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Recent technological advances have led to a novel class of microfluidic devices which
can be rapidly fabricated by printing a fluid onto a solid substrate with flows generated
passively via surface tension. The nonlinear dependence between flow and the heights
of the conduits, however, prevent straightforward calculation of the resulting dynamics.
In this paper we use matched asymptotic expansions to predict how flow through these
devices can be tuned by changing their geometry. We begin with the simple ‘dumbbell’
configuration in which two fluid drops with different sizes are connected by a long, thin
and narrow conduit. We calculate the time scale required for one drop to drain into
the other and how this depends both on the geometry of the pinned contact line and
volume of fluid deposited into the drops. Our model therefore provides the mechanistic
basis to design conduits with a particular fluid flux and/or shear stress, which are often
key experimental constraints. Our asymptotic predictions are shown to be in excellent
agreement with numerical simulations even for moderate aspect ratios (the ratio of conduit
width to length). Next, we show how our results for the simple dumbbell configuration
can be extended to predict the flow through networks of conduits with multiple drops and
nodes, and hence may assist in their design and implementation. This new mathematical
framework has the potential to increase the use of surface tension driven microfluidics
across a wide range of disciplines as it allows alternate designs to be rapidly assessed.

Key words: microfluidics, thin films

1. Introduction

The technologies used in the fabrication of microfluidic devices have been developed
for over two decades and their potential to revolutionise many areas of medicine,
biology and chemistry has been widely discussed (Xia & Whitesides 1998; Whitesides

† Email address for correspondence: simon.calver@pmb.ox.ac.uk
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901 A6-2 S. N. Calver and others

2006). Microfluidic devices have been used to facilitate protein crystallisation, genome
sequencing, drug discovery, cancer diagnostics and studies of microbiological ecology
(Whitesides 2006; Paguirigan & Beebe 2008; Holmes & Gawad 2010). These devices
facilitate both massively high throughput assays and minimise reagent costs by
manipulating exceedingly small volumes of liquids (Ren, Chen & Wu 2014). Moreover,
the peculiar low Reynolds number hydrodynamics within these devices can be harnessed
to generate carefully controlled environments that allow for systematic handling of both
biological samples and mixing chemicals (Stone, Stroock & Ajdari 2004). Nevertheless,
there are many reasons why a large scale ‘microfluidic revolution’ has not yet occurred
(Sackmann, Fulton & Beebe 2014), but chief among them are that (i) the materials
commonly used for microfabrication (e.g. polydimethylsiloxane) can be toxic to sensitive
eukaryotic cell lines when not prepared properly, as well as being incompatible with
organic solvents, (ii) most microfluidic devices are sensitive to small perturbations and
air bubbles, which means the failure of experiments is common and (iii) the fabrication of
devices typically requires highly specialised equipment, advanced training and a dedicated
clean room (McDonald et al. 2000; Lee, Park & Whitesides 2003; Mehling & Tay 2014;
Halldorsson et al. 2015). All of these factors contribute to create a significant barrier to
uptake by researchers from different disciplines.

Classical microfluidic devices consist of narrow conduits fabricated using soft
lithography (Nge, Rogers & Woolley 2013). External pumps are then used to move fluid
through the device. Using such small volumes of fluid reduces the quantity of reagents
needed and the small scale aids in running multiple experiments simultaneously. The most
common material used in the fabrication of microfluidic devices is polydimethylsiloxane
(PDMS) (Becker & Gärtner 2008). It has several advantages for use in microfluidics: it is
transparent and inexpensive, and structures as small as a few nanometres can be fabricated
(Bélanger & Marois 2001). Despite these advantages there are some drawbacks to the use
of PDMS; it can absorb small hydrophobic molecules, biasing results in cell signalling
experiments (Toepke & Beebe 2006), it may also absorb organic solvents changing the
shape of the device (McDonald et al. 2000). Furthermore differences in cellular responses
have been observed between macro-scale cultures and microfluidic culture in PDMS based
devices (Paguirigan & Beebe 2009). Some of the problems can be remedied by treating
the surface of the PDMS, but an alternative may be to avoid using it entirely.

An approach capable of sidestepping the barriers of traditional microfluidic devices
has recently been developed by Walsh et al. (2017). A partially wetting liquid (e.g. a
liquid that will spread on a surface until an equilibrium thickness is reached) is printed
on an unpatterned planar substrate and covered with an immiscible fluid to prevent
evaporation. The footprint of such devices remains fixed when the contact angle is
maintained between the advancing and receding values. This hysteresis can be large for
several biologically relevant fluids. A variety of different experimental designs of these
free surface microdevices have been developed, with varying degrees of complexity,
some of which are illustrated in figure 1(a–c) (from Walsh et al. 2017). In figure 1(a) a
stable concentration is maintained across two laminar streams and in figure 1(b) different
chemical dilutions are created in the four middle drops. Both of these devices can be
used to study the behaviour of cells in different chemical environments, although the
relation between device geometry and flow characteristics is complex. In contrast with
conventional microfluidic devices, where fluid is pumped through solid conduits with a
fixed geometry, in free surface microdevices both the shape of the conduits and the flow
through them depend on the complex interplay between surface tension, buoyancy and
viscosity. Hence, it is difficult to know a priori how to design a device with the most
favourable characteristics.
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FIGURE 1. (a–c) Images from experiments conducted by Walsh et al. (2017) showing some
of the possible networks of drops and conduits. (d,e) The geometry and length scales of the
simple dumbbell shaped circuit. The height of the conduit has been exaggerated for clarity; it is
barely visible in (c). ( f ) The composite solution as described in § 3.7. Panels (a,c) are previously
unpublished while (b) has been reproduced with permission from Walsh et al. (2017) with labels
removed, under the creative commons licence, http://creativecommons.org/licenses/by/4.0/.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

53
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/jfm.2020.532


901 A6-4 S. N. Calver and others

Further complications arise in analysing the experimental system of Walsh et al. (2017),
due to their use of biological fluids and the associated surface adsorption of biological
macromolecules, which are known to alter interfacial properties between two immiscible
liquids (Carvajal et al. 2011). However, even free surface devices constructed from liquids
with constant surface tension present a challenging modelling problem in their own
right and constitute a first step towards understanding free surface devices with more
complicated interfacial phenomena.

Free surface fluid–fluid microdevices can be constructed with modular geometries,
as highlighted by figure 1(b), necessitating a detailed consideration of how the basic
building blocks, namely conduits and drops, interact in a microfluidic network. A thorough
understanding of the flow through the simplest circuit, consisting of two drops connected
by a single conduit so that the contact set has a ‘dumbbell’ shape (figure 1c), is required
before progressing to more complicated networks.

A useful simplification in the limit of surface tension dominating gravity is that a sessile
drop of fluid will take on the shape of a spherical cap and simple expressions can be found
for the contact angle and radius of curvature. Using this approximation, Walsh et al. (2017)
estimated the pressure at the base of the drop to be the Laplace pressure with a hydrostatic
correction. Then assuming that the pressure at the base of the drop and in the conduit
(near the inlet) are equal, the contact angle in the conduit can be estimated when there
is no flow. To address more specific design questions, however, requires a more complete
analysis of the dynamics of free surface devices. We anticipate that the large disparity
in length scales between the different regions is likely to make numerical solution of the
full free boundary problem computationally expensive. The disparity of length scales is,
however, to the advantage of an asymptotic analysis. Thus the aim of this paper is to derive
an asymptotic model for the long-term behaviour of viscous fluids in a constant surface
tension, free surface microdevice using the standard thin-film equations (see e.g. Oron,
Davis & Bankoff 1997) and to analyse the fundamental fluid dynamics of networks, such
as that of figure 1(b).

In § 2 we begin with a concise formulation of the lubrication equations governing the
flow in a dumbbell configuration. In § 3 we will determine the asymptotic structure of the
dumbbell problem in the distinguished limit in which the flow is driven by the pressure
difference between drops. This will show that there are three distinct regions we need to
consider and we identify the relevant time scales in each and the time scale over which
the free surface of the whole device relaxes. It is the last of these time scales which will
be most relevant for determining the duration of an experiment. On this time scale we find
solutions of the lubrication equations in each region and form a composite solution for the
thickness of the liquid over the whole domain. Quality control will be done via comparison
of our asymptotic predictions with numerical simulations. We will then be able to illustrate
qualitative trends in §§ 3.8 and 3.9. In § 4 the basic components of the simple dumbbell
setup will then allow us to generalise to more complex networks. The implications of the
current work and possible directions for future development are considered in § 5.

2. Formulation

2.1. Geometry for a dumbbell shaped circuit
The simplicity of the new devices means that complex circuits can be easily and quickly
made by printing multiple drops and conduits. The simplest passive experimental set-up is
the dumbbell shape contact set shown in figure 1(c). The circuit consists of a conduit with
a rectangular base of width 2a and length L, with fluid drops of base radii RL = αLL and
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RR = αRL at either end, the subscripts L and R corresponding to the left- and right-hand
drops respectively. The circuit is then overlaid with an immiscible fluid of height H above
the substrate. We assume that the centres of the two drops are such that the length L is
the distance along the straight outer edge of the conduit as shown in figure 1(e). The
initial volumes deposited in each drop and their base radii can be chosen so that there is
a difference in pressure between the two drops. This pressure difference then drives the
fluid along the conduit until the drop pressures are equalised. We let HD denote the height
scale of a drop and HC the height scale of the conduit as shown in figure 1(d), and note
that in practice HC � HD � H.

2.2. Lubrication equations
Throughout we shall assume that the fluid contained within the contact line forms a thin
layer so that δ = HD/L � 1. We introduce the Cartesian coordinates (x∗, y∗, z∗) and time
t∗, where the asterisks denote variables that are dimensional. The rigid, impermeable
substrate is on the plane z∗ = 0 and x∗ is the distance along the conduit from the
intersection with the left drop as shown in figure 1(e). The location of the free surface
of the fluid is denoted by z∗ = h∗(x∗, y∗, t∗) with the film thickness h∗ assumed to be
single-valued and positive on the interior of the contact set Ω∗. The large advancing
and small receding contact angles ensure that for most cases the contact line ∂Ω∗ is
pinned. The components of velocity in the x∗-, y∗- and z∗-directions are denoted by
u∗(x∗, y∗, z∗, t∗), v∗(x∗, y∗, z∗, t∗) and w∗(x∗, y∗, z∗, t∗) and we let p∗(x∗, y∗, z∗, t∗) denote
the corresponding pressure. The liquid in the dumbbell is assumed to be incompressible
with constant density ρ1 and to be governed at leading order (for small δ) by the lubrication
equations with a constant viscosity μ1, i.e.

∂p∗

∂x∗ = μ1
∂2u∗

∂z∗2 ,
∂p∗

∂ y∗ = μ1
∂2v∗

∂z∗2 ,
∂p∗

∂z∗ = −ρ1 g,
∂u∗

∂x∗ + ∂v∗

∂ y∗ + ∂w∗

∂z∗ = 0,

(2.1a–d)

for 0 < z∗ < h∗(x∗, y∗, t∗) and (x∗, y∗) ∈ Ω∗, where g is the acceleration due to gravity.
There is no slip on, nor flux through, the substrate, so

u∗ = 0, v∗ = 0, w∗ = 0 on z∗ = 0 for (x∗, y∗) ∈ Ω∗. (2.2a–c)

The appropriate boundary condition on the interface h∗ depends on the overlaying liquid.
We assume that the overlaying liquid is incompressible with constant density ρ2 and
governed by the Navier–Stokes equations with a constant viscosity μ2. The jump in
pressure across the free surface is assumed to be due to a constant surface tension γ .
If we further assume that the depth of the overlaying liquid H is much larger than the
height scale of the circuit HD and that the viscosity ratio μ = μ2/μ1 is order unity, we
find that, at leading order, the only effect of the upper liquid layer is via the hydrostatic
pressure in the normal stress boundary condition. That is to say, the shear stress exerted by
the upper liquid is of a higher order than that generated by the flow in the circuit. Thus, at
leading order, the pressure in the overlaying liquid is given by P∗ = ρ2 g(H − z∗) + patm,
where patm is atmospheric pressure, and the boundary conditions on the fluid interface are
given by

∂u∗

∂z∗ = 0,
∂v∗

∂z∗ = 0, w∗ = ∂h∗

∂t∗
+ u∗ ∂h∗

∂x∗ + v∗ ∂h∗

∂ y∗ , p∗ = P∗ − γ∇2h∗ (2.3a–d)
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901 A6-6 S. N. Calver and others

on z∗ = h∗(x∗, y∗, t∗) for (x∗, y∗) ∈ Ω∗. Combining (2.1c) with (2.3d) then shows that the
pressure in the underlying fluid satisfies

p∗ = patm + ρ2 gH − γ∇2h∗ − Δρgh∗ − ρ1gz∗, (2.4)

where Δρ = ρ2 − ρ1. The velocity components are then found from (2.1), (2.2) and (2.3):

u∗ = 1
2μ1

(
z∗2 − 2h∗z∗) ∂p∗

∂x∗ , v∗ = 1
2μ1

(
z∗2 − 2h∗z∗) ∂p∗

∂ y∗ . (2.5a,b)

Finally (2.1d), (2.2c) and (2.2c) give

∂h∗

∂t∗
= ∇ ·

(
h∗3

3μ1
∇p∗

)
for (x∗, y∗) ∈ Ω∗, (2.6)

where ∇ = (∂/∂x∗, ∂/∂y∗) is the two-dimensional gradient operator. Thus the equation
we have to solve for the interface height is given by

∂h∗

∂t∗
+ ∇ ·

(
1

3μ1
h∗3∇ (

γ∇2h∗ + Δρgh∗)) = 0 for (x∗, y∗) ∈ Ω∗, (2.7)

with zero height on the contact line, no flux through the contact line and subject to a
suitable initial condition.

2.3. Non-dimensionalisation and boundary conditions
We suppose that the drops may be large enough that we must account for the effects of
gravity, but not so large that gravity dominates the effects of surface tension. We then
use the drop height and conduit length to non-dimensionalise the vertical and horizontal
components, respectively. We anticipate that different physical effects will be dominant at
different time scales, but we initially use the time scale of capillary action in the drops,
obtained by balancing the terms in (2.7). Thus, we non-dimensionalise by scaling

x∗ = Lx, y∗ = Ly, z∗ = HDz, t∗ = 3μ1 L
δ3γ

t, (2.8a–d)

u∗ = δγ

μ1
(u, v, δw), h∗ = HDh, p∗ = γ

δL
p + patm + ρ2gH − ρ1gHDz. (2.9a–c)

The definitions of physical parameters and the typical values that have been used in
experiments are summarised in the upper section of table 1. The governing equation for
the interface height (2.7) is then given by

∂h
∂t

= ∇ · (h3∇p
)
, p = −∇2 h − Bo h for (x, y) ∈ Ω, (2.10a,b)

where the Bond number is defined as Bo = (ρ2 − ρ1)gL2/γ and Ω denotes the rescaled
contact set bounded by the pinned contact line ∂Ω . The Bond number has been defined
so that it is positive when the overlaying liquid has higher density than the liquid in the
circuit, as is typical in experiments (see table 1), although our model will still be valid for
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FIGURE 2. The dimensionless contact set with each of the domains labelled: ΩL and ΩR are
the bases of the drops; ΩC is the rectangular conduit, with a length of 1 along its outer edge and
a width of 2ε; ΩJL and ΩJR are the junction regions where the drops intersect the conduit and
∂Ω is the pinned contact line.

negative Bond numbers. The interface height is zero on the contact line and there is no
flux through the contact line, so we impose the boundary conditions

h = 0, h3 ∂p
∂n

= 0 for (x, y) ∈ ∂Ω, (2.11a,b)

where ∂/∂n now denotes the outward normal derivative on ∂Ω . Finally an initial condition
H(x, y) needs to be prescribed for the interface height at time t = 0, i.e.

h(x, y, 0) = H(x, y) for (x, y) ∈ Ω, (2.12)

The leading-order model (2.8)–(2.12) is applicable for small δ = HD/L, which we recall
to be the ratio of the drop height scale and conduit length scale, and depends on four
dimensionless parameters: the Bond number Bo, which gives a measure of the importance
of gravitational forces compared to surface tension; the dimensionless radii of the bases of
the two drops αL and αR, as shown in figure 2; and, finally the aspect ratio of the conduit
ε = a/L, which gives a ratio of the conduit width to length. The typical values of the
dimensionless parameters are shown in the lower half of table 1. We shall consider in § 3
the most physically relevant distinguished limit in which Bo, αL, αR = O(1) as ε → 0.

2.4. Global mass conservation
One of our main aims will be to predict the time scale over which the volumes of the
two drops equilibrate; i.e. the time scale of drop drainage. We divide the contact set Ω
into three regions: the conduit region is defined by ΩC = {(x, y) : 0 < x < 1, |y| < ε},
then the left-hand drop region is bounded by a circular arc of radius αL which intersects
the conduit at (x, y) = (0,±ε), while the right-hand drop region is similarly defined as
shown in figure 2. We define the volumes in the left drop, conduit and right drop to be
given by

VL(t) =
∫∫

ΩL

h dx dy, VC(t) =
∫∫

ΩC

h dx dy, VR(t) =
∫∫

ΩR

h dx dy. (2.13a–c)

Since there is no flux of liquid through the pinned contact line, the total volume in the
device is given by the initial volume, V , as follows

VL + VC + VR =
∫∫

Ω

H(x, y) dx dy = V. (2.14)
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Symbol Definition Typical values Units

μ1 Dynamic viscosity (water) 1 × 10−3 kg m−1 s−1

μ2 Dynamic viscosity (FC40) 4.05 × 10−3 kg m−1 s−1

γ Surface tension (water/FC40) 4 × 10−2 kg s−2

ρ1 Density (water) 1 × 103 kg m−3

ρ2 Density (FC40) 1.85 × 103 kg m−3

g Gravitational acceleration 9.81 m s−2

H Depth of overlaying liquid 3 mm
HD Maximum height of drop < 3 mm
L Conduit length 1.5–30 mm
a Half conduit width 0.15–0.75 mm
RL, RR Base radii of left and right drops 1–4 mm
vL, vR Volume of fluid in left and right drops 2–20 μl
δ HD/L < 0.6 —
ε a/L 0.005–0.5 —
Bo (ρ2 − ρ1)gL2/γ 0.5–188 —
αL, αR RL/L, RR/L 0.03–2.7 —

TABLE 1. The physical parameters for water (the typical fluid that forms devices) and FC40
(the typical overlaying fluid) at room temperature and pressure, the typical range of geometric
parameters used and the dimensionless parameters. All dimensional values are from Walsh et al.
(2017).

The dimensionless area of, and flux through, a cross-section of the conduit in an x-plane
(with 0 < x < 1) are given at leading order by

A(x, t) =
∫ ε

−ε

h dy, Q(x, t) =
∫ ε

−ε

∫ h

0
u dz dy = −

∫ ε

−ε

h3 ∂p
∂x

dy. (2.15a,b)

Integrating (2.8) over the conduit cross-section then gives

∂A
∂t

+ ∂Q
∂x

= 0 for 0 < x < 1. (2.16)

Alternatively, integrating (2.8) over the three regions ΩL, ΩC and ΩR shows that the
volume of liquid in each region evolves according to the ordinary differential equations
given by

dVL

dt
= −QL(t),

dVR

dt
= QR(t),

dVC

dt
= QL(t) − QR(t), (2.17a–c)

where we have defined QL(t) = Q(0, t) and QR(t) = Q(1, t) to be the fluxes where the
conduit connects to the left and right drop respectively. The expressions (2.16) and (2.17)
will play a key role in our scaling and subsequent asymptotic analysis, in which they will
be used to close the leading-order governing equations (rather than proceeding to higher
order).
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3. Asymptotic analysis for a long, thin conduit

3.1. Asymptotic structure and time scales
The two main aims of the dumbbell set-up are (i) for the pressure difference between the
two drops to be the dominant mechanism that drives fluid through the conduit; and (ii)
for the flux through the conduit to vary slowly over time. To achieve aim (i) we require
the pressure in the drops and conduit to be comparable, where the dimensionless pressure
in a drop is O(1). In the conduit we scale y ∼ ε, then balancing the pressure with the
first term on the right-hand side of (2.10b) shows that we must print liquid of thickness
h ∼ ε2 in the conduit in order for the pressures to balance. To achieve aim (ii) we require
the conduit to be long and narrow i.e. ε � 1. We will show that the resulting asymptotic
structure consists of five regions: two drops with contact sets ΩL and ΩR, a narrow and
thin conduit with contact set ΩC, and two small junction regions with contact sets ΩJL and
ΩJR connecting together the drops and conduit, as illustrated in figure 2.

Given our assumptions about the geometry of the device we can now describe the
different physical time scales and show that drainage (the time scale on which the pressure
equilibrates) acts on a much longer time scale than anything else in the model. In the three
regions we have defined we can use a dominant balance argument in (2.8) to find the time
scale of capillary action in each region. In the conduit region we scale with y ∼ ε and
h ∼ ε2; in the junction region we scale with x, y, h ∼ ε. These scalings and (2.8) give us
the dimensionless time scales of capillary action in the junction and conduit, respectively,
as tJ ∼ ε and tCW ∼ ε−2. Since we assume that the conduit is much longer than it is wide
tCW is the time scale of relaxation (of the free boundary) across the width of the conduit.
The time scale of relaxation of the free boundary along the length of the conduit is found
by balancing the terms in (2.16). The cross-sectional area and flux in the conduit in (2.15)
are also rescaled with y ∼ ε and h ∼ ε2, so that A ∼ ε3 and Q ∼ ε7; hence, the time scale
for relaxation along the length of the conduit is tCL ∼ ε−4. The drainage time scale is then
found by balancing the terms in (2.17). With the same length scales as above for the flux,
we still have Q ∼ ε7, but the relevant length scale for the volume gives VL = O(1) (since
all the fluid is contained in the drop regions at leading order). Thus the time scale for drop
drainage is tDD ∼ ε−7.

We have identified five time scales thus far, each depending on the conduit aspect ratio
ε. They are, respectively, the relaxation time scales for the junction, drops, conduit width
and conduit length and the drainage time scale

tJ ∼ ε, tD ∼ 1, tCW ∼ 1
ε2

, tCL ∼ 1
ε4

, tDD ∼ 1
ε7

. (3.1a–e)

To achieve slowly varying fluxes and stresses we need tDD to be much larger than tCL, and
we can also already see that the drainage time scale is very sensitive to ε, so that the
geometry is an important factor in achieving a given flux.

3.2. Quasi-steady solution in the drops
The leading-order analysis is the same in each drop, so we give only the details for the
left-hand one. The conduit is in the much smaller junction region, so at leading order the
relevant contact set in the drop is the circular disc ΩL0 of radius αL with centre (x, y) =
(−αL, 0). For t � tD ∼ 1, the profile is quasi-steady, with spatially uniform pressure at
leading order. The boundary condition (2.11a) holds at leading order on the boundary of
the contact set except at the origin (i.e. on ∂ΩL0/{(0, 0)}); at the origin we must instead
match with the junction region. Since the height scale in the junction region is of O(ε),
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901 A6-10 S. N. Calver and others

the relevant matching condition is that the leading-order film thickness tends to zero as
(x, y) → (0, 0), with (x, y) ∈ ΩL0. Hence, at leading order, the drop profile is as if there
was no junction region and therefore axisymmetric.

We introduce the polar coordinate r = √
(x + αL)2 + y2 measuring radial distance from

the centre of the circular contact set of the left-hand drop. Then, expanding h ∼ hL(r, t)
and p ∼ pL(t) as ε → 0, we deduce from (2.8)–(2.9) the familiar leading-order governing
equations given by

∂2hL

∂r2
+ 1

r
∂hL

∂r
+ Bo hL = −pL for 0 < r < αL, (3.2)

with |hL(0, t)| < ∞ and hL(αL, t) = 0; the pressure is related to the leading-order drop
volume by the conservation of mass constraint that

2π

∫ αL

0
rhL dr = VL(t), (3.3)

where VL(t) now denotes the leading-order volume in the left-hand drop (for small ε). Thus
the leading-order problem in the left-hand drop has been reduced to the classical one of
finding the shape of a static liquid drop with constant surface tension and gravity, which
has been well studied with well-known interface shape when the contact angle is small
(see, for instance, Chesters 1977; Thomson 1886). Subject to the additional constraint that
we require the drop thickness and pressure to be positive away from the contact line (as
discussed below), the solution for Bo /= 0 is given by

hL =
⎛
⎝ J0

(√
Bo r

)
J0

(√
Bo αL

) − 1

⎞
⎠ pL

Bo
, hR =

⎛
⎝ J0

(√
Bo r

)
J0

(√
Bo αR

) − 1

⎞
⎠ pR

Bo
, (3.4a,b)

where Jn is the Bessel function of the first kind of order n and the pressures are a linear
function of the volume given by pL = βLVL and pR = βRVR (where VR(t) now denotes
the leading-order volume in the right-hand drop for small ε). The constants relating the
pressure to the volume in the left- and right-hand drops are defined as

βL =
Bo J0

(√
Bo αL

)
πα2

LJ2

(√
Bo αL

) , βR =
Bo J0

(√
Bo αR

)
πα2

RJ2

(√
Bo αR

) . (3.5a,b)

Since the square root of the Bond number appears in the argument of the Bessel functions
in (3.4)–(3.5), they have an imaginary argument when the liquid in the circuit is denser
than the overlaying liquid (i.e. Bo < 0). In this case the solution may written in terms
of modified Bessel functions; these give a profile which decreases monotonically from
the origin, whereas the original Bessel functions are oscillatory. We do not allow for
solutions with either negative drop thicknesses or negative pressure anywhere; hL, hR,
pL and pR are everywhere positive if and only if αL

√
Bo < λ and αR

√
Bo < λ, where

λ ≈ 2.405 is the smallest positive root of J0. There is therefore a critical Bond number
BoC = min(λ2/αR, λ

2/αR) beyond which at least one of the leading-order quasi-steady
solutions above would cease to exist. However, we must also ensure that the contact line
remains pinned, i.e. that the contact angle remains between the receding and advancing
values. This constraint is even more restrictive than the one on the Bond number, and best
addressed once we have derived the corresponding leading-order solutions in the conduit
and junction region, so we defer a discussion until later on (see § 3.8).
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3.3. Quasi-steady solution in the conduit
The footprint of the conduit is a rectangle of width 2ε and length 1. On the long edges
of the conduit the interface will have zero height where the contact line is pinned. The
appropriate boundary condition at the ends will be derived below by matching with the
junction regions. As with the solution in the drops we note that the problem of flow in
a fluid rivulet has also been well studied (see, for instance, Towell & Rothfeld 1966;
Paterson, Wilson & Duffy 2013). Earlier we deduced that we need h ∼ ε2 in order for
the pressure difference between the drops to be the dominant mechanism driving the flow.
Thus we rescale the governing equations with

y = ε ŷ, h = ε2ĥC. (3.6a,b)

Provided t � tCW ∼ ε−2, the pressure is then spatially uniform in each x-plane at leading
order. Expanding ĥ ∼ ĥC(x, ŷ, t) and p ∼ pC(x, t) as ε → 0 in (2.10b) then gives

∂2ĥC

∂ ŷ2
= −pC for − 1 < ŷ < 1. (3.7)

Since ĥC = 0 at ŷ = ±1 for 0 < x < 1, we deduce that the interface height has a parabolic
profile in each cross-section given by

ĥC = pC

2

(
1 − ŷ2) . (3.8)

It follows from (2.15) that the corresponding leading-order expressions for the area and
flux in the conduit are given by

A ∼ 2
3
ε3pC, Q ∼ − 1

35
ε7 ∂

∂x

(
p4

C

)
as ε → 0. (3.9a,b)

3.4. Quasi-steady solution in the junction regions
The junction regions, which connect the conduit to the drops, are indicated by the boxes
in figure 2. Without loss of generality we will consider only the junction connecting the
conduit to the left drop. Since the film thickness is of O(1) in the drops the pertinent
scalings in the left-hand junction region are given by

x = ε x̃, y = ε ỹ, h = εh̃. (3.10a–c)

The contact line of the left-hand drop then satisfies(
ε x̃ +

√
α2

L − ε2

)2

+ ε2 ỹ2 = α2
L for x̃ ≤ 0, (3.11)

so that it lies at x̃ = 0 for |ỹ| ≥ 1 at leading order as ε → 0 with ỹ = O(1). The
leading-order geometry of the contact set in the junction region is therefore as illustrated in
figure 3: the contact set of the drop fills the left half-plane x̃ < 0, while that of the conduit
fills the semi-infinite strip |ỹ| < 1, x̃ ≥ 0. The interface height in the junction region is
governed by (2.8), with the solution needing to match with the conduit solution (3.8) as
x̃ → ∞ and with the drop solution (3.4) as x̃2 + ỹ2 → ∞ in the left half-plane, with
(2.9) still holding on the contact lines at x̃ = 0, ỹ ≥ 1. For t � tJ ∼ ε, the evolution is
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901 A6-12 S. N. Calver and others

again quasi-steady with spatially uniform pressure at leading order. However, the disparity
in the film thicknesses in the drop, junction and conduit regions (where h is of O(1), of
O(ε) and of O(ε2), respectively) means that we must now proceed to second order in
the analysis in order to span these length scales: expanding h ∼ h̃0(x̃, ỹ, t) + εh̃1(x̃, ỹ, t)
and p ∼ pJL(t) as ε → 0, we find that h̃0 and h̃1 satisfy the leading- and second-order
problems summarised in figure 3 in which we have also recorded the boundary conditions
on the contact line and the far-field conditions that must be imposed in order to match with
the adjoining drop and conduit. The mean curvature of the leading-order film thickness is
equal to zero because the leading-order pressure appears first in the second-order problem
for the correction to the film thickness. We note that if the leading-order pressure were an
order of magnitude larger then it would not be possible to match it with the pressures in
the adjoining drop and conduit (as detailed below); nor would it be possible to match the
leading-order film thickness with that in the drop (because this requires the leading-order
film profile to be linear in the far field). At leading order the height is zero on the
contact line (given by (2.9)) and also tends to zero in the conduit as x̃ → ∞ since the
interface height is O(ε) there. Expanding the solution in the drop (3.4) as r → α−

L gives
the leading-order far-field condition as x̃2 + ỹ2 → ∞, where the leading-order contact
angle θL is given by

θL =
J1

(√
Bo αL

)
√

Bo J0

(√
Bo αL

)pL. (3.12)

At second order the interface height is still zero on the contact line in the conduit, but
on x̃ = 0 we have to take account of the curvature of the contact line. In the conduit
the far-field condition comes from matching with the conduit solution (3.8). To find the
leading-order far-field condition in the drop we expanded (3.4) as r → α−

L : the next term
in this expansion gives the far-field condition at second order.

The boundary value problems in figure 3 may be solved using standard conformal
mapping techniques (see, e.g. Driscoll & Trefethen 2002). We find the leading-order
solution to be given implicitly by

h̃0 = 2θL

π
Re
(
f −1(z̃)

)
, (3.13)

where z̃ = x̃ + iỹ and the transform z̃ = f (ζ ) maps the lower half ζ -plane to the junction
region in the z̃-plane and is given by

f (ζ ) = 2 i
π

(√
ζ 2 − 1 + sin−1

(
1
ζ

))
, (3.14)

where ζ = ξ + iη. At O(ε) the governing equation for the interface height is ∇2h̃1 =
−pJL(t) in ΩJ . Substituting the conduit far-field condition therefore gives pJL(t) = pC(0, t);
similarly substituting the drop far-field condition gives pJL(t) = pL(t); we deduce that the
pressure passes straight through the junction at leading order, i.e.

pJL(t) = pL(t) = pC(0, t). (3.15)

To find the next order solution we first subtract from h̃1 the far-field solution in the
drop as x̃2 + ỹ2 → ∞, so that we are again solving Laplace’s equation in the junction
region. This will allow us to use the same conformal mapping techniques as we did for

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

53
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.532


Surface tension driven microfluidics 901 A6-13

x

y

h0 → 0
as x → ∞

h̃0 = 0

h0 = 0

h0 = 0

h1 = 0

h1 = 0

h0 = 0

∇2h0 = 0
in ΩJ

h0 ∼− θLx

as x2 + y2 → ∞

as x2 + y2 → ∞ x

y

h1 ∼ pC(0,t)
2 1 – y2

)
as x → ∞

h1 = 
(

y2 − 1
2αL

)
∂h0

∂x

h1 = 
(

y2 − 1
2αL

)
∂h0

∂x

∇2h1 = –pJL(t)
in ΩJ

h0 ∼ h∞

(b)

(a)

˜

˜ ˜ ˜
˜

˜˜ ˜
˜

˜

˜

˜

˜ ˜ ˜

˜

˜
˜ ˜

˜ ˜
˜

˜ ˜
˜

˜ ˜ ˜
˜

˜

FIGURE 3. (a) The leading-order problem in the junction region. (b) The second-order problem
in the junction region, where h̃∞ = θL(x̃2 − ỹ2)/(2αL) − pL x̃2/2. The junction region is defined
as ΩJ = {(x̃, ỹ) : x̃ < 0} ∪ {(x̃, ỹ) : |ỹ| < 1, x̃ ≥ 0}, see text for details.

the leading-order problem. The details are presented in appendix A. An example of the
leading- and second-order solutions are shown in figure 4. As we approach the corner
along the contact line the slope of both these solutions becomes infinite. This will have
implications for the pinning of the contact line as we shall discuss in § 3.8.

3.5. Conduit relaxation
As detailed in § 3.1, the conduit relaxes on the time scale tCL ∼ ε−4; this was derived
from (2.15). Using (2.15), (2.16) and making the rescaling t = (70/3)ε−4τ , we derive an
equation for the conduit pressure on the time scale of conduit relaxation

∂pC

∂τ
= ∂2

∂x2

(
p4

C

)
for 0 < x < 1, τ > 0. (3.16)

In § 3.4 we deduced that the leading-order pressure in the junction regions is spatially
uniform and equal to the pressure in the adjacent drop and conduit as long as
t � tJ ∼ ε. Since tCL � tJ as ε → 0, the pressure at the ends of the conduit will be equal
to the pressure in the corresponding drop. Furthermore, since tDD � tCL the leading-order
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0
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(b)(a)

FIGURE 4. Plots of the leading-order solution and the second-order correction in the junction
region for Bo = 8 and αL = 0.5. The location of the substrate is indicated by the grid with the
conduit extending in the positive ỹ-direction. (a) The leading-order solution given by (3.13).
(b) The second-order solution given by (A 14).

pressure in the drops will not have changed, so the relevant boundary conditions for (3.16)
are given by

pC(0, τ ) = pL(0), pC(1, τ ) = pR(0) for τ > 0, (3.17a,b)

where the pressures in the left- and right-hand drops, pL and pR, can be related to their
respective volumes, VL and VR, by (3.5)). The problem is closed by prescribing an initial
condition of the form

pC(x, 0) = P(x) for 0 < x < 1. (3.18)

For a positive and sufficiently regular initial profile we anticipate the long-time attractor
to be the steady-state solution, so that

pC → ((
p4

R − p4
L

)
x + p4

L

)1/4
as τ → ∞. (3.19)

Examples of the solution of the time-dependent problem are shown in figures 5(a) and
5(b) (solid lines); they tend to (3.19) (dashed line) as τ increases and the steady state is
reached much faster when the initial pressure gradient is increased.

3.6. Droplet drainage
On the time scale of drainage tDD ∼ ε−7, the pressure in the conduit is quasi-steady and
therefore given by the right-hand side of the expressions in (3.19). We can then use (3.9b)
to find that the flux in the conduit on this time scale is given by

Q ∼ ε7 p4
L − p4

R

35
. (3.20)

When ε � 1 most of the fluid is contained in the drops, with the conduit containing very
little fluid. We can therefore use (2.17) to find ordinary differential equations (ODEs) for
the volume in each drop. Substituting (3.20) into (2.17a,b) gives

dVL

dt
∼ −ε7 p4

L − p4
R

35
,

dVR

dt
∼ ε7 p4

L − p4
R

35
. (3.21a,b)

Since the drop pressure is a linear function of the volume (with the constants of
proportionality given by (3.5)) we can write (3.21) entirely in terms of the drop volumes.
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(b)
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FIGURE 5. (a,b) Numerical solution of the conduit relaxation problem (3.16)–(3.18) for
different boundary conditions (drop pressures), where the initial profile is linear. The dashed
line is the steady-state solution given by (3.19). In (a) τ = 0, 0.0064, 0.0320, whereas in (b)
τ = 0, 0.0005, 0.0020. (c) The evolution of the left-hand drop volume given by (3.22) and (3.23)
for V/V = 0.4, 0.7, 0.9; in each case α = 0.25 and (3.24) shows that the solutions tend to 0.8.

At leading order the volume in the conduit scales with ε3 (as can be seen from (2.13b).
Assuming that VL(0), VR(0) � ε3, at leading order the total volume V is given by the sum
of the volumes of the two drops, which is a constant since no fluid is leaving the system.
If we then rescale time with t = 35/(V3β4

R)ε
−7T , we need only solve a single ODE given

by
∂

∂T

(
VL

V

)
=
(

1 − VL

V

)4

− α4

(
VL

V

)4

, (3.22)

where α4 = β4
L/β

4
R. To close this problem we will need an initial volume for the left drop

of the form
VL(0) = V . (3.23)

The powers of four in (3.22) suggest that there could be multiple steady-state solutions,
but we find that only one of them is real and in the range [0, V], so the volume of the left
drop can only tend to one value given by

VL

V
→ 1

1 + α
as T → ∞. (3.24)

Equation (3.22) is separable which allows us to easily find an implicit solution, which in
the case of α = 1 collapses to

VL

V
= 1

2

(
1 + 1√

A e2T − 1

)
, A = 1 + 1

(2V − 1)
2 . (3.25a,b)

Some examples of the evolution of the left-hand drop volume are plotted in figure 5(c) for
different initial volumes.

3.7. Numerical validation
In this section we will describe our numerical simulations of the full thin-film boundary
value problem given by (2.8)–(2.12) on the domain indicated in figure 1(e), and compare
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the results with the asymptotic predictions we have obtained. The numerical simulations
are performed with COMSOL Multiphysics® via the thin-film flow toolbox, using
COMSOL’s ‘fine mesh’ option and in-built algorithms that suitably refine the mesh in
narrow regions of the domain geometry (COMSOL Multiphysics®v.5.4 2018).

We specify the initial volumes of the two drops; with this we can form a piecewise
approximation to the interface height and pressure using (3.4) in the drops and (3.8) and
(3.19) in the conduit. There will be discontinuities at either end of the conduit so we
initially run the simulation on the junction relaxation time scale tJ to smooth out the
initial condition. We use this piecewise construction of the initial condition rather than
a composite solution because it is easier to implement and the junction regions relax on
a much faster time scale than those we are interested in. For intermediate values of ε

(ε > 0.5) the numerical solution can be found in a matter of seconds, but as anticipated,
for smaller values of ε we find run times can increase by multiple orders of magnitude.
This underlines how our asymptotic approach can facilitate the rapid prototyping of
microfluidic system designs.

In figure 6 we compare the solution of (3.22) with numerical solutions for various small
values of ε. In each simulation only the width of the conduit was altered and the initial
drop volumes were fixed. In figure 6(a) we see good agreement over a range of values of
ε for the volumes of the left (upper dashed line) and right (lower dashed line) drops as
a function of time. The drainage solution can also be used to find the shear stress in the
conduit. In the x-direction the leading-order dimensionless shear stress on the substrate is
given by

s = ∂u
∂z

∣∣∣∣
z=0

= −h
∂p
∂x

=
(
ε2 − y2

) (
p4

L − p4
R

)
8
√

p4
L − (

p4
L − p4

R

)
x
, (3.26)

where the dimensional shear stress is s∗ = γ s/L. The maximum shear stress is on y = 0
at either x = 0 or x = 1 depending on the direction of the flow; the maximum will be at
the junction near the conduit outlet. In figure 6(b) we compare the absolute maximum of
the shear stress found in COMSOL with the asymptotic prediction in (3.26). Again, as ε is
decreased we see good agreement. For the flux given by (3.20), we first rescale with

Q = V4β4
R

ε735
Q, (3.27)

then we find larger relative errors as can be seen in figure 6(c), especially on shorter
time scales. Nevertheless there is still good agreement as ε is decreased. This is shown
in figure 6(d), where the root mean squared error of the flux over a unit time interval
on the drainage time scale can be seen to decrease linearly as ε is reduced by more than
an order of magnitude. Furthermore, this behaviour is also consistent with the root mean
squared flux error over a unit time converging linearly to zero as the asymptotically small
parameter is reduced, evidencing the validity of both the asymptotics and the finite element
simulations.

We are now in a position to construct a piecewise additive composite solution for the
film height over the whole contact set Ω . Since the solutions found in the drop and conduit
regions are only valid in those regions we form a piecewise solution. In the left drop the
composite solution is found by adding the junction solution to the drop solution and then
subtracting the overlap; in this case the two leading terms in the limit x̃2 + ỹ2 → ∞ as
shown in figure 3. The solution in the right drop is found in a similar way. In the conduit,
0 < x < 1, we must find the junction solutions at either end of the conduit and add them
both to the conduit solution (given by (3.8) and (3.19)); the overlaps are then the conduit
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FIGURE 6. Comparison of COMSOL solutions with model predictions for different values of the
small parameter ε. In each case the calculations were performed using αL = αR = 1 and Bo = 2
with the initial volumes VL(0) = 0.2 and VL(0) = 0.1. (a–c) The solid lines show the numerical
solution for ε = 0.01, 0.1, 0.2 and the dashed line shows the asymptotic approximation. We
compare (a) the drop volumes, given by (3.22); (b) the maximum shear stress on the substrate
given by (3.26) with y = 0 and x = 1; and (c) the flux given by (3.20) and (3.27). (d) The root
mean squared error of the flux over a unit time interval for different values of ε, where QN is the
numerical solution.

solutions at x = 0 and at x = 1, so these are both subtracted. An example of the composite
solution for the interface is shown in figure 1( f ); the dimensionless parameters used are
Bo = 20, αL = 0.5, αR = 0.4, ε = 0.05, VL = 0.03 and VR = 0.03; since the base radii
of the drops are different the same volumes will give different pressures. In figure 7 we
plot the composite interface height (dashed line) along the centre of the conduit, i.e. on
y = 0 for different values of ε. The left and right panels show the profile in the respective
drop regions and the central panels show the solution in the conduit region. The solid line
shows the corresponding numerical solution; we see particularly good agreement in the
drop regions as ε is decreased. In the conduit the composite solution is able to pick out the
location of the dip in conduit height near the outlet (the flow is from left to right), although
it predicts a less sharp decrease in profile height. This dip is where the maximum shear
stress occurs in the numerical solution.

3.8. Maintaining a pinned contact line
Important features of these devices are the large advancing and small receding contact
angles, θa and θr respectively, which allows the volume of fluid in a drop to change
significantly without the contact line moving. The particular values are highly dependent
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FIGURE 7. Comparison of COMSOL solution with the composite solution described in § 3.7 on
y = 0. The calculations were performed using αL = αR = 1 and Bo = 4 with the initial volumes
VL(0) = 0.1 and VL(0) = 0.05. The solid lines show the numerical solutions and the dashed
lines the corresponding asymptotic approximation. We compare the solutions on the drainage
time scale, i.e. t � ε−4. From top to bottom we have t ∼ 2.4 × 108, 3.9 × 109, 1.5 × 1011. The
solutions for the left- and right-hand drop regions are shown on the left- and right-hand sides
respectively, the conduit region is shown in the middle panels; note that the height scales with
ε2 in the conduit.

on the materials and fluids used, although Walsh et al. (2017) observe values of θr ∼ 0.05
radians and θa ∼ 1.2 in their experiments (while Lee, Lee & Doyle (2015) measure θr ∼
0.5 and θa ∼ 1.0 for water in decane on hydrophilic surfaces). Using the leading-order
solutions (3.4) and (3.8), the contact angles in the left- and right-hand drops and the
conduit, denoted by θL(t), θR(t) and θC(x, t) respectively, are given by

θL =
J1

(√
Bo αL

)
√

Bo J0

(√
Bo αL

)pL, θR =
J1

(√
Bo αR

)
√

Bo J0

(√
Bo αR

)pR, θC = ε pC. (3.28a–c)

Since we are in the thin-film limit (δ � 1) we will have θL, θR, θC < θa. The same,
however, cannot be said of the contact angle in the junction regions; as we saw in § 3.4
the contact angle tends to π/2 at the corners where the drop meets the conduit. In practice
the contact line near this corner will move outwards until the contact angle falls to the
advancing angle. We expect the smoothing of the corner to happen on a length scale of
the width of the conduit and on a time scale not much larger than that of capillary action
in the junction regions. On the time scale t � tCL ∼ ε−4, the smallest contact angle in
the conduit will occur at the outlet where pC = min( pL, pR). As we are focusing on the
distinguished limit in which Bo, αL, αR = O(1) as ε → 0 we deduce that the contact angle
in the conduit is always less than in the drops, so that the leading-order contact angle is
everywhere – subject to the caveat above concerning the corners – greater than or equal to
the receding contact θr provided

θmin = εmin (βLVL, βRVR) ≥ θr, (3.29)

where we have used (3.4), (3.5) and (3.28c). We note that this constraint is satisfied
for all t > 0 only if it is satisfied initially, so that the contact line remains pinned only
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FIGURE 8. (a) A plot of βL for Bo = −20, −8, 0, 2, 4, 10, 20, where βL is the ratio of the
dimensionless drop pressure to volume for the left-hand drop given by (3.5). The dashed line
shows the boundary on which Bo = BoC (defined in § 3.2 as the Bond number below which
either the drop height or pressure are no longer positive). (b) The time taken for an initial flux
Q0 to reduce by 50 % as a function of α. The initial flow rates are Q0 = 0.01, 1, 4, 10. The
dashed line shows the minimum value of α for which there is a solution with a particular initial
flux.

if it is pinned initially. We further note that in accordance with physical intuition it is
easier to satisfy the constraint (3.29) the larger the volumes of the drops or the smaller
the radii of their contact sets, but a complete characterisation is complicated due to the
non-monotonic dependence of βL and βR on the Bond number Bo, although (3.29) is of
course readily checked for specific parameter values. Henceforth we shall assume that θr
may be engineered to be sufficiently small that the constraint (3.29) pertains.

3.9. A survey of fluxes and shear stresses
We have already identified one way in which the footprint of the device can significantly
alter the time scales involved: in § 3 we showed that the time scale of drop drainage
scales with ε−7, where we recall ε = a/L � 1 is the conduit width-to-length ratio.
Two further parameters that affect the behaviour on this time scale are βL and βR, the
pressure-to-volume ratios in the left- and right-hand drops respectively defined in (3.5), as
well as their ratio α = βL/βR, which appeared first in (3.21). In figure 8(a) we plot βL as a
function of the dimensionless radius αL of the left-hand drop – a plot of βR as a function of
αR would be identical – in which a log scale has been used to highlight that βL varies over
several orders of magnitude. Varying the Bond number does not have much influence on
βL suggesting that gravity is not having a large impact on the pressure in a drop at leading
order. In contrast, shrinking the size of the base radius of the drop αL massively increases
the pressure for a given volume. The ratio of βL and βR is defined as α, which inter alia
determines how much fluid we would expect in each drop at equilibrium (see (3.24)).

One of our main interests is in determining the conditions for an approximately constant
flux in the conduit on the time scale of drainage. We approximate the initial flux Q0 using
the right-hand side of (3.22). Figure 8(b) shows the time taken T0.5 for the initial flux to
reduce by 50 % for a given value of α. This shows that large fluxes decay faster than small
fluxes (the lower solid lines are the largest fluxes). In the examples in figure 8(b) increasing
the initial flux by 3 orders of magnitude (from 0.01 to 10) can similarly decrease T0.5 by as
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much as 3 orders of magnitude. We can further see that decreasing α allows the fluxes to
be maintained for longer. This corresponds to increasing the relative size of the base of the
left-hand drop, as the base radius is increased a larger initial volume is needed to achieve
the same initial flux, which consequently leads to a slower decay in flow rate. This shows
that slowly varying fluxes can be achieved with either small initial flow rates or disparate
base sizes.

A selection of solutions to the model for drainage of the droplets (3.22) are shown in
figure 9, where the flux and shear stress are given by (3.20) and (3.26). The geometries
and volumes represent typical values that are within the limits of the thin-film model with
a time scale of minutes to hours as shown in table 1. Starting with two drops each of
base radius 3.2 mm connected by a conduit of length 10 mm and width 1.2 mm, and initial
volumes of 18 μl in the left drop and 12 μl in the right, we show how the flow rate and
maximum shear stress in the conduit change with the base radii of the right-hand drop, the
conduit width and length and the initial volumes of the right-hand drop. As we alluded to
earlier, the pressure in a drop is very sensitive to the radius of the base. Figure 9(a) shows
that changing the base radius of the right-hand drop by 0.4 mm completely changes the
direction of flow. In figures 9(b) and 9(c) on decreasing the value of ε we observe the flow
remains approximately uniform over a much longer time scale.

The numerical solution of (2.8)–(2.12) has shown that the maximum shear stress occurs
where the conduit has the smallest cross-section, the dip near the outlet of the conduit. As
ε → 0 this dip moves closer to the drop as can be seen in the middle panels of figure 7. In
general the shear stress quickly decreases as we move away from the maximum due to the
1/

√
x dependence in (3.26). Since the shear stress scales with ε2, a narrow or long conduit

will have lower shear stress. Walsh et al. (2017) show that human embryonic kidney (HEK)
cells can grow normally in their devices, although they did not directly measure shear
stress in those experiments. Stathopoulos & Hellums (1985) state that a shear stress greater
than 2.6 N m−2 has a significant effect on the viability of HEK cells. As shown in figure 9,
a large shear stress is associated with a large flux, which means higher shear stresses if
they do occur would be short lived.

4. Networks

In the introduction we stated that one of the advantages of the new kind of microfluidic
devices described here is that complex patterns of drops and conduits can be easily printed.
For example, several network designs are demonstrated by Walsh et al. (2017), some of
which are shown in figure 1. We now show how the drainage time scale model derived in
§ 3.6 can also be extended to model networks of drops connected by long, thin conduits.

4.1. Network geometry
The contact set of a network is defined to be the union of circles (the drop footprints) and
rectangles (the conduit footprints) as indicated in figure 10(a). We have already defined
a junction region (in the neighbourhood of the intersection of a conduit and a drop as
illustrated in figures 2 and 3). We define analogously a node to be the region in the
neighbourhood of the intersection of two or more conduits as illustrated in figure 10(a).
We number the nodes 1, . . . , n and the drops n + 1, . . . , n + m and label the conduit
connecting i to j with (i, j), where i and j are labels denoting either a node or a drop.
We do not consider the case in which multiple conduits connect the same two objects,
since this would be equivalent to a single conduit with the flux given by the sum of the
fluxes in the multiple conduits. As in the dumbbell case, we define the length of a conduit
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FIGURE 9. In these figures we show the effect of changing a single model parameter on the
flux and maximum shear stress in the conduit as functions of time. The geometries are shown on
the left-hand side, in each case starting with the same dumbbell, labelled 1, with 2–4 showing
how the geometry is altered. The corresponding fluxes and maximum shear stresses are shown
on the right-hand side. The parameters we modify are (a) the base radius of the right drop
RR = 3.2, 3, 2.8, 2.6 mm; (b) the length of the conduit L = 10, 15, 20, 25 mm; (c) the width
of the conduit a = 0.6, 0.5, 0.4, 0.3 mm; and (d) the initial volume of the right-hand drop vR =
12, 10, 8, 6 μl. The initial volume and base radius of the left-hand drop are fixed at 18 μl and
3.2 mm respectively.
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Nodes

∇2h̃0 = −pN
in ΩN

∂ΩN

∂ΩN

∂ΩN

(b)

x̃1

ỹ1

x̃2

ỹ3

ỹ2x̃3

(a)

FIGURE 10. (a) The contact set of a network is defined as a union of rectangles and circles
whose boundaries are shown as dashed lines with the boundary of their union shown by the solid
line. The nodes are the regions where the rectangles intersect. (b) The leading-order problem in
the node region. There is zero height on the contact line, so h̃0 = 0 on ∂ΩN and matching with
conduit i requires h̃0 ∼ (ã2

1,i − ỹ2
i )pC1,i(0, t)/2 as x̃i → ∞ for i = 1, 2, 3, where (x̃i, ỹi) are as

illustrated and we have defined ã1,i = a1,i/a1,1.

to be the maximum distance along its straight outer edge. As before, we require ai,j � Li,j,
where 2ai,j and Li,j are, respectively, the width and length of conduit (i, j). We also require
that the width of a conduit footprint be much less than the base radius Ri of any drop it
is connected to, so ai,j � min(Ri, Rj). Without loss of generality we assume that conduit
(1, 2) has the largest aspect ratio and define ε = a1,2/L1,2.

Although the construction is quite simple we must apply several restrictions to ensure
that the footprint is within the framework of our model. The analysis of the junction region
and the node analysis presented below is only valid when there are no other nodes or
junctions nearby, i.e. the distance between multiple junctions or nodes must be much
greater than ε. We also assume that the conduits enter the drops with their centre line
making an angle of order unity with the circular outer perimeter of the drop, i.e. the conduit
need not be perpendicular to the drop.

4.2. Node asymptotics
As with the junction region in § 3.4 we will need to determine the local behaviour in
the node regions. We consider the illustrative node region shown in figure 10(b), which
is made up of three intersecting conduits; for simplicity we label the conduits (1, i) for
i = 1, 2, 3. The height scale in the node region is set by the conduit height scale so we
rescale with

x = x0 + ε x̃, y = y0 + ε ỹ, h = ε2h̃, (4.1a–c)

where (x0, y0) is some origin chosen within ΩN . As in § 3.1 we can then use these
scales to find that the relaxation time scale for the node region is given by tN ∼ 1/ε2.
We expand h̃ ∼ h̃0(x̃, ỹ) + εh̃1(x̃, ỹ) and p ∼ p0(x̃, ỹ) + εp1(x̃, ỹ) as ε → 0. At leading
order for t � tN ∼ 1/ε2 the node region is quasi-steady with spatially uniform pressure
p0(x̃, ỹ) = pN(t), so that the equation governing the interface height is given by ∇2h̃0 =
−pN(t) for (x̃, ỹ) ∈ ΩN as illustrated in figure 10(b). This problem could again be solved
via conformal mapping, although in general we will be unable to write the map explicitly.
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Numerical methods for determining conformal maps and solving the Laplace equation on
these geometries have been extensively developed (Driscoll 1996; Driscoll & Trefethen
2002). We do not need to know the interface height in the node region to find the
leading-order behaviour on the drainage time scale, but we do need to proceed to higher
order to close the problem. We note that the slope will be infinite at the corners, so they will
be smoothed out on the length scale of the conduit width, as we described for a junction
region in § 3.4.

At second order, conservation of mass and (2.10a) show that∫∫
ΩN

∇ ·
(

h̃3
0∇p1

)
dx̃ dỹ =

∫
∂ΩN

h̃3
0∇p1 · n ds = 0, (4.2)

where the second term comes from an application of Green’s theorem. There is no flux
through the contact line and the flux through the conduit tends to Q1,i as x̃i → ∞, where
Q1,i is the flux through the ith conduit (given by a similar expression to (2.15b). Thus, the
sum of fluxes in the conduits connected to a node must be zero at leading order. This is
true of any network satisfying the restrictions set out above. We thus are able to derive a
generalisation of Kirchhoff-type laws which govern the current and voltage in an electrical
circuit, which has similarly been applied to flow in networks of pipes; for instance see
Marušić-Paloka (2001).

4.3. Kirchhoff-type laws for networks
On the time scale of drainage tDD ∼ ε−7, we can derive an ODE model for the drop
volumes by generalising the derivation of the ODE model for a dumbbell presented in
§ 3.6. We let Q∗

i,j denote the dimensional flux through a conduit connecting drop/node i to
drop/node j. Using (3.20) we find that

Q∗
i,j = − a7

i,j

105γ 3μ1Li,j

(
p∗

i
4 − p∗

j
4)

, (4.3)

where the pressure is an unknown if i or j is a node and is given by

p∗
i =

Bγ J0

(√
BRi

)
πR2

i J2

(√
BRi

)vi, B = Δρg
γ

, (4.4a,b)

otherwise. The unknown node pressures are found using the Kirchhoff-type laws derived
in the previous section. For drop i we define �i to be the set of all conduits connected to
this drop and similarly we define Kj to be the set of conduits connected to node j. Thus,
(3.22) can easily be generalised to account for a more complicated network as follows:

∂vi

∂t∗
=

∑
(k,l)∈�i

Qk,l,
∑

(k,l)∈Kj

Qk,l = 0, (4.5a,b)

for i = n + 1, . . . , n + m and j = 1, . . . , n. The problem is closed by prescribing the
initial volume in each of the drops. In general we cannot find an analytic solution to
(4.5a,b), but solving such a system of ODEs can easily be implemented numerically.
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FIGURE 11. Comparison of the drop volumes for solutions to the asymptotic problem (4.5a,b)
(dashed lines) to the full numerical problem (solid lines). Panels (a) and (b) show the two
different geometries used, and only the conduit widths are altered to decrease ε. Panels (c) and
(e) show the comparison of volumes for the three drop network which have initial volumes of 21
μl in the upper drop and 11 μl in the lower two. Panels (d) and ( f ) show the comparison of three
drop volumes labelled (i)–(iii) within the eight drop network. The left- and right-most drops in
(b) have an initial volume of 10 μl and the remaining drops an initial volume of 1 μl. Drop (i)
corresponds to the lower curve in (d) and ( f ). The physical parameters are taken from table 1.

4.4. Numerical validation
In this section we compare the numerical solution of (4.5a,b) to the numerical solution
of the full problem given by (2.8)–(2.12) for the network geometries shown in figure 11.
For the simple three drop network shown in figure 11(a) the drop volumes are in good
agreement with the full numerics as ε is decreased as shown in figures 11(c) and 11(e).
We anticipate that the error in the volume of a drop (for a fixed value of ε) will increase
linearly with the number of conduits connected to the drop. Thus, for the larger network
shown in figure 11(b), we still find good agreement for small values of ε, but they need to
be smaller than in the simple network in figure 11(a). In particular, the numerical solutions
summarised in figure 11(c–f ) indicate that increasing the width or number of conduits
connected to a drop increases the free surface elevation above the drop footprint and hence
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the equilibrium volume compared to our leading-order asymptotic predictions (in which
each drop behaves as if it were isolated with zero free surface elevation on the edge of the
droplet footprint). While the error between the numerical and leading-order predictions
decreases with ε, the rate of decrease appears to be sufficiently slow for more complicated
networks that a higher-order asymptotic analysis may be a worthwhile direction for future
work.

5. Discussion

In this paper we set out to develop a model for the flow through a new class of
microfluidic device driven by surface tension. There are several disparate length scales
in a typical device geometry which allowed us to construct asymptotic solutions which
are valid in different regions and over different time scales. The flow is governed by
the standard thin-film equations and the shape of the fluid interface is governed by the
linearised Young–Laplace equation. In § 3.1 we described each of the regions in a circuit
with a dumbbell shaped footprint: the drop, conduit and junction regions. We focused
on the distinguished limit in which the aspect ratio of the conduit, ε, is small, so that
the conduits were long and thin. We also showed that each region is associated with a
different relaxation time scale, which vary over several orders of magnitude, and we found
quasi-steady solutions in each region. In the junction region we showed that the contact
angle near the corners will exceed the advancing angle; physically we would expect the
sharp corners to be smoothed out over the small length scales involved, although we did
not include this in our model as this would not change the leading-order behaviour.

In § 3.6 we showed how the leading-order quasi-steady solutions in the drop and conduit
regions can be combined to give a single ODE for the time-dependent drop volumes. The
ODE is separable and an implicit solution can be easily found; this then allowed us to
predict the flux through the device given the initial drop volumes. When designing an
experiment with a dumbbell configuration there are six dimensional parameters that can
be modified for a given combination of fluids: the width and length of the conduit, the
base radii of the two drops as well as the initial volume of fluid contained in each. Given
a required flow rate, drainage time, shear stress (or other property), there is clearly a large
solution space in which to search to find a circuit with the desired properties. Such an
inverse problem is beyond the scope of the current paper, but the effect of modifying
each of these parameters in turn on the leading-order drainage time solutions is easily
determined. In § 3.7 we found a composite solution for the interface height over the
whole dumbbell shape. This allowed us to determine where the cross-sectional area of the
conduit is smallest and hence where the fluid flow is fastest. Our asymptotic predictions
for the drop volumes, conduit flux and interface height all show good agreement with our
numerical simulations when the conduit aspect ratio is small.

In § 3.8 we showed that maintaining an approximately constant flux in our distinguished
limit is easier when the fluxes are small O(nl s−1) or the time scales are relatively short
O (h). The time scale of drainage was shown to be very sensitive to the aspect ratio of
the conduit and thus it is the geometry that is the most important factor in achieving a
given, approximately constant flux over time. However, the height of the conduit is not
constant over its length, so the velocity in different regions of the conduit will be different,
with greater variation in longer conduits. Thus if slowly varying velocities are desired both
temporally and spatially there is ultimately a trade-off between the two, although spatial
variation is much less sensitive. The difference in velocity will also lead to differences
in shear stress along the conduit. In the context of experiments using live cells, shear
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stress impacts a wide range of signalling pathways and this model suggests measuring the
response to different shear stresses can be accomplished using a single device.

In § 4 we proceeded to consider networks of drops and long, narrow conduits. On the
time scale of drainage, a set of ordinary differential equations modelling the network
flow was derived from first principles for asymptotically thin conduits, characterised
by small aspect ratios, ε � 1. These derived models can be understood in terms of
Kirchhoff’s laws, with the conservation of conduit flux at network nodes, with conduit
fluxes driven by the difference in the fourth power of the pressure at either end of the
conduit. This nonlinear dependence on the pressure arises from the free surface physics
and differs significantly from classical network flow models, such as those considered by
Lighthill (1975) and Van Lengerich, Vogel & Steen (2010). Good agreement between our
asymptotically valid network model and direct numerical simulation of the full free surface
problem was found for sufficiently small ε � 1, although larger errors are observed for
fixed ε as the number of conduits connected to a drop increases. Regardless, the simplicity
and broad validity of the network model means that it can be used for rapidly prototyping
many potential device designs in silico.

For experiments that are longer in duration, there are several choices available to extend
the time over which the flux is approximately constant. The first and most obvious is to
use larger volumes of fluid. In future work we will extend the simple dumbbell model by
considering what happens when the vertical length scale is comparable to the horizontal
ones; in this case the pressure in a drop no longer depends linearly on its volume and
multiple equilibria may exist. Further studies can also consider higher-order asymptotic
corrections for large networks or the more complex interfacial dynamics that occurs when
free surface devices are constructed of cell culture media. Additional studies may also
consider how the peculiar patterns of flow within these devices affect chemical transport
(Walsh et al. 2017), building on previous studies of transport within rivulets (e.g. Darhuber
et al. 2004; Al Mukahal, Duffy & Wilson 2017). Throughout we have only considered
straight conduits with a constant width. Our theory still works when the centreline of
a conduit is curved, provided the curvature is of the order of the length of the conduit,
see e.g. Paterson et al. (2013). But we can generalise our model further by allowing for
conduits whose widths vary along their length. This would enable greater control over the
flow; for instance we could compute how the conduit width should vary to obtain a device
in which the shear stress is uniform along its length.

In summary, we have found an asymptotic model describing the flow between two fluid
drops connected by a long, thin rivulet. The model compares favourably with numerical
simulations as the small parameter ε is decreased. The results for this simple geometry
were then extended to simulate flows through a network of interconnected conduits which
allows potential microfluidic designs to be rapidly prototyped. We anticipate that this
theoretical work will help increase the uptake of this new class of microfluidic devices
across a wide range of different disciplines.
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Appendix A. Next order solution in the junction region

In this section we give the details of the calculation of the next order interface height
in the junction region ΩJ shown in figure 3(b). As was mentioned in the main text we
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transform the problem to Laplace’s equation by letting

h̃1 = H̃1 + θL

2αL

(
x̃2 − ỹ2)− pL

2
x̃2, (A 1)

so that

∇2H̃1 = 0 in ΩJ, (A 2)

H̃1 ∼ 1
2αL

(αLpL − θL) x̃2 as x̃ → ∞, for |ỹ| < 1, (A 3)

H̃1 = 1
2αL

[
(αLpL − θL) x̃2 + θL

]
on |ỹ| = 1 for x̃ > 0, (A 4)

H̃1 = 1
2αL

[(
θL + ∂ h̃0

∂ x̃

)
ỹ2 − ∂ h̃0

∂ x̃

]
on x̃ = 0 for |ỹ| > 1, (A 5)

H̃1 → 0 as x̃2 + ỹ2 → ∞ for x̃ < 0, (A 6)

where h̃0 is given by (3.13). We use can then use the conformal mapping z̃ = f (ζ ), where
f (ζ ) is given by (3.14), to transform this problem to the lower half-plane. The contact
line in the junction region ΩJ is transformed to the real line η = 0 in the ζ -plane. The
derivative on the boundary is then found to be

∂ h̃0

∂ x̃
(0, ỹ, t) = − θL|ξ |√

ξ 2 − 1
for |ξ | > 1, (A 7)

where ỹ = f (ξ). Using in addition the expression Re(z̃2) = Re(f (ξ)2), the problem
(A 2)–(A 6) may be mapped to the following problem in the lower-half ζ -plane:

∇2H̃1 = 0 for η < 0, (A 8)

H̃1 = U (ξ) on η = 0 for ξ �= 0, (A 9)

H̃1 ∼ Re (W (ζ )) as ξ 2 + η2 → 0, (A 10)

H̃1 → 0 as ξ 2 + η2 → ∞, (A 11)

where U is given by

U (ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2αL

(θL − αLpL)

⎡
⎣1 − 4

π2

(√
1 − ξ 2 − log

(√
1 − ξ 2 + 1

|ξ |

))2

+ θL

⎤
⎦

for |ξ | ≤ 1,

θL

2αL

[
4
π2

(
1 − |ξ |√

ξ 2 − 1

)(√
ξ 2 − 1 + sin−1

(
1
|ξ |
))2

+ |ξ |√
ξ 2 − 1

]

for |ξ | > 1

(A 12)

and W is given by

W (ζ ) = 2 (θL − αLpL)

π2αL

((
log (ζ ) − iπ

2

)2

− 2 log (ζ )

)
. (A 13)
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Using a Fourier transform the solution for η < 0 can be written as

H̃1 = η

π

∫ ∞

−∞

U (s)
η2 + (s − ξ)2

ds. (A 14)

The integral (A 14) must be evaluated carefully using quadrature. We use integral in
MATLAB having dealt analytically with the logarithmic singularities in W(ξ) at the origin
and having exploited the symmetry of the integrand and the far-field Laurent expansion
for U(ξ).
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