ′

n for every n ∈Z+, P-almost surely.

Proof. Let (�,F , P) be a probability space on which � = (�x,l,j)x∈Z,l,j∈N is a collection of
i.i.d. random variables satisfying P(�x,l,j = 1) = P(�x,l,j = −1) = 1/2, and (Ux,l,k)x∈Z,l,k∈Z+
be independent uniform random variables on [0, 1], independent of �. Given 0< p ≤ p′ ≤ 1,
η ∈Z

Z+ , and S ⊂Z, let X(p, η, S) denote the frog process with η(x) frogs starting at x, with
sites in S activated at time 0, and such that, once activated, the frog (x, l) with 1 ≤ l ≤ η(x)
conducts a lazy walk, stepping k time units after it was activated (k ≥ 1) if Ux,l,k ≤ p. Its jth
step is given by �x,l,j. Also let X′(p′, η′, S′) denote the frog process with η′(x) frogs starting at
x, with sites in S′ activated at time 0, and such that, once activated, the frog (x, l) with l ≤ η′(x)
conducts a lazy walk, stepping k time units after it was activated (k ≥ 1) if Ux,l,k ≤ p′. Its jth
step is given by �x,l,j.

By the construction on this space we have the following trivial facts:

• For fixed p, the range (set of vertices visited) of any particle/frog β = (x, l) at time n is
increasing in its time since activation.

• Each frog (x, l) has the same sequence of moves in the X process and the X′ process
(given by the �x,l,j variables).

• If Ux,l,k ≤ p then Ux,l,k ≤ p′, so the range of a single p frog is dominated by that of the
corresponding p′ frog, relative to their times of activation.

We can thus conclude that all frogs in the X process are activated no earlier than in the X′
process, and their ranges trail those in X′ from that time forward. �

3. One-sided frogs

Let P+ denote the law of the one-sided frog model with (η(x))x∈Z+ i.i.d. each with law ν,
conditional on η(0) ≥ 1, and where only the origin is activated at time 0. When proving our
main result we will force the frogs to take a prescribed sequence of steps initially, and the
evolution of each type of frog thereafter will be stochastically dominated by a frog model with
a different law P

∗ which we now define.
Let P∗ denote the law of the one-sided frog model with η′(x) = η(x) + η(x + 1) + η(0) frogs

at x ≥ 0 at time 0 (where η(x) are i.i.d. ∼μ except that η(0) is conditioned to be strictly posi-
tive), all of which are activated (so S =Z+ is infinite), and no other frogs. Let P∗− be defined
in the same way, but the frogs are only at negative sites x ≤ 0. By Lemma 1 the range of the
frog model under P∗ dominates that under P+.
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Let P(x) denote the original location of the frog that first reaches x (if there are ties, choose
one from those that reach x first, uniformly at random).

Lemma 2. We have P
∗(A−(p) = 0) = 1 for every p ∈ (0, 1]. Moreover, for all δ, ε > 0 there

exists m0(ε, δ)<∞ such that, for all m ≥ m0 and all p ∈ (0, 1],

P
∗
(

inf
n≥0

Ln(p) + m

n
<−ε

)
< δ.

Proof. By Lemma 1 it suffices to prove the result in the case p = 1, since the range is
stochastically increasing in p.

Let Tx denote the first time that an active frog reaches x. We use a (non-lazy) simple
symmetric random walk (Sk)k≥0 defined under a measure P

′. Then, for n ∈N the following
holds:

P
∗(T−n ≤ n3/2

)

=
∞∑

y=0

∞∑

=0

∞∑
k=0

∞∑
j=1

P
∗(T−n ≤ n3/2, P(− n) = y, η(y) = 
, η(y + 1) = k, η(0) = j

)

≤
∞∑

y=0

∑

≥0

∑
k≥0

∑
j≥1

ν({
})ν({k})P∗(η(0) = j) · (
+ k + j) · P′
(

max
1≤k≤n3/2

Sk ≥ n + y
)

≤ 3μ

(1 − ν({0}))
∞∑

y=0

P
′
(

max
1≤k≤n3/2

Sk ≥ n + y
)
,

where the first inequality is obtained by conditioning and using a union bound. Using a union
bound, Chernoff’s bound, and cosh(t) ≤ et2/2 yields, for any t> 0,

P
∗(T−n ≤ n3/2

)
≤ 3μ

(1 − ν({0}))
∞∑

y=0

∑
k≤n3/2

(cosh(t))k

et(n+y)
≤ 3μ

(1 − ν({0}))n3/2
∞∑

y=0

e
1
2 t2n3/2

et(n+y)
.

Now take t = (n + y)n−3/2 and c = 3μ(1 − ν({0}))−1 to see that

P
∗(T−n ≤ n3/2

)
≤ c · n3/2 ·

∞∑
y=0

exp

{
− (n + y)2

2n3/2

}
.

By comparing the sum to an integral and using standard Gaussian tail bounds, we obtain

P
∗(T−n ≤ n3/2

)
≤ cn3/2

(
exp

{
− n2

2n3/2

}
+

∫ ∞

0
exp

{
− (n + y)2

2n3/2

}
dy

)

= cn3/2
(

exp
{−√

n/2
} +

∫ ∞

n
exp

{
− y2

2n3/2

}
dy

)

≤ cn3/2
(

exp
{−√

n/2
} +

∫ ∞

n

y

n
exp

{
− y2

2n3/2

}
dy

)

= cn3/2
(

exp
{−√

n/2
} + √

n exp
{−n2/(2n3/2)

})
≤ 2cn2 exp

{−√
n/2

}
.

https://doi.org/10.1017/jpr.2021.86 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.86


Coexistence of lazy frogs on Z 707

By the Borel–Cantelli lemma, T−n > n3/2 for all but finitely many n, P+-a.s., which implies
that n/T−n converges to 0 P

+-almost surely, which implies that P
+(A−(p) = 0) = 1 for

every p.
Let us prove the second statement. Since lim infn→∞ n−1Ln = 0, for any δ, ε > 0 there

exists m0 ∈N such that, for all m ≥ m0,

P
∗
(

inf
n≥m0

Ln

n
<−ε

)
< δ.

As we work in discrete time, for all 0 ≤ n ≤ m, Ln + m ≥ 0 almost surely, which proves the
second statement. �

Corollary 2. For every δ > 0 there exists kδ ∈N such that P(P(x) ≥ 0 for all x ≥ kδ) ≥ 1 − δ.

Proof. Let Ā+(p) = lim supn→∞ n−1Rn(p) denote the lim sup of the rightmost visited site up
to time n. By Lemma 2 and the definition of P∗− we have P

∗−(Ā+(p) = 0) = 1. By Lemma 1
this implies that for the one-sided model with η(x) frogs per site (x ≤ 0) and with all frogs
activated at time zero, also Ā+(p) = 0 a.s.

Now let R(−)
n denote the rightmost point reached by frogs originating from sites x< 0 up to

time n. For the two-sided model under P, this quantity is stochastically dominated by the same
quantity when all such frogs are activated at time 0. But the latter grows sublinearly as above
(Ā+(p) = 0 a.s.). Since P(A+(p) = A(p)) = 1 and A(p)> 0, this shows that there exists an a.s.
finite random variable K such that P(P(x) ≥ 0 for all x ≥ K) = 1. The claim now follows since
P(K > kδ)< δ for kδ sufficiently large. �

Since the two-sided model under P dominates the one-sided model under P+, the following
implies that both models have the same linear growth rate for the rightmost visited site.

Lemma 3. For any p ∈ (0, 1], P+(A+(p) = A(p)) = 1.

Proof. Let δ > 0. From Corollary 2 there exists kδ ∈N such that P(P(x) ≥ 0 for all x ≥ kδ) ≥
1 − δ. Since the activation time T+

kδ
of kδ in the one-sided model is a.s. finite, there exists

tδ > 0 such that P+(T+
kδ

≤ tδ) ≥ 1 − δ. Both of these statements are conditional on η(0) ≥ 1,
with (only) the origin activated at time 0.

A natural coupling P of these two processes is as follows. Under P, the initial configuration
for X is (η(x))x∈Z which are i.i.d. ∼ ν, with η(0) conditioned to be strictly positive. The initial
configuration (η+(x))x∈Z for the one-sided process is defined as η+(x) = 0 if x< 0 and η+(x) =
η(x) otherwise. On top of this structure define two frog processes X and X+ from an i.i.d.
collection of steps � as in Lemma 1, with S = S+ = {0}, so that X dominates X+. On this
space we therefore have

P

( ⋂
x≥kδ

{P(x) ≥ 0}, T+
kδ

≤ tδ

)
≥ 1 − 2δ. (1)

Now note that
⋂

x≥kδ {P(x) ≥ 0} ∩
{

T+
kδ

≤ tδ
}

⊂ ⋂
x≥kδ {Tx ≤ T+

x ≤ Tx + tδ}, where Tx denotes

the activation time of x by the two-sided process. Since RTn/Tn = n/Tn → A(p) a.s., this shows
that T+

n /n → A(p)−1 a.s. on the event in (1), and therefore also R+
m/m → A(p) a.s. on this event

(consider m ∈ [T+
n , T+

n+1)). This shows that P
+(A+(p) = A(p)) = P(A+(p) = A(p)) ≥ 1 − 2δ.

Since δ was arbitrary, this completes the proof. �
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Corollary 3. For any δ > 0 and p ∈ (0, 1] there exists m1(p, δ) ∈N such that, for all m ≥ m1,

P
+
(

inf
n≥0

Rn + m

n
>

A(p)

2

)
> 1 − δ.

Proof. On the almost sure (by Lemma 3) event {A+(p) = A(p)}, infn≥m Rn/n → A(p) almost
surely as m goes to infinity. Thus, there exists m1 <∞ such that, for all m ≥ m1,

P
+
(

A+(p) = A(p), inf
n≥m

Rn

n
>

A(p)

2

)
> 1 − δ.

Now, for all 0 ≤ n ≤ m, (Rn + m)/n ≥ m/n ≥ 1, which gives the conclusion. �

Remark 1. Corollary 3 implies that, for any k ≥ 1 such that P+ (η(0) = k) > 0, we have

P
+
(

inf
n≥0

Rn + m

n
>

A(p)

2

∣∣∣ η(0) = k

)
> 1 − δ

for all m ≥ m1(p, δP+ (η(0) = k) ) ∈N. This is because (letting Gm denote the event being
measured, and Qk the event being conditioned on) we have for such m that

P
+(Gm | Qk) ≥ P

+(Gm) − P
+(Qc

k)

P+(Qk)
≥ 1 − δP+(Qk) − (1 − P

+(Qk))

P+(Qk)
.

4. The two-type frog model

Let P+
p denote the law of the one-sided frog process, conditional on η(0)> 0, where now

the laziness parameter p of the walkers appears explicitly as the subscript of the probability
measure. We will denote by Pp1,p2 the law of a two-type frog model with η(x) ∼ ν dormant
frogs at x ∈Z at time 0, and with ηi(0) ∼ ν active frogs of type i ∈ {1, 2} at 0 at time 0 (with all
frog counts independent of each other), conditional on η1(0)> 0 and η2(0)> 0. Type i frogs
have laziness parameter pi ∈ (0, 1]. Similarly, we will use the notation P

∗
p when we want to

make the parameter p more explicit.

Proof of Theorem 1. We choose to provide a detailed proof of our main theorem, but the
idea is fairly simple and easily obtained from Lemma 2, Corollary 3 and Remark 1.

Let p1, p2 > 0 be given. Under the measure Pp1,p2 , let the following collection of random
variables all be mutually independent:

• (η(x))x∈Z\{0}, all ∼ ν and with η1(0), η2(0) having distribution ν conditional on being
strictly positive;

• � = (�x,l,j)x∈Z,l,j∈N satisfying Pp1,p2 (�x,l,j = 1) = Pp1,p2 (�x,l,j = −1) = 1/2;

• (Ux,l,k)x∈Z,l,k∈Z+ are independent standard uniform random variables.

Define

η1(x) =
⎧⎨
⎩
η(x) if x> 0,

0 if x< 0,
η2(x) =

⎧⎨
⎩

0 if x> 0,

η(x) if x< 0.

We will define three processes on this space:
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• X1 denotes a one-sided one-type frog process with initial configuration η1 (with only the
frogs at 0 activated at time 0) such that, once activated, the frog (x, l) with 1 ≤ l ≤ η1(x)
conducts a lazy walk, stepping on the kth attempt (k ≥ 1) if Ux,l,k ≤ p1. Its jth step is
given by �x,l,j.

• X2 denotes a one-sided one-type frog process with initial configuration η2 (with only
the frogs at 0 activated at time 0, and where the η2(0) frogs started at 0 are labelled
(0, η1(0) + 1), . . . , (0, η1(0) + η2(0)), such that, once activated, the frog (x, l) (with
x �= 0 and 1 ≤ l ≤ η1(x), or with x = 0 and l = η1(0) + 1, . . . , η1(0) + η2(0)) conducts a
lazy walk, stepping on the kth attempt (k ≥ 1) if Ux,l,k ≤ p2. Its jth step is given by�x,l,j.

• X denotes a two-sided two-type frog process with initial configuration η (with only
the frogs at 0 activated at time 0), where the frogs labelled (0, 1), . . . , (0, η1(0)) are
type 1, and those labelled (0, η1(0) + 1), . . . , (0, η1(0) + η2(0)) are type 2. Once acti-
vated, if activated by a frog of type i ∈ {1, 2}, the frog (x, l) 1 ≤ l ≤ η(x) conducts a lazy
walk, stepping on the kth attempt (k ≥ 1) if Ux,l,k ≤ pi. If ki frogs of type i land on a pre-
viously unvisited site y at the same time, we use the random variable Uy,0,0 to choose the
activator—all dormant frogs at y become type 2 if Uy,0,0 ≤ k2/(k1 + k2), and otherwise
they all become type 1.

Let τ be the first time (possibly infinite) that in the process X a frog of type 2 activates a site
in N (i.e. a type 2 frog arrives at a positive site before any type 1 frog has), or a frog of type 1
activates a site in −N. On the event {τ = ∞} for each i ∈ {1, 2} we have that the moves of all
the frogs in the frog process Xi follow exactly those of the frogs of type i in the frog process X.

Let Ri
n and Li

n be the rightmost and leftmost positions visited by active frogs of type i ∈
{1, 2} up to time n for the Xi process. We will show that

Pp1,p2

(
sup
n∈N

(
R1

n ∧ −L2
n

)
= ∞, τ = ∞

)
> 0. (2)

On the event in (2) we have coexistence because type 1 frogs activate every positive site, and
frogs of type 2 every negative site. Clearly the first event in (2) has probability 1 since simple
random walk has infinite range almost surely (as a Markov chain on an infinite irreducible
class, Z), so we need only show that Pp1,p2 (τ = ∞)> 0.

Let 
min = min{
≥ 0: ν({
})> 0} and 
+min = min{
 > 0: ν({
})> 0}. Define
ε= min{A(p1), A(p2)}/4 and let us fix m ∈N so that m = m0(ε, 1/5) + m1(p1, ν({
+min})/5) +
m1(p2, ν({
+min})/5), where m0 and m1 are given by Lemma 2 and Corollary 3.

Now let A1
m be the event that η1(0) = 
+min, η(x) = 
min for all 1 ≤ x< 2m, and, in the first

2m time units for the process X, the frogs of type 1 at the origin all take 2m steps to the right
while all the activated frogs from the region [1, 2m − 1] take alternate steps left and right (in
that order). Let A2

m be the event that η2(0) = 
+min, η(x) = 
min for all −2m< x ≤ −1, and, in
the first 2m time units, the frogs of type 2 at the origin all take 2m steps to the left while all
the activated frogs from the region [− (2m − 1),−1] alternate stepping right and left (in that
order). Let Am = A1

m ∩ A2
m (see Fig. 2).

Recall that ε= min{A(p1), A(p2)}/4, and define

B1,l
m =

{
inf
n≥0

L1
n+2m + m

n
≥ −ε

}
, B1,r

m =
{

inf
n≥0

R1
n+2m − m

n
>

A(p1)

2

}
,

B2,l
m =

{
sup
n≥0

L2
n+2m + m

n
<−A(p2)

2

}
, B2,r

m =
{

sup
n≥0

R2
n+2m − m

n
≤ ε

}
.
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−5 −4 −3 −2 −1 0 1 2 3 4 5

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5 −4 −3 −2 −1 0 1 2 3 4 5

FIGURE 2. A depiction of the event Am when m = 2 and 
min = 1. The first (resp. second) diagram
shows an example of an initial configuration η1 (resp. η2) on the event Am. The third diagram shows the
corresponding configuration of frogs at time 2m = 4, in particular, the original type 1 (resp. type 2) frog

at the origin at time 0 is now at 2m (resp. −2m).

Also define Bi
m = Bi,l

m ∩ Bi,r
m and Bm = B1

m ∩ B2
m. Note that Am ⊂ {τ > 2m}, while on Bm we

have, for any n ≥ 0, L1
n+2m ≥ −nε− m>−nA(p2)/2 − m ≥ L2

n+2m and similarly R1
n+2m >

R2
n+2m, so τ �= n + 2m for any n on Bm. This shows that Am ∩ Bm ⊂ {τ = ∞}.

It therefore remains to show that Pp1,p2 (Am ∩ Bm)> 0. The event Am does not depend on
η(x) = ηi(x) for |x| ≥ 2m. On the other hand, we have that Pp1,p2 (Am)> 0 for all m ≥ 1, since
Am only prescribes the value of the environment in a finite box and requires a bounded number
of frogs to perform a fixed finite set of moves. We say that a Z-valued process W = (Wn)n≥0
stochastically dominates Y = (Yn)n≥0 if there exists a probability space with processes W′ ∼ W
and W′ ∼ Y on which W ′

n ≥ Y ′
n for every n a.s. Let us briefly justify that, conditional on Am,

the following dominations hold:

• (
R1

n+2m − 2m
)

n≥0
stochastically dominates the rightmost position of a one-sided frog

process (Rn)n≥0 under P+
p1

, conditioned on
{
η(0) = 
+min

}
.

• (
L1

n+2m

)
n≥0

stochastically dominates (Ln)n≥0 under P∗
p1

.

• (−L2
n+2m − 2m

)
n≥0

stochastically dominates the rightmost position of a one-sided frog

process (Rn)n≥0 under P+
p2

, conditioned on {η(0) = 
+min}.
• (−R2

n+2m

)
n≥0

stochastically dominates the leftmost position of a one-sided frog process
(Ln)n≥0 under P∗

p2
.
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We will prove the first two items, as the other two follow by symmetry. For this purpose,
let us denote by N1(x) the number of active frogs on site x for the X1 process at time 2m; see
Fig. 2.

Note that, on Am, at time 2m, N1(x) = 0 for x ≤ −1 and x odd, N1(0) = 
min, N1(x) = 2
min
for all even x ∈ [1, 2m − 1], and finally N1(2m) = η1(2m) + 
+min. On all x ≥ 2m + 1, there are
η1(x) dormant frogs.

The first item follows by the monotonicity provided by Lemma 1 and using that η1(x) has
the same law as η1(x − 2m) for all x> 2m, as there are at least 
+min active frogs on 2m. To
prove the second item, note that, for every x ≥ 0, N1(x) ≤ η1(0) + η1(x) + η1(x + 1), and use
the definition of 
+min together with Lemma 1.

Thus, by our choice of ε and m, using Lemma 2 we obtain

Pp1,p2

((
B1,l

m

)c | Am
) ≤ P

∗
p1

(
inf
n≥0

Ln + m

n
<−ε

)
≤ 1

5
.

Similarly, by Corollary 3 together with Remark 1, we obtain

Pp1,p2

((
B1,r

m

)c | Am
) = Pp1,p2

(
inf
n≥0

R+1
n+2m − 2m + m

n
≤ A(p1)

2

∣∣∣ Am

)

≤ P
+
p1

(
inf
n≥0

Rn + m

n
≤ A(p1)

2

∣∣∣ η(0) = 
+min

)
≤ 1

5
.

Similarly, Pp1,p2

((
B2,r

m

)c | Am
) ≤ 1/5 and Pp1,p2

((
B2,l

m

)c | Am
) ≤ 1/5, and thus Pp1,p2 (Bm |

Am) ≥ 1/5. This proves that Pp1,p2 (Am ∩ Bm) > 0 as claimed. �

5. Extremely lazy frogs

In this section we return to studying the one-type frog model.

Proof of Proposition 1. Recall that ν is the probability measure on Z+ that is the law of
η(x). Let μ=E[η(x)]<∞.

Consider a branching random walk where each individual (independently of other particles)
has:

(i) exactly one offspring, with displacement 0, with probability 1 − p;

(ii) exactly 1 + k offspring, all at displacement +1, with probability ν({k})p/2;

(iii) exactly 1 + k offspring at displacement −1, with probability ν({k})p/2,

and then the parent particle dies immediately. The number of offspring is always at least 1,
with mean 1 + pμ. It is easy to couple this branching random walk (BRW) with our lazy frog
model such that the set of visited points in the BRW contains that of the frog model. To see
this, note that in the lazy frog model an active frog at x either doesn’t move (with probability
1 − p), and then it doesn’t activate any new frogs, or it moves left or right with probability p/2
each, and then it activates at most η(x + 1) or η(x − 1) new frogs.

It is therefore sufficient to show that the speed of the front (the maximal site visited) for
the BRW model goes to zero as p ↓ 0. We will verify this by applying small modifications to
standard results (in particular [8, Lemma 1.5]) that are typically stated for the position of the
rightmost particle at time n (so this differs slightly from the quantity we are after).
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First, note that since Rn/n converges almost surely and is bounded above by 1 for every n,
we have, by dominated convergence, that the limiting speed A(p) for the lazy frog model with
parameter p is equal to lim supn→∞ Ep[n−1Rn]. By the above coupling it is therefore enough
for us to show that lim supn→∞ Ep[n−1M∗

n ] → 0 as p → 0, where M∗
n is the largest site visited

by the BRW up to (and including) time n. Let |x| denote the generation of a particle x in the
BRW, and V(x) denote the location of x. Then

1

n
Ep[M∗

n ] = 1

n
Ep

[
max

x:|x|≤n
V(x)

]
≤ 1

n
log

(
Ep

[
emaxx:|x|≤n V(x)

])

≤ 1

n
log

(
Ep

[ ∑
x:|x|≤n

eV(x)

])
= 1

n
log

(
n∑

k=0

Ep

[ ∑
x:|x|=k

eV(x)

])
.

By conditioning on generation k − 1 of the branching process we have

Ep

[ ∑
x:|x|=k

eV(x)

]
=Ep

[ ∑
x:|x|=k−1

eV(x)

]
eψp(1),

where, for t> 0,

ψp(t) = log Ep

[ ∑
x:|x|=1

eV(x)

]
= log

(
(1 − p) + p

2

∞∑
k=0

ν({k})(k + 1)(e−t + et)

)
.

Thus, by induction, we obtain Ep
[∑

x:|x|=k eV(x)
] = ekψp(1). Alternatively, we could have

applied the many-to-one lemma (see [8, Theorem 1.1]).
Thus, we have 1

nEp[M∗
n ] ≤ 1

n log
(∑n

k=0 ekψp(1)
)
, where

ψp(1) = log

(
1 + p

[
1

2
(e−1 + e)(1 +μ) − 1

])
≥ 0.

Thus,

1

n
Ep[M∗

n ] ≤ 1

n
log

(
(n + 1)enψp(1)) = log (n + 1)

n
+ψp(1).

Since log(1 + x) ≤ x, we see that ψp(1) can be made arbitrarily small by making p arbitrarily
small, which completes the proof. �
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