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Abstract

Spatial conditionally autoregressive (CAR) models in a hierarchical Bayesian framework can be
informative for understanding state politics, or any similar population of border-defined observations.
This article explains how a hierarchical CAR model is specified and estimated and then uses Monte Carlo
analyses to show when the CAR model offers efficiency gains. We apply this model to data structures
common to state politics: A cross-sectional example replicates Erikson, Wright and Mclver’s (1993)
Statehouse Democracy model and a multilevel panel model example replicates Margalit’s (2013) study of
social welfare policy preferences. The CAR model fits better in each case and some inferences differ from
models that ignore geographic correlation.

Political Scientists encounter issues with “space” in cross-sectional and panel research designs
(Stimson 1985). In particular, the cross-sectional units scholars study are often defined by
geographic space, which is a feature political research can incorporate more directly into analysis.
A natural example of this is that the 50 American states are interdependent actors: Neighboring
states are likely to share similar attributes, and the activities of one state can influence the
behavior of another. When studying the politics and policies of states, researchers should take
this interdependence into account. Specifically, empirical models should make assumptions that
are reasonable given the interrelationships among the states. To that end, this article demon-
strates the usefulness of hierarchical Bayesian modeling to account for spatially correlated errors
in the study of state politics. Beyond the American states, the theory and methods discussed here
would apply to the study of any population of interdependent geographic actors, such as the
members of the European Union, the nations of Latin America, or the counties within a country.

While substantial research on American state politics and policy has illustrated the impor-
tance of geography (e.g., Berry and Berry 2007; Monogan 2013), there are also many articles on
state politics do not explicitly consider geographic dependence in the outcome variable. Many
studies that do consider geographic dependence consider the notion of policy diffusion in which
states may adopt successful policies developed by their neighbors (Gray 1973). However, even if
diffusion is not part of the story, it is still worth entertaining the possibility that there are lurking
variables that shape the outcome and are geographically dependent. For example, suppose that
political discourse critically shapes state legislatures’ behavior when acting on policy. Perhaps in
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states where elites deliberate in a less polarizing fashion, it is easier for leaders to enact com-
promise bills. This concept may not be measured easily, as it can be difficult to quantify the tone
of rhetoric. Further, it may be the case that neighboring states are more likely to have a similar
outlook on how politics should function, which shapes how elites publicly discuss issues. If this is
the case, then the nature of discourse is geographically dependent, relevant for the outcome, and
unmeasured.

This is just one example of how some variables could be unmeasurable or unavailable to the
researcher and still influence the outcome. The effect of any such variable is relegated to the
disturbance term. If the unobserved variable is also geographically dependent, as the political
discourse example suggested, then the disturbance terms will necessarily be geographically
dependent. This situation immediately implies that estimating a linear model with ordinary least
squares (OLS) is inappropriate because the Gauss-Markov assumption of independent dis-
turbance terms is violated. Further, the most typical approaches to identifying maximum like-
lihood estimators (MLE) usually assume that each observation is independent of the others,
meaning that ignoring spatial correlation is problematic to these models as well. While there are
potential fixes for spatial correlation in both least squares and likelihood estimators, which will be
discussed, ignoring the problem altogether can produce inefficiency.

This article describes how spatial conditional autoregressive (CAR) models can be specified
within a Bayesian hierarchical model when errors are geographically correlated. First, we place
this method in the context of the range of spatial regression models. Second, we explain how this
specific model works. Third, we present Monte Carlo analyses that illustrate CAR models’
efficiency gains. Fourth, we offer examples of applying CAR models to state-level outcomes: a
cross-sectional replication of Erikson, Wright and Mclver’s (1993) Statehouse Democracy model,
and a multilevel panel model replication of Margalit’s (2013) study of the effect that recent
personal economic shocks have on individuals’ support for welfare policies." We conclude by
discussing how practical researchers can use CAR models.

Approaches to spatial data analysis

When studying geographical data such as the American states, a researcher faces two important
modeling decisions. First, he or she must decide if the model’s functional form should allow for
geographic diffusion. Will one state’s value of the outcome variable spill to neighboring states,
affecting their outcome values? If not, then the researcher is assuming that spatial correlation is
confined to the errors, and a second question emerges: Should the researcher directly model the
outcome variable as spatially correlated in the errors, or allow an indirect spatial structure in a
random effect term of a Bayesian hierarchical model (Banerjee, Carlin and Gelfand 2004, 129)?
Figure 1 illustrates these choices and the resulting model at the end of each possible decision
path. We consider each choice in turn.

Is the functional form diffusive or confined?

A large body of literature on policy diffusion in the 50 states has focused precisely on neighboring
states” similarities in policy outcomes. The notion of policy diffusion proposes that when one
state creates an innovative new law, other states will follow suit and adopt the policy themselves if
the law proves effective or legislators in nearby locales like the idea. This spreading, or diffusion,
of an effective or novel idea across the states may happen in a primarily temporal way wherein a
burst of action occurs with other states following the policy leader (Gray 1973). Alternatively, the
spread may show much more of a geographic pattern in which neighbors of an innovating state

"The Online Appendix has two additional replications: an event history model of lottery adoptions (Berry and Berry 1990)
and a panel count model of clean air enforcement (Monogan 2013a).
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are more likely to adopt the policy due to similar concerns they are facing or similar constituency
interests (Berry and Berry 2007).

Policy diffusion illustrates the logic of a diffusive functional form. When an investigator
believes that one observation’s outcome will affect its neighbors’ outcomes, he or she theoretically
would conclude that spatial similarities are the result of direct spillover. This geographically
diffusive model methodologically resembles the time-series analyst’s decision to include a lagged
dependent variable to estimate a dynamic model that allows carryover from one time period into
the next. For instance, a researcher may have strong reason to believe a neighbor’s policy will
directly lead a state to want to adopt a similar policy. In these cases where there is a clear
contagion story, spatial lag models are appropriate, as Figure 1 illustrates at the endpoint for
choosing a diffusive function. This model changes the functional form, with the effects of other
predictors accumulating in a feedback loop. In addition, the spatial lag model has been expanded
to include temporal lags in a panel setting (Franzese and Hays 2007), and Bayesian methods can
apply to models with a spatially lagged dependent variable (LeSage 1997). So when there is a
direct impact of one state’s outcome on its neighbors’ outcomes, the spatial lag model is the best
model choice.

An important feature of a spatial lag model is that it should not be estimated using OLS. State
policy diffusion studies frequently include an average of neighboring states’ behavior as a pre-
dictor (for continuous outcomes), or either the number of neighbors adopting a policy or a
dummy for whether any neighbor has adopted the policy (for binary outcomes). Estimating a
model with OLS that includes averaged neighbor behavior is problematic because it induces
simultaneity bias. In other words, each observation of the response variable takes a turn being
included in the neighbor average that is used as a predictor, so the neighbor average correlates
with the disturbance term (Ward and Gleditsch 2008, 40-1). This problem can be addressed by
estimating the model with either instrumental variables regression or a maximum likelihood
model that relies on multivariate normal theory (Ward and Gleditsch 2008, 41-3). Because the
MLE version relies on multivariate normal theory, outcome variables that have another dis-
tribution (such as Bernoulli, Poisson, or exponential) impose an added difficulty. That said, if the
diffusive functional form is right, adhering to the correct functional specification should be of
utmost importance—lest the results suffer immediate bias. Lambert, Brown and Florax (2010)
illustrate incorporating a spatial lag into a count model and McMillen (1992) shows this with a
probit model.

Structuring the error in confined functional forms

When the analyst believes there will be no spillover in the model, he or she has the option of
estimating a model with a confined functional form. In these cases, one state’s predictors affect

Functional Form

Diffusive Confined

Spatial Lag Model  Error Structure
Direct Hierarchical
MLE CAR/SAR  Bayesian CAR

Figure 1. Decisions facing the analyst of geographic data. MLE = maximum likelihood estimator; CAR = conditional
autoregressive; SAR = simultaneous autoregressive
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that state’s own value of the outcome, and each neighbor’s predictors affect that particular
neighbor’s own outcome. However, no variable from one state has a spillover effect on a
neighboring state. In these cases, the researcher chooses the “confined” branch in the tree from
Figure 1 and theoretically concludes that spatial similarity among states, once the predictors are
accounted for, is the result strictly of correlation in the error term. Such correlation could emerge
from lurking variables that are geographically distributed but are unmeasured, such as political
culture or narrow details about the local economy.

At the “confined” branch in Figure 1, the researcher has two choices for how to account for
spatially correlated errors. One strategy is to directly model the data in a spatial framework. At
the end of the “direct” node in Figure 1, we see that a researcher can use MLE to fit a spatial error
model with either a CAR or a simultaneous autoregressive (SAR—not to be confused with a
spatial lag model) structure (Leroux 2000). These direct spatial error models are one means of
addressing spatial correlation in errors. Fitting this kind of model resembles the time-series
analyst’s decision to estimate a model with feasible generalized least squares to account for serial
correlation in the error term. In either the time series or geospatial case, the researcher believes
that the predictors have a confined effect with no spillover. By accounting for the structure of
error correlation, spatial error models are more efficient than models that ignore error corre-
lation and report fairer measures of uncertainty in estimates that might be underestimated with
other methods. Yet, these spatial error models have limitations as well. The SAR structure works
for a linear model by transforming the function in a way that yields independent errors without
additional spatial correlation. Hence, SAR models are not used in a GLM setting to model limited
dependent variables (Banerjee, Carlin and Gelfand 2004, 85). By contrast, the CAR structure can
be tooled to model certain limited dependent variables directly. However, the CAR model faces a
major impropriety limit: When data are modeled with a direct CAR, the conditional variance-
covariance matrix does not exist. Consequentially, the only way to model an outcome directly
with a CAR model is to specify a proper CAR that uses a ridge-style solution to model obser-
vations not as a function of their neighbors’ average, but as a proportion of that average
(Banerjee, Carlin and Gelfand 2004, 80-1). Proper CARs often underestimate spatial correlation,
and Wall (2004) illustrates that the correlation structures implied by direct CAR and SAR models
are often counterintuitive and impractical.

Hierarchical spatial modeling

We argue that whenever someone wants to estimate a confined model with spatial data, the more
effective alternative is to choose the “hierarchical” branch shown in Figure 1, which is to
introduce a CAR structure in the second stage of a hierarchical Bayesian model, allowing random
effects to correlate spatially. This hierarchical approach is common in Epidemiology, so this
model has found much of its use in questions on public health. So far, this method has found
little usage in Political Science, though Darmofal (2009) and Monogan (2013) are exceptions.
Given the rise of contextual and geospatial data in Political Science, there are considerable
applications of hierarchical CAR models in the field.

As mentioned above, ignoring spatially correlated errors leads to inefficient estimates. A
hierarchical CAR model can be the most useful means of handling geographic autocorrelation
that is truly part of the error term because it solves several problems that pose difficulties for the
various direct approaches. The first is the issue of impropriety: The direct CAR model requires
the estimation of a nuisance parameter essential for the estimation of the variance-covariance
matrix, and this parameter often biases the results. By contrast, when a CAR structure is
introduced in the random effects as a prior in a Bayesian model, the impropriety can be ignored
because a Gibbs sampler estimator only requires the full conditionals of all error terms, which are
defined. Even without correcting for impropriety, the posterior distribution typically (albeit not
always) will converge to a proper result.
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Second, hierarchical modeling more easily can handle spatial correlation for limited depen-
dent variables. Generalized linear mixed models (GLMM:s) are simple to specify in a Bayesian
setting and allow the introduction of random effects within the inverse link function. Hence,
when a CAR spatial structure of the observations is introduced in a random effect, models of
limited dependent variables can easily allow for spatial correlation in the errors, as the examples
in this article illustrate.

Finally, hierarchical CAR models estimate several interesting quantities that the applied
researcher can report. Bayesian hierarchical models allow researchers to disaggregate unex-
plained variance with simplicity. When a spatial CAR structure is imposed on a hierarchical
random effect, the unexplained variance can be split into that which is spatially dependent and
that which is truly stochastic. Researchers thereby can report the degree to which an outcome
relates to geographic considerations. Further, for forecasting, spatially referenced random effects
are automatically predicted as part of the estimation process.

It should be reiterated that the scholar who believes in a direct relationship between neighbors’
response values should use a spatial lag model of some sort (McMillen 1992; LeSage 1997; Ward
and Gleditsch 2008; Lambert, Brown and Florax 2010). But if diffusion is not part of the story,
then a hierarchical CAR model will be efficient and will report uncertainty fairly. Overall, a
hierarchical CAR model is a useful solution for handling geographic correlation because it
handles impropriety issues, works with limited dependent variables, and reports worthwhile
quantities of interest.

Conditionally autoregressive models

This section turns to the formal structure behind the CAR model. We describe the direct model
first, and then its usage in a hierarchical setting. CAR models provide a geographic structure for
the outcome variable, assuming that areal data are under investigation. Areal data (or lattice data)
are data which are defined by borders.” In other words, this model is applicable when the
observations are nations, counties, congressional districts, or anything defined by a border. With
data such as these, the analyst can easily classify whether two observations are geographic
neighbors, neighbors of neighbors, or how far they are removed.

More formally, in a Gaussian CAR model, we assume that each observation of the outcome,
Y, has the following conditional distribution (Besag, York and Mollié¢ 1991):

Yi|ysi ~ N Zbijy]-,rf ,i=1, ... n (1)
j#i
Here, b;; is the weight of observation j on the mean of Y;. 7} is a unique variance for Y;. The
simple assumption behind Equation 1 gives us the full conditional distributions, but we need the
joint distribution of all observations to estimate the model in a direct setting. We can rely on
Brook’s Lemma (1964) to derive a unique joint distribution from the full conditionals. For
Yo = (J105--¥n0)’> Brook’s Lemma informs us:

POy oo yyn) = PO [ Y2y oo s yn) _P()’Z | ¥10,¥3, -~ +Vn)
TP P | y2 oo s ¥n) P20 | Y10,935 v 5 Yn)

P | Y10, Yn-10)
- : s eee 5 Vnl 2
P()’no | }’107"'7)’;171,0) P()/lo )’o) ( )

*This contrasts from point-referenced data (which, confusingly, are often called spatial data) in which each observation
can be placed at a single point in space with a specific set of coordinates. Researchers concerned about the proximity of
observations measured at clinics or schools, for instance, might want to consult methods for point-referenced data. See
Chapter 2 of Banerjee, Carlin and Gelfand (2004) for further information on point referenced data, and Chapter 3 for a more
detailed exposition about CAR models.
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By applying Brook’s Lemma with Gaussian conditionals, we can show that:

PV1, oo s Yn) X exp{%y’D_l(IB)y} (3)

The matrices are defined with Equation 1’s scalars: B;=b;; and D;; =7;. Y thus has a joint
multivariate normal distribution with mean 0 and covarlance matrix X, =(I-B)" 'D.

Having derived a joint distribution for all observations given the conditional neighbor rela-
tionship, we consider two distributional properties before we proceed to estimate a model. The
ﬁrst property is symmetry. Covariance is a symmetric measure of association, so we need
b; T = bjiz} in order for the covariance between two observations to have a single value. We can
meet thlS requirement if we define the terms as bj;=w;/w;, and r =12 / w;, . Here, Wy is a
measure of the association between two observations. Often W,]—l if the observations are
neighbors and 0 otherwise, meaning that each observation’s mean is the average of its neighbors’
values, but this is not the only possible rule.® w;, is the sum of all w;; for observation i (equaling
the number of neighbors for observation i under the binary shared border rule). This implies that
our joint distribution can be expressed as:

1
PO, v s yn) O<6Xp{—ﬁy’(Dw—W)Y} (4)

where D,, is diagonal, (D,,);;=w;,, and W;;=w,;.. We use the notation Y~CAR(1/T ) to refer to
this joint distribution for all of the observations of Y with precision 1/z°.

The second property we consider is propriety, or whether this joint distribution is a proper
probability distribution. For this distribution to be proper, we would need the inverse of the
covariance matrlx, Z 1= (DW—W), to be nonsingular. Unfortunately, (D,,—W)1=0. This
means that X! is smgular, and the distribution is improper because the variance-covariance
matrix, X, is undefined. When using a direct CAR model, the only solution here is to insert a
nuisance propriety parameter into the inverse of the variance-covariance matrix to make it
z, '= % (D, —pW). Since this formulation often underestimates the true correlation among
observations and can yield biased results, this solution is unattractive. Instead, we handle this lack
of propriety through a hierarchical Bayesian model.*

Specifying a hierarchical Bayesian CAR model

In a Bayesian hierarchical setting, we can specify a model in which there are two random effects
terms influencing the outcome variable. One of the random effects is a traditional independent and
identically distributed disturbance term, and the other is a spatial-clustering random effect that
captures the effect of neighbor similarities. For the spatial-clustering random effect, we can specify
the full conditionals of a CAR model as a prior distribution. Provided the model converges to its
posterior distribution, an improper prior is acceptable in Bayesian inference. By analogy, whenever
analysts place a flat prior on a parameter, they are specifying an improper prior distribution that
does not integrate to 1, yet this often does not pose difficulties for Markov chain Monte Carlo
(MCMC) convergence. Thus, a CAR structure can be applied with the following basic model form:

Y,'=X;ﬂ+9i+¢i
9,‘ ~ N(O,Gz)
¢ ~ CAR(1/7)) (5)

’Researchers also can use non-geographic information to structure these weights. In Online Appendix section 7, we
replicate the Statehouse Democracy example. We define the w;; with the ideological distance between states, so ideologically
similar states are closer neighbors.

*We have defined an R function, CAR Proper, that implements this “proper CAR” model with the ridge solution. The Online
Appendix and Dataverse page show how to use this function and illustrates it with the Erikson, Wright and Mclver (1993) example.
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Equation 5 specifies a simple hierarchical linear model. In this equation, x; is a vector of
covariates for observation i, § is a vector of coefficients, 6; is an independent and identically
distributed Gaussian random effect, and ¢; is a spatially referenced random effect that is based on
neighbors’ values of the disturbance. The priors on the independent 6; values allow us to capture
heterogeneous unexplained variance () among the observations. Meanwhile, the prior on the
vector ¢ of CAR random effects helps us capture regional clustering, or variance that is local with
similar disturbances (z2).

To complete this model, the researcher needs to specify priors on all coefficient terms and
hyperpriors on the two variance terms (2 and ). The basic form listed in Equation 5 offers a
general means to handle geographic dependence with areal data, such as the American states.
The examples of Clean Air Act enforcement and lottery adoption in the Online Appendix also
illustrate how this kind of model can be adapted in a GLMM framework to allow for spatial
correlation with limited dependent variables.

One final complication with this sort of model comes with setting the hyperpriors on the
terms representing the heterogeneous variance (6% and clustering variance (Tf). The variances
cannot be overly vague or the separate random effects will be unidentifiable, and the hyperpriors
on the variances consequently cannot be overly imprecise. In addition, the terms react differently to
their respective variance terms because the heterogeneous 6 terms are independent of each other,
while the clustered ¢ terms are not. Hence, setting hyperpriors such that the share of hetero-
geneous versus clustered variance is approximately even is not straightforward. Bernardinelli,
Clayton and Montomoli (1995) and Best et al. (1999) each offer recommendations on how to set
these hyperpriors.

Once the model is fully specified, estimation is fairly straightforward using MCMC methods.
A Gibbs sampler, for instance, needs only the full conditionals of all parameters to sample from
the posterior. By specifying that the spatially referenced random effects follow a CAR structure,
we immediately have the full conditionals for the effects:

¢i | p_i ~ N(Zbijqﬁj,‘r?i),i:l, ..n (6)

i#i

Hence, we need not apply Brook’s Lemma to deduce a joint distribution or alter the CAR
structure to induce propriety. Rather, we simply can sample from these conditionals to predict
our random effects. CAR models thereby are a natural fit for Bayesian modeling.

The relevance of Bayesian methods

Besides allowing us to estimate a CAR model, Bayesian modeling also offers a more appropriate
strategy for statistical inference. As Gill (2001) notes, data composed of the 50 American states
comprise a complete population. However, classical inference assumes that a fixed population-
level data generating process stochastically produces a sample of data. Frequentist and like-
lihoodist methods, therefore, aim to help the researcher use sample-level data to draw inferences
about unobserved population parameters. For a scholar of state politics to rely on classical
inference, he or she would have to assume that the observed data are based on 50 states that
“might have been” or what the 50 states “might have done.”

By contrast, Bayesian methods assume that the population parameters are random quantities
and treat the data as fixed information. In the case of state policy, it might make more sense to
think of policy outcomes as deterministic facts, rather than randomly occurring outcomes. The
goal of the researcher in this case would be to craft a model that offers a good description of
when certain policies occur.

Beyond a useful description, it is important that the researcher explains the uncertainty he or
she has in model estimates. Again, frequentist methods accomplish this by drawing population
inferences, but are less suited to reporting uncertainty when the model is fit over the entire
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population. (R* is one of the few quantities that does speak to this issue.) By contrast, Bayesian
inference can readily speak to this issue because parameters are considered random. Therefore,
an analyst can make probabilistic statements about parameters that will reflect an appropriate
level of uncertainty given the population-level data. This paper will therefore present baseline
models using Bayesian inference, and then a hierarchical Bayesian model that also incorporates a
CAR error structure. In so doing, the paper should illustrate not only how to deal with concerns
over spatial autocorrelation but also how models of a full population can use the Bayesian
paradigm effectively.

The scope of the problem: Monte Carlo experiment

To what degree does the problem of geographic correlation threaten the accuracy of inference?
To what degree can Bayesian CAR models alleviate inefficiency problems? To get a sense of this,
we conduct an experiment in which an outcome variable is simulated according to a linear model
with two predictors, one independent disturbance term, and one CAR disturbance term.” We
manipulate two treatment variables: the level of spatial dependence in the error term and
whether one of the predictors itself is spatially correlated. With each simulated dataset, we fit a
standard Bayesian linear model and a Bayesian model with CAR random effects. For each
treatment, we record coefficient estimates’ mean absolute error (MAE).

Again, the first treatment parameter is the share of variance that spatially clusters. In this
experiment and in real applications, we use Best et al’s (1999) spatial clustering measure:

Oc

W= (7)

o.+oy

In this measure, o, is the standard deviation of the spatial errors, and oy, is the standard deviation
of the independent errors. y ranges from 0 to 1, with higher values meaning more spatial
correlation. In our experiment, we manipulate the population y value from 0.1 to 0.9 to examine
how a Bayesian CAR model performs against a standard Bayesian linear model. For the second
treatment, we consider how the two predictor variables (called x; and x,) are simulated before
they are used to define the outcome variable (called y). We always simulate x; as a set of
stochastic draws from a standard normal distribution. For x,, in one set of treatments, we treat
this variable as another set of stochastic standard normal draws. In the other set, however, we
force the observations of x, to follow a CAR correlation structure.

Turning to the results, Figure 2 shows the MAE of the coefficients on the two predictors as the
relative level of spatial clustering changes and when neither predictor contains any spatial corre-
lation. The figure’s first panel shows the MAE for x;, and the second panel shows the MAE for x,.
The horizontal axis of each panel shows the population value of y;, or relative share of spatial
clustering in errors. On the vertical axis is the MAE for the estimated coefficient for that predictor at
that level of clustering. Blue dashed lines represent the MAE for a simple Bayesian linear model,
while solid red lines represent the MAE for the Bayesian model that also includes CAR disturbances.

As Figure 2 shows, as the level of spatial clustering rises, the efficiency gain from the CAR
model (relative to a standard linear model) rises. For both predictors, we can see that at low
values of spatial clustering (0.1 <y <0.3), the standard linear model actually has a slightly lower
MAE. This makes sense, as the CAR model does require additional parameters, yet there is not
much of a spatial correlation problem here. However, for each coefficient, starting at = 0.4, the
CAR model outperforms the linear model with a lower MAE, and the gap for each coefficient
widens as the relative clustering increases. Thus, the efficiency gains of the CAR model do rise as
the level of spatial correlation rises.

°In addition to this linear model Monte Carlo analysis, we also conducted a Monte Carlo experiment for logistic regression
with a binary dependent variable. The results, presented in Section 4 of the Online Appendix, yield similar conclusions
to these.
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Figure 2. Mean absolute error of the coefficients of two predictors when neither is spatially correlated, contingent on the
share of error variance with clustering. (a) Predictor x; and (b) predictor x,. CAR = conditional autoregressive
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Figure 3. Mean absolute error of the coefficients of two predictors when the second is spatially correlated, contingent on
the share of error variance with clustering. (a) Uncorrelated predictor x; and (b) correlated predictor x,. CAR = conditional
autoregressive

Turning to Figure 3, we now consider the case where variable x; is spatially correlated itself. In
this figure, all components have the same representation as before. In the first panel, predictor x;
has no spatial correlation among neighboring observations. We can see that the MAE for the
coefficient on this variable is not altered by the fact that the other predictor is spatially correlated—
the relative efficiency responds to y similarly to the previous pattern. By contrast, for x,, the
predictor that is spatially correlated, the error variance of the linear model rises rapidly as the errors
become more spatially correlated, while the CAR model stays fairly steady in its level of error. Thus,
having a spatially correlated predictor raises the stakes for accounting for the error structure for the
sake of efficient estimates. In sum, the CAR model’s efficiency gains increase as the level of spatial
correlation in the errors increases and whenever a predictor is itself spatially correlated. Having
illustrated the CAR specification’s importance for the sake of efficiency, the remainder of this paper
shows how this kind of model can be applied in cross-sectional and multilevel panel settings.

Cross-sectional data: Statehouse Democracy

A seminal study of representation in the United States is Erikson, Wright and Mclver’s (1993)
Statehouse Democracy. This book shows, among other findings, that public ideology strongly
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affects general policy liberalism in the 50 states. Despite several researchers’ additions to this
model, the result of opinion—policy congruence has stood the test of time against new methods,
new data, and new covariates. Given how strong, robust, and important this result is, the
Statehouse Democracy model offers an interesting test case for the CAR model.

Erikson, Wright and Mclver (1993: 126) develop a detailed recursive model in which public
opinion liberalism influences policy outcomes directly as well as indirectly through party elite
liberalism, Democratic party identification, Democratic legislative strength, and legislative lib-
eralism. Geography could matter to a model like this because neighboring states are more likely
to share unmeasured traits than distant states. If these unmeasured traits consistently shape
policy outcomes, then the error terms will be geographically autocorrelated. A CAR model can
offer efficiency gains if such spatial correlation is strong.

Equation 8 presents a CAR structural equation model that follows the Statehouse Democracy
model’s recursive structure (Erikson, Wright and Mclver 1993, 129). The Y variables are,
respectively, party elite liberalism, Democratic party identification, Democratic legislative
strength, legislative liberalism, and policy liberalism. x is public opinion liberalism.

Yii=pixi+01i+ ¢y

Yai = foxi+ Payri+ 0ri+ oy

Y3i = Pyxi+ Psyri+ Peyai+ 03+ s
Yii = Pryri+ Peysi+ Osi+ by

Ysi = Poxi+ Proysi+ Priyai+ Osi+ ds;
p; ~ N(0,1000) (8)
O ~ N(0,07)
dri ~ CAR(1/ A)
1/ 0} ~ G(4.56420496,2.1364)
& ~ G(1.0,1.0)

As Equation 8 shows, vague conjugate priors are assumed for the coefficients (f;). The ¢ terms
refer to the independent disturbance in each equation, with each equation’s disturbances having
a homoscedastic variance. The ¢ terms refer to the spatial clustering random effect in each
equation, with a CAR prior on each. The variance for each of the random effects terms is freely
estimated and the hyperpriors for these parameters are based on the fair prior recommendation
of Bernardinelli, Clayton and Montomoli (1995).

Figure 4 is a forest plot that contrasts the results from the model in Equation 8 to those from a
set of recursive Bayesian linear models.® The left margin lists the input variable and the outcome
it influences. (In other words, the top coefficient is the effect of legislative liberalism on policy.)
The horizontal axis presents the values that a coefficient may take. The point characters are
placed to reflect the mean of the posterior distribution of a coefficient. The line segments are
placed to reflect the range of the 90 percent credible intervals, meaning there is a 0.9 posterior
probability that the coefficient falls within that range. Solid red lines with red triangle characters
present the results for a CAR model, while dashed black lines with circle characters present the
results for a standard linear model.

As Figure 4 shows, the mean coefficient estimates shifted only marginally, and the credible
intervals show no drastic change. It is notable that all of the CAR credible intervals are a bit wider
than the intervals from the model with independent errors, so in general the wider intervals

*We diagnosed every model in this paper for nonconvergence with Gelman and Rubin’s (1992) statistic, using the coda
package in R 3.1.2. The Gelman-Rubin statistic never exceeded 1.2 for any parameter; therefore, no models showed evidence
of nonconvergence. We thereby conclude that all reported results are stable.
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Figure 4. Posterior means and 90 percent credible intervals of coefficients for the policy liberalism model using results
from linear models and results from a CAR structure. The models were fitted with a post burn-in MCMC sample of 600,000
in OpenBUGS 3.2.3. CAR = conditional autoregressive; MCMC = Markov chain Monte Carlo

ought to be the safer choice for expressing the level of model uncertainty. In this case, none of the
substantive conclusions changed from what was reported in Statehouse Democracy. However, the
overall model fit is a bit better with the CAR model—the Deviance Information Criterion (DIC)
for the CAR model is 247.5, which is lower score and thereby a better penalized fit than the
independent-error model’s DIC score of 334.9.

Beyond the better fit, even when mean estimates and credible intervals do not change much,
researchers still have a potentially useful estimate of spatial clustering in the conditional variance.
We use Best et al.’s (1999) y measure of spatial clustering reported in Equation 7. For this model,
the mean y values are 0.5317 for party elite liberalism, 0.4571 for Democratic party identifi-
cation, 0.4429 for Democratic legislative strength, 0.3815 for legislative liberalism, and 0.4054 for
policy liberalism. With all of these, our prior was that y=0.5. Hence, for these five variables, the
data indicated less spatial correlation than our prior indicated for four of the outcomes, pulling
the posterior mean down below 0.5. For party elite liberalism, however, the data pulled the
posterior mean upward, indicating that there is more spatial clustering than our prior of half of
the unexplained variance. Thus, we learn that one of these variables shows relatively high spatial
correlation, while the other four do not. While the original findings from Statehouse Democracy
stand up in this model, we do learn more about the spatial patterns of the variables in the model.

Multilevel panel data: support for welfare policies

A second example applies Bayesian hierarchical modeling to multilevel panel data, replicating
Margalit’s (2013) study of the determinants of support for social welfare programs. Using survey
data of all 50 states and Washington, D.C. across four waves, Margalit utilizes OLS with fixed
effects for states and waves on survey responses to questions about individuals’ support for
welfare policies. He finds that recent, personal economic shocks (more specifically, the recent loss
of one’s job) increases individuals’ support for these policies. Geographic correlation may be
present: As ideology and overall economic health cluster geographically, preferences on welfare
spending also may cluster.
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Equation 9 presents a CAR model with random effects introduced on waves and a Bayesian
CAR prior placed on the random effects for states:
Yije ~ x;jtﬂ + v+ i+ Oyt
Pr ~ N(0,1000)
Ot ~ N(0,1/6)
ve ~ N(0,1/1n)
¢; ~ CAR(1/7)
§ ~ G(1.0,1.0)
n ~ G(0.1,0.001)
G(0.1,0.001)

2

i

2

2

Here, i references the individual respondent, j represents his or her state, and ¢ represents the
time wave of the response. Xj; is a vector of covariates for an observation that includes variables
for recent job loss, severe drop in household income, job insecurity, spouse losing a job, previous
welfare support, party ID, long-term unemployment status, having a new job, whether one is
looking for a job, income (logged), education, race, gender, age, marital status, the county
unemployment rate, and a constant. # is the vector of population-wide parameters, and each
term 3 (where k=0,...,28) is an individual element of that vector. 6;; is the heterogeneous error
term for each individual-year observation. v, refers to the random effect for wave ¢, and ¢; refers
to the spatial clustering random effect for each state j. The coefficients have vague normal priors,
and the precision terms have vague gamma-distributed hyperpriors. We compare this to a rival
model with state-level random effects that are independent of each other, instead of clustered
with a CAR prior.”

Figure 5 presents a forest plot of the results of the two models: the first with independent
random effects terms on waves and states, and the second with random effects on waves and
CAR random effects on states. The horizontal axis shows coefficient values, the vertical axis
displays variable names, posterior means are shown with points, and the associated credible
intervals are shown with line segments. The results generally replicate Margalit’s findings, with
some interesting caveats: recently losing a job tends to increase individuals’ support for welfare
programs, but other economic shocks such as a spouse losing a job, job insecurity, or a drop in
household income shows no robust effect.® Familiar control variables such as party identification
perform as expected, with Republicans supporting welfare programs at lower levels. Interestingly,
the converse of a recent economic negative shock shows no substantial impact: recently acquiring
a new job does not have an effect on individuals’ level of welfare support. Longer term personal
employment variables such as being unemployed for multiple years or not being in the labor
market have no clear effect.

This model shows just how easy it is to specify a multilevel model with CAR-distributed
random effects. By simply following the normal model structure and adding this constraint, we
allow for spatial correlation by state. In doing this, the overall model fit is improved with a CAR
structure. The CAR model has a DIC score of 8141, which is lower than the score of 8150 for the
model with independent state-level random effects.

For two more examples of how to apply CAR models in various settings, as well as a tutorial
on how to apply this model in OpenBUGS, please see the Online Appendix. The Online

’In the rival model with independent frailties, we inflate the precision by 0.497 to account for the fact that spatial
correlation in the CAR model induces a higher precision that the initial prior might imply. Thus, the precision of those state
level random effects has a hyperprior of G(4.56420496,2.1364).

8Some control variables such as education, race, and gender are omitted to avoid overcrowding on the graph, but the
results for these variables between the two models line up as well as those presented above.
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Figure 5. Posterior means and 90 percent credible intervals of coefficients from the model of welfare support with wave
random effects and CAR spatial effects. The models were fitted with a post burn-in MCMC sample of 600,000 in OpenBUGS
3.2.3. CAR = conditional autoregressive; MCMC = Markov chain Monte Carlo

Appendix shows an example of CAR modeling for panel data without a multilevel structure but
with a limited dependent variable—a count model. That example replicates Monogan’s (2013a)
analysis of state-level Clean Air Act enforcement actions. The Online Appendix also shows an
example duration model with an update of Berry and Berry’s (1990) analysis of lottery adoptions.
In that example, a spatial lag term actually loses its robust effect when spatial errors are
accounted for. Finally, the tutorial (along with example code available through Dataverse) is
intended to show the practical researcher how to apply these methods.

Implications for the practical researcher

This paper has aimed to illustrate the usefulness of spatial CAR models in order to yield more
accurate inferences in the analysis of state-level data. In doing so, hopefully a few clear ideas
stand out for the applied policy analyst. The applied researcher should carefully consider what
assumptions are fair to make and how the model can be built to reflect the data accurately. If the
data have features such as geographic dependence, then addressing these can yield more accurate
inferences in substantive conclusions. This could be because ignoring autocorrelation produces
unfairly small credible intervals (as we see in our examples), because the point estimates from our
data are grossly out-of-line due to inefficiency (as the Monte Carlo analyses would imply), or
because adding a geographic structure to the errors prevents a geographically correlated variable
like a diffusion parameter from compensating for an error process (as the lottery adoption
example shows).

Further, these models offer new quantities that are interesting to report. In the simple case of a
continuous outcome, one can observe the distribution of the independent and clustering random
effects. With the Statehouse Democracy model, we were able to see that party elite liberalism
showed a relatively high level of geographic correlation in the errors. We also can report var-
iances of spatially correlated random effects as a means of breaking down how the unexplained
variance breaks-down across data structures and geography. The 50 states form a complete
population, and each observation is likely to be similar to its neighbors. Therefore, quantities that
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speak to the level of clustering in an outcome promise to be useful because they allow researchers
to report how the states are truly interdependent. Overall, state-level data have unique aspects
that require careful attention and can often lead to complex models. Of course, non-continuous,
time-dependent, and geographically oriented data pose difficulties, but also offer unique
opportunities for assessing causality and entertaining unique kinds of relationships. Thus, fully
addressing the complexities of state data can also be a benefit to developing a deeper under-
standing of the enactment and impact of policies and other outcomes. This article has served to
update our understanding of several results in state politics through new data and methods, to
show that geographic dependence is a major factor in state politics, and to demonstrate how to
apply these techniques.

Supplementary Material. To view supplementary material for this article, please visit https://doi.org/10.1017/psrm.2018.55

Acknowledgements. For helpful assistance, the authors would like to thank Dominik Hangartner, Bradley P. Carlin, Anna
Bassi, Mark D. Ramirez, Ryan Moore, Jeff Gill, Andrew Womack, Ryan Bakker, Michael New, Andrew Karch, Kosuke Imai,
Shauna Reilly, Garrick Percival, Michael H. Crespin, Andreas Murr, Jason Reifler, Brian Fogarty, Annie Watson, George
Williford, Guy Whitten, and Scott Cook. For coding original data, we thank Dustin Elliott and Ryan Williamson. For
providing replication data, we thank Andrea McAtee, Bill Berry, Yotam Margalit, and Jerry Wright. For providing useful
code, we thank David Darmofal, Patrick Brandt, Bradley P. Carlin, and Sudipto Banerjee.

References

Banerjee S, Carlin BP and Gelfand AE (2004) Hierarchical Modeling and Analysis for Spatial Data. New York: Chapman &
Hall/CRC.

Bernardinelli L, Clayton D and Montomoli C (1995) Bayesian Estimates of Disease Maps: How Important are Priors?
Statistics in Medicine 14, 2411-2431.

Berry FS and Berry WD (1990) State Lottery Adoptions as Policy Innovations: An Event History Analysis. The American
Political Science Review 84(2), 395-415.

Berry FS and Berry WD (2007) Innovation and Diffusion Models in Policy Research. In Paul A. Sabatier (ed., Theories of the
Policy Process. Boulder, CO: Westview Press.

Besag J, York J and Mollié A (1991) Bayesian Image Restoration, with Two Applications in Spatial Statistics. Annals of the
Institute of Statistical Mathematics 43(1), 1-20.

Best NG, Waller LA, Thomas A, Conlon EM and Arnold RA (1999) Bayesian Models for Spatially Correlated Disease and
Exposure Data. In J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith ed. Bayesian Statistics 6. New York: Oxford
University Press.

Brook D (1964) On the Distinction between the Conditional Probability and the Joint Probability Approaches in the
Specification of Nearest-Neighbour Systems. Biometrika 51, 481-483.

Darmofal D (2009) Bayesian Spatial Survival Models for Political Event Processes. American Journal of Political Science 53,
241-257.

Erikson RS, Wright GC and Mclver JP (1993) Statehouse Democracy: Public Opinion and Policy in the American States.
New York: Cambridge University Press.

Franzese R] Jr. and Hays J (2007) Spatial Econometric Models of Cross-Sectional Interdependence in Political Science Panel
and Time-Series-Cross-Section Data. Political Analysis 15(2), 140-164.

Gelman A and Rubin DB (1992) Inference from Iterative Simulation Using Multiple Sequences. Statistical Science 7,
457-511.

Gill J (2001) Whose Variance is it Anyway? Interpreting Empirical Models with State-Level Data. State Politics and Policy
Quarterly 1(3), 318-338.

Gray V (1973) Innovation in the States: A Diffusion Study. The American Political Science Review 67(4), 1174-1185.

Lambert DM, Brown JP and Florax RJGM (2010) A Two-Step Estimator for a Spatial Lag Model of Counts: Theory, Small
Sample Performance and an Application. Regional Science and Urban Economics 40(4), 241-252.

Leroux BG (2000) Modelling Spatial Disease Rates Using Maximum Likelihood. Statistics in Medicine 19(17-18), 2321-2332.

LeSage JP (1997) Bayesian Estimation of Spatial Autoregressive Models. International Regional Science Review 20(1 & 2),
113-129.

Margalit Y (2013) Explaining Social Policy Preferences: Evidence from the Great Recession. American Political Science
Review 107(1), 80-103.

McMillen DP (1992) Probit with Spatial Autocorrelation. Journal of Regional Science 32(3), 335-348.

Monogan JE III (2013a) Modeling Policy Adoption and Impact with Multilevel Methods. In Marc A. Scott,Jeffrey S.
Simonoff and Brian D. Marx ed. The SAGE Handbook of Multilevel Modeling. Thousand Oaks, CA: Sage.


https://doi.org/10.1017/psrm.2018.55
https://doi.org/10.1017/psrm.2018.55

https://doi.org/10.1017/psrm.2018.55 Published online by Cambridge University Press

Political Science Research and Methods 557

Monogan JE III (2013b) The Politics of Immigrant Policy in the 50 U.S. States, 2005-2011. Journal of Public Policy 33(1),
35-64.

Stimson JA (1985) Regression Models in Space and Time: A Statistical Essay. American Journal of Political Science 29,
914-947.

Wall MM (2004) A Close Look at the Spatial Structure Implied by the CAR and SAR Models. Journal of Statistical Planning
and Inference 121(2), 311-324.

Ward MD and Gleditsch KS (2008) Spatial Regression Models. Thousand Oaks, CA: Sage.

Cite this article: Jackson JL, Monogan III JE. 2020. The 50 American States in Space and Time: Applying Conditionally
Autoregressive Models. Political Science Research and Methods 8, 543-557. https://doi.org/10.1017/psrm.2018.55


https://doi.org/10.1017/psrm.2018.55

	The 50 American States in Space and Time: Applying Conditionally Autoregressive Models&#x2020;
	Approaches to spatial data analysis
	Is the functional form diffusive or confined?
	Structuring the error in confined functional forms

	Figure 1Decisions facing the analyst of geographic data.
	Hierarchical spatial modeling

	Conditionally autoregressive models
	Specifying a hierarchical Bayesian CAR model
	The relevance of Bayesian methods

	The scope of the problem: Monte Carlo experiment
	Cross-sectional data: Statehouse Democracy
	Figure 2Mean absolute error of the coefficients of two predictors when neither is spatially correlated, contingent on the share of error variance with clustering.
	Figure 3Mean absolute error of the coefficients of two predictors when the second is spatially correlated, contingent on the share of error variance with clustering.
	Multilevel panel data: support for welfare policies
	Figure 4Posterior means and 90 percent credible intervals of coefficients for the policy liberalism model using results from linear models and results from a CAR structure.
	Implications for the practical researcher
	Figure 5Posterior means and 90 percent credible intervals of coefficients from the model of welfare support with wave random effects and CAR spatial effects.
	Supplementary Material
	Acknowledgements
	ACKNOWLEDGEMENTS
	References




