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Systematic asymptotic methods are used to formulate a model for the extensional flow of a

thin sheet of nematic liquid crystal. With no external body forces applied, the model is found

to be equivalent to the so-called Trouton model for Newtonian sheets (and fibres), albeit

with a modified ‘Trouton ratio’. However, with a symmetry-breaking electric field gradient

applied, behaviour deviates from the Newtonian case, and the sheet can undergo finite-time

breakup if a suitable destabilizing field is applied. Some simple exact solutions are presented

to illustrate the results in certain idealized limits, as well as sample numerical results to the

full model equations.
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1 Introduction

Nematic liquid crystals (NLCs) are ubiquitous in nature, and find wide applications in

many industrial processes. For example, many modern display devices, certain thermo-

meters and some biopathogen detection methods exploit the liquid crystalline nature of

chemicals. Contemporary makeup products also often rely on various liquid crystal com-

pounds for their iridescent optical qualities [12]. An understanding of how liquid crystals

behave under a wide variety of conditions is thus commercially important, but due to

the highly complex nature of the governing dynamic equations it can be challenging to

investigate the behaviour theoretically from a mechanistic viewpoint. Simple experimental

setups can be very valuable as an investigative tool to reveal novel behaviour and new

regimes not exhibited by Newtonian fluids. For example, a system as simple as a spreading

nematic droplet can exhibit highly complex fingering instabilities [13]. The mathematical

models described recently in [9, 10] reveal that these arise due to a complex interplay

between fluid flow, internal elasticity and surface (anchoring) energy: strong anchoring

will stabilize a film, but with weak anchoring the free surface can destabilize.

In this paper we investigate another simple experimental configuration: a thin nematic

sheet with one end clamped and the other pulled, subject to a constant force or prescribed

speed. This simple setup allows us to make analytical progress, which can aid our overall

understanding of free-surface liquid crystal dynamics. We note that the analysis represents
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a rare example of a tractable non-Newtonian extensional flow; other notable examples

include King & Oliver’s [8] analysis of an extensional poroviscous flow (with a novel

application to the leading-edge protrusion of a cell crawling on a substrate), and the exact

solution presented by Smolka et al. [16] for the extension of a viscoelastic filament.

Since liquid crystals are strongly affected by electric fields (a fact important for many

of their applications), we also include an applied field in the formulation. With no applied

field, we find that the nematic model reduces to the equivalent Newtonian problem,

with just a change in the timescale. This Newtonian problem has been studied in detail,

in particular in the context of glass manufacture, see Howell [5, 6] and many references

therein. Axisymmetric instabilities of nematic fibres have been studied both experimentally

and analytically by Savage et al. [15] and Cheong & Rey [14] but to date this work has

not been extended to sheet flow. In fact, due to the simpler geometry of the sheet (which

makes dealing with the free surface anchoring conditions on the nematic molecules easier),

the model we obtain is more analytically tractable than that of Rey & Cheon [14].

The paper is set out as follows. In Section 2 we describe the mathematical model.

The full description for the extensional flow of a nematic sheet is complex. Consequently

we reduce the model systematically, in the spirit of Howell [5, 6], to obtain a closed

system of governing equations describing the flow velocity u along the sheet’s centreline,

the sheet thickness h and the director angle θ. To simplify the problem further we

make various standard assumptions concerning the elastic and ‘viscous’ constants and

apply an electric field that to leading order has a component only in the cross-sheet

direction (the asymptotic reduction of the electric field is discussed in Appendix A). We

also give a brief discussion of suitable boundary conditions. Section 3 deals with simple

explicit solutions of the reduced asymptotic model. Possible steady states in the presence

of an electric field and their stability characteristics are considered. It is also shown

that when surface tension effects are neglected, the model may be solved exactly in a

certain limit, and specific cases of such solutions are presented. In Section 4 we carry out

numerical simulations of the full unsteady model and explore the dependence on initial and

boundary conditions and on electric field gradients. Finally, in Section 5 we present our

conclusions.

2 The model

The details of the theory governing the flow of NLCs are well documented and provided in

texts such as [2,4,8]. The notation we employ is mostly the same as that used by Leslie [8],

the two main functions being the velocity field of the flow, v = (v1, v2, v3) = (u, v, w),

and the director field n, the unit vector describing the orientation of the anisotropic axis

in the liquid crystal (an idealized representation of the local preferred average direction of

the rod-like liquid crystal molecules). The evolution of n is determined by elastic stresses

within the NLC, by the local flow-field, and by any externally acting fields. In this paper

we shall restrict attention to the 2D case in which flow and the director field are confined

to the (x, z)-plane so that v = (v1, 0, v3) = (u, 0, w), and n = (sin θ, 0, cos θ), θ(x, z, t) being

the angle the director makes with the z-axis. We also neglect inertia from the outset, since

only slowly deforming sheets will be considered.
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The governing equations in the bulk are:

∂

∂xi

(
∂W

∂θxi

)
− ∂W

∂θ
+ g̃i

∂ni
∂θ

= 0, (1)

− ∂π

∂xi
+ g̃k

∂nk
∂θ

+
∂t̃ik
∂xk

= 0, (2)

∂vi
∂xi

= 0, (3)

representing energy, momentum and mass conservation respectively. The quantities g̃ and

π are defined by

g̃i = −γ1Ni − γ2eiknk, eij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, (4)

Ni = ṅi − ωiknk, ωij =
1

2

(
∂vi
∂xj

− ∂vj
∂xi

)
, (5)

π = p + W, (6)

where γ1 and γ2 are constants (viscosities), p is the pressure and W is the bulk energy,

containing elastic and possible dielectric contributions. It is defined in terms of the director

and the applied field by

2W = K1(∇ · n)2 + K2(n · ∇ ∧ n)2 + K3((n · ∇)n) · ((n · ∇)n)

− εε⊥E · E − ε(ε‖ − ε⊥)(n · E)2, (7)

where K1, K2 and K3 are elastic constants, ε is the permittivity of free space and ε‖ and ε⊥
are the relative dielectric permittivities parallel and perpendicular to the long axis of the

molecules. Finally, t̃ij is the extra-stress tensor (related to the stress σij by σij = −πδij + t̃ij)

t̃ij = α1nknpekpninj + α2Ninj + α3Njni + α4eij + α5eiknknj + α6ejknkni, (8)

where αi are constant, although not necessarily positive, viscosities (they are related to γi
in (4) by γ1 = α3 −α2 and γ2 = α6 −α5) and μ = α4/2 corresponds to the dynamic viscosity

in the standard Newtonian (isotropic) case when all other αi are zero.

Equation (1) is the energy equation. The first three terms in the bulk energy W (defined

in (7)) represent the elastic energy associated with the director field; and the last two

represent the tendency of the director to align parallel to an applied electric field E

(when ε‖ > ε⊥). The three elastic contributions to W are known as splay, twist and bend

respectively, and represent energy penalties incurred when the director field has local

behaviour of these types [4]. Note that the so-called saddle-splay term (see e.g. [2, 4, 17])

that often appears in the elastic energy, with associated elastic constant K24, is identically

zero for a two-dimensional (2D) director field of the kind we consider.

The model must be solved subject to appropriate boundary conditions. For a stretched

sheet with free surfaces, these are: a stress balance condition that equates the stress vector

at each sheet surface to any external forces acting; a kinematic condition at each sheet

surface; and an anchoring condition on the director field at each of the free surfaces. We
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Figure 1. Schematic of a nematic sheet under stretching from its ends. The preferred anchoring

angles at the two surfaces are also indicated. Further details may be found in the text.

will consider a situation where the sheet is stretched between two plates, one of which

is fixed. The other is pulled either with a prescribed velocity or a prescribed force. With

non-zero surface tension we also impose a contact angle φ between the fluid and plate

(see Appendix B for further discussion of this condition). In general, the upper and lower

surfaces of a 2D fluid sheet may be described by equations z = H(x, t) ± h(x, t)/2, where

z = H(x, t) represents the sheet centreline, and h(x, t) represents the sheet thickness. A

definition sketch for the pulled sheet is shown in Figure 1 for the case in which the sheet

centreline is flat (this turns out to be generic).

The stress balance then takes the form

σν± = −γ̂κ±ν± on z = H ± h/2, (9)

where σij = −πδij + t̃ij is the stress tensor, ν± is the outward normal vector to the free

surface z = H ± h/2, κ± is its curvature and γ̂ is a coefficient of surface tension. The

kinematic condition states

v · ν± = V±
ν on z = H ± h/2, (10)

where V±
ν is the outward normal velocity of the interface z = H ± h/2.

The director field satisfies ‘anchoring’ boundary conditions at a free surface, which

model its tendency to align at a certain angle, θB , to the normal ν (θB is the angle that

minimizes surface energy for the system in the absence of applied fields). In a 3D context

this represents conical anchoring: the director lies on a cone of angle θB . Within our 2D

model this means that the director can take values ±θB at either interface. For a sheet,

the normals at the two surfaces point in different directions, and the anchoring angles

will be selected so as to give the overall lowest energy – thus, if θB is selected at the

upper interface, it will also be selected at the lower interface (bearing in mind the different

orientations of the normals at two surfaces); see Figure 1. Assuming this situation, we

model it by an ad hoc anchoring condition which says that in the absence of an applied

field the director will take the preferred direction, but that an applied field will act to pull

the director angle towards the field direction. If the applied electric field has the form

E ≈ a(x)ez (11)

(this is justified in detail in Appendix A), then we take

θ = θBg(a(x)) on z = H ± h/2. (12)
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The choice of function g is somewhat arbitrary. It must be monotonically decreasing in a

and tend to zero for large a in order to align the director fully with the field. The form

that we assume for all of our example calculations in this paper is

g(a) =
E2
a

a2 + E2
a

(13)

for some Ea > 0 (an alignment field strength sufficient to overcome the surface anchoring).

This anchoring condition is only approximate, since in the absence of a field it gives θ = θB
(that is, the angle between the director and the vertical takes the value θB). In reality it

should be the angle between n and the normal to the surface ν that takes the value θB .

However, in our subsequent asymptotic approximation ν ≈ ±(0, 1), so that condition (12)

is correct to the required order.

2.1 Scaling and non-dimensionalisation

The experimental setup modelled is a thin 2D sheet of NLC extended from its ends. The

Newtonian analogue has been considered by several authors. We follow the approach of

Howell [5, 6], but see also van de Fliert et al. [18] and the many references within these

papers for other asymptotic work on the Newtonian problem. In the previous section

we set out the problem for the general case where the NLC film occupies the region

between the two free surfaces z = H ± h/2. However, as in the Newtonian case [5,6], our

analysis reveals that the centreline is straight to leading-order for any sheet with positive

tension.1 We shall therefore simplify the presentation by making this assumption from

the outset (the details of how this result is derived are similar to the Newtonian case, but

complicated by the presence of the director angle in the model).

To derive systematic asymptotic approximations to the governing equations, we intro-

duce appropriate scalings for the flow variables as follows [11]:

(x, z) = L(x̃, δz̃), (u, w) = U(ũ, δw̃), t =
L

U
t̃, π =

μU

L
p̃, (14)

where L is the length scale of typical variations in the x-direction (for example, it could

be the initial length of the sheet); U is a typical flow velocity along the sheet axis (fixed,

e.g. by pulling on the sheet’s ends); δ = ĥ/L � 1 is a typical aspect ratio of the sheet (ĥ

being a typical sheet thickness) and μ ≡ α4/2 > 0 is the representative viscosity scaling

in the pressure (since this corresponds to the usual viscosity in the isotropic case in (8)).2

We also write h = ĥh̃ to define the dimensionless sheet width.

If K = K1 is a representative value of the elastic constants K1, K2, K3, then (7) gives

the appropriate scaling for W as

W =
K

δ2L2
W̃ ,

1 This is true at least on any timescale relevant for stretching: If the centreline is not initially

flat then under tension it will become so on a timescale much faster than that of stretching. Under

compression, or negative tension, the sheet will buckle [1, 5, 6], again on a much faster timescale.
2 The coefficient α4 is always positive [8].
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assuming that elastic effects are important at leading order. Since the director field is a

2D unit vector, we write it as

n = (sin θ(x, z, t), 0, cos θ(x, z, t)). (15)

We assume further that the elastic constants K1 and K3 are equal: K1 = K3 = K (see

e.g. [4, 17] for the validity of this commonly used assumption), and that any applied

electric field has a leading-order component only in the z-direction:

E = a(x)ez + O(δ), (16)

where a(x) is determined in practice by the far field conditions on the externally applied

electric field. A detailed justification of this field, which is the most general form compatible

with Maxwell’s equations and with no variation across the sheet, is given in Appendix A.

We write a(x) = Eaã(x̃) to non-dimensionalise the electric field, where Ea is the alignment

field strength introduced in (13).

With these scalings the normal ν = ±(0, 1) + O(δ2) so that condition (12) is

indeed correct to order δ2. Henceforth, we drop the tildes on the understand-

ing that we are working in the dimensionless variables (unless explicitly stated

otherwise).

2.2 Asymptotic expansion of the governing equations

We asymptotically expand all dependent variables (θ, u, v, p, h) in powers of δ = ĥ/L � 1,

and substitute into equations (1)–(3) to obtain a hierarchy of governing equations at

orders 1, δ, δ2 etc. The boundary conditions (9), (10) and (12) are Taylor-expanded

onto the leading-order free boundaries z = ±h0/2 to yield conditions for the governing

equations at each order in δ. In the dimensionless variables the bulk energy W in

(7) is

W =
1

2

(
θ2
z + δ2θ2

x

)
− δe(x) cos2 θ − δλe(x), (17)

where

e(x) =
ĥLE2

aa(x)2ε(ε‖ − ε⊥)

K
= e0a(x)2, λ =

ε⊥
ε‖ − ε⊥

. (18)

Here we suppose that e(x) and λ are of order-one with respect to δ: since elasticity

is present throughout the model, while the electric field may be zero or non-zero, we

have scaled under the assumption that elasticity provides the dominant contribution to

the bulk energy. The electric field, reflected by the presence of e(x) in (17), then enters

at first order in δ and is assumed comparable to the surface energy. These assumptions

represent the smallest electric field that significantly affects the sheet. Larger field strengths

so that δe(x) = O(1) would lead to a different, more complicated model; yet larger

fields would give total alignment of the director in the field, and a relatively simple

system.
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The x- and z-components of the momentum equation (2) and the energy equation (1)

at leading order may now be written

u0zz

(
2 − (α2 − α5) cos2 θ0 + (α3 + α6) sin2 θ0 + 2α1 sin2 θ0 cos2 θ0

)
+ 2u0zθ0z

(
α2 + α3 − α5 + α6 + 2α1 cos 2θ0

)
sin θ0 cos θ0 = 0, (19)

u0zz

(
α1 + α2 + α3 + α5 + α6 + α1 cos 2θ0

)
sin θ0 cos θ0 − 2N̂θ0zzθ0z

+ u0zθ0z

(
α1 cos 4θ0 + (α1 + α2 + α3 + 2α5) cos 2θ0 − α2 + α3

)
= 0, (20)

2N̂θ0zz − u0z

(
α2 − α3 + (α6 − α5) cos 2θ0

)
= 0 (21)

respectively, where the dimensionless inverse Ericksen number N̂ = K/(μUδL) measures

the relative importance of elastic and viscous effects. Note that with our chosen scalings,

the dynamic coupling terms containing θt (arising from g̃ in equations (1) and (2))

do not appear at this order: we have a quasi-static limit in which the director adapts

‘instantaneously’ to the changing geometry on the timescale of the axial fluid flow. The

viscosities αi in the above equations have all been scaled with μ = α4/2 (hence, the

non-dimensional α4 
→ 2). These equations must be solved subject to the leading-order

boundary conditions at z = ±h0/2. The normal components of the stress conditions (9)

at each interface yield, at order δ−1,

u0z = 0 on z = ±h0/2. (22)

The leading order in the anchoring conditions (12) gives

θ0 = θBg(a(x)) on z = ±h0/2, (23)

with g given by the dimensionless form of (13),

g(a) =
1

a2 + 1
, (24)

while the kinematic conditions (10) give

w0 = ±1

2
(h0t + u0h0x) on z = ±h0/2. (25)

Eliminating u0z between equations (20) and (21) reveals that θ0z is constant and hence

u0z = 0. Applying the boundary conditions then determines

u0 = u0(x, t), θ0 = θ0(x) = θBg(a(x)). (26)

The incompressibility equation (3) may now be integrated at leading order to give an

expression for w0,

w0 = −zu0x, (27)

where we have applied a kinematic condition (25) at the top surface. Applying the

kinematic condition at the bottom surface provides the mass balance

h0t + (u0h0)x = 0. (28)
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As with the Newtonian counterpart, at this stage there is no equation to specify u0 and

so we must examine higher orders in the governing equations. At order δ in the x- and

z-components of (2) we find

u1zz = 0, (29)

p0z = 0, (30)

where (29) was used to obtain (30). Hence, p0 = p0(x, t). The energy equation (1) at O(δ)

gives

u0x(α5 − α6) sin 2θ0 +
1

2

(
α3 − α2 + (α5 − α6) cos 2θ0

)
u1z

+ N̂
(
θ1zz − e(x) sin 2θ0

)
= 0. (31)

This last equation will give θ1 in terms of u0, u1 and θ0.

We now require the boundary conditions at the appropriate order. The O(1) normal

component of the stress conditions (9) gives

u1z =
u0x(α6 − α5 + α1 cos 2θ0) sin 2θ0

2 − (α2 − α5) cos2 θ0 + (α3 + α6) sin2 θ0 + 2α1 sin2 θ0 cos2 θ0

≡ U1(θ0)u0x , (32)

on z = ± h0

2
, where we use U1 as convenient shorthand for the non-linear function of θ0

on the right-hand side. Combining equations (29) and (32) gives

u1 = zU1(θ0)u0x + U0(x, t), (33)

where U0 is undetermined and U1 is defined in (32). The O(1) tangential components of

the stress conditions (9) give the same result on both upper and lower free boundaries,

z = ±h0/2,

p0(x, t) = −(2 + (α5 + α6 + α1 cos 2θ0) cos2 θ0)u0x (34)

+
u0xU1(θ0)

2
(α1 + α2 + α3 + α5 + α6 + α1 cos 2θ0) sin θ0 cos θ0 − γ

2
h0xx

≡ −f(θ0)u0x − γ

2
h0xx, (35)

where γ = γ̂δ/(μU) is a dimensionless surface tension coefficient and the function f is

defined by (35) for later convenience. Since p0 is known to be independent of z, (35)

represents the leading-order pressure throughout the sheet.

We can now solve equation (31) for θ1 after applying the appropriate anchoring

conditions at O(δ), θ1 = 0 on z = ±h0/2. The problem reduces to

θ1zz = e(x) sin 2θ0 (36)

− u0x

N̂

[
(α5 − α6) sin 2θ0 +

U1(θ0)

2

(
α3 − α2 + (α5 − α6) cos 2θ0

)]
≡ Q1(x) (37)

https://doi.org/10.1017/S095679251300034X Published online by Cambridge University Press

https://doi.org/10.1017/S095679251300034X


Extensional flow of nematic liquid crystal with an applied electric field 405

(here Q1(x) is introduced as a convenient shorthand for the right-hand side of (36)).

Hence, we determine the unique solution

θ1 =
Q1(x)

2

(
z2 − h0(x, t)

2

4

)
. (38)

We now have expressions for θ0, θ1, p0 and a mass balance (28) relating the unknowns u0, h0.

To close the system we must continue to yet higher orders. The algebra is too cumbersome

to present in detail, so we merely outline the procedure: we examine equation (2) to O(δ2),

which leads to an equation for u2zz of the form

u2zz = K(x, t),

where K has complicated dependence on u0(x, t), θ0(x, t). Integration across the sheet

leads to

u2z |z=h0/2
− u2z |z=−h0/2

= h0K(x, t). (39)

The boundary terms u2z |z=±h0/2 are given in terms of u0, h0 by the stress conditions (9)

at O(δ), leading to an equation relating u0 and h0. This equation together with (28) (and

θ0 given by (26)) forms a closed leading-order system.3 In the most general case the new

equation is far too lengthy (several pages) to reproduce profitably here; we discuss special

cases separately below. Since we have now reduced the problem to one for leading-order

dependent variables u0, h0, θ0, we now drop the subscripts on these quantities.

2.2.1 No electric field, a(x) = 0 = e(x)

With no electric field, the leading order director angle θ is simply constant (see (26)),

dictated by anchoring conditions: θ = θB . For general θB the solvability condition (39)

takes the form

F(θB)

G(θB)

(
hu′(x)

)
x
+

γ

2
hhxxx = 0, (40)

where

G(θB) = α1 − 2α2 + 2α3 + 8 + 2α5 + 2α6 − α1 cos(4θB)

− 2 cos(2θB)(α2 + α3 − α5 + α6),

F(θB) = −α1α2 + α1α3 + 8α1 + 2α1α5 + 2α1α6

− 8α2 − α2α5 − 3α2α6 + 8α3 + 3α3α5 + α3α6

+ 32 + 16α5 + 16α6 + 2α2
5 + 4α5α6 + 2α2

6

− 2 cos(2θB)(α1 + 4 + α5 + α6)(α2 + α3 − α5 + α6)

− cos(4θB)(α1(α2 − α3) + (α2 + α3)(α5 − α6)).

3 A nice compact presentation of this process may be found in the appendix of [7] for the

poroviscous sheet model.

https://doi.org/10.1017/S095679251300034X Published online by Cambridge University Press

https://doi.org/10.1017/S095679251300034X


406 L. J. Cummings et al.

Alhough F(θB) and G(θB) take complicated forms, they are just constants for a fixed

anchoring angle θB , and we lose no generality by setting θB = 0 in the analysis. We then

obtain

(4 + α1 + α5 + α6) (uxh)x +
γ

2
hhxxx = 0, (41)

which must be solved together with equation (28),

ht + (uh)x = 0. (42)

The governing equations for a Newtonian film are retrieved by setting α1 = α2 = α3 = α5 =

α6 = 0. In general then, the above equations are equivalent to the Newtonian case, with

a only difference of surface tension coefficient. The first term in (41) is the axial gradient

of the (leading-order) dimensionless tension in the sheet, and the pre-multiplying factor is

known as the Trouton ratio. The Newtonian limit of equations (41) and (42) with zero sur-

face tension, γ = 0, is known as the Trouton model for a viscous sheet, and was considered

in detail by Howell [5, 6] (see also references therein for earlier work on similar systems).

Appropriate boundary and initial conditions for equations (41) and (42) are that the

initial profile of the sheet, hi(x) = h(x, 0), is specified, and that we apply conditions at each

end of the sheet. We consider a sheet stretched between two plates that are pulled apart.

We assume that one plate (one end of the sheet) is fixed: u(0, t) = 0, while the other, at

x = s(t), is pulled either with (a) prescribed velocity, or (b) prescribed force F . In case

(a) the appropriate condition is u(s(t), t) = ṡ(t), with s(t) given; and in case (b) we have

F = h(s(t), t)(−p(s(t), t) + 2ux(s(t), t)), where F is prescribed but s(t) is unknown. (In this

latter case (b) no liquid crystal-specific behaviour is apparent in the force balance; this

is a consequence of the fact that θz = 0 to leading order.) With γ = 0, these conditions

suffice to close the problem; but if γ � 0 then we need an extra condition at each end,

such as specification of the contact angle ∂h/∂x between the fluid and the plate. The

boundary conditions are discussed further when solutions are presented in Section 3.

Since, to this order in the asymptotics, the electric field-free case is equivalent to the

Newtonian one, which was considered exhaustively by Howell and co-authors [5, 6], we

move on to a more complex model that results when an electric field is applied.

2.2.2 Applied electric field

The analogue of equation (41) is extremely complicated with an applied field (several

pages of Mathematica output), and in the most general case it is not clear whether

it can be simplified significantly. However, since with no applied field we obtained the

Newtonian result (modulo a rescaling of surface tension), we are encouraged here also

to examine the special case α1 = α2 = α3 = α5 = α6 = 0 to make further progress. The

nematic character is explicitly retained in the elastic energy, and in the way the fluid

responds to the applied field. This approximation probably gives a reasonable description

of the response of a nematic to an applied field when near its isotropic transition.

The appropriate governing equation is then equation (42):

ht + (uh)x = 0 (43)
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and, from the solvability condition (39),

4(uxh)x + N̂h(e(x)(cos2 θ + λ))x +
γ

2
hhxxx = 0, (44)

where e(x) and λ are as defined in (18),

e(x) =
ĥLE2

aa(x)2ε(ε‖ − ε⊥)

K
= e0a(x)2, λ =

ε⊥
ε‖ − ε⊥

, (45)

and the director angle θ is prescribed by (26b) and (24),

θ0(x) = θBg(a(x)), with g(a) =
1

a2 + 1
, (46)

where θB is the constant anchoring angle. The function a(x) is determined by knowledge

of the externally applied electric field; see Appendix A. In Appendix A we outline a

procedure for calculating the electrode shape required to generate a given choice of a(x),

and therefore we consider a(x) to be a prescribed function in the model. The problem

then reduces to solving (43)–(46) for u, h, subject to appropriate boundary conditions as

outlined in Section 2.2.1. In the following sections we consider various approaches to

solving this model.

3 Simple model solutions

We first consider some simple exact solutions of our models (43)–(46): (i) steady state,

achievable (in a non-trivial sense) only for the fixed-force end condition and with non-zero

surface tension γ; and (ii) exact unsteady ‘pulling’ solutions, where the end velocity is

prescribed, but surface tension is zero. These solutions, which we present only for simple

choices of electric field, can act as a guide for more general numerical solutions, which

we present in Section 4.

We note that, for the steady solutions considered below, and for our subsequent

numerical results, it is convenient to work on a fixed length domain [0, 1]. We therefore

rescale by choosing ξ = x/s(t), where x = s(t) denotes the right-hand end of the sheet.

Then the governing equations are

4s(uξh)ξ + N̂hs2
[
e(ξ)(cos2 θ + λ)

]
ξ
+

γ

2
hhξξξ = 0, (47)

sht − ξsthξ + (uh)ξ = 0 (48)

together with (45), and our definition (46) for θ.

Specified end velocity: When the velocities of the sheet ends are specified, appropriate

boundary and initial conditions are

u(0, t) = 0, u(1, t) = st(t), h(ξ, 0) = hi(ξ), (49)

hξ(0, t) = −sβ0, hξ(1, t) = sβ1, (50)

where s(t) is prescribed (and s(0) = 1), and β0, β1 are related to the contact angles

φ0, φ1 at x = 0, x = s(t) respectively (the appropriateness of these contact angle
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boundary conditions (50) is discussed further in Appendix B). Within the level of ap-

proximation already carried out, we may write φj = π/2 − δβj . These angles β0, β1 are

specified when γ � 0; if surface tension is neglected we require only the first set of

conditions (49).

Specified pulling force: If motion is driven by a specified force applied at one end of

the bridge, an extra condition is required, since the domain length s(t) in x-space (the

sheet length) is unknown. This condition is an explicit conservation of mass constraint,

which was automatically enforced by the previous boundary conditions (49). The force

condition at the pulling end is

F = h(−p + 2ux) at x = s(t), (51)

and thus the boundary conditions (49) are replaced by

u(0, t) = 0, F = h

[
f(θ)

s
uξ +

γ

2s2
hξξ +

2

s
uξ

]
ξ=1

, (52)

V = s

∫ 1

0

h dξ, (53)

where f(θ) is as defined in (35). The position of the right-hand boundary is defined by

st = u(1, t), s(0) = 1. (54)

Conditions (50) still hold if γ� 0.

3.1 Steady states

With a prescribed (non-zero) velocity at the ends there is clearly no steady state; however,

with a prescribed force a steady state is possible. In this case the mass balance (48) shows

that uh is constant, and since u(0, t) = 0, we infer that u = 0 everywhere. Setting u = 0 in

(47), h is then determined by

N̂s2
[
e(ξ)(cos2 θ + λ)

]
ξ
+

γ

2
hξξξ = 0. (55)

With no field the film thickness is quadratic, with coefficients fixed by conditions (50) and

(52),

h =
s

2
(β1 + β0)ξ

2 − sβ0ξ +
2sF

γ(β0 + β1)
+

s

2
(β0 − β1). (56)

If F = 0, we note that h(1, t) = 0 (so the bridge vanishes at the end) indicating the

existence of a minimum force condition. In fact, expression (56) does not even guarantee

a non-negative film thickness, so solutions must be checked for this property as well

as for positive sheet length. For example, when β1 > 0, to ensure h > 0 requires

F > γβ2
1/4.
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The sheet length s is determined by the volume constraint (53) as

s2 = V

[
2F

γ(β0 + β1)
+

1

6
(β0 − 2β1)

]−1

. (57)

This relation shows that s decreases as F increases, that is, a greater force results in

a shorter bridge. This seemingly counter-intuitive result is explained by the fact that a

short, highly curved bridge can resist a greater pulling force: a longer, less curved bridge

can only balance a lesser force. A sufficiently large force applied to a short bridge would

indeed elongate it, but if the force were sustained at the same high level, then the bridge

would elongate indefinitely and no steady state could be achieved. Due to the requirement

that s2 > 0, equation (57) leads to

F >
γ(2β1 − β0)(β0 + β1)

12
. (58)

This is the minimum force required to balance surface tension in the steady state (but we

must also ensure that the force is sufficient that h > 0).

With an electric field equation (55) integrates once immediately, but then the remaining

integration depends on the form of the field. In the simplest non-trivial case, where the

term
[
e(x)(cos2 θ + λ)

]
is linear in x,

EF = N̂
[
e(x)(cos2 θ + λ)

]
x
, (59)

for constant EF , then

h = −EFs
3ξ3

3γ
+

[
(β0 + β1) +

s2EF

γ

]
sξ2

2
− β0sξ +

2sF

γ(β0 + β1) − s2EF

− s3EF

6γ
+

s

2
(β0 − β1). (60)

Such an electric field can be generated by suitably shaped converging electrodes, as

outlined in Appendix A. Again, h(1, t) = 0 when F = 0, so the electric field alone cannot

balance surface tension and a minimum force must still be applied. The position s of the

sheet’s end is again determined by (53), which leads to a cubic equation for y = s2:

(EFy − γ(β0 + β1))

[
V − y

12

(
2(β0 − 2β1) − EFy

γ

)]
+ 2Fy = 0. (61)

The requirement that y > 0 for a given field EF restricts the possible values for F; or vice

versa if one thinks of specifying F and finding the field EF that gives a steady solution.

We may obtain approximate solutions for h and s in the limit EF  1 (note EF must

be positive), with F ∼ O(1). In this case an asymptotic expansion on the small parameter

E−1
F can be constructed,

s2 =
γ(β0 + β1)

EF

[
1 − 2F

VEF

+ O

(
1

E2
F

)]
,
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Figure 2. Steady-state solutions with (a) EF = 0 and F = 0.06 (dashed; negative over part of

domain), 0.1 (solid), 1 (dot-dashed); (b) EF = 5 and F = 0 (dashed; nowhere positive), −0.5 (solid),

0.05 (dotted), 0.5 (dot-dashed).

while the thickness may be written as

h =
V√

γ(β0 + β1)
E

1/2
F

+

[
−(β0 + β1)ξ

3 + 3(β0 + β1)ξ
2 − 3β0ξ − (2β1 − β0) − 3F

3
√
γ(β0 + β1)

]
E

−1/2
F

+ O
(
E

−3/2
F

)
.

This solution is valid for both extensional and compressive forces F as long as |F | � EF .

If the applied force F is large (with EF ∼ O(1)) then we require F > 0 for solutions to

exist. We may easily write down an approximate solution for y = s2 in terms of the small

parameter F−1,

s2 =
γV

2F
(β0 + β1)

[
1 − 1

12F

(
γ(β0 + β1)(β0 − 2β1) + 6EFV

)
+ O

(
1

F2

)]
.

This solution is valid for fields EF of either sign as long as |EF | � F . As with the large

F expansion when EF = 0, the film is short and fat and at leading order the thickness is

constant with the curvature appearing only at order F−3/2,

h =

√
2V

γ(β0 + β1)
F1/2

(
1 +

6EFV − γ(β0 + β1)(β0 − 2β1)

24
F−1 + O(F−2)

)
.

Several solutions, which illustrate a range of possibilities, are shown in Figure 2. In

all cases β0 = β1 = 0.5, which gives positive curvature, and γ = 1 = V . Figure 2(a)

shows the case where EF = 0. The bottom curve, with F = 0.06, does not satisfy the

condition F > γβ2
1/4 = 0.0625 and leads to a negative thickness over part of the domain.

The other two curves do satisfy this condition and show clearly how, as F increases, the

thickness also increases while the length s decreases. Figure 2(b) shows solutions with a
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non-zero field, EF = 5. Increasing F leads to shorter and fatter bridges. Also shown is a

non-physical solution where F = 0 and the height is everywhere negative.

A negative value for EF augments the surface tension force and so allows longer

bridges; a positive value gives shorter bridges. If we choose β0 = β1 < 0, there is no real

solution for s; no steady state of this kind exists, and presumably this form of bridge

would rupture, likely at its end(s).

3.2 Solution of the zero surface tension model, γ = 0

We now consider the case in which surface tension is negligible, setting γ = 0 in the

model (43)–(46) summarised in Section 2.2.2. Following the approach of Howell [5, 6] for

Newtonian sheets, this model may be solved by introducing a Lagrangian transformation

(x, t) 
→ (η, τ), where

xτ = u(x(η, τ), τ), x(η, 0) = η, t = τ. (62)

Then

∂τ = ∂t + u∂x, and uη = uxxη,

so that (42) becomes

hτ +
huη

xη
= 0. (63)

Now note that u = xτ, so uη = xητ, and (63) becomes

hτxη + hxητ = (hxη)τ = 0 ⇒ xη =
hi(η)

h(η, τ)
, (64)

where hi(η) = h(η, 0) is the initial condition on the sheet profile.

In equation (44) we write

R(x) =
(
e(x)(cos2 θ + λ)

)
x
. (65)

In line with our approach in the previous section, we consider R(x) to be a specifiable

function (e(x) = e0a(x)2, θ = g(a(x)) is a given function of a(x), and as described in

Appendix A, we can propose a method to calculate the electrode shape required to

generate any given a(x)). Writing the first term in (44) as −4(hτ)x, and using (64), equation

(44) (with γ = 0) becomes

4hητ
xη

= N̂Rh ⇒ 4hητ = N̂Rhi, (66)

where R is defined in (65). The system is closed by suitable boundary conditions as already

discussed; with zero surface tension it is sufficient to specify the positions of the sheet’s

ends, or fix one end and specify the force applied to the other end. In the former case it
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is easy to integrate twice to find the explicit solution parametrically:

h(η, τ) = A(τ) + hi(η) +
τN̂

4

∫ η

0

R(η′, τ)hi(η
′) dη′, (67)

where hi is the initial condition on the sheet thickness, h(η, 0) = hi(η) and A(τ) is fixed by

specifying the sheet length s(τ), with A(0) = 0:

s(τ) =

∫ 1

0

xηdη =

∫ 1

0

hi(η) dη

A(τ) + hi(η) + τN̂
4

∫ η

0 R(η′, τ)hi(η′)dη′
. (68)

For physically relevant solutions we assume s(τ) is a prescribed, increasing function of τ,

with s(0) = 1.

The latter condition of a prescribed force at the sheet’s end leads to a more complicated

free boundary problem, and the exact solution cannot be obtained so neatly. We do not

consider this case further analytically.

3.2.1 Specific solution family: Rhi constant

The simplest non-trivial case to consider is when the combination Rhi is constant (e.g.

constant R, as considered for the solutions in Section 3.1, and an initially flat sheet). Since

hi > 0 necessarily, R is then of one sign for all relevant η, so with no loss of generality

we write R(η)hi(η) = sgn(R), and explicitly evaluate the integral in (67) to give

h(η, τ) = A(τ) + hi(η) + sgn(R)
N̂ητ

4
. (69)

To determine A(τ) then requires that we evaluate the integral in (68),

s(τ) =

∫ 1

0

hi(η) dη

A(τ) + hi(η) + sgn(R) N̂ητ
4

=

∫ 1

0

dη

1 + |R|
(
A(τ) + sgn(R) N̂ητ

4

) , (70)

which requires specification of hi or R, and the pulling function s(τ).

For a particular case in which both hi and R are constant (hi(η) = 1, R(η) = sgn(R))

we can evaluate A(τ) explicitly, and also invert relation (64) to find x(η, τ), obtaining the

exact solution parametrically as

h(η, τ) =
sgn(R)N̂ητ

4
+

sgn(R)N̂τ

4(exp( sgn(R)N̂τ
4

s(τ)) − 1)
, (71)

x(η, τ) =
4

sgn(R)N̂τ
log

[
η

(
exp

(
sgn(R)N̂τ

4
s(τ)

)
− 1

)
+ 1

]
, (72)

for η ∈ [0, 1], τ > 0. For any monotone increasing pulling function s(τ) (assuming s(τ) < ∞
while τ < ∞) these solutions thin indefinitely at the ends (for both sgn(R) > 0, < 0), but

do not break off in finite time. Typical solutions for constant pulling speed are shown in

Figures 3 and 4.
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Figure 3. Exact solution to the unsteady problem for an initially uniform sheet h(x, 0) = hi(x) = 1,

with the right-hand end pulled at unit speed so that its position is at s(t) = 1 + t. The sheet profile

is shown at times t = 0, 1, 2, 3. The applied field is such that R(x) = 1 (as defined in (65)), and the

parameter N̂ = 2.
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Figure 4. As for Figure 3, but with R(x) = −1.

The case R(x) = 1 (Figure 3) corresponds (in qualitative terms) to an electric field

increasing along the positive x-axis. This induces a flux of fluid along the positive x-

direction so that it piles up at the right-hand end of the sheet, while the left-hand end

thins. For R(x) = −1 the opposite is true: the electric field decreases along the positive

x-direction, and the induced flux is in the opposite direction. By way of contrast we note

that the equivalent Newtonian solution for hi(η) = 1 is simply

h(η, τ) =
1

s(τ)
, x = ηs(τ) (73)

(set N̂ = 0 in (67), (68) and (64)), so the Newtonian sheet simply thins uniformly to

conserve mass.

In Figures 5 and 6 we show analogous solutions of (64), (69) and (70) for an initially

quadratic sheet profile h(x, 0) = hi(x) = 1/2 + (x − 1/2)2 pulled at unit speed from the

right-hand end (s(t) = 1+ t). Note that although the sheet is initially thinnest at the point

mid-way between its ends, this is not the case after significant stretching: the flux induced

by the electric field gradient dominates in both cases, and by time t = 5 the sheet is

thinnest at one of its ends.

The question of sheet breakup, whether internal or at an endpoint, is non-trivial to

address. Equations (64) and (68) show that the length of a general zero-surface tension

sheet satisfies

s(τ) =

∫ 1

0

hi(η)

h(η, τ)
dη.
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Figure 5. Exact solution to the unsteady problem for an initially quadratic sheet h(x, 0) = hi(x) =

1/2 + (x − 1/2)2, with the right-hand end pulled at unit speed so that its position is at s(t) = 1 + t.

The sheet profile is shown at times t = 0, 1, 2, 3, 4. The applied field is such that R(x)hi(x) = 1 (R is

as defined in (65)), and the parameter N̂ = 1.
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Figure 6. As for Figure 5, but with R(x)hi(x) = −1.

For a non-zero initial profile hi(η) > 0, if h(η∗, τ∗) = 0, 1/h must be integrable in the

neighbourhood of η∗, suggesting that if a profile goes to zero in finite time, it may

do so with local cusp-type behaviour h ∼ |η − η∗|α, 0 < α < 1, rather than smoothly.

Whether such breakup can occur or not remains an open question mathematically: from

a modelling perspective, our lubrication scaling assumptions would be violated before

such cusp formation was achieved, in any case.

So far in our simulations with this solution family, the film is always ultimately thinnest

at one of its ends, and so presumably breaks there first in practice, as the above examples

suggest.

4 Numerical solutions of the full model

We now present some numerical solutions of the full (time-dependent, non-zero surface

tension) model equations (47)–(48).

The first example that we consider is the non-zero surface tension analogue of the exact

solution of Section 3.2.1. Again, we take the electric field to be such that R(x) = ±1, as

defined in (65), and fix one end x = 0 of the initially uniform sheet (hi(x) = 1), while the

other end at x = s(t) is pulled at unit speed so that u(s(t), t) = 1, with s(t) = 1 + t (c.f.

(49)). This form of electric field is particularly simple to implement, since the governing

equation (47) reduces to

4s(uξh)ξ ± N̂hs3 +
γ

2
hhξξξ = 0. (74)

Since we include surface tension effects, we must also specify the contact angles at
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Figure 7. Numerical solutions to the unsteady problem with non-zero surface tension for an

initially uniform sheet hi(x, 0) = 1, with left-hand end fixed at x = 0 and right-hand end fixed at

s(t) = 1 + t (pulled at unit speed). The applied field is such that R(x) (defined in (65)) takes values

R(x) = 1 (left-hand figure) and R(x) = −1 (right-hand figure); and N̂ = 2 in both cases. The sheet

profile h(x, t) is shown at times t = 0, 0.1, 0.5, 1, 2, 3 for surface tension γ = 2 (solid) and γ = 8

(dashed).
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Figure 8. Evolution of a non-flat initial sheet (75) under the action of the electric field such

that R(x) = 1 (left-hand plot; profile h(x, t) shown at times t = 0, 0.1, 0.5, 1, 2, 3, 4) and R(x) = −1

(right-hand plot; profile h(x, t) shown at times t = 0, 0.1, 0.5, 1, 2, 3, 4, 5, 6). Other details are as for

Figure 7.

the sheet’s ends, as in (50). For an initially flat sheet we choose contact angles of π/2

(β0 = 0 = β1) compatible with the initial condition. The resulting numerical solutions

are shown in Figure 7, in which the left-hand figure with R(x) = 1 may be directly

compared with Figure 3, and the right-hand figure with R(x) = −1 may be compared with

Figure 4. The parameter N̂ = 2 in both cases, and results for surface tension parameter

values γ = 2 (solid curves) and γ = 8 (dashed curves) are shown. The sheet profile is

shown at times t = 0.1, 0.5, 1, 2, 3 as it extends.

Different contact angles are illustrated by means of a different initial condition,

hi(ξ, 0) = c cosh([ξ − 0.5]/c) − c cosh(0.5/c) + 1, (75)

with c = 1.039 to match boundary conditions (50) with contact angle parameters β0 =

β1 = 0.5. Simulations for this initial condition are shown in Figure 8 (the left-hand sub-

figure has R(x) = 1, while R(x) = −1 in the right-hand sub-figure). The sheet’s right-hand

end is pulled at unit speed, the parameter N̂ = 2, and results for two surface tension values
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Figure 9. Electric field function a(x) and its derivative for the external field (76).

γ = 2 (solid curves) and γ = 8 (dashed curves) are shown. The evolution is shown over

longer times here to give a sense of the large-time evolution of such a sheet. While the

behaviour is qualitatively similar in zero and non-zero surface tension cases, the general

feature observed is that the sheet thins more rapidly as surface tension decreases. These

observations suggest that non-zero surface tension will delay breakup (although in none

of our simulations does breakup occur).

The final example that we consider illustrates a case in which instead of specifying a(x),

we specify the externally applied electric field, Eext, across an initially uniform sheet. We

use the external field given as an example in (A 5) (Appendix A),

Eext = ẑex + xeẑ , (76)

where ẑ is related to the dimensionless coordinate z (used from Section 2.2 onwards) by

ẑ = δz (it is the dimensionless but unstretched coordinate perpendicular to the sheet).

The corresponding field within the sheet is

E = a(x)ez + O(δ), (77)

where a(x) is determined by solving equation (A 6) numerically in Appendix A. The

function a(x), together with its gradient, is shown in Figure 9; it is very close to linear.

This function a(x) is substituted in (47), which is then solved together with (48) subject

to the boundary conditions. The results for the sheet evolution are shown in Figures 10

(end velocity of sheet specified) and 11 (constant force prescribed at the sheet’s end) for

the two surface tension values, γ = 2 and γ = 8.

5 Discussion and conclusions

We have used systematic asymptotic expansions to derive a new model for the dynamics

of a thin film of NLC, under the action of stretching from its ends, and an externally

applied electric field. With certain simplifying assumptions (as outlined in Section 2), we

deduce that, as for the Newtonian case, the sheet is flat to leading order, its centreline

lying along the x-axis. The asymptotic analysis must be taken to second order in the film

aspect ratio in order to obtain a closed system; when this is done, two coupled partial

differential equations are obtained for the sheet thickness h(x, t), and the velocity of the
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Figure 10. Numerical solutions to the unsteady problem with non-zero surface tension for an

initially uniform sheet hi(x, 0) = 1 (left-hand figure) and non-flat initial condition (75) (right-hand

figure). The left-hand end is fixed and its right-hand end is pulled at unit speed so that its position

is at s(t) = 1 + t. The applied field is given by (76) and (77) (a(x) as defined in (A 6) and plotted in

Figure 9). The sheet profile h(x, t) at times t = 0, 0.1, 0.5, 1, 2, 3 is shown for surface tension γ = 2

(solid) and γ = 8 (dashed).
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Figure 11. Numerical solutions to the unsteady problem with non-zero surface tension for an

initially uniform sheet hi(x, 0) = 1 (left-hand figure, sheet profile shown at times t = 0, 0.1, 0.5, 1, 2)

and non-flat initial condition (75) (right-hand figure, sheet profile shown at times t = 0, 0.1, 0.5, 1).

The left-hand end is fixed, while the right-hand end is pulled with a force of 1.8 units, and the

applied field is as for Figure 10. Surface tension values γ = 2 (solid) and γ = 8 (dashed) are shown.

sheet along its axis, u(x, t). These partial differential equations depend also on the director

angle θ, which, with the same anchoring conditions on each free surface, is also a function

only of the axial coordinate (and possibly time), θ(x, t). This anchoring angle in turn

is determined by the anchoring conditions at the free surfaces of the sheet and by the

externally applied electric field, which can be solved separately as explained in Appendix

A. The method for calculating the electric field is another contribution of this paper.

The full system, accounting for surface tension effects, the applied field, the surface

anchoring of the nematic molecules and suitable conditions at the sheet’s ends, is sum-

marized in Section 2.2.2. With no applied field, it is found that the evolution is exactly

as for a Newtonian sheet, but the presence of an electric field gradient can change mat-

ters dramatically. An exact method for finding solutions (which follows the approach

of Howell [5] for the Newtonian case) is presented for the case of zero surface tension.

When surface tension effects are significant, numerical methods must be used, and several

examples are presented for this case.
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The analysis has several limitations, which require a more in-depth (and considerably

more complicated) analysis to resolve. Firstly, in order to solve explicitly for the director

angle, we consider only electric field effects that are subdominant to the internal elasticity

of the sheet (although they can dominate over surface anchoring effects). Therefore, our

analysis will be valid only for moderate applied electric fields. Secondly, motivated in part

by our zero-field results, which reduced to the Trouton model for the Newtonian sheet,

we used a ‘Newtonian’ simplification to reduce the governing equations in the applied-

field case: that is, we set all the Leslie viscosities other than the Newtonian analogue,

α4/2 (unity in the dimensionless variables) to zero. While this simplification is rigorously

justifiable in the field-free case, it is not obvious whether it is legitimate in the more general

case with an applied field: likely, it is a reasonable description of the behaviour only near

the nematic-isotropic transition. This issue would benefit from further consideration, and

in a future publication we will investigate some very simple flows with an applied field

and different (non-zero) Leslie viscosities.

Experiments on a similar setup (but with liquid crystalline fibres, rather than sheets, in

extensional flow) have been carried out by Savage et al. [15]. Although Newtonian fibres

in extension are governed by the same model as Newtonian sheets in extension (with a

change only of Trouton ratio; the model is the same as the field-free case derived here),

an extensional nematic fibre is quite different to an extensional nematic sheet, primarily

because of surface anchoring. With a nematic sheet, it is trivial for the director to adopt

the same anchoring condition on each free surface (uniform director field throughout

the sheet). However, for a circular fibre, any non-planar anchoring at the fibre surface

leads to a non-trivial problem for the equilibrium director field within the fibre. Thus, the

asymptotic analysis for an extensional nematic fibre will be much more complicated in

general than the sheet considered here. These differences make it impossible to compare

our results with those of [15].
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Appendix A The electric field within the sheet

The applied field satisfies Maxwell’s equations both inside and outside the nematic sheet,

with appropriate jump conditions at the interfaces. Within the sheet the slender scalings

apply, with x ∼ L, z ∼ δL; and if |E | ∼ E0 then the electric potential Ψ ∼ δLE0. In
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dimensionless variables with these scalings, then the electric field within the sheet satisfies

E = ∇Ψ = δΨxex + Ψzez (A 1)

(in order to avoid a profusion of minus signs, we opt for this definition rather than

the more usual E = −∇V ). Accounting for the dielectric anisotropy within the nematic,

Maxwell’s equations require ∇ · (εE) = 0, so that

(ε33Ψz)z + δ(ε13Ψx)z + δ(ε13Ψz)x + δ2(ε11Ψx)x = 0

within the sheet. In this 2D case the coefficients of the dielectric tensor ε can be written

explicitly in terms of the director components n1 = sin θ and n3 = cos θ, as

ε33 = (ε‖ − ε⊥) cos2 θ + ε⊥, ε13 = (ε‖ − ε⊥) sin θ cos θ, ε11 = (ε‖ − ε⊥) sin2 θ + ε⊥.

Since in the thin sheet approximation the director angle θ is independent of the coordinate

z perpendicular to the film to leading order (see (26)), so that ε33 is independent of z, the

leading-order electric potential Ψ0 satisfies

Ψ0 = za(x) + b(x),

corresponding to an electric field (from (A 1))

E = Ψ0zez + O(δ) = a(x)ez + O(δ).

Here a(x) is arbitrary, although in practice the field will have to match to a solution of

Maxwell’s equations outside the nematic sheet via appropriate boundary conditions.

With the free energy density scaled with K/(δ2L2), the dimensionless energy density W

is then given by

2W = θ2
z − δe(x)(cos2 θ + λ) + O(δ2),

where

e(x) =
δL2E2

0ε0(ε‖ − ε⊥)

K
a(x)2 = e0a(x)2, λ =

ε⊥
ε‖ − ε⊥

,

and e(x) is assumed to be O(1).

A.1 The required exterior field

The above relates to the electric field within the nematic sheet, but in practice we envisage

an externally supplied electric field, which we write in terms of (dimensionless) electric

potentials Ψ (inside the film; see above) and Ψ̂ (outside the film); Ψ and Ψ̂ scale

differently, as discussed below. Outside the nematic sheet we assume the dielectric tensor

εij to be the identity tensor δij . Then outside the sheet Ψ̂ satisfies Laplace’s equation,

and the jump conditions across the air-nematic interface are (in the dimensional, unscaled
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variables)

[ν∗ · ε∗ · E∗] = 0, [E∗ · t∗] = 0,

where ν∗ is the normal vector, and t∗ is the tangent vector to the interface.

In the outer (air) region the geometry is no longer slender: both x∗- and z∗-coordinates

scale with sheet length L∗, and we use dimensionless variables (x, ẑ) to denote this

different scaling: (x∗, z∗) = L∗(x, ẑ), ẑ = δz. We then have Laplace’s equation in (x, ẑ) for

the electric potential Ψ̂ (now made dimensionless by scaling with LE0), and the above

boundary conditions are applied, to leading order, on the line ẑ = 0. We only need

consider Ψ̂ in the region ẑ > 0 since we know the sheet geometry is symmetric about the

x-axis, to leading order. With our knowledge of the scalings and solution in the slender

sheet region, the problem for the leading-order potential Ψ̂0 is then

∇2Ψ̂0 = 0 ẑ > 0,

Ψ̂0x = 0 on ẑ = 0,

Ψ̂0ẑ = ε33Ψ0z = (ε‖ − ε⊥)(cos2 θ + λ)a(x) on ẑ = 0,

where, recall, θ is a prescribed function of a(x) given by (26). We solve this problem by

writing

(cos2 θ + λ)a(x) = A′(x), (A 2)

and introducing a complex potential f(Z), such that Ψ̂0 = �(f(Z)), with Z = x + iẑ.

Then on the boundary ẑ = 0 we have f′(Z) = Ψ̂0x − iΨ̂0ẑ = −iεaA
′(x), that is,

f′(Z) = −iεaA
′(Z) on �(Z) = 0

(here we have introduced the dielectric anisotropy, εa = ε‖ − ε⊥ > 0). Provided A′(Z) is

analytical (it is at least in some neighbourhood of the real axis), this condition may be

analytically continued away from this boundary, and we deduce that in fact

f(Z) = −iεaA(Z) + κ in �(Z) > 0. (A 3)

Hence, we have the (leading-order) electric potential and field everywhere; substituting

for θ(x) = θBg(a(x)) from (26), we finally have

Eext = ∇Ψ̂0 = εa
(
�((cos2(θBg(a(Z))) + λ)a(Z)),�((cos2(θBg(a(Z))) + λ)a(Z))

)
+O(δ), (A 4)

with g(a) given by (13).

To generate the required exterior field (A 4) we take the following steps: (i) Specify the

function a(x) characterizing the electric field within the sheet; (ii) calculate A(x) (from

(A2)) and hence A(Z); (iii) write down the complex potential f(Z) from (A 3); (iv) find

the (leading-order) electric potential Ψ̂0 = �(f(Z)); and (v) plot the level curves of Ψ̂0

(equipotentials). These equipotentials provide a family of possible electrode shapes that

can be used to generate the desired a(x), provided we choose two equipotentials so as to
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Figure A 1. Possible electrode shapes that could be used to generate the external field used for the

examples given in Sections 3.1 and 3.2.1. The electrodes, which are equipotentials Ψ̂0 = ±1 and are

represented by the thick black lines, surround the sheet, which lies along the horizontal (x) axis.

With reference to Section 3.1, parameter values were chosen as: EF/N̂ = 1; λ = 1 and e0 = 1 in

(18).

avoid any singularities of Ψ̂0 between them (this is possible because A(Z) is guaranteed

to be analytic at least in some neighbourhood of the real axis where the sheet lies).

Thus, our original assumption that we may choose the form of the electric field within

the sheet is justified. To illustrate, we carry out the above procedure for the electric field

chosen for the steady solutions of Section 3.1 (and used again for the first exact zero

surface tension solution presented in Section 3.2.1). Two equipotentials of the resulting

electric potential are shown in Figure A 1; these are possible electrode shapes that could

be used to generate the electric field for those examples.

On the other hand, we can, of course, turn the problem around and ask the following:

For a given external field satisfying Ψ̂0x|ẑ=0 = 0, what is the corresponding field within

the nematic sheet? By way of illustration, suppose the external field is given by

Ψ̂0 =
1

2
�(−iZ2) = xẑ, Eext = ẑex + xeẑ , (A 5)

which satisfies the boundary condition. (In line with the discussion above, hyperbolic

electrode shapes could be used to generate such an external field.) The function A(Z) is

then given by A′(Z) = Z/εa, so the (leading-order) field within the sheet is E = a(x)ez ,

where a(x) satisfies

x

εa
= a(x)

[
cos2

(
θBE

2
a

a(x)2 + E2
a

)
+ λ

]
. (A 6)
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Appendix B Contact angles

In this paper, when solving the non-zero surface tension problem, we assumed that the

gradient of the sheet’s free surface (related to the contact angle) was prescribed at the end-

plates holding the bridge. In this appendix we derive a more general boundary condition

on the contact angle, and specify conditions under which our assumption is valid.

In general it is known that a relationship exists between the dynamic contact angle

φ(t) at a moving contact line and the speed of the moving contact line. While many such

empirical relationships exist, a commonly used law (due to Cox and Voinov [3, 19]) takes

the form

φ3 − φ3
e = κVn at the contact line, (B 1)

where φe is the equilibrium contact angle for the given fluid–surface combination, κ is a

constant having dimensions of time/length and Vn is the speed of the contact line in the

direction of its motion (for our sheet, Vn = ht). Since we are in the lubrication regime, we

know that the slope of the sheet must always be small so that

φ(t) =
π

2
− δβ(t), φe =

π

2
− δβe.

Rewriting (B 1) in our dimensionless variables (14) and substituting for φ and φe, we

obtain (at leading order and after dropping the tildes)

βe − β = kht at the contact line; k =
4

3π2
κU.

Within our lubrication approximation we have hx = φ1 to leading order, giving the

boundary condition

hx + kht = βe at x = s(t); k =
4

3π2
κU.

An exactly similar analysis may be carried out at the left-hand boundary x = 0. In the

simulations of this paper we have assumed k � 1 so that contact angles are approximately

constant within our lubrication assumption.
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