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SELF-NORMALIZED LARGE DEVIATION FOR
SUPERCRITICAL BRANCHING PROCESSES

WEIJUAN CHU,∗ Hohai University

Abstract

We consider a supercritical branching process (Zn, n ≥ 0) with offspring distribution
(pk, k ≥ 0) satisfying p0 = 0 and p1 > 0. By applying the self-normalized large
deviation of Shao (1997) for independent and identically distributed random variables, we
obtain the self-normalized large deviation for supercritical branching processes, which is
the self-normalized version of the result obtained byAthreya (1994). The self-normalized
large deviation can also be generalized to supercritical multitype branching processes.
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1. Introduction

Let (Zn, n ≥ 0) be a supercritical branching process with Z0 = 1, offspring distribution
pk = P(X = k), k = 0, 1, 2, . . ., and mean μ = EX ∈ (1,∞). That is,

Z0 = 1, Zn+1 = Xn,1 +Xn,2 + · · · +Xn,Zn, n ≥ 0, (1)

whereXn,k is the number of offspring of the kth individual in generation n, and (Xn,k, n ≥ 0,
k ≥ 1) are independent and identically distributed (i.i.d.) with the same distribution as X.
To avoid the deterministic case, we suppose that pk < 1 for any nonnegative integer k. Without
loss of generality, we also assume that p0 = 0 throughout this paper. Then we have Zn → ∞
almost surely (a.s.) as n → ∞. Thus, according to the strong law of large numbers, we have,
as n → ∞,

Zn+1

Zn
→ μ a.s.

One of the interesting topics is to consider the convergence rate of

P

(∣∣∣∣Zn+1

Zn
− μ

∣∣∣∣ > ε

)
for ε > 0 as n → ∞.

In [1], the author obtained the following theorem.

Theorem 1. ([1, Theorem 1].) Assume that p1 > 0 and E[exp(θZ1) | Z0 = 1] < ∞ for some
θ > 0. Then, for all ε > 0,

lim
n→∞

1

pn1
P

(∣∣∣∣Zn+1

Zn
− μ

∣∣∣∣ > ε

∣∣∣∣ Z0 = 1

)
=

∑
k

φ(k, ε)qk < ∞, (2)
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where φ(k, ε) = P(|X̄k −μ| > ε), X̄k is the mean (1/k)
∑k
i=1Xi of k i.i.d. random variables

{Xi} with distribution {pj , j ≥ 1}, and {qk} is defined via the generating function Q(s) =∑∞
k=1 qks

k, 0 ≤ s < 1, the unique solution of the functional equation

Q(f (s)) = p1Q(s), where f (s) =
∞∑
j=1

pj s
j , 0 ≤ s < 1,

subject to

Q(0) = 0, Q(1) = ∞, Q(s) < ∞ for 0 ≤ s < 1.

Weaker conditions for the large deviation in (2) to hold do exist; see, for example, [1,
Theorem 2 and Corollary 1], where the exponential moment condition is replaced by p1μ

r > 1
and P(|X̄k − μ| > ε) ≤ Cεk

−r for some constants Cε and r > 0, or by E[Z2α+δ
1 | Z0 = 1] <

∞ for some α ≥ 1 and δ > 0 such that p1μ
α > 1. Other related results with weaker moment

conditions can be found in [4], [6], and [7].
All the abovementioned results require the use of moment conditions for the offspring X.

In this paper we use the self-normalized large deviation obtained by Shao [9], recalled in
Theorem 2 below, to establish the self-normalized large deviation for supercritical branching
processes in the p1 > 0 case. First we introduce the self-normalized large deviation results for
the i.i.d. random variables.

Let Y, Y1, . . . , Yn be i.i.d. random variables with P(Y �= 0) > 0, and let Sn = ∑n
i=1 Yi.

Shao [9] obtained the large deviation for Sn in the self-normalized version without any moment
conditions.

Theorem 2. ([9, Theorem 1.1].) Let Y, Y1, Y2, . . . be i.i.d. random variables. Assume that
either EY ≥ 0 or EY 2 = ∞. Let V 2

n = ∑n
i=1 Y

2
i . Then

lim
n→∞ P(Sn ≥ x

√
nVn)

1/n = sup
c≥0

inf
t≥0

E[et (cY−x(Y 2+c2)/2)]

for x > EY/(EY 2)1/2, where EY/(EY 2)1/2 = 0 if EY 2 = ∞.

Now we consider the self-normalized large deviation for supercritical branching processes.
That is, we find a nondeterministic normalization (Rn, n ≥ 1) for |Zn+1/Zn − μ|, such that

Rn

∣∣∣∣Zn+1

Zn
− μ

∣∣∣∣ → 0 in probability as n → ∞

with convergence rate pn1 . The following theorem is the main result of this paper.

Theorem 3. If p0 = 0, p1 > 0, and the offspring mean μ ∈ (1,∞), then, for all x > 0,

lim
n→∞

1

pn1
P

( √
Zn√∑Zn

i=1(Xn,i − Zn+1/Zn)2

∣∣∣∣Zn+1

Zn
− μ

∣∣∣∣ ≥ x

∣∣∣∣ Z0 = 1

)

=
∞∑
k=1

qkψ(k, x)

< ∞, (3)
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where the {Xn,i} are the same as in (1),

ψ(k, x) = P

(∣∣∣∣
k∑
i=1

(Xi − μ)

∣∣∣∣ ≥ x
√
k

√√√√ k∑
i=1

(Xi − X̄k)2
)

X̄k is the mean (1/k)
∑k
i=1Xi of k i.i.d. random variables {Xi} with distribution {pj , j ≥ 1},

and the {qk} are as defined in Theorem 1.

The self-normalized large deviations usually have some certain statistics applications. This
result can be used for statistical inference and to construct a confidence interval for the mean μ
for instance.

2. Proof of Theorem 3

Recalling that Zn is the number of individuals of the branching process in generation n, and
Xn,i, 1 ≤ i ≤ Zn, is the number of offspring of the ith individual in generation n, we define

V (n)2 =
Zn∑
i=1

(Xn,i − μ)2, X̄(n) = 1

Zn

Zn∑
i=1

Xn,i, (4)

V 2
k =

k∑
i=1

(Xi − μ)2, X̄k = 1

k

k∑
i=1

Xi, (5)

where (Xi, i ≥ 1) is an independent random variable series and distributed as the offspring
number X. Then we have X̄(n) = Zn+1/Zn and

Zn∑
i=1

(Xn,i − X̄(n))2 = V (n)2 − Zn(μ− X̄(n))2. (6)

First we state a convergence property about the generating function of Zn that will be useful
later in this section. Define the generating function of Zn as

fn(s) = E[sZn | Z0 = 1], |s| ≤ 1.

Lemma 1. ([1, Propositions 2 and 3].) If p1 > 0 then

lim
n→∞

fn(s)

pn1
=

∞∑
k=1

qks
k, (7)

lim
n→∞

P(Zn = k | Z0 = 1)

pn1
= qk for all k ≥ 1, (8)

where (qk, k ≥ 1) is the same as in Theorem 1.

For any x > 0, by (6), the probability in (3) can be written as

P

(∣∣∣∣
∑Zn
i=1(Xn,i − μ)√

V (n)2 − Zn(μ− X̄(n))2

1√
Zn

∣∣∣∣ ≥ x

)
.

Now we are ready to prove Theorem 3.
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Proof of Theorem 3. For any integer n ≥ 1, by the total probability formula, the indepen-
dence of Zn and (Xn,i , i ≥ 1), and (4) and (5), we obtain

P

(∣∣∣∣
Zn∑
i=1

(Xn,i − μ)

∣∣∣∣ ≥ x
√
Zn

√
V (n)2 − Zn(μ− X̄(n))2

)

=
∞∑
k=1

P(Zn = k)P

(∣∣∣∣
k∑
i=1

(Xi − μ)

∣∣∣∣ ≥ x
√
k

√
V 2
k − k(μ− X̄k)2

)

:=
∞∑
k=1

P(Zn = k)ψ(k, x),

where ψ(k, x) is defined in Theorem 3 and {Xi, i ≥ 1} is an independent random series,
distributed as X. According to the value of

∑k
i=1(Xi − μ),ψ(k, x) can be divided into two

parts:

ψ(k, x) = P

( k∑
i=1

(Xi − μ) ≥ x
√
k

√
V 2
k − k(μ− X̄k)2

)

+ P

( k∑
i=1

(μ−Xi) ≥ x
√
k

√
V 2
k − k(μ− X̄k)2

)

:= I (k)+ J (k).

Now if both I (k) andJ (k) converge to 0 quickly enough as k → ∞ then, by a slight modification
of the Lebesgue dominated convergence theorem (see [8, Proposition 18, p. 270]) together with
(7) and (8), we can obtain Theorem 3.

Now we prove that both I (k) and J (k) converge to 0 exponentially as k → ∞. For any
0 < ε < 1, I (k) becomes

I (k) = P

( k∑
i=1

(Xi − μ) ≥ x
√
k

√
V 2
k − k(μ− X̄k)2, k(μ− X̄k)

2 < εV 2
k

)

+ P

( k∑
i=1

(Xi − μ) ≥ x
√
k

√
V 2
k − k(μ− X̄k)2, k(μ− X̄k)

2 ≥ εV 2
k

)

≤ P

( k∑
i=1

(Xi − μ) ≥ x
√
(1 − ε)kVk

)
+ P(k(μ− X̄k)

2 ≥ εV 2
k ). (9)

Note that

k(μ− X̄k)
2 = 1

k

( k∑
i=1

(Xi − μ)

)2

.

Thus, for the second part of (9), we have

P(k(μ− X̄k)
2 ≥ εV 2

k ) = P

(( k∑
i=1

(Xi − μ)

)2

≥ εkV 2
k

)

= P

( k∑
i=1

(Xi − μ) ≥ √
εkVk

)
+ P

( k∑
i=1

(μ−Xi) ≥ √
εkVk

)
. (10)
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By applying Theorem 2 with variables Yi = Xi − μ for constant δ > 0 to be determined later,
we obtain, for the first part of (10),

P

( k∑
i=1

(Xi − μ) ≥ √
εkVk

)
≤ (1 + δ)kρk1 for large enough integer k, (11)

where
ρ1 := sup

c≥0
inf
t≥0

E
[
exp

(
t
(
c(X − μ)− √

ε 1
2 ((X − μ)2 + c2)

)] ∈ (0, 1).

For the second part of (10), we can apply Theorem 2 with variables Yi = μ−Xi to obtain

P

( k∑
i=1

(μ−Xi) ≥ √
εkVk

)
≤ (1 + δ)kρk2 for large enough k, (12)

where
ρ2 := sup

c≥0
inf
t≥0

E
[
exp

(
t
(
c(μ−X)− √

ε 1
2 ((μ−X)2 + c2)

))] ∈ (0, 1).

Similarly, the first probability in (9) can be estimated by

P

( k∑
i=1

(Xi − μ) ≥ x
√
(1 − ε)kVk

)
≤ (1 + δ)kρk3 for large enough k, (13)

where

ρ3 := sup
c≥0

inf
t≥0

E
[
exp

(
t
(
c(X − μ)− x

√
1 − ε 1

2 ((X − μ)2 + c2)
))] ∈ (0, 1).

The same argument can be applied to estimate J (k) by dealing with −Xi instead. Indeed,

J (k) ≤ C2(1 + δ)kρk4 for all k ≥ 1 (14)

for some constants ρ4 ∈ (0, 1) and C2 > 0. Now we define ρ = max{ρ1, ρ2, ρ3, ρ4} and
choose a constant δ ∈ (0, 1) such that (1 + δ)ρ < 1. Therefore, by (9)–(14), we obtain

ψ(k, x) = I (k)+ J (k) ≤ C(1 + δ)kρk for all k ≥ 1

with C being a positive constant. Therefore,

0 ≤ hn(k) := P(Zn = k)

pn1
ψ(k, x) ≤ C

P(Zn = k)

pn1
(1 + δ)kρk =: Cgn(k).

By (8), for any k ≥ 1,
P(Zn = k)

pn1
→ qk as n → ∞.

Thus, for any k ≥ 1, gn(k) → qk(1 + δ)kρk and hn(k) → qkψ(k, x) as n → ∞. Moreover,
by (7), we have

lim
n→∞

∞∑
k=1

gn(k) = lim
n→∞

fn((1 + δ)ρ)

pn1
=

∞∑
k=1

qk(1 + δ)kρk < ∞.

https://doi.org/10.1017/jpr.2018.29 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.29


Supercritical branching processes 455

Therefore, by the dominated convergence theorem (see, for example, [8, Proposition 18]), we
have

lim
n→∞

∞∑
k=1

hn(k) =
∞∑
k=1

qkψ(k, x),

which is our result in Theorem 3. �

3. Self-normalized large deviation for supercritical multitype branching processes

In this section we consider the self-normalized large deviation for supercritical multitype
branching processes. Assume that Zn(i) = (Zn(i, 1), . . . , Zn(i, d)) is a d-type branching
process initiated from a single particle of type i. For ease of exposition, we consider only the
d = 2 case, that is,

Z0(i) = Ii , Zn(i) =
2∑
j=1

Zn−1(i,j)∑
k=1

Xk
n−1(j),

where I1 = (1, 0), I2 = (0, 1), and Xk
n−1(j) = (Xkn−1(j, 1),Xkn−1(j, 2)) are the offspring of

the kth individual of type j in generation n− 1. Here (Xk
n−1(j), n = 1, 2, . . . , k = 1, 2, . . .)

are independent and have the same distribution as X(j) = (X(j, 1),X(j, 2)), j = 1, 2. These
random vectors take values in Z

2+, the set of two-dimensional vectors with elements being
nonnegative integers.

Throughout this section, vectors are set as bold characters. In particular, we use 0 and 1 to
respectively denote the two-dimensional zero vector and the vector with each element being 1.
The partial ordering of two-dimensional vectors is defined as x = (x1, x2) 
 (≺)y = (y1, y2)

if and only if xi ≤ (<)yi for each i.
Next we state the notation, definitions, and assumptions about the multitype branching

processes that will be used in this section.
Let M = (μij )

2
i,j=1 with μij = EX(i, j) the mean matrix, which is positively regular

(Mn > 0 for some integer n > 0). We also assume that its maximal eigenvalue is ρ > 1, which
corresponds to the supercritical case, and t = (t1, t2) and u = (u1, u2) are strictly positive left
and right eigenvectors corresponding to ρ, normalized so that 1�u = 1 and t�u = 1.

For s = (s1, s2) with 0 ≤ si ≤ 1, i = 1, 2, define

f (i)(s) = EsZ1(i) =
∑
j

p(i)(j)s
j1
1 s

j2
2 ,

where j = (j1, j2) ∈ Z
2+ and

p(i)(j) = P(Z1 = j | Z0 = Ii ).

If we define f (s) = (f (1)(s), f (2)(s)) then f (s) = s has a unique solution e = (e1, e2) with
each ei ∈ [0, 1), i = 1, 2. In addition, ei is the extinction probability of (Zn(i), n ≥ 0), that is,

ei = P

(
lim
n→∞ Zn = 0

∣∣∣ Z0 = Ii

)
.

After the (multitype) Sevastyanov transformation, f (0) can be zero. Then we have e = 0.
We make this assumption throughout this section. In this case, we define the matrix

A =
(
∂f (i)(s)

∂sj

)2

i,j=1

∣∣∣∣
s=0

,
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and assume that there exists a constant γ ∈ (0, 1) such that (γ−nAn)n≥1 converges to a matrix
which is nonzero and finite. In fact, this is the so-called Schröder case (see [5]). For more
details about the multitype branching processes, we refer the reader to [2, Chapter V].

The following result is the large deviation of (Zn(i), n ≥ 0) obtained in [3].

Theorem 4. ([3, Theorem 2].) Assume that the abovementioned assumptions hold and that

max
i

E[(1 · Z�
1 )

2r | Z0 = Ii] < ∞,

where r is such that ρrγ > 1. Let l = (l1, l2) be a nonzero vector with l1 �= l2. Then, for every
ε > 0 and i = 1, 2, the limit

lim
n→∞ γ

−n
P

(∣∣∣∣ l · Z�
n+1

1 · Z�
n

− l · (ZnM)�
1 · Z�

n

∣∣∣∣ > ε

∣∣∣∣ Z0 = Ii

)
(15)

exists, and is positive and finite.

For simplicity, in the remainder of this section we omit the initial particle of type i in
Zn(i) = (Zn(i, 1), Zn(i, 2)), and denote the process as (Zn, n ≥ 0) and Zn = (Zn(1), Zn(2)).
Thus, the vectors in (15) become

1 · Z�
n = Zn(1)+ Zn(2),

l · Z�
n+1 − l · (ZnM)� =

Zn(1)∑
k=1

(l1(X
k
n(1, 1)− μ11)+ l2(X

k
n(1, 2)− μ12))

+
Zn(2)∑
k=1

(l1(X
k
n(2, 1)− μ21)+ l2(X

k
n(2, 2)− μ22)).

Then the self-normalized version is
S(n)√

(Zn(1)+ Zn(2))V (n)
,

where

S(n) =
Zn(1)∑
k=1

(l1(X
k
n(1, 1)− μ11)+ l2(X

k
n(1, 2)− μ12))

+
Zn(2)∑
k=1

(l1(X
k
n(2, 1)− μ21)+ l2(X

k
n(2, 2)− μ22)) (16)

and

V (n)2 =
Zn(1)∑
k=1

(l21(X
k
n(1, 1)− X̄n(1, 1))2 + l22(X

k
n(1, 2)− X̄n(1, 2))2)

+
Zn(2)∑
k=1

(l21(X
k
n(2, 1)− X̄n(2, 1))2 + l22(X

k
n(2, 2)− X̄n(2, 2))2) (17)

with

X̄n(i, j) = 1

Zn(i)

Zn(i)∑
k=1

Xkn(i, j), i, j = 1, 2.

In a similar fashion as in the single-type case, using the total probability formula and then the
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dominated convergence theorem, we obtain the self-normalized large deviation for the multitype
case.

Theorem 5. With S(n) and V (n) defined in (16) and (17), the limit

lim
n→∞ γ

−n
P

(
S(n)√

(Zn(1)+ Zn(2))V (n)
> x

∣∣∣∣ Z0 = Ii

)

exists, and is positive and finite.

For i = 1, 2, let (Xk(i) = (Xk(i, 1),Xk(i, 2)), k ≥ 1) be a sequence of independent
random vectors that have the same distribution as X(i). For i, j = 1, 2, and integers m, n,
define

Yi,j (k) = lj (X
k(i, j)− μij ),

Sij (n) =
n∑
k=1

Yi,j (k),

S(n,m) = S11(n)+ S12(n)+ S21(m)+ S22(m),

X̄n(i, j) = 1

n

n∑
k=1

Xk(i, j),

Vij (n)
2 =

n∑
k=1

Yi,j (k)
2,

V (n,m)2 = V11(n)
2 + V12(n)

2 + V21(m)
2 + V22(m)

2,

V 2
n,m =

2∑
j=1

n∑
k=1

l2j (X
k(1, j)− X̄n(1, j))

2 +
2∑
j=1

m∑
k=1

l2j (X
k(2, j)− X̄n(2, j))

2,

ε(n,m) = V (n,m)2 − V 2
n,m = n

2∑
j=1

(X̄n(1, j)− μ1j )
2 +m

2∑
j=1

(X̄n(2, j)− μ2j )
2.

We are now ready to prove Theorem 5.

Proof of Theorem 5. Similarly as in the proof of Theorem 3, after using the total probability
formula in

P

(
S(n)√

(Zn(1)+ Zn(2))V (n)
> x

∣∣∣∣ Z0 = Ii

)
,

it remains to verify the dominated convergence, which is ensured by the exponential convergence
to 0 as n,m → ∞ of

P(S(n,m) ≥ x
√
n+mVn,m).

For any constant δ ∈ (0, 1), we have

P(S(n,m) ≥ x
√
n+mVn,m)

≤ P(S(n,m) ≥ x
√
n+mVn,m, ε(n,m) ≤ δV (n,m)2)+ P(ε(n,m) > δV (n,m)2)

≤ P(S(n,m) ≥ x
√

1 − δ
√
n+mV (n,m))+ P(ε(n,m) > δV (n,m)2)

:= I + II, (18)
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where

I ≤ P(S(n,m)2 ≥ x2(1 − δ)(n+m)V (n,m)2)

≤ P(4(S11(n)
2 + · · · + S22(m)

2) ≥ x2(1 − δ)(n+m)V (n,m)2)

≤ P(4(S11(n)
2 + · · · + S22(m)

2) ≥ x2(1 − δ)(nV11(n)
2 + · · · +mV22(m)

2))

≤ P(4S11(n)
2 ≥ x2(1 − δ)nV11(n)

2)+ · · · + P(4S22(m)
2 ≥ x2(1 − δ)mV22(m)

2)

and

II ≤
2∑
j=1

P(n(X̄n(1, j)− μ1j )
2 > δV 2

1j (n))+
2∑
j=1

P(m(X̄m(2, j)− μ2j )
2 > δV 2

2j (m))

= P

(∣∣∣∣
n∑
k=1

(Xk(1, 1)− μ11)

∣∣∣∣ ≥ √
δnV1,1(n)

)

+ P

(∣∣∣∣
n∑
k=1

(Xk(1, 2)− μ12)

∣∣∣∣ ≥ √
δnV1,2(n)

)

+ P

(∣∣∣∣
m∑
k=1

(Xk(2, 1)− μ21)

∣∣∣∣ ≥ √
δmV2,1(m)

)

+ P

(∣∣∣∣
m∑
k=1

(Xk(2, 2)− μ22)

∣∣∣∣ ≥ √
δmV2,2(m)

)
.

From Theorem 2, we see that the probability in (18) converges to 0 exponentially as n,m → ∞.
We can then obtain Theorem 5 by the same arguments used in the proof of Theorem 3 and the
results of [3, Theorem 1]. �
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