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The scaling behaviour of the longitudinal velocity structure functions 〈(∆ru)2p
〉

1/p

(where 2p represents the order) is studied for various wall-bounded turbulent flows. It
has been known that for very large Reynolds numbers within the logarithmic region,
the structure functions can be described by 〈(∆ru)2p

〉
1/p/U2

τ ≈Dp ln(r/z)+ Ep (where
r is the longitudinal distance, z the distance from the wall, Uτ the friction velocity
and Dp, Ep are constants) in accordance with Townsend’s attached eddy hypothesis.
Here we show that the ratios Dp/D1 extracted from plots between structure functions
– in the spirit of the extended self-similarity hypothesis – have further reaching
universality for the energy containing range of scales. Specifically, we confirm that
this description is universal across wall-bounded flows with different flow geometries,
and also for both the longitudinal and transversal structure functions, where previously
the scaling has been either difficult to discern or differences have been reported when
examining the direct representation of 〈(∆ru)2p

〉
1/p. In addition, we present evidence

of this universality at much lower Reynolds numbers, which opens up avenues to
examine structure functions that are not readily available from high Reynolds number
databases.

Key words: turbulent boundary layers, turbulent flows

1. Introduction
Developed turbulence is characterized by its non-Gaussian, intermittent statistics

at the small scales (Frisch 1995; Pope 2000). The universality of these statistics
was established about two decades ago (Arneodo et al. 1996; Belin, Tabeling &
Willaime 1996) by employing the so-called extended self-similarity (ESS) hypothesis
(Benzi et al. 1993, 1995). That is, rather than focusing on the scaling of the nth-order
streamwise velocity (u) structure function for the inertial subrange (ISR) scales, which
scales as

〈[u(x+ ir)− u(x)]n〉 ∝ rζn, (1.1)

† Email address for correspondence: desilvac@unimelb.edu.au
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where r represents the spatial separation, ζn the scaling exponents, i an unit vector
in the streamwise direction and 〈〉 indicates averaged quantities, the focus is on the
relative scaling of one structure function with respect to another. Traditionally, scaling
is computed relative to the third-order structure function 〈|∆ur|

3
〉 of the modulus of

the velocity difference, following

〈(∆ru)n〉 ∝ 〈|∆ru|3〉ξn . (1.2)

The intermittency exponents ξn show a universal non-Kolmogorov K41 dependence
(i.e. ξn 6= n/3) on n, which can be characterized by the She–Leveque hierarchies
(She & Leveque 1994) or the p-model of Meneveau & Sreenivasan (1987). To
conform with recent work on even moments (Meneveau & Marusic 2013; de Silva
et al. 2015), we shall set n = 2p below, and define the normalized dimensionless
longitudinal structure function as 〈(∆ru+)2p

〉
1/p. Here, the velocity and length scales

are given in viscous/wall units, and are denoted by the subscript/superscript +. For
example, we use l+ = lUτ/ν for length and u+ = u/Uτ for velocity, where Uτ is the
mean friction velocity and ν is the kinematic viscosity of the fluid.

The universality for the ISR scaling properties in ESS form following (1.2) has been
shown to hold for various flow types and even down to very small Taylor–Reynolds
numbers (Reλ ≈ 100) (Grossmann, Lohse & Reeh 1997a,b), even though universality
might not be easily discernible from the structure functions, 〈(∆ru+)2p

〉
1/p, themselves.

However, in wall turbulence this universality has been thought to break down on the
large, so-called energy-containing range (ECR), scales (Pope 2000), where the wall
boundedness and the different geometric features of the flow boundary conditions
should play an increasingly important role.

In this work, a further reaching universality for the scaling behaviour of the ECR
scales in wall-bounded turbulence is explored. Accordingly, we focus – in the spirit of
ESS – on the relative relations of the velocity structure functions in the ECR scales
across both a wide range of wall-bounded flow geometries and Reynolds numbers.

The increasing popularity of Townsend’s attached eddy hypothesis (Townsend
1976; Perry, Henbest & Chong 1986; Meneveau & Marusic 2013; Yang, Marusic &
Meneveau 2016a) has revealed new insight into the universality of the ECR scales,
z< r� δ (where z and δ corresponds to the wall-normal distance and boundary layer
thickness, respectively), in wall-bounded turbulence. Recently, de Silva et al. (2015)
examined turbulent boundary layers at friction Reynolds numbers, Reτ = δUτ/ν, of
order 104. Their work confirmed that at sufficiently high Reynolds numbers the
ECR scales of the normalized even-ordered longitudinal structure functions can be
described by

〈(∆ru+)2p
〉

1/p
=Dp ln

(
r
z

)
+ Ep, (1.3)

where r is the longitudinal distance, z the distance from the wall and Dp, Ep

are constants. Such a representation is shown in figure 1(a), which presents the
longitudinal second-order structure function, 〈(∆ru+)2〉, from the boundary layer
databases used in the present work (see table 1 for further details). Results from
each database are computed at approximately the geometric centre of the logarithmic
region, which is taken to nominally span the range 3

√
Reτ < z+ < 0.15Reτ (Marusic

et al. 2013). The solid line in figure 1(a,b) reproduces the scaling described by (1.3)
with the coefficients reported by de Silva et al. (2015). The results exhibit good
agreement in the ECR scales (z < r � δ) for the high Reynolds number databases.
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FIGURE 1. (Colour online) (a) The second-order longitudinal structure function, 〈(∆ru+)2〉
versus r/z. The symbols represent different datasets (defined in table 1), and the results
are computed at wall-normal locations within the logarithmic region:6: z+≈ 800,A: z+≈
1.6× 104 andu: z+ ≈ 150. (b) 〈(∆ru+)2〉 versus r/z at Reτ ≈ 19 000 (6 symbols) across
the range 0.01 < z/δ < 0.15. The solid line (——) in (a,b) corresponds to a log-law fit
following (1.3) in the range z< r� δ.

However, even at Reynolds numbers in excess of O(104), scaling is only present over
less than a decade of r/z.

Further, to illustrate the influence of the wall-normal position, z, figure 1(b) shows
〈(∆ru+)2〉 computed for the database at Reτ ≈ 19 000 at different z within the
logarithmic region. Here, it is evident that the extent of scales (following (1.3))
is impacted by the chosen z, with an earlier peel-off from (1.3) with increasing z,
consistent with the scaling range z < r � δ (Davidson, Nickels & Krogstad 2006).
Additionally, this log-law scaling is even harder to discern at Reτ ∼ O(103) for the
ECR scales (to be discussed further in § 4.1), as these flows are yet to exhibit a clear
logarithmic region in the variance (Smits, McKeon & Marusic 2011). However, direct
numerical simulation (DNS) databases at Reτ ∼ O(103) have access to volumetric,
multi-component information. Therefore, if one can discern the scaling for the ECR
scales from these databases it would open avenues to examine the other velocity
components/directions. In this work, we will show that the universality of the scaling
for the ECR scales in an ESS framework is applicable to Reτ ∼ O(103) as well as
different flow geometries of wall-bounded turbulence. Previous studies (see Chung
et al. (2015) for pipe flows and Sillero, Jiménez & Moser (2013) for channel flows)
have reported that the scaling behaviour of the ECR scales differs, based on flow
geometry if one is restricted to a classical analysis.

Throughout this paper, the coordinate system x, y and z refers to the streamwise,
spanwise and wall-normal directions, respectively. The corresponding instantaneous
streamwise, spanwise and wall-normal velocity fluctuations are represented by u, v
and w.

2. Experimental and numerical databases
This study utilizes a collection of wall-bounded flow databases from both

experimental and numerical works, which are summarized in table 1. Collectively,
they cover different flow geometries (boundary layer, channel and pipe flow) and
span a wide range of Reynolds numbers.
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Symbol Flow Reference Technique ≈Reτ

6 Boundary layer Hutchins et al. (2009) Hot-wire 19 000
A Atmospheric Bound. layer Kunkel & Marusic (2006) Hot-wire 3× 106

u,t Boundary layer Sillero et al. (2013) DNS 1600
Channel flow del Alamo et al. (2004) DNS 930

@ Pipe flow Ng et al. (2011) Hot-wire 3000

TABLE 1. Summary of experimental and numerical databases and their corresponding
symbols. Databases with two symbols have access to both longitudinal and transversal
information.

The high Re laboratory boundary layer dataset (6 symbols) is acquired from the
High Reynolds Number Boundary Layer Wind Tunnel (HRNBLWT) at the University
of Melbourne. Further details of the facility are provided in Nickels et al. (2005).
The measurement is obtained using hotwire anemometry using a 2.5 µm diameter
Wollaston wire operated by an in-house constant-temperature anemometer. We note
that this and all other databases used in the present work are acquired with a
spatial resolution sufficient to resolve the turbulence intensity accurately within the
logarithmic region based on the guidelines laid out by Hutchins et al. (2009). The
highest Re database (A symbols) is acquired from the atmospheric boundary layer at
the surface layer turbulence and environmental test facility (SLTEST) located in the
Utah salt flats (Kunkel & Marusic 2006) again employing hot-wires positioned within
the logarithmic region.

To compliment the high Re databases from boundary layers, we include a recent
numerical database of a turbulent boundary layer at Reτ ≈ 1600 (Sillero et al. 2013).
For the present study, we use seven volumetric fields with a streamwise and spanwise
extent of approximately 1δ and 10δ, respectively, thus allowing us to compute both
the longitudinal (u symbols) and transversal (t symbols) structure functions. The final
two databases are from a channel flow DNS by del Alamo et al. (2004) and a pipe
flow measurement by Ng et al. (2011). Similar to the boundary layer case, we use five
volumetric fields with a streamwise and spanwise extent of 8πδ and 3πδ, respectively,
for the channel flow DNS. The pipe flow measurement is acquired using hot-wire
anemometry in a similar fashion to the high Re boundary layer databases. Further
details on all measurements can be found in their respective publications. We note for
all the hot-wire anemometry database we use Taylor’s frozen turbulence hypothesis to
convert the time-series information from the hot-wires to spatial information using the
local mean velocity as the convection velocity. The validity of using Taylor’s frozen
turbulence hypothesis at least up to r<δ is confirmed by de Silva et al. (2015). Other
studies which have also assessed the accuracy of invoking Taylor’s hypothesis include
Dennis & Nickels (2008), Del Alamo & Jiménez (2009), Chung & McKeon (2010),
Atkinson, Buchmann & Soria (2014).

The subsequent analysis involves computing higher-order moments, therefore a brief
discussion on the degree of convergence of the higher moments is warranted. The
convergence of the hot-wire databases (6, A and @ symbols) has already been
established by de Silva et al. (2015) up to p = 5 or the tenth-order moment.
Meanwhile, for the DNS databases, we are limited by the number of accessible
volumes, therefore the premultiplied probability density function for velocity
fluctuations (∆ru+)2pP(∆ru+) is computed in order to assess the degree of convergence
following the approach described in Meneveau & Marusic (2013) and Huisman, Lohse
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FIGURE 2. (Colour online) Premultiplied probability density function of ∆ru+ at r ≈ z+
within the logarithmic region. (a,b) Correspond to the boundary layer DNS of Sillero et al.
(2013) and the channel flow DNS of del Alamo et al. (2004), respectively. The moments
2p= 2, 6, and 10 are represented byE,@ andA, respectively. Curves are divided by an
arbitrary factor Kp such that the maximum for all orders is one.

& Sun (2013). The results are shown in figure 2 for the two DNS databases and reveal
that acceptable convergence is observed up to 2p= 6 in the sense that the respective
structure function of order 2p, which is the area under the curve, is captured well
(i.e. the tails of the distributions plotted in figure 2 are smooth). However, convergence
at 2p= 8 and beyond is moderate, therefore, for the subsequent analysis results from
the DNS datasets at 2p> 6 should be considered with due caution.

3. Relative relations of structure functions for the ECR scales
Based on our observations from the streamwise structure function for the ECR

scales in turbulent boundary layers (see figure 1) it is evident that (1.3) holds
over a very limited range of scales, even for high Re flows of O(104). Therefore,
in order to establish further reaching universality, we examine – in the spirit of
ESS – the relative relations of the velocity structure functions. That is, rather than
examining 〈(∆ru+)2p

〉
1/p versus log(r/z) as in figure 1, we plot 〈(∆ru+)2p

〉
1/p versus

〈(∆ru+)2m
〉

1/m, thus obtaining the ratios Dp/Dm of the coefficients Dp from the slopes
of such plots. Specifically, for the ECR scales following (1.3) we obtain the ratios

〈(∆ru+)2p
〉

1/p
=

Dp

Dm
〈(∆ru+)2m

〉
1/m
+ Ep −

Dp

Dm
Em. (3.1)

In figure 3(a) we show this type of plot for 〈(∆ru+)4〉1/2 versus 〈(∆ru+)2〉. Compared
to the direct representation, 〈(∆ru+)2p

〉
1/p versus log(r/z) (cf. figure 1a), which was

limited to the range z< r� δ, the results reveal a convincingly extended scaling range
beyond r & z. Further, an accurate estimate of Dp/Dm can now also be obtained from
the lower Re database at Reτ ≈ 1600, highlighting the extended universality of (3.1)
for the ECR scales. This in turn would allow us to discern the scaling coefficients of
structure functions from other velocity components/directions, which are more readily
accessible from databases at Reτ ∼ O(103). It is worth noting that if the distribution
of ∆ru was Gaussian, the scaling ratios would be known, i.e. then 〈(∆ru+)2p

〉
1/p
=

[(2p − 1)!!]1/p〈(∆ru+)2〉. However, in the general case such a simple relation does
not exist. Therefore, since ∆ru is non-Gaussian (i.e. non-zero third moment, non-zero
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FIGURE 3. (Colour online) (a) ESS plot for 〈(∆ru+)4〉1/2 versus 〈(∆ru+)2〉. The symbols
represent different datasets (defined in table 1), and the results are computed at
wall-normal locations within the logarithmic region:6: z+≈ 800,A: z+≈ 1.6× 104 andu:
z+ ≈ 150. The solid line (——) corresponds to a fit following (3.1) to the experimental
database at Reτ ≈ 19 000. For reference (b) shows (a) reproduced on a log–log plot in the
traditional ESS form between 〈(∆ru+)4〉1/2 and 〈(∆ru+)2〉.

additive constant [Ep − (Dp/Dm)Em] in (3.1), see also de Silva et al. (2015)), the
scaling described in (3.1) is a non-trivial result.

As an aside, we also include the traditional ESS plot (cf. figure 3b for reference),
where 〈(∆ru+)4〉1/2 and 〈(∆ru+)2〉 are plotted on log–log scales. Benzi et al. (1993,
1995) have shown that in this form better estimates of the relative ISR scaling
exponents, ζp/ζm, can be computed compared to the velocity structure function
〈∆ru

2p
+ 〉

1/p
∝ rζ2p/p itself.

To further validate the improved robustness of the scaling described in (3.1) for the
ECR scales, figure 4(a–c) presents results for the even, higher-order structure functions
at approximately the geometric centre of the logarithmic region. The results show
good collapse of the higher-order moments up to 2p= 10 and provide further direct
support for (3.1). To quantify these findings, figure 4(d) and table 2 present the ratios
of Dp relative to Dm (with m = 1) computed based on a linear fit in the range r &
z. We note good agreement with the coefficients reported by de Silva et al. (2015)
who had access to sufficiently high Re databases, however, following (3.1) we can
reproduce accurate estimates even for the low Re databases (u symbols) in the present
work. Previously, databases at comparably low Re would only provide a poor direct
estimate of Dp following (1.3) (see also figure 6). Table 2 also presents estimates of
the higher-order coefficients D2−5 for reference from the database at Reτ ≈ 19 000,
determined from the computed ratios Dp/Dm (now over a much wider range of scales,
∼r & z) together with a known estimate of one coefficient (here chosen to be D1). It
should be noted that computing higher-order moments, particularly from experimental
databases, can be prone to inaccuracies due to the presence of measurement noise.
Nevertheless, here we observe consistent support for (3.1) across a wide range of
experimental databases and numerical databases.

4. Further evidence of universality
4.1. Influence of wall-normal location and flow geometry

Previously, it was highlighted that the scaling observed for the ECR scales is prevalent
across a finite wall-normal extent (see figure 1). Specifically, even-order structure
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FIGURE 4. (Colour online) ESS plot for higher-order moments for the same databases
shown in figure 3. (a) 〈(∆ru+)6〉1/3 versus 〈(∆ru+)2〉, (b) 〈(∆ru+)8〉1/4 versus 〈(∆ru+)2〉
and (c) 〈(∆ru+)10

〉
1/5 versus 〈(∆ru+)2〉. The solid red lines (——) correspond to a fit

following (3.1) to the experimental database at Reτ ≈ 19 000, and the values Dp/D1 are
tabulated in table 2. (d) Ratios Dp/D1 for the different databases. The symbols in all
panels represent different datasets (defined in table 1), and the results are computed at
wall-normal locations within the logarithmic region: 6: z+ ≈ 800, A: z+ ≈ 1.6× 104 and
u: z+ ≈ 150.

SLTEST – hot-wire Bound. layer – DNS HRNBLWT – hot-wire
Reτ ≈ 3× 106 Reτ ≈ 1600 Reτ ≈ 19 000
z+ ≈ 1.6× 104 z+ ≈ 150 z+ ≈ 800

Dp/D1 Dp/D1 Dp/D1 Dp

p= 1 1.00 1.00 1.00 *2.45
p= 2 1.56± 0.02 1.63± 0.01 1.53± 0.01 3.76
p= 3 2.04± 0.05 2.14± 0.02 1.97± 0.03 4.82
p= 4 2.45± 0.09 2.53± 0.05 2.35± 0.07 5.74
p= 5 2.83± 0.16 2.80± 0.10 2.71± 0.16 6.65

TABLE 2. Comparison of the ratios Dp/D1 for the ECR scales from different turbulent
boundary layer datasets. The range for each Dp/D1 estimate indicates a 95 % confidence
bound. The scaling constants, Dp, is presented at Reτ ≈ 19 000 based on the reference
value, D1 (indicated by the * symbol) from the same database.

functions are reported to follow (1.3) within the bounds of the logarithmic region
(Davidson et al. 2006), where self-similarity is most prevalent as bulk flow effects
[z ∼ O(δ)] or viscous effects [z+ ∼ O(1)] are minimal. Recent work on moment
generating functions by Yang et al. (2016b) has shown that the extent of logarithmic
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FIGURE 5. (Colour online) (a) 〈(∆ru+)6〉1/3 versus r/z at all available wall-normal (z)
locations from the hot-wire dataset of Hutchins et al. (2009) at Reτ ≈ 19 000. Each line
corresponds to different z locations from the wall up to z/δ ≈ 1 with darker shading
corresponding to higher z. The red lines (——) highlight z locations within the logarithmic
region. The blue dashed line (– –) corresponds to the scaling law expected for the ECR
scales. (b) Shows (a) reproduced now as a relation between 〈(∆ru+)6〉1/3 and 〈(∆ru+)2〉,
revealing universality.

scaling as a function of z increases when examining ratios between moment generating
functions in ESS form. They postulated that bulk flow or viscous effects would affect
all moment generating functions similarly, therefore, their ratio would exhibit a larger
self-similarity region. Here, we explore if the structure functions also exhibit similar
behaviour at the ECR scales, with an extended wall-normal extent following (3.1).

To this end, figure 5(a) presents the sixth-order structure function, 〈(∆ru+)6〉1/3,
versus spatial separation r across the entire boundary layer for the dataset at
Reτ = 19 000. We note that the sixth-order structure function is chosen as a
representative case to highlight any subtle differences as a function of wall-normal
height, when plotted in the ESS framework. Each line corresponds to 〈(∆ru+)6〉1/3
computed at a fixed wall-normal (z) location within the range 10 < z+ < Reτ . The
results show that even at Reτ ∼ O(104) a log law for the ECR scales is only
discernible within the logarithmic region, which are highlighted by the red lines
(——). Figure 5(b) reproduces the same statistics across the entire boundary layer
for 〈(∆ru+)6〉1/3, but now as a function of 〈(∆ru+)2〉. The results exhibit encouraging
collapse across a much larger wall-normal extent (z+ & 50) following (3.1) compared
to directly examining 〈(∆ru+)6〉1/3 versus spatial separation r. We note that beyond
z+ & 50 the multiplicative constant, i.e. the ratio Dp/D1, appears unchanged, while
the additive constant in (3.1) has a subtle trend with z. In any case, in the ESS
inspired framework, we are able to discern the scaling coefficients (slopes Dp/D1) of
the ECR scales more accurately, particularly at low Reynolds numbers when no clear
logarithmic region exists.

Scaling of the ECR scales for different flow geometries in wall-bounded turbulence
has been a subject of interest over the last decade (e.g. Monty et al. 2009). Most
works have placed emphasis on examining the spectral energy distribution (Jiménez
2012). More recently, Chung et al. (2015) compared structure functions for pipe flow
and boundary layers over a wide range of Re and highlighted a notably shallower
slope, D1, for pipe flows, which was less discernible for pipe flows with increasing Re.
To highlight these differences due to flow geometry, figure 6(a) presents 〈(∆ru+)4〉1/2
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FIGURE 6. (Colour online) (a) 〈(∆ru+)4〉1/2 versus r/z computed from boundary layers,
pipes and channel flows at different Re. The symbols represent different datasets (defined
in table 1), and the results are computed at wall-normal locations within the logarithmic
region: 6: z+ ≈ 800, A: z+ ≈ 1.6× 104, u: z+ ≈ 150, @: z+ ≈ 200 and : z+ ≈ 110. (b)
〈(∆ru+)4〉1/2 versus 〈(∆ru+)2〉 for all the datasets shown in (a), again displaying enhanced
universality as compared to (a). The solid red lines (——) in (a,b) corresponds to the
scaling law expected for the ECR scales.

from pipes, channels and boundary layers. Results for the three flow geometries are
presented at a comparable Reτ (∼1000–3000) and are computed at approximately
the geometric centre of the logarithmic region. The results show clear evidence that
the ECR scales exhibit different scaling behaviour indicating that the flow geometry
does play a role. However, once plotted as a ratio between structure functions of
different orders (see figure 6b), good collapse is observed across the three flow
geometries considered in the present work. Hence, these findings show further
reaching universality for the scaling of the ECR scales for different flow geometries
in wall turbulence, even at Reτ = O(103) when presented using an ESS inspired
framework. Therefore, we postulate that even though the influence of geometrical
effects (such as ‘crowding’ in pipe flows, Chung et al. 2015) is likely to exist in
structure functions at different orders, we are still able to accurately quantify the
scaling of the ratios between two structure functions (Dp/Dm) for the ECR scales.
Moreover, if one has an accurate estimate of the scaling constants for 〈(∆ru+)2〉, the
behaviour of the higher-order counterparts, can be estimated using the ratios presented
in table 2.

To further validate the improved robustness of the scaling described in (3.1) for the
ECR scales over different flow geometries, figure 7(a,b) presents 〈(∆ru+)4〉1/2 as a
function of 〈(∆ru+)2〉 computed further away from the wall at z≈ 0.15δ and z≈ 0.5δ,
respectively. The results show good agreement between all the databases exhibiting
universality beyond the logarithmic region. Furthermore, the slope of the scaling law
(D2/D1) expected for the ECR scales (solid red line, ——) is nominally constant,
albeit with a subtle shift in the additive constants, Ep − (Dp/Dm)Em, in (3.1) with
increasing z.

4.2. Transversal structure functions in wall-bounded turbulence
The preceding discussions have shown that by plotting the ratios between longitudinal
structure functions of different orders further reaching universality can be achieved
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(a) (b)

FIGURE 7. (Colour online) (a,b) 〈(∆ru+)4〉1/2 versus 〈(∆ru+)2〉 computed at z≈ 0.15δ and
z ≈ 0.5δ, respectively. The symbols represent different datasets (defined in table 1). The
solid red lines (——) in (a,b) are identical and correspond to the scaling law estimated
for the ECR scales following (3.1) in the logarithmic region.

5

 0

10

15
Bound. layer (DNS)

transversal

Bound. layer (DNS)
longitudinal

Bound. layer 
(high Re)

longitudinal
20
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10010–110–2 102101 0 5 10

(a) (b)

FIGURE 8. (Colour online) (a) 〈(∆ru+)4〉1/2 versus r/z computed from boundary layers
in the longitudinal and transversal directions. The symbols represent different datasets
(defined in table 1), and the results are computed at wall-normal locations within the
logarithmic region:6: z+ ≈ 800 andt,u: z+ ≈ 150. (b) The transversal and longitudinal
structure functions as a function of their respective second-order structure functions,
i.e. 〈(∆ru+)4〉1/2 versus 〈(∆ru+)2〉 and 〈(∆ru+)4〉

1/2
T versus 〈(∆ru+)2〉T . The solid red lines

(——) in (a,b) corresponds to the scaling law expected for the ECR scales.

for the scaling behaviour of the ECR scales, now even at Reτ = O(103). Therefore,
it would be interesting to explore if this universality also extends to the transversal
structure function at the ECR scales (see e.g. Grossmann et al. (1997b), van de Water
& Herweijer (1999), Kurien et al. (2000), Jacob et al. (2004) for a discussion on the
scaling for the ISR scales), which is more readily accessible at Reτ = O(103) from
numerical databases. Here the transversal structure function, 〈(∆ru+)2p

〉
1/p
T , is defined

following (1.1) with i replaced by a unit vector j in the spanwise direction.
Figure 8(a) presents both the fourth-order longitudinal and transversal structure

functions for a turbulent boundary layer. The results show that the transversal structure
function, 〈(∆ru+)4〉

1/2
T , also appears to exhibit a log law for the ECR scales, albeit

with a sharper slope (higher Dp) compared to its longitudinal counterpart. Similar
trends have also been reported by Lee & Moser (2015) and Chandran et al. (2017)
who examined the streamwise velocity component in the transversal and longitudinal
directions. Their results are presented at a comparable Re in wall-bounded turbulence
but used the u spectrogram as a diagnostic instead of structure functions to extract
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the scaling behaviour of the ECR scales (see Davidson et al. 2006). However, based
on predictions from the attached eddy model, scaling of both the longitudinal and
transversal directions should be equivalent for wall turbulence at high Re. Databases
to confirm this directly are still unavailable. Nevertheless, once the transversal and
longitudinal structure functions are plotted in an ESS inspired form (see figure 8b),
even at Reτ = O(103), we observe good agreement between the two for the ECR
scales following (3.1). This further highlights that (3.1) is a more robust diagnostic
to seek the scaling of the ECR scales.

5. Concluding remarks

This work presents evidence of further reaching universality for the ECR scales in
wall turbulence by utilising the extended self-similarity hypothesis, i.e. the relative
scaling of velocity structure functions. First, the expected scaling for the ratios
between velocity structure functions is outlined based on the previously reported
log-law scaling for the ECR scales in high Reynolds number boundary layers
(Davidson et al. 2006; de Silva et al. 2015). These predictions are then examined
using a range of wall turbulence databases, which span a wide range of Reynolds
numbers and flow geometries. The results reveal that the scaling behaviour for the
ECR scales extends over a much larger range of scales (r& z), leading to more precise
measurements of the scaling exponents. Further, it is evident that these quantitative
measures can now be confidently estimated from databases at much lower Reynolds
numbers and over a much larger wall-normal extent than previously thought possible.

Our results also exhibit better universality for the ECR scales across different
flow geometries, which before had been claimed to differ, particularly at low/modest
Reynolds numbers. This universality for the ECR scales also appears to extend to
the transversal streamwise structure function once plotted in ESS form. The latter
is in support of the attached eddy model, which predicts equal scaling for both the
longitudinal and transversal structure function at sufficiently high Reynolds numbers.
A crucial next step would be to show the connection between the universal coefficients
Dn/D1 and the universal intermittency exponents ξn through some matching conditions
between ECR and ISR, but this will be a challenging task.
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