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SıLA ÇETINKAYA

Engineering Management, Information, and Systems, Southern Methodist University, Dallas, TX, USA

E-mail: sila@lyle.smu.edu

DAREN B. H. CLINE

Department of Statistics, Texas A&M University College Station, College Station, TX, USA

Stochastic clearing theory has wide-spread applications in the context of supply chain
and service operations management. Historical application domains include bulk service
queues, inventory control, and transportation planning (e.g., vehicle dispatching and ship-
ment consolidation). In this paper, motivated by a fundamental application in shipment
consolidation, we revisit the notion of service performance for stochastic clearing system
operation. More specifically, our goal is to evaluate and compare service performance of
alternative operational policies for clearing decisions, as quantified by a measure of timely
service referred to as Average Order Delay (AOD). All stochastic clearing systems are
subject to service delay due to the inherent clearing practice, and AOD can be thought of
as a benchmark for evaluating timely service. Although stochastic clearing theory has a
long history, the existing literature on the analysis of AOD as a service measure has several
limitations. Hence, we extend the previous analysis by proposing a more general method
for a generic analytical derivation of AOD for any renewal-type clearing policy, including
but not limited to alternative shipment consolidation policies in the previous literature.
Our proposed method utilizes a new martingale point of view and lends itself for a generic
analytical characterization of AOD, leading to a complete comparative analysis of alter-
native renewal-type clearing policies. Hence, we also close the gaps in the literature on
shipment consolidation via a complete set of analytically provable results regarding AOD
which were only illustrated through numerical tests previously.
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1. INTRODUCTION AND MOTIVATION

“Stochastic clearing systems are characterized by a stochastic input process and an output
mechanism that intermittently clears the system, that is, instantaneously restores the net
quantity in the system to zero [22].” In the seminal paper by Stidham [22], the system is
cleared when the quantity in the system, exceeds a fixed threshold, and the explicit expres-
sion of the limiting distribution of the quantity in the system is derived. The concepts
of stochastic clearing theory have found wide-spread applications in the context of supply
chain and service operations management. Historical application domains include bulk ser-
vice queues, inventory control, and transportation planning (e.g., vehicle dispatching and
shipment consolidation).

Applications to bulk service queues and (s, S) inventory systems are introduced in Ref.
[23] where the goal is to compute the optimal operational policy parameters to minimize
the average cost including the fixed clearing and variable holding costs. Also, see Ref. [11]
for more recent work, addressing a stochastic clearing problem arising in the context of a
queueing theoretic transportation application, along with the related literature. In Ref. [14],
the stock level process is assumed to be a superposition of a drifted Brownian motion and a
compound Poisson process, reflected at zero, and some cost functionals for this system are
introduced under several clearing policies.

In the context of vehicle dispatching, the problem is to determine the capacity and
instants in time at which vehicles are dispatched leading to a dispatching (clearing) policy
[18,19,24,26]. In another seminal paper by Ross [19], the goal is to compute an optimal
dispatching policy under a Poisson input process N(t) with rate λ(t), where all items are
dispatched at time T . An intermediate dispatch time needs to be selected to minimize the
total waiting time of all items, and it is demonstrated that the optimal intermediate dispatch
time should be the smallest t, such that N(t) ≥ λ(t)(T − t). Vehicle dispatching with non-
stationary Poisson arrivals is studied in Ref. [18] where the optimal dispatching policy is
characterized using the principles of stochastic control theory. Three alternative policies
for vehicle dispatching are discussed in Ref. [24]: (1) a C-capacity policy (under which
a vehicle is dispatched as soon as it is filled to capacity C); (2) a dispatching frequency
policy (under which a vehicle is dispatched every T units of time assuming an infinite
capacity); and (3) a (T,C) policy (under which a vehicle is dispatched every T units of
time or whenever it is filled to capacity C, i.e., whichever happens first). The average cost
models are derived under the three policies, and two firm models with cooperative and
non-cooperative operation modes are discussed. In Ref. [26], a random vehicle dispatching
problem with options to send rented vehicles is considered, and it determines the firm’s
optimal fleet size to minimize the average cost.

Shipment consolidation is the strategy of combining small size shipments or customer
orders, that is, input process realizations, into a larger load with the goals of achieving scale
economies and increasing resource, that is, truck, utilization [4] at the time of shipment-
release. In the context of shipment consolidation, customer orders represent the stochastic
input process. The consolidated loads are released at some specific times that correspond
to clearing instances, and the consolidation practice is subject to fixed clearing (shipment-
release) and variable holding costs. The problem at hand is to make decisions regarding
the timing and quantity of consolidated shipments, leading to a clearing policy. Hence, a
shipment consolidation system can be treated as a stochastic clearing system. The con-
solidation practice is well-justified because a fixed cost is incurred associated with each
shipment-release, so it is not economical to dispatch the customer orders immediately, that
is, one by one.

In this paper, motivated by a fundamental application in shipment consolidation, we
revisit the notion of service performance for stochastic clearing system operation. All
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stochastic clearing systems are subject to service delay due to the inherent clearing practice.
Our goal here is to evaluate and compare such delay under alternative operational policies
for clearing decisions, as quantified by a basic measure of timely service (service perfor-
mance), referred to as Average Order Delay (AOD). Although stochastic clearing theory
has a long history, the existing literature on the analysis of service performance, in general,
and AOD, in particular, has several limitations as we discuss next in Section 2. Hence, we
extend the previous literature on stochastic clearing by proposing a more general method
for a generic analytical derivation of AOD for any renewal-type clearing policy, including
but not limited to alternative shipment consolidation policies investigated earlier.

The remainder of this paper is organized as follows. A detailed summary of previously
established results are summarized in Section 2. In Section 3, using a martingale associated
with the underlying stochastic input (Poisson order) process, we provide a unified formula to
calculate AOD under different renewal-type clearing policies of interest. Section 4 includes
the properties of truncated random variables of interest, which are the key to prove the
comparative results among alternative policies in terms of AOD. The comparative results
under a fixed shipment-release frequency are given in Section 5, and additional results
under fixed policy parameters are discussed in Section 6. Finally, the paper concludes in
Section 7.

2. RELEVANT LITERATURE AND CONTRIBUTIONS OF THE CURRENT PAPER

Within the existing literature on stochastic clearing, the paper that is most closely related to
our work is [9] which is motivated by shipment consolidation applications. More specifically,
in Ref. [9], the customer orders (stochastic input) follow a Poisson process N(t) with rate
λ and the problem at hand is to make decisions regarding the timing and quantity of con-
solidated shipments (clearing decisions). The paper places an emphasis on the importance
of examining the timely delivery (i.e., service delay) implications of shipment consolidation
under practically motivated policies with clearing characteristics. To the best of our knowl-
edge, this is the only previous paper that pursues an analytical characterization of service
performance in the context of a clearing system, in general, and a shipment consolidation
application, in particular. Simulation studies addressing the notion of service delay (as it
relates to inventory holding and customer waiting) in shipment consolidation can be found
in Refs. [12] and [7]. For a detailed account of the analytical models for shipment consolida-
tion, see Ref. [4]. More recent analytical work emphasizing computation of optimal shipment
consolidation policies and their applications in vendor-managed inventory systems and last
mile distribution can be found in Refs. [2,3,7,8,10,13,15,16,21,25] .

The analysis in Ref. [9] is based on the general theory of renewal/Poisson processes,
and it offers some basic results for computing and comparing various service measures of
practical interest. However, the approach has limitations in the sense that the analysis does
not result in a full-scale analytical comparison of AOD among the policies. Instead, the
comparative results are supported by a numerical investigation, and hence, the conclusions
are dependent on the parametric settings considered.

Here, we revisit the exact same problem setting in Ref. [9] by treating it as a stochastic
clearing system. We are able to extend the previous analysis by proposing a generic ana-
lytical approach amenable for a comparative analysis applicable under any renewal-type
clearing policy, including but not limited to the alternative shipment consolidation policies
identified and studied in the literature [2,3,9,17] . Unlike the previous work in the area, our
proposed method utilizes a new martingale point of view and lends itself for a full analytical
characterization of AOD, leading to a complete comparative analysis among renewal-type
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clearing policies. In particular, we are able to close the gaps in the previous literature
via a complete set of analytically provable results (some of which were only demonstrated
through numerical tests in Ref. [9]) along with a more general approach for examining
service performance of stochastic clearing systems.

We consider the three general types of clearing policies common in shipment consol-
idation practice but applicable in the context of other stochastic clearing applications in
queuing systems, inventory control, and transportation: (1) the first one is quantity-based
policy (QP) which achieves economies of scale; (2) the second is called time-based policy
(TP) which assures timely delivery; and (3) the last one is the hybrid policy (HP) which
is aimed at balancing the tradeoff between economies of scale and timely delivery. For the
sake of completeness, we recall the definitions of the specific policies examined here and in
the previous literature as described exactly in Ref. [9] where the term (1) “order” refers
to “input/input process,” (2) “consolidated load/shipment” refers to “accumulated input,”
and (3) “release/shipment-release” refers to “clear/clearing.”

• QP is aimed at consolidating a load of q units before releasing a shipment;
• Under TP1, a shipment is released every T units of time, and all orders that arrive

between the two shipment-release epochs are consolidated;
• Under TP2, the arrival time of the first order after a shipment-release decision is

recorded, and the next shipment is released T time units after the arrival time of
the first order;

• Under HP1, the goal is to consolidate a load of size q. However, if the time since
the last shipment-release epoch exceeds T , then a shipment-release decision is made
anyways;

• Under HP2, the goal is also to consolidate a load of size q; but if the waiting time of
the first order after the last shipment-release epoch exceeds T , then a consolidated
load is released immediately.

Under TP1 and HP1, there may be empty shipments, which happens when N(T ) = 0.
In order to address this issue, we propose two revised policies, that is, revised TP1 and
revised HP1, which do not allow empty shipments.

• Under revised TP1, a shipment is released every T units of time as long as the con-
solidated load is not 0. However, if there is no order arriving within T units of time
since the last shipment, we do not release a shipment, but continue consolidating
for another multiple of T units of time.

• Under revised HP1, the goal is to consolidate a load of size q. However, if the time
since the last shipment epoch exceeds T and the consolidated load is positive, then
the load is dispatched; on the other hand, if the time since the last shipment exceeds
T and the consolidated load is zero, we do not release a shipment and the system
restarts.

Observe that we have three sets of policies: HP1, QP, TP1, HP2, QP, TP2, and revised
HP1, QP, revised TP1. Notice that within each set, HPs would degenerate to QP when the
time parameter goes to infinity while degenerate to TPs when the quantity parameter goes
to infinity.

As we have noted earlier, all stochastic clearing systems are subject to service delay due
to the inherent clearing practice. More specifically for the case of shipment consolidation
practices, all of the above policies are implemented at the expense of customer waiting
since a prolonged order holding is needed to accumulate a large load [4]. Hence, a key
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indicator of service performance is indeed AOD, which is the average waiting time of orders
before delivery [9]. Under all of the policies described above, the system is cleared once the
consolidated load is released, and, hence, the consolidated load under each policy forms a
regenerative process. In turn, the policies of interest are renewal-type clearing policies, and
the AOD can be obtained by applying the Renewal Reward Theorem, that is,

AOD =
E[Cumulative waiting per consolidation cycle]

E[Number of orders arriving in a consolidation cycle]
=

E[W ]
λE[C]

,

where W denotes the sum of the waiting times of the orders within a consolidation cycle
and C denotes the consolidation cycle length. We index AOD, W , and C by policy type as
needed. Our specific objective here is to provide a comparative analysis of AOD under the
alternative policies HP1, QP, TP1, HP2, QP, TP2, and revised HP1, QP, revised TP1.

In Ref. [9], the expectation of cumulative waiting per consolidation cycle under each
policy is calculated individually, and the expressions of AOD under HP1 and HP2 are
rather complex/involved limiting the ability to offer a complete analytical comparison of
the policies at hand. Here, by characterizing each renewal-type clearing policy as a stopping
time, we are able to provide a unified method to calculate AOD from a martingale point
of view with the aid of optional stopping theorem. Furthermore, we are able to derive the
explicit expressions of AOD under HP1 and HP2, which include terms involving first and
second moments of truncated Poisson random variables whose refined properties, to the
best of our knowledge, have not been examined previously. More specifically, throughout
this work, for a non-negative integer-valued random variable X, and a positive integer q,
we denote

Xq � min(X, q)

as the truncated random variable of interest. To provide the comparative results in terms
of AOD under alternative policies, we develop refined properties of these truncated ran-
dom variables. The resulting properties, in turn, are essential for the AOD comparisons
among alternative policies. Specifically, we obtain the following interesting results of the
preservation property, which have their own merits:

• Given a non-negative integer-valued random variable Y with VAR[Y ] ≤ E[Y ] < ∞,
for any positive integer N , we have VAR[YN ] ≤ E[YN ] (see Lemma 4.2). This,
in turn, implies that the relationship of VAR[Y ] ≤ E[Y ] is preserved after Y is
truncated.

• Let X,Y be two non-negative integer-valued random variables, and X is stochasti-
cally larger than Y . If E[Xq] ≤ E[Yq+1], where q is a positive integer, then E[X2

q ] ≤
E[Y 2

q+1] (see Lemma 4.3). This property implies that the relationship between first
moments of two random variables is preserved in second moment setting.

• Suppose X ∼ Poisson(λ) and N is a positive integer, then E[X2
N ]/E[XN ] is increas-

ing with respect to λ (see Lemma 4.4). We know E[X2]/E[X] = λ + 1, which is
increasing with respect to λ. That is, after X is truncated, the property is still
preserved.

Based on the above-refined properties, we provide the following comparative, insightful
results among alternative policies in terms of AOD: For a fixed expected consolidation cycle
length:

• QP outperforms all renewal-type clearing policies in terms of AOD (see
Theorem 5.1).
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• The general class of HPs performs better than the general class of counterpart TPs
in terms of AOD (see Theorems 5.3 and A.2. Three sets: HP1, TP1, HP2, TP2, and
revised HP1, revised TP1).

• The HP1 with larger quantity parameter would achieve larger AOD than the HP1
with smaller quantity parameter, and the same property holds for HP2 and revised
HP1 (see Theorems 5.5 and A.2).

Furthermore, with fixed parameters, we show that

• The general class of HPs has less AOD than the general classes of counterpart QPs
and TPs (see Theorems 6.1 and 6.2. Three sets: HP1, QP, TP1, HP2, QP, TP2, and
revised HP1, QP, revised TP1).

• HP1 has the same AOD as revised HP1, and less AOD than HP2 (see Theorem 6.3
and Appendix).

Next, we proceed with the details of the new analytical approach for examining AOD
which has provided the foundation of the insightful results summarized above.

3. AVERAGE ORDER DELAY

In this section, based on a martingale associated with the Poisson input process, we provide
a unified method to calculate the AOD for any renewal-type clearing policy. The following
lemma reveals this martingale.

Lemma 3. 1: Let N(t) be a Poisson process with rate λ, and define W (t) �
∫ t

0
N(u) du.

Then, {
W (t) − 1

2λ
N2(t) +

1
2λ

N(t)
}

t≥0

is a martingale with respect to the natural filtration {Gt}, which is the σgenerated by the
family of random variables {N(s), s ∈ [0, t]}.
Proof: Since the Poisson process has stationary independent increment, for s < t, we have,

E

[∫ t

0

N(u) du | Gs

]
=

∫ s

0

N(u) du + E

[∫ t

s

N(u) du | Gs

]

=
∫ s

0

N(u) du + (t − s)N(s) + E

[∫ t−s

0

N(u) du

]

=
∫ s

0

N(u) du + (t − s)N(s) +
1
2
λ(t − s)2,

1
2λ

E[N2(t) | Gs] =
1
2λ

(N2(s) + 2λ(t − s)N(s) + λ(t − s) + λ2(t − s)2),

and
1
2λ

E[N(t) | Gs] =
1
2λ

(N(s) + λ(t − s)).

Therefore,

E

[∫ t

0

N(u) du − 1
2λ

N2(t) +
1
2λ

N(t) | Gs

]
=

∫ s

0

N(u) du − 1
2λ

N2(s) +
1
2λ

N(s),

which shows that W (t) − 1
2λN2(t) + 1

2λN(t) is a martingale. �
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The shipment-release time is always a stopping time with respect to the stochastic cus-
tomer order process. For a consolidation policy with shipment-release time τ , the cumulative
waiting time within one consolidation cycle is

W (τ) =
∫ τ

0

N(u) du.

Throughout this work, for two real numbers a and b denote a ∧ b � min(a, b). From
Lemma 3.1 and the martingale stopping theorem [20] Thm. 6.2.2, we have that for any
stopping time τ and any fixed t > 0,

E[W (τ ∧ t)] =
1
2λ

E[N2(τ ∧ t) − N(τ ∧ t)]. (1)

Also, applying again the martingale stopping theorem on another martingale {N(t) −
λt}t≥0, we have that for any stopping time τ and any fixed t > 0,

E[N(τ ∧ t)] = λE[τ ∧ t]. (2)

We consider a renewal-type clearing policy with finite cycle mean, that is, τ is of finite
mean. From the monotone convergence theorem [1] Thm. 2.3.4,

lim
t→∞ E[W (τ ∧ t)] = E[W (τ)]

and
lim

t→∞ E[N(τ ∧ t)(N(τ ∧ t) − 1)] = E[N(τ)(N(τ) − 1)].

Noticing Eq. (1), we obtain that the expectation of cumulative waiting time within one
consolidation cycle is

E[W (τ)] =
1
2λ

E[N2(τ) − N(τ)]. (3)

Similarly, from Eq. (2), we have the expectation of consolidation cycle is

E[τ ] =
1
λ

E[N(τ)]. (4)

From the above discussion, we can deduce the AOD for any renewal-type shipment
consolidation policy. Now, we calculate the AOD under different shipment consolidation
policies of interest here as follows. For two random variables X and Y , we use X ∼ Y to
denote that they follow the same distribution.

1. QP with integer parameter q ≥ 1: τ = τq, the time until the q-th order, q is a positive
integer; N(τq) = q. So

E[WQP] = E[W (τq)] =
1
2λ

q(q − 1),

E[CQP] = E[τq] =
q

λ
.

2. TP1 with parameter T : τ = T , a constant; N(T ) ∼ Poisson(λT ). So

E[WTP1] = E[W (T )] =
1
2λ

E[N2(T ) − N(T )] =
1
2
λT 2,

E[CTP1] = T.
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Table 1. Summary of the expressions of AOD, where
Y ∼ Poisson(λT )

AODτ =
E[W (τ)]

λE[Cτ ]
=

E[N2(τ) − N(τ)]/(2λ)

E[N(τ)]

AODQP =
E[WQP]

λE[CQP]
=

(q − 1)q/2λ

q
=

q − 1

2λ

AODTP1 =
E[WTP1]

λE[CTP1]
=

λT 2/2

λT
=

1

2
T

AODTP2 =
E[WTP2]

λE[CTP2]
=

T + λT 2/2

1 + λT

AODHP1 =
E[WHP1]

λE[CHP1]
=

E[Yq(Yq − 1)]/(2λ)

E[Yq]

AODHP2 =
E[WHP2]

λE[CHP2]
=

E[Yq−1(Yq−1 + 1)]/(2λ)

E[Yq−1 + 1]

3. TP2 with parameter T : τ = τ1 + T ; N(τ1 + T ) ∼ 1 + N(T ). So

E[WTP2] = E[W (τ1 + T )] =
1
2λ

E[N2(T ) + N(T )] =
1
2
λT 2 + T,

E[CTP2] =
1
λ

+ T.

4. HP1 with parameters q and T : τ = τq ∧ T ; Let Y ∼ Poisson(λT ), N(τq ∧ T ) ∼
N(T ) ∧ q ∼ Yq, which is a truncated Poisson random variable. So

E[WHP1] = E [W (τq ∧ T )] =
1
2λ

E[Yq(Yq − 1)],

E[CHP1] =
1
λ

E[Yq].

5. HP2 with parameters q and T : τ = τq ∧ (τ1 + T ); Let Y ∼ Poisson(λT ), N(τq ∧ (τ1 +
T )) ∼ (1 + N(T )) ∧ q ∼ Yq−1 + 1. So

E[WHP2] = E [W (τq ∧ (τ1 + T ))] =
1
2λ

E[Yq−1(Yq−1 + 1)],

E[CHP2] =
1
λ

E[Yq−1 + 1].

In Table 1, we summarize the AOD for different shipment consolidation policies. We
would notice that the expressions of AODHP1 and AODHP2 involve the truncated Poisson
random variables, which are much simplified than the expressions in Ref. [9]. Note that under
TP1 and HP1, the consolidation cycle clock starts over, even if no order arrives within the
previous cycle. We consider the correspondingly revised policies in the Appendix, which do
not allow empty dispatches.

4. PROPERTIES OF TRUNCATED RANDOM VARIABLES

In this section, we investigate the properties of truncated random variables, which are
connected to the comparison of different shipment consolidation policies of interest here in
terms of AOD.
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Lemma 4. 1: Given an integer-valued random variable Y , and a positive integer M , we have

VAR[Y ] − VAR[YM ] = VAR[Y − YM ] + 2(M − E[YM ])(E[Y ] − E[YM ]).

In particular, VAR[YM ] ≤ VAR[Y ].

Proof: Since Y is integer-valued and M is an integer, we have

Y − YM = (Y − M)1Y ≥M+1

and
E[YM (Y − YM )] = ME[(Y − M)1Y ≥M+1] = M(E[Y ] − E[YM ]).

Therefore,

COV(YM , Y − YM ) = E[YM (Y − YM )] − E[YM ]E[Y − YM ]

= (M − E[YM ])(E[Y ] − E[YM ]).

We have

VAR[Y ] = VAR[YM + (Y − YM )]

= VAR[YM ] + VAR[Y − YM ] + 2COV(YM , Y − YM )

= VAR[YM ] + VAR[Y − YM ] + 2(M − E[YM ])(E[Y ] − E[YM ]).

�

Based on Lemma 4.1, we establish the following result, which will be useful in the
comparison between the general class of HPs and the general class of counterpart TPs in
terms of AOD.

Lemma 4. 2: Given a non-negative integer-valued random variable Y with VAR[Y ] ≤
E[Y ] < ∞, then, for any positive integer N , we have VAR[YN ] ≤ E[YN ]. In particular, if Y
is a Poisson random variable, VAR[YN ] < E[YN ].

Proof: Define f(N) � VAR[YN ] − E[YN ], for N ≥ 1. Noticing

YN = YN+1 ∧ N, YN+1 − YN = 1Y ≥N+1,

and applying Lemma 4.1, we have

f(N + 1) − f(N) = (VAR[YN+1] − VAR[YN ]) − (E[YN+1] − E[YN ])

= VAR[YN+1 − YN ] + 2(N − E[YN ])(E[YN+1] − E[YN ]) − (E[YN+1] − E[YN ])

= VAR[YN+1 − YN ] + (2N − 2E[YN ] − 1)(E[YN+1] − E[YN ])

= P(Y ≥ N + 1)P(Y ≤ N) + (2N − 2E[YN ] − 1)P(Y ≥ N + 1)

= (2E[max(N − Y, 0)] − P(Y ≥ N + 1))P(Y ≥ N + 1).

Obviously, 2E[max(N − Y, 0)] − P(Y ≥ N + 1) is increasing in N and P(Y ≥ N + 1) ≥
0. This, in turn, implies that f(N + 1) − f(N) changes sign at most once with respect
to N : either from negative to positive or always positive. In the first case, f(N) is first
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non-increasing and then non-decreasing; in the second case, f(N) is non-decreasing. Noting
that

lim
N→∞

f(N) = lim
N→∞

(VAR[YN ] − E[YN ]) = VAR[Y ] − E[Y ] ≤ 0

and

f(1) = VAR[1Y ≥1] − E[1Y ≥1] = P(Y ≥ 1)(1 − P(Y ≥ 1)) − P(Y ≥ 1) ≤ 0,

we conclude f(N) ≤ 0 for all N , that is, VAR[YN ] ≤ E[YN ].
If Y is a Poisson random variable, by the same reasoning as above, f(N) is

either first decreasing and then increasing or always increasing. Moreover, f(1) < 0 and
limN→∞ f(N) = 0. Thus, f(N) = VAR[YN ] − E[YN ] < 0 for any positive integer N . �

Next, we provide a result which would be essential in comparing the same type HP
with different parameters in terms of AOD, with a fixed expected consolidation cycle length
E[C].

Lemma 4. 3: Assume X,Y are two integer-valued random variables, and X is stochastically
larger than Y . If E[Xq] ≤ E[Yq+1], where q is a positive integer, then E[X2

q ] ≤ E[Y 2
q+1].

Proof: From

Y 2
q+1 − Y 2

q = (2q + 1)(Yq+1 − Yq),

we have

E[Y 2
q+1] − E[Y 2

q ] = (2q + 1)(E[Yq+1] − E[Yq]) ≥ (2q + 1)(E[Xq] − E[Yq]).

Therefore,

E[Y 2
q+1] − E[X2

q ] ≥ E[Y 2
q ] − E[X2

q ] + (2q + 1)(E[Xq] − E[Yq]). (5)

Since X is stochastically larger than Y , it follows immediately that Xq is also stochas-
tically larger than Yq. From Ref. [20] Prop. 9.2.2, we always can find two random variables
X ′ and Y ′, such that X ′ has the same probability distribution as Xq, Y ′ has the same
probability distribution as Yq, and X ′ ≥ Y ′ almost surely. From Eq. (5), we have

E[Y 2
q+1] − E[X2

q ] ≥ E[Y ′2] − E[X ′2] + (2q + 1)(E[X ′] − E[Y ′])

= E[(X ′ − Y ′)(2q + 1 − X ′ − Y ′)] ≥ 0,

where the last inequality follows from X ′ ≤ q, Y ′ ≤ q, and X ′ ≥ Y ′ almost surely. �

The following lemma characterizes how the ratio between the second moment and the
first moment of a truncated Poisson random variable changes with respect to the Poisson
rate parameter, which will be used when we compare HP1 and HP2 under fixed policy
parameters, in terms of AOD.

Lemma 4. 4: Suppose X ∼ Poisson(λ) and N is a positive integer, then E[X2
N ]/E[XN ] is

increasing with respect to λ.
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Proof: Let Y ∼ Poisson(λ1), Z ∼ Poisson(λ2), where λ1 < λ2. When k < m < N ,

P(ZN = m)P(YN = k) − P(YN = m)P(ZN = k) =
e−λ1−λ2

m!k!
(λm

2 λk
1 − λm

1 λk
2) > 0, (6)

and when k < N ,

P(ZN = N)P(YN = k) − P(YN = N)P(ZN = k)

=
∑
j≥N

(P(Z = j)P(Y = k) − P(Y = j)P(Z = k))

=
∑
j≥N

e−λ1−λ2

j!k!
(λj

2λ
k
1 − λj

1λ
k
2) > 0. (7)

Note that for any non-negative integer-valued random variable W , we have

E[W 2] =
∞∑

m=1

m2
P(W = m) =

∞∑
m=1

m∑
j=1

mP(W = m) =
∞∑

j=1

∞∑
m=j

mP(W = m).

Therefore, we obtain

E[Z2
N ]E[YN ] − E[Y 2

N ]E[ZN ]

=
N∑

j=1

N∑
m=j

mP(ZN = m)
N∑

k=1

kP(YN = k) −
N∑

j=1

N∑
m=j

mP(YN = m)
N∑

k=1

kP(ZN = k)

=
N∑

j=1

N∑
m=j

j−1∑
k=1

mk[P(ZN = m)P(YN = k) − P(YN = m)P(ZN = k)] > 0,

where the second equality is derived from

N∑
m=j

N∑
k=j

mk[P(ZN = m)P(YN = k) − P(YN = m)P(ZN = k)] = 0,

and the last inequality holds by Eqs. (6) and (7).
Therefore,

E[Z2
N ]

E[ZN ]
− E[Y 2

N ]
E[YN ]

=
E[Z2

N ]E[YN ] − E[Y 2
N ]E[ZN ]

E[YN ]E[ZN ]
> 0,

which implies that E[X2
N ]/E[XN ] is increasing with respect to λ. �

5. COMPARISON OF AOD UNDER A FIXED EXPECTED CYCLE LENGTH, E[C]

In (O10) of Ref. [9], through a numerical study, there is an observation that for a given
E[C], the QP performs the best and TPs perform the worst in terms of AOD. In this
section, we analytically show that for a given E[C], QP provides superior service compared
with any other shipment consolidation policy in terms of AOD, not limited to HPs and
TPs. Furthermore, we rigorously compare HPs and TPs in terms of AOD, for a given E[C].
In addition, for a given E[C], we provide the comparative result between the same type HP
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policies with different parameters, in terms of AOD. The readers who are interested in the
managerial motivation of this comparison of AOD are referred to Ref. [9].

Theorem 5. 1: For a fixed expected consolidation cycle length E[C] = q/λ with q as a
positive integer, QP with parameter q outperforms all the other renewal-type clearing policies
in terms of AOD.

Proof: From Table 1, we know AOD of a shipment consolidation policy with shipment-
release time τ is

AODτ =
E[N2(τ) − N(τ)]/(2λ)

E[N(τ)]
.

From E[τ ] = E[C] = q/λ and Eq. (4), we have that E[N(τ)] = q is fixed. Furthermore,
E[N2(τ)] ≥ E

2[N(τ)] = q2, where the equality holds if and only if the random variable N(τ)
is the constant q. Thus,

AODτ =
1
2λ

(
E[N2(τ)]
E[N(τ)]

− 1
)

≥ 1
2λ

(E[N(τ)] − 1) =
q − 1
2λ

,

where the inequality is an equality if and only if N(τ) is the constant q. This, in turn,
implies QP with parameter q achieves the least AOD with a fixed expected consolidation
cycle length. �

Remark 5. 2: If there is a consolidation policy with shipment-release time τ , which has the
same expected cycle length as a quantity-based policy with positive integer parameter q, that
is E[τ ] = q/λ, the average cost associated with this policy is

AD + CDE[N(τ)] + ωE[W (τ)]
E[τ ]

,

where AD is the fixed cost for each shipment-release, CD is the unit transportation cost, and
ω is the waiting cost per unit per unit time. With fixed E[τ ], E[N(τ)] is also fixed. From
Theorem 5.1, we conclude that the corresponding quantity-based policy achieves less average
cost than this policy with shipment-release time τ .

One disadvantage of QP is that it has no upper bound on the cycle length, in contrast,
HP is of more practical importance since by definition it has an upper bound on the cycle
length. In the next result, we show that the general class of HPs outperforms the general
class of counterpart TPs in terms of AOD, under a fixed expected consolidation cycle length.

Theorem 5. 3: For a fixed expected consolidation cycle length E[C], HP1 performs better
than TP1, and HP2 performs better than TP2 in terms of AOD.

Proof: We consider a fixed E[C] and use the following notation for the corresponding
policy parameters under this E[C] value: TP1 with parameter T1, TP2 with parameter T2,
HP1 with parameters qH1 and TH1, and HP2 with parameters qH2 and TH2. Recalling the
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E[C] expressions in Table 1, we note that, by assumption,

1
λ

E[XqH1 ] = T1 (8)

and
1
λ

E[1 + ZqH2−1] =
1
λ

+ T2, (9)

where X ∼ Poisson(λTH1), Z ∼ Poisson(λTH2). Next, recalling the results in Table 1 and
the assumption of fixed E[C] values for all the policies of interest, we need to show that

E[XqH1(XqH1 − 1)] < λ2T 2
1 (10)

and
E[ZqH2−1(ZqH2−1 + 1)] < 2λT2 + λ2T 2

2 . (11)

In fact, by recalling Eqs. (8) and (9), we have

E[XqH1(XqH1 − 1)] = VAR[XqH1 ] + E
2[XqH1 ] − E[XqH1 ] < E

2[XqH1 ] = λ2T 2
1

and

E[ZqH2−1(ZqH2−1 + 1)] = VAR[ZqH2−1] + E
2[ZqH2−1] + E[ZqH2−1]

< 2E[ZqH2−1] + E
2[ZqH2−1]

= 2λT2 + λ2T 2
2 ,

where the inequalities are derived from Lemma 4.2. �

Remark 5. 4: Following the same argument as in Remark 5.2, in terms of average cost
criterion, the general class of HPs also outperforms the general class of counterpart TPs.

From Lemma 4.3, we deduce a stronger result as follows, which allows us to compare
two HP policies of the same type under a fixed E[C].

Theorem 5. 5: For a fixed expected consolidation cycle length E[C], the HP1 with a larger
quantity parameter achieves larger AOD than the HP1 with a smaller quantity parameter,
and the similar result holds for HP2.

Proof: We consider a fixed E[C] and use the following notation for the corresponding
policy parameters under this E[C] value: the first HP1 with parameters qH and TH, the
second HP1 with parameters qH + 1 and T ′

H. Recalling the E[C] expressions in Table 1, we
note that, by assumption,

E[XqH ] = E[YqH+1], (12)

where X ∼ Poisson (λTH), Y ∼ Poisson (λT ′
H). Clearly, TH > T ′

H.
Next, recalling the results in Table 1 and the assumption of fixed E[C] values for all the

policies of interest, we need to show that

E[XqH(XqH − 1)] < E[YqH+1(YqH+1 − 1)]. (13)

From Lemma 4.3 and recalling Eq. (12), we have

E[X2
qH

] ≤ E[Y 2
qH+1],

so that inequality (13) is verified.
The same procedure can be applied to prove the similar result between two HP2 policies.

�
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6. COMPARISON OF AOD UNDER FIXED PARAMETERS Q AND/OR T

In Ref. [9], the authors analytically show that under fixed parameters, the general class
of HPs outperforms the general classes of counterpart QP and TPs in terms of AOD. In
this section, we provide a simpler proof of the above statement based on the rewritten
expressions in Table 1. Furthermore, we show under fixed parameters, HP1 outperforms
HP2 in terms of AOD. The readers who are interested in the managerial implications of
this comparison of AOD are referred to Ref. [9]. Note that with fixed parameter q = 1, the
AOD of QP, HP1 and HP2 are all 0, and thus, we only consider the cases where q ≥ 2.

Theorem 6. 1: With fixed parameters q ≥ 2 and T , HP1 performs better than QP and TP1
in terms of AOD.

Proof: On the one hand, we need to show HP1 performs better than QP in terms of AOD
with the same parameters q, T , from Table 1, that is,

In fact, (q − 1)E[Yq] − E[Yq(Yq − 1)] = qE[Yq] − E[Y 2
q ] = E[(q − Yq)Yq] > 0.

On the other hand, we need to show HP1 performs better than TP1 in terms of AOD
with the same parameters q, T , from Table 1, that is,

E[Yq(Yq − 1)]
E[Yq]

< λT.

In fact, from Lemma 4.2, we have VAR[Yq] < E[Yq], which can written as

E[Yq(Yq − 1)] < E
2[Yq].

Furthermore, we have E[Yq] < λT since Y ∼ Poisson(λT ). Thus, we arrive at the desired
inequality. �

Theorem 6. 2: With fixed parameters q ≥ 2 and T , HP2 performs better than QP and TP2
in terms of AOD.

Proof: On the one hand, we need to show HP2 performs better than QP in terms of AOD
with the same parameters q, T , from Table 1, that is,

In fact, (q − 1)E[1 + Yq−1] − E[Yq−1(Yq−1 + 1)] = E[(q − 1 − Yq−1)(Yq−1 + 1)] > 0.
On the other hand, we need to show HP2 performs better than TP2 in terms of AOD

with the same parameters q, T , from Table 1, that is,

E[Yq−1(Yq−1 + 1)]
E[1 + Yq−1]

<
2λT + λ2T 2

1 + λT
.

In fact, from Lemma 4.2, we have VAR[Yq−1] < E[Yq−1], which can be written as

E[Yq−1(Yq−1 + 1)] < E
2[Yq−1 + 1] − 1.

Furthermore, due to E[Yq−1] < λT , we have

E[Yq−1 + 1] − 1
E[Yq−1 + 1]

< λT + 1 − 1
λT + 1

.

Thus, we arrive at the desired inequality. �
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The following result allows us to compare HP1 and HP2 with fixed parameters q and
T , which relies on Lemma 4.4.

Theorem 6. 3: With fixed parameters q ≥ 2 and T , HP1 performs better than HP2 in terms
of AOD.

Proof: From Table 1, we need to show

E[Yq(Yq − 1)]
E[Yq]

<
E[Yq−1(Yq−1 + 1)]

E[1 + Yq−1]
.

After simplification, it suffices to show

E[Y 2
q ]

E[Yq]
<

E[(Yq−1 + 1)2]
E[Yq−1 + 1]

. (14)

Note for X ∼ Poisson(μ), we have

d

dμ
E[g(X)] = E[g(X + 1)] − E[g(X)],

for any appropriate function g(x). Let μ = λT , g1(x) = (x ∧ q)2, and g2(x) = x ∧ q, for
x ≥ 0, we have

d

dμ
E[Y 2

q ] =
d

dμ
E[g1(Y )] = E[g1(Y + 1)] − E[g1(Y )]

= E[(Yq−1 + 1)2] − E[Y 2
q ],

and

d

dμ
E[Yq] =

d

dμ
E[g2(Y )] = E[g2(Y + 1)] − E[g2(Y )]

= E[Yq−1 + 1] − E[Yq].

Hence,

d

dμ

E[Y 2
q ]

E[Yq]
=

(E[(Yq−1 + 1)2] − E[Y 2
q ])E[Yq] − E[Y 2

q ](E[Yq−1 + 1] − E[Yq])
E2[Yq]

=
E[(Yq−1 + 1)2]E[Yq] − E[Y 2

q ]E[Yq−1 + 1]
E2[Yq]

.

From Lemma 4.4, we know (d/dμ)(E[Y 2
q ]/E[Yq]) > 0, thus

E[(Yq−1 + 1)2]E[Yq] − E[Y 2
q ]E[Yq−1 + 1] > 0,

which implies inequality (14) is satisfied. �
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7. CONCLUSION

Motivated by applications in shipment consolidation, we first provide a new unified method
to compute AOD for any renewal-type clearing policy based on a martingale associated
with the Poisson process and the martingale stopping theorem. Our goal is to provide a
complete analytical comparison of alternative clearing policies (of type QP, TP, and HP) in
terms of AOD. Our proposed method lends itself for a generic analytical characterization of
AOD, leading to a complete comparative analysis of the policies of interest. In particular,
we demonstrate that, under a fixed expected consolidation cycle length, QP outperforms
any other renewal-type clearing policy in terms of AOD, not limited to HPs and TPs (see
Theorem 5.1). Also, we complete the proof for the comparison of AOD between HPs and
TPs under a fixed expected consolidation cycle length (see Theorems 5.3 and A.2), and we
provide a simplified proof for the AOD comparison among HPs, TPs, and QP under fixed
parameters (see Theorems 6.1 and 6.2), which are related to a property of truncated Poisson
random variables: for a truncated Poisson random variable YN = min(Y,N), VAR[YN ] <
E[YN ] (see Lemma 4.2).

Furthermore, we provide explicit and stronger comparative results between two HPs of
the same type under a fixed expected consolidation cycle length (see Theorem 5.5), which
rely on a property of truncated random variables: given two integer-valued random variables
X,Y , X is stochastically larger than Y , if E[Xq] = E[Yq+1], where q is a positive integer,
then E[X2

q ] ≤ E[Y 2
q+1] (see Lemma 4.3).

Last but not least, we analytically show HP1 performs better than HP2 in terms of
AOD under fixed parameters (see Theorem 6.3), which is equivalent to another property
of truncated Poisson random variables: X ∼ Poisson(μ), then E[X2

N ]/E[XN ] is increasing
with respect to μ (see Lemma 4.4).

Our results offer insightful and analytically justifiable guidance for logistics managers
in selecting an appropriate shipment consolidation policy with an eye on the resulting ser-
vice performance. Several challenging extensions of the problem at hand remain open for
future research including the case where shipment consolidation efforts are subject to mul-
tiple and/or more general input processes, for example, the case of a multi-class stochastic
clearing system subject to Markov-modulated, renewal, or Brownian motion input processes
without or with customer/order differentiation, for example, prioritization.
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4. Çetinkaya, S. (2005). Coordination of inventory and shipment consolidation decisions: a review of
premises, models, and justification. In J. Geunes, E. Akçali, P.M. Pardalos, H.E. Romejin, & Z.J.
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APPENDIX: THE CASE WITH NO EMPTY SHIPMENTS

Under TP1 and HP1, there may be empty shipments, which happens when N(T ) = 0. In this
Appendix, we consider the policies referred to as revised TP1 and revised HP as defined in Section
1. These policies do not allow empty shipments.

Under revised HP1 with parameters q, T , the following recursion equation about the expected
consolidation cycle length E[CRHP1] is satisfied,

E[CRHP1] = P(N(T ) ≥ 1)E[τq ∧ T | N(T ) ≥ 1] + P(N(T ) = 0)(T + E[CRHP1]). (A.1)

The equation means that if no order arrives within T units time, which happens with prob-
ability P(N(T ) = 0), the consolidation cycle restarts; if there are orders arriving within T units
time, which happens with probability P(N(T ) ≥ 1), the load is dispatched at stopping time τq ∧ T .
Noting that

E[τq ∧ T ] = P(N(T ) ≥ 1)E[τq ∧ T | N(T ) ≥ 1] + P(N(T ) = 0)E[τq ∧ T | N(T ) = 0]

= P(N(T ) ≥ 1)E[τq ∧ T | N(T ) ≥ 1] + P(N(T ) = 0)T,

we have

P(N(T ) ≥ 1)E[τq ∧ T | N(T ) ≥ 1] = E[τq ∧ T ] − P(N(T ) = 0)T. (A.2)
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Now, using Eq. (A.2) in Eq. (A.1), and recalling E[CHP1] in Table 1, we have

E[CRHP1] =
E[τq ∧ T ]

1 − P(N(T ) = 0)
=

E[Yq]

λ(1 − P(Y = 0))
=

E[CHP1]

1 − P(Y = 0)
, (A.3)

where Y ∼ Poisson(λT ).
Next, we calculate the expected cumulative delay within one consolidation cycle under revised

HP1, which is denoted as E[WRHP1]. The following recursion equation is satisfied,

E[WRHP1] = P(N(T ) ≥ 1)E

[∫ τq∧T

0
N(t) dt | N(T ) ≥ 1

]
+ P(N(T ) = 0)E[WRHP1]. (A.4)

This equation means if no order arrives within T units time, which happens with probability
P(N(T ) = 0), the consolidation system restarts; if there are orders arriving within T units time,
which happens with probability P(N(T ) ≥ 1), the cumulative delay within one consolidation cycle

is
∫ τq∧T
0 N(t) dt.
By noticing

E

[∫ τq∧T

0
N(t) dt

]
= P(N(T ) ≥ 1)E

[∫ τq∧T

0
N(t) dt

∣∣∣∣∣ N(T ) ≥ 1

]

+ P(N(T ) = 0)E

[∫ τq∧T

0
N(t) dt

∣∣∣∣∣ N(T ) = 0

]

= P(N(T ) ≥ 1)E

[∫ τq∧T

0
N(t) dt

∣∣∣∣∣ N(T ) ≥ 1

]
, (A.5)

and replacing Eq. (A.5) into Eq. (A.4), together with recalling E[WHP1] in Table 1, we have

E[WRHP1] =
E[

∫ τq∧T
0 N(t) dt]

1 − P(N(T ) = 0)
=

E[WHP1]

1 − P(Y = 0)
=

E[Yq(Yq − 1)]

2λ(1 − P(Y = 0))
. (A.6)

Define a new random variable Ỹ , which has the same distribution of Y | Y > 0. We can rewrite

E[CRHP1] =
1

λ
E[Ỹq], (A.7)

E[WRHP1] =
1

2λ
E[Ỹq(Ỹq − 1)]. (A.8)

Similarly, we can obtain the expected cycle length under revised TP1 with parameters T is

E[CRTP1] =
E[CTP1]

1 − P(N(T ) = 0)
=

T

1 − e−λT
, (A.9)

and the cumulative delay with one consolidation cycle under revised TP1 with parameters T is

E[WRTP1] =
E[WTP1]

1 − P(N(T ) = 0)
=

λT 2

2(1 − e−λT )
. (A.10)

From Eqs. (A.3), (A.6), (A.9), and (A.10) and the definition of AOD, we have that AOD of
revised HP1 is the same as HP1, AOD of revised TP1 is the same as TP1, if the parameters q, T
are fixed. From Theorem 6.1, with fixed parameters q, T , revised HP1 also performs better than
QP and revised TP1 in terms of AOD.
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From Theorem 5.1, we can conclude that for a given expected consolidation cycle length, QP
performs better than revised HP1 and revised TP1, in terms of AOD. In the following, we provide
the comparison between revised HP1 and revised TP1 with a given expected consolidation cycle
length.

Suppose Y ∼ Poisson(λ1), Z ∼ Poisson(λ2), and λ1 > λ2, we know Y is stochastically larger
than Z. Define Ỹ ∼ Y | Y > 0 and Z̃ ∼ Z | Z > 0, we show Ỹ is also stochastically larger than Z̃
in the following lemma.

Lemma A.1: Let Y ∼ Poisson(λ), Ỹ is distributed as Y | Y > 0, then P(Ỹ > n) is increasing in λ,
for any integer n ≥ 1.

Proof: Notice (d/dλ)P(Y > n) = P(Y = n). Then, for n ≥ 1,

d

dλ
P(Ỹ > n) =

d

dλ

P(Y > n)

P(Y > 0)

=
P(Y = n)P(Y > 0) − P(Y > n)P(Y = 0)

(P(Y > 0))2

=
P(Y = n) − e−λ

P(Y ≥ n)

(P(Y > 0))2
.

In addition, by using P(Y = k) = (λ/k)P(Y = k − 1), we have

P(Y = n) − e−λ
P(Y ≥ n) =

λ

n
P(Y = n − 1) − e−λ

∞∑
k=n

λ

k
P(Y = k − 1)

>
λ

n

(
P(Y = n − 1) − e−λ

P(Y ≥ n − 1)
)

.

Since P(Y = 0) − e−λ
P(Y ≥ 0) = 0, it follows by induction that

P(Y = n) − e−λ
P(Y ≥ n) > 0.

Therefore, (d/dλ)P(Ỹ > n) > 0. �

Theorem A.2: For a given expected consolidation cycle length E[C], the revised HP1 with a larger
quantity parameter achieves larger AOD than the revised HP1 with a smaller quantity parameter,
in terms of AOD. In particular, revised HP1 achieves less AOD than revised TP1, under a given
expected consolidation cycle length E[C].

Proof: We consider a fixed E[C] and use the following notation for the corresponding policy
parameters under this E[C] value: a revised HP1 with parameters qH and TH, the other revised
HP1 with parameters qH + 1 and T ′

H. Recalling Eq. (A.7) and by assumption that the two revised
HP1 have the same expected cycle length, we have,

E[ŨqH ] = E[ṼqH+1], (A.11)

where Ũ is distributed as U | U > 0, U ∼ Poisson(λTH), and Ṽ is distributed as V | V > 0, V ∼
Poisson(λT ′

H). Clearly, TH > T ′
H. From Lemma A.1, Ũ is stochastically larger than Ṽ .

Next, recalling Eq. (A.8) and reiterating the assumption of fixed E[C], we proceed to show
that

E[ŨqH(ŨqH − 1)] ≤ E[ṼqH+1(ṼqH+1 − 1)]. (A.12)
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From Lemma 4.3, and recalling Eq. (A.11), we have

E[Ũ2
qH ] ≤ E[Ṽ 2

qH+1],

so that inequality (A.12) is verified.
Revised TP1 can be considered as revised HP1 with quantity parameter ∞. Therefore, under

the same expected consolidation cycle E[C], revised HP1 achieves less AOD than revised TP1. �
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