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Curvature-induced deformations of the vortex
rings generated at the exit of a rectangular duct

Abbas Ghasemi1, Burak Ahmet Tuna1 and Xianguo Li1,†
1Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University

Avenue West, Waterloo, ON N2L 3G1, Canada

(Received 11 March 2018; revised 15 November 2018; accepted 30 November 2018;
first published online 1 February 2019)

Rectangular air jets of aspect ratio 2 are studied at Re = UDh/ν = 17 750 using
particle image velocimetry and hot-wire anemometry as they develop naturally or
under acoustic forcing. The velocity spectra and the spatial theory of linear stability
characterize the fundamental ( fn) and subharmonic ( fn/2) modes corresponding
to the Kelvin–Helmholtz roll-up and vortex pairing, respectively. The rectangular
cross-section of the jet deforms into elliptic/circular shapes downstream due to axis
switching. Despite the apparent rotation of the vortex rings or the jet cross-section,
the axis-switching phenomenon occurs due to reshaping into rounder geometries. By
enhancing the vortex pairing, excitation at fn/2 shortens the potential core, increases
the jet spread rate and eliminates the overshoot typically observed in the centreline
velocity fluctuations. Unlike circular jets, the skewness and kurtosis of the rectangular
jets demonstrate elevated anisotropy/intermittency levels before the end of the potential
core. The axis-switching location is found to be variable by the acoustic control of
the relative expansion/contraction rates of the shear layers in the top (longer edge),
side (shorter edge) and diagonal views. The self-induced vortex deformations are
demonstrated by the spatio-temporal evolution of the phase-locked three-dimensional
ring structures. The curvature-induced velocities are found to reshape the vortex ring
by imposing nonlinear azimuthal perturbations occurring at shorter wavelengths
with time/space evolution. Eventually, the multiple high-curvature/high-velocity
regions merge into a single mode distribution. In the plane of the top view, the
self-induced velocity distribution evolves symmetrically while the tilted ring results
in the asymmetry of the azimuthal perturbations in the side view as the side closer
to the acoustic source rolls up in more upstream locations.

Key words: jets, shear layer turbulence

1. Introduction
Jet flows are an important member of the shear flow family (Crow & Champagne

1971; Yule 1978; Hussain & Zaman 1981; Petersen & Samet 1988). Whether they
originate from axisymmetric or non-axisymmetric nozzles or orifices, they have
both fundamental and practical significance, with rich flow phenomena (Matsuda
& Sakakibara 2005; Bogey & Bailly 2006; Kim & Choi 2009; Ghasemi, Pereira
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& Li 2017). They are extensively involved in applications associated with mixing,
heating/cooling, cleaning and combustion, etc., and require proper implementation of
passive/active control strategies to suit the needs of the particular applications. One of
the efficient passive control mechanisms is to issue the jet from non-circular openings
of different shapes. Non-circular jets are practically beneficial due to their enhanced
mixing, improved heat/mass transfer, and regulated noise levels (Ai et al. 2005; Mi
& Nathan 2010; Gohil, Saha & Muralidhar 2015); their different and richer dynamics
also improve and expand our fundamental understanding of the mechanisms behind
jet flows (Bejan, Ziaei & Lorente 2014).

Flow dynamics of the non-circular jets in the near field to the developing regions
are dominated by the three-dimensional perturbations arising from the so-called
axis-switching phenomenon. Axis switching represents the shape change of the
non-circular jets as the cross-section visually appears to rotate with the downstream
distance. However, this conventional reference to axis switching as a rotational
phenomenon should be replaced by the cross-sectional evolution towards more
round shapes farther downstream. This phenomenon is initiated by the dynamics
of the shedding of non-circular vortex rings and their evolution, and results in the
cross-sectional deformation and the increased level of complexity compared to the
axisymmetric shear layers (Ghasemi et al. 2016). Changing the nozzle shape produces
different jet flow dynamics, which are often implemented to passively control jet flows
(Gutmark & Grinstein 1999). Further, axis switching is also influenced by the inlet
flow conditions, such as momentum thickness, turbulence level and Reynolds number
(Grinstein & Devore 1996; Xu et al. 2013; Ghasemi et al. 2015). In the far field
(developed region), non-circular jets evolve towards more axisymmetric cross-sections,
in a way similar to that of circular jets.

Owing to the increased near-field three-dimensionality, non-circular jets develop a
wider near field and have a larger spread rate compared to their round counterparts
(Quinn & Militzer 1988; Zaman 1999). As a result, non-circular jets entrain more
ambient fluid into the jet core, enhancing the fluid mixing process (Krothapalli,
Baganoff & Karamcheti 1981; Ho & Gutmark 1987; Zaman 1999; Hashiehbaf
& Romano 2013). Further, non-circular jets experience increased instantaneous
lateral oscillations involving the axis-switching phenomenon (Ghasemi, Roussinova &
Balachandar 2013), leading to the occurrence of off-centre peaks in the time-averaged
streamwise velocity profiles (Tsuchiya & Horikoshi 1986; Quinn & Militzer 1988).
This is uncommon for circular jets (unless due to the vena contracta effect (Mi
et al. 2007)). Similarly, high-aspect-ratio rectangular jets are known to demonstrate
the saddle-back distribution of the time-averaged velocity (Vouros et al. 2015). It
is inferred that the time-averaged analysis of non-circular jets mainly reflects the
outcomes of the axis switching rather than describing the underlying physics. In
order to identify the governing mechanisms associated with the observed phenomena,
the instantaneous vortex dynamics should be explored.

The Kelvin–Helmholtz (KH) instability produces vortex rings shed from the jets,
whether of circular or non-circular cross-section (Hussain & Zaman 1981; Grinstein
2001). The dynamics and complexities of the vortex rings, however, are determined by
the curvature of the rings imparted initially by the shape of the nozzle (Grinstein &
Devore 1996). The circular vortex rings have a uniform radius of curvature; the sharp
corners of the rectangular/square rings attain a higher local curvature relative to their
flat sides. The vortex rings travel with the advection velocity of the main flow, which
is almost the same for the entire vortex rings, plus the additional self-induced velocity,
which varies locally on the vortex rings, hence is responsible for the deformation and
rich dynamics of the rings (Grinstein & Devore 1996).
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Curvature-induced deformations of vortex rings 143

The additional self-induced velocity on the vortex rings is, based on the Biot–Savart
law (see appendix A), proportional to the local curvature of the ring, the inverse of
the vortex core radius and the vortex circulation (Saffman & Baker 1979; Saffman
1992; Margerit & Brancher 2001); and hence it is higher near the high-curvature
(sharp) regions of the non-circular vortex rings. As a result, the orientation of
the non-circular vortex rings appears to be rotating around their streamwise axis
(Callegari & Ting 1978; Grinstein 2001; Margerit & Brancher 2001). This is, however,
merely a visual impression caused by the fascinating three-dimensionality of the ring
deformations (Grinstein 2001; Ghasemi et al. 2016). The curvature-induced vortex
ring deformations initiate axis switching in the near field, and the interactions among
the streamwise rib-shaped vortex loops, the corner hairpin vortices and the primary
KH rings dominate the subsequent downstream dynamics (Grinstein & Devore 1996;
Ghasemi et al. 2016). The axis-switching phenomenon may be amplified or prevented
by the upstream conditions, through changes in the formation of the streamwise
vorticity (Zaman 1996; Towne et al. 2017). Consequently, single or multiple switching
may take place until the ring attains a rather symmetric geometry and/or eventually
breaks down into smaller scales.

In addition to the mechanism of the self-induced velocity, the axis switching of
non-circular jets is theoretically related to the pressure distribution (Abramovich
1982). Three instability modes for the pressure perturbations have been identified
in rectangular jets (Tam & Thies 1993); the first and the third modes relate to the
pressure fluctuations at the corners, while the second governs the central region
and is dominant over the other two modes with increasing downstream distance.
The large-eddy simulation study by Ghasemi et al. (2016) indicates that the corner
pressure perturbations propagate towards the central region, and deform the initially
two-dimensional ring into a three-dimensional shape; then after the axis switching,
they flatten the ring and recover its two-dimensional character. These perturbation
mechanisms are responsible for the enhanced small-scale entrainment, while the axis
switching is responsible for the enhanced large-scale entrainment of the rectangular
jets (Grinstein, Gutmark & Parr 1995; Grinstein 2001).

It is clear from the preceding literature review that the axis switching in
non-circular jets is useful for enhanced entrainment and noise control. However,
the majority of the experimental studies are described in terms of the time-averaged
flow features, while some numerical simulations have attempted to explore the
underlying physics by characterizing the instantaneous vortex dynamics (Grinstein
et al. 1995; Grinstein & Devore 1996; Grinstein 2001; Ghasemi et al. 2016).
Capturing/quantifying the self-induced (curvature-induced) velocities experimentally
is required to correlate them with the spatio-temporal dynamics of the vortical
structures in non-circular jet flows. Therefore, the objective of the present study is
to experimentally quantify the self-induced velocities due to the curvature variations
on the vortex rings generated during the axis switching of a rectangular jet, with and
without acoustic excitation. Phase-locked and conventional particle image velocimetry
(PIV) measurements are conducted for a rectangular jet of aspect ratio 2 at Reynolds
number Re = UDh/ν = 17 750, where U, Dh and ν denote the centreline velocity at
the nozzle exit, the hydraulic diameter and the kinematic viscosity. This condition
is selected for in-depth characterization in the present study, because our recent
study (Ghasemi, Tuna & Li 2018) investigated a wide range of flow conditions,
equivalent to a Reynolds number of 1775 to 71 000, for double-peaking phenomena
of the turbulence intensity in shear layers via competition between fluid rotation
and shearing; during that study it was noticed that, at this flow condition, rich
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dynamic phenomena exist with relation to the curvature-induced velocities around
the sharp corners of the rectangular rings. For active control, the flow is also
acoustically actuated at the fundamental and subharmonic modes associated with
the naturally evolving jet for different amplitudes. Acoustic control of the vortex ring
generation, advection, self-induced deformations and axis switching are explored by
the spatio-temporal tracking of the three-dimensional vortex structures.

2. Measurement procedure
2.1. Air flow tunnel

Measurements are carried out at the outlet of the air flow tunnel shown in figure 1(a).
The blower fan forces the air flow through the circular inlet, which transitions into
a rectangular cross-section. The air is then passed through the diffuser section. The
conditioning section displays the space in which the honeycomb insert and a set of
three wire screens are placed. After the 9 : 1 smooth contraction region which reduces
the turbulence intensity to less than 0.9 % and mean flow uniformity within 0.25 %
inside the inviscid core, the air flow passes through the L= 300 mm duct and exits
into the jet region from the rectangular opening with the dimensions of the side
length a = 20 mm by the top edge b = 40 mm (figure 1b). At the exit of the duct,
the centreline velocity is maintained at U = 10 m s−1 corresponding to the Reynolds
number Re=UDh/ν = 17 750, where Dh = 26.67 mm is the hydraulic diameter.

It is important to mention the boundary layer characteristics at the separation edge.
As shown in figure 2(a) in the SV (z/a = 0) plane, the measured velocity matches
the Blasius profile with the shape factor H = δ∗/θ = 2.59, where δ∗ and θ denote
displacement and momentum thickness, respectively. The boundary layer velocity at
the exit of the duct is characterized as laminar flow. The corresponding root-mean-
square (r.m.s.) of the streamwise inlet velocity fluctuations is given in figure 2(b). It
can be seen that the centreline turbulence intensity is less than 0.02 with a peak value
of nearly 0.08 in the boundary layer which decays near the wall region.

2.2. Hot-wire anemometry and particle image velocimetry
First, the hot-wire (HW) anemometry is conducted using an automatically traversed
single probe oriented normal to the flow direction. A Dantec 55P11 straight general-
purpose probe connected to a Dantec Streamline Constant Temperature Anemometry
system is utilized to carry out the measurements. HW data are sampled at a 16 kHz
frequency, producing a total number of 524 288 samples for the time period of 32.8 s.
Spectral analysis is conducted for the fluctuating velocity obtained from the HW at
a frequency resolution of 0.03 Hz. After the HW, planar particle image velocimetry
(PIV) is conducted with the origin of the coordinate system fixed at the channel exit
(x, y, z) = (0, 0, 0) in the centroid of the rectangular exit cross-section in the y–z
plane. The x-axis is oriented along the streamwise direction while the y- and z-axes
stand normal to the longer (b= 40 mm) and shorter walls of the duct (a= 20 mm),
respectively (figure 3). The main components of the system consist of a dual pulsed
Nd:YAG laser producing an output of up to 70 mJ pulse−1, a 1600×1200 pixel 14-bit
Imager Pro X 2M charge-coupled device (CCD) camera, and a programmable timing
system. The laser beam is generated by the combination of cylindrical and spherical
lenses. The laser beam light sheet thickness at its waist is of the order of 1 mm.

The glycol–water based fog is produced to form the flow seeding particles at an
average diameter of 3 µm. Care is taken to uniformly seed the flow at the outlet of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

98
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.988


Curvature-induced deformations of vortex rings 145

Air flow
(a)

(b)

Circular to rectangular transition

Diffuser

Conditioning section
(Honeycomb and screens)

Contraction Jet exit

x
z

b = 2a = 40 mm

2.5a

3.5a

a b

FIGURE 1. (Colour online) Air flow tunnel for producing the rectangular jet. The blower
fan forces the air flow through the circular inlet, which transitions into the rectangular
cross-section. The air is then passed through the diffuser section. The conditioning section
displays the space in which the honeycomb insert and a set of three wire screens
are placed. After the 9 : 1 smooth contraction region, the air flow passes through the
L = 300 mm duct and exits into the jet region from the rectangular opening with the
dimensions of the side length a= 20 mm by the top edge b= 40 mm.
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FIGURE 2. (Colour online) Boundary layer at the separation edge in the side view
(z/a= 0) plane of the naturally developing jet. (a) The measured velocity (u/U) matching
the Blasius profile characterizes the laminar flow with the shape factor H = δ∗/θ =
2.59, where δ∗ and θ denote the displacement and momentum thickness, respectively.
(b) Streamwise turbulence intensity (urms/U).

the duct. The 60 mm fixed focal length lens and a 532 nm ∓ 10 nm band-pass filter
are used along with the camera. The camera and the laser pulse are synchronized
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Top view(a)

(b) Cross-section view

(c) Side view

(d)

Side view (SV) Top view (TV) Diagonal view (DV)

Isometric view

Double pulsed
Nd: YAG laser

L = 300 mm

b = 40 mm

U x

z

z
y

z

y

x

y

xU

a

b

x

z

Laser sheet

Laser sheet

Speaker

a = 20 mm

hs = 80 mm

CCD camera

Volume reconstruction planes

FIGURE 3. (Colour online) Experimental set-up for the PIV measurements: (a) top,
(b) side, (c) cross-section and (d) isometric views of the rectangular duct, with the relative
positioning of the camera, laser and the speaker. Sample mid-planes are illustrated for the
top view (TV: y/a= 0) or the x–z plane, the side view (SV: z/a= 0) or the x–y plane,
and the diagonal view (DV: y/z= 0.5) or the x–ζ plane.

by a timing control system using LaVision’s DaVis 8 software. The camera/laser
set-ups optimized for the field of view (FOV) are translated together by using a set
of servo-driven traverses to obtain various locations/orientations desired for the PIV.
Images acquired in multiple x–y planes provide the SV information for two FOVs
that are overlapped by 10 % and then stitched at various z locations. Also, the x–z
planes capture the top view (TV) flow field for the two FOVs that are also overlapped
by 10 % and then stitched at different y locations. In addition, PIV measurements
are conducted in a DV (y/z = 0.5) or the x–ζ plane to provide a complete set of
time-averaged data associated with the three-dimensionality of the rectangular jet.
Accordingly, the above information obtained at the planar FOV spacing of 0.05a are
interpolated to reconstruct the phase-averaged, three-dimensional flow field by using
the phase-locked PIV measurement technique (Amitay, Tuna & Dell’Orso 2016).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

98
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.988


Curvature-induced deformations of vortex rings 147
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FIGURE 4. (Colour online) Spatial distribution of the uncertainties associated with the PIV
measurements of the streamwise (εu/U) and spanwise (εv/U) velocity components in the
SV (z/a= 0) plane.

The jet is acoustically excited by a sub-woofer which is located at the outlet and
near the longer edge of the rectangular opening (near the y/a = −0.5 edge). It is
oriented normal to the TV or the x–z planes, as shown in figure 3(c), and the acoustic
waves are emitted in the y-axis direction. The sinusoidal excitation signal from the
sub-woofer serves as a reference for the synchronized data acquisition in phase-locked
PIV. The frequency–amplitude characteristics of the acoustic forcing signal are given
in table 1 with the detailed information given in appendix B. It should be noted
that sufficiently strong driving pressure (excitation amplitude) is required so that the
flow behaviour (vortex shedding) synchronizes with the driving signal’s frequency and
results in robust phase-locking measurements. After cropping the camera sensor to
960 × 1200 pixels, each FOV for different views covers a 50 mm × 39 mm (SV),
50 mm× 39 mm (TV) or 62 mm× 50 mm (DV) area. The velocity field calculations
are conducted by cross-correlating pairs of successive images in LaVision’s DaVis 8
software. An advanced multi-pass technique is adopted, resulting in the initial and
final correlation passes of 64× 64 pixels with 50 % overlap and 24× 24 pixels with
75 % overlap, respectively.

This also leads to the vector pitches of 0.246 mm (SV), 0.248 mm (TV) and
0.313 mm (DV) with camera pixel scale factors of 24.4, 24.2 and 19.1 pixels mm−1

for the side, top and diagonal views, respectively. Post-processing of the results is
achieved by the universal outlier detection (Westerweel & Scarano 2005) and removal
with vector replacement. Time-averaged quantities are obtained using 1000, 1500,
2000, 2500 and 3000 instantaneous image pairs acquired at a rate of 14.73 Hz;
the 2000 snapshots are found to be more than sufficient to provide the converged
fields. The PIV random errors are estimated according to the particle image disparity
method (Sciacchitano et al. 2015), resulting in the corresponding average uncertainties
evaluated to be less than 2 % within 95 % confidence in the core region of the jet.
The local distribution of the uncertainties associated with the PIV measurements
corresponding to the streamwise (εu/U) and spanwise (εv/U) velocity components
in the SV (z/a = 0) plane are presented in figure 4. It can be seen that the higher
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x/a = 18.75

(a) (b) (c)

x/a = 5.5

x/a = 3.5

x/a = 2.75

x/a = 2.25
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x/a = 1.5

x/a = 1

x/a = 18.75
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x/a = 18.75

x/a = 5.5

x/a = 3.5

x/a = 2.75

x/a = 2.25

x/a = 2

x/a = 1.5
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FIGURE 5. Streamwise velocity spectra obtained as the power spectral density (PSD) from
the HW measurements along three lines parallel to the x-axis for (x/a= 1, 1.5, 2, 2.25,
2.75, 3.5, 5.5 and 18.75): (a) centreline (along the x-axis at y/a= z/a= 0); (b) long edge
(along the x-axis at y/a=0.5, z/a=0); (c) short edge (along the x-axis at y/a=0, z/a=1).

uncertainty levels are evaluated within the shear layer region and found to be more
significant for the spanwise (εv/U) velocity components.

2.3. Characterization of the fundamental and subharmonic frequencies used for the
acoustic excitation

As shown in figure 5, HW measurements of the streamwise velocity are used to obtain
the spectra of the fluctuations at different locations of the naturally (NAT) evolving
rectangular jet. The measurement points (x/a= 1, 1.5, 2, 2.25, 2.75, 3.5, 5.5 and 18.75)
are located along the three lines parallel to the x-axis as the centreline (along the
x-axis at y/a = z/a = 0), the long edge line (along the x-axis at y/a = 0.5, z/a = 0)
and the short edge line (along the x-axis at y/a= 0, z/a= 1). At x/a= 1, a broadband
peak, typically seen in the near field of the shear layers, characterizes the fundamental
frequency ( fn= 350 Hz). This fundamental mode, which is more distinguishable at the
edges, is associated with the shear layer roll-up due to the initial KH instability.

The corresponding dimensionless frequency can be obtained in terms of the
Strouhal number as Sta = fna/U = 0.7, or alternatively as Sth = fnDh/U = 0.93
and Ste= fnDe/U= 1.12, where Dh and De are the hydraulic and equivalent diameters,
respectively. The corresponding values for Dh and De can be calculated using
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Dh = 4ab/(2(a + b)) and De =
√
(4ab/π). The Strouhal numbers presented here

are larger than that of round jets (0.3–0.7) reported by Ho & Nosseir (1981), Crow
& Champagne (1971) and Mi & Nathan (2010). They rather conform to the values
observed by Grinstein et al. (1995) and Mi & Nathan (2010) for rectangular jets.
The higher dominant frequencies in rectangular jets suggest a more unstable near
field compared to circular jets, which can be attributed to the more complex vortex
dynamics. Earlier studies on non-circular jets (Mi & Nathan 2010) report the shifting
of the spectral dimensionless frequency (Strouhal number) of the fluctuations towards
higher values. This suggests the increased presence of small-scale perturbations.
Axisymmetric vortex rings are formed in circular jets due to the low-frequency KH
instability transitioning from the linear to the nonlinear state. On the other hand,
non-circular vortex rings experience additional modes of high-frequency instability
due to the azimuthal perturbations resulting from curvature-induced instabilities.

The subharmonic mode ( fn/2 = 175 Hz) is due to the vortex pairing farther
downstream and modulates the initial KH instability through the feedback mechanism
(Ho & Huang 1982). The nonlinear effects first set in due to the transition of the
initially linear KH instabilities. Afterwards, these nonlinear trends are intensified
during the vortex pairing which results in the appearance of higher harmonic peaks
in the spectra. The centreline spectra (y/a= z/a= 0, x/a= 1− 18.75) portray both fn
and fn/2 frequencies of comparable energy content where the subharmonic dominates
with downstream distance. The long (y/a= 0.5, z/a= 0) and short (y/a= 0, z/a= 1)
edges initiate with a dominant fn frequency as well as higher harmonics and again the
fn/2 frequency prevails downstream. The higher harmonics are mostly detectable near
the edges where the shear layer is present, while the corresponding peaks are not
strong in the centreline spectra. Beyond x/a= 18.75, there is no frequency preference
and the jet approaches a fully developed isotropic state. In this far-field region, small
scales are ubiquitous and contribute to the enhanced mixing.

To verify the fundamental frequency ( fn) and its subharmonic ( fn/2) mode obtained
above from the HW measurements, linear stability (LST) analysis is conducted (see
appendix C for details). According to the hydrodynamic theory of stability, shear
layers can be described by the interaction of the ensemble of propagating instability
waves (Michalke 1972; Drazin & Reid 2004; Betchov 2012). The amplitudes
corresponding to individual propagating instability modes, the wavelengths of which
characterize the length scale of a particular flow structure, may amplify/fade while
evolving in time/space. Such an interpretation becomes convenient by analysing the
flow in the Fourier space rather than in the physical time/space. The present spatial
LST predictions allow the perturbations to grow/decay in space and only advect in
time without amplification/damping.

To this end, the method of least squares is implemented for the curve fitting (Dini,
Seligt & Maughmert 1992) of the velocity profiles obtained from the PIV, with a
typical representation shown in figure 6(a). It should be noted that figure 6(a) is just
an arbitrary velocity profile obtained from PIV to demonstrate how the curve fitting is
carried out. The velocity profiles are fitted to a hyperbolic tangent (tanh), which is the
commonly used function in the spatial LST analysis (Monkewitz & Huerre 1982). The
Orr–Sommerfeld equation derived from introducing the normal-mode perturbations
to the linearized incompressible Navier–Stokes equations (Schmid & Henningson
2012) is then solved by implementing the Chebyshev polynomials for the spectral
approximation of the eigenfunctions. The spatial LST provides the corresponding
growth rates (−αi) associated with a range of frequencies. For instance, the typical
growth rate profile corresponding to the arbitrary velocity in figure 6(a) is presented
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FIGURE 6. (Colour online) Spatial theory of the linear stability (LST) analysis obtained
from the PIV. (a) Typical measured velocity profile versus the data fit at a given
arbitrary axial location (for 0.25 < x/a < 1.25) and (b) its corresponding growth
rate (−αi) characterizing the fundamental frequency ( fn = 350 Hz). (c) Streamwise
distribution of the growth rates associated with the different perturbation frequencies.
(d) Streamwise variation of the growth rates associated with the fundamental ( fn) mode
and its subharmonic ( fn/2) frequency.

in figure 6(b). Afterwards, figure 6(c) incorporates all the velocity profiles at several
streamwise locations within the PIV field of view to obtain the colour map of the
growth rates associated with the different frequencies as they change with downstream
distance. The planar PIV data used for the LST calculations are taken in the near-exit
region of the SV plane to verify the fundamental and subharmonic modes obtained
from the HW.

The growth rate associated with the fundamental frequency ( fn = 350 Hz) is
found to be dominant (figure 6b) for this particular location. Similar information
is reproduced for all the streamwise locations and presented as a contour plot in
figure 6(c). The near-exit colour map shows that the strength of the fundamental mode
shifts towards lower frequencies with the downstream distance and fades eventually.
Beyond certain downstream locations where the nonlinear perturbations set in, the
linear assumption deteriorates. For a direct comparison, the streamwise variation of
the growth rates identifying the fundamental ( fn) mode and its subharmonic ( fn/2) are
presented in figure 6(d). The fundamental mode is dominant in the near-exit region
where the KH instabilities tend to roll up the shear layer. With increased downstream
distance, the subharmonic effects dominate as the local passage frequency of the
vortices is reduced due to the smaller self-induced velocity of the vortices. Care must
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be taken when discussing the subharmonic frequency in the context of the linear
stability theory. The subharmonic frequency appears because of vortex pairing, which
is a nonlinear mechanism. This is inferred from our streamwise velocity spectra
obtained as the power spectral density (PSD) from HW measurements. Even though
such a similar conclusion may not be directly drawn from the linear theory of
stability, some underlying physics can be justified. The vortex pairing phenomenon
occurs due to the deceleration of the vortex as a result of the smaller self-induced
velocities associated with the larger core radius. Consequently, the upstream vortices
which move faster may catch up with the downstream cores. Even before the pairing
occurs, the reduced velocity of the vortices with the downstream distance reduces their
passage frequency. This may explain why the LST results reveal a shift towards lower
frequencies with downstream distance even before the linear assumption deteriorates.

The modes fn and fn/2, respectively referred to as the high (HF) and low (LF)
frequencies, are used to acoustically force the jet at low (LA), mid- (MA) and
high (HA) amplitudes. The characteristics of the excitation amplitudes and the
corresponding sound pressure levels (SPLs) are presented in table 1, with the detailed
descriptions given in appendix B. The objective is to specify a reference signal for
the phase-locked PIV measurement as well as investigating the effect of the acoustic
excitation on the jet characteristics. For instance, the jet excited at the fn frequency
and mid-amplitude is referred to as HFMA. The natural/unperturbed case (NAT) is
characterized by the SPL of 76.3 and 91.2 dB at the centre of the channel exit when
the tunnel air flow is OFF or ON, respectively. The effect of the acoustic excitation
is characterized as 79.1 dB (LA), 88.1 dB (MA) and 95.5 dB (HA) at the same
location when the tunnel air flow is OFF. Based on these, each case can be described
as shown in table 1 by adding the free-stream SPL to the acoustic excitation level
(see appendix B).

3. Results and discussion
First, the qualitative representation of the rectangular jet cross-sectional evolution

is described as an overview of the overall flow behaviour. Afterwards, the flow
characteristics obtained from the pointwise HW and the planar PIV measurements
are presented to provide interpretations for the time-averaged behaviours resulting
from axis switching as well as acoustic forcing. Finally, the three-dimensional vortex
dynamics are focused on the identification of the curvature-induced velocity of
the vortex rings to shed more light on the instantaneous dynamics causing the
time-averaged observations.

3.1. Qualitative description of axis switching in rectangular jets and isolated vortex
rings

Before presenting the actual data, figure 7 provides a schematic description of the
differences between the ‘axis switching’ of rectangular jets and isolated vortex rings.
Even though the present study is focused on rectangular jets and not on isolated
vortex rings, it is important to define the axis-switching phenomenon for both cases
and explain the differences. While the cause of axis switching for both cases is the
self-induced vortex ring deformations, the outcomes are different for isolated rings and
continuous jets. For isolated rectangular vortex rings, axis switching is traditionally
defined when the ring rotates for 90◦ around its streamwise axis. We emphasize that
this is merely a visual observation; hence the present study suggests that a definition
based on deformation/reshaping is more appropriate. On the other hand, neighbouring
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FIGURE 7. (Colour online) Schematic definition of the axis switching in isolated vortex
rings versus rectangular jets. For isolated rectangular vortex rings, axis switching is
accomplished when the ring appears to be rotated for 90◦ around its streamwise axis,
while the initial rectangular shear layer of the jet may mildly reshape towards rounder
cross-sections.

vortex rings interacting within the initially rectangular shear layers (jets) do not
demonstrate this apparent 90◦ rotation. Instead, the diagonal width contracts while the
SV and TV planes mildly expand at different rates and result in the cross-sectional
reshaping from rectangular to more round geometries.

The phase-averaged streamwise velocity displayed in figure 8, qualitatively describes
the cross-sectional evolution of the rectangular jet. The cross-sectional planes are
obtained from the interpolation of the phase-locked measurements in multiple SV
planes. The first observation is the rectangular cross-section of the jet in the near
field at x/a = 0.7. The edges show a slower velocity as they are subjected to the
low-speed ambient, while the central region forms the high-velocity potential core.
Farther downstream at x/a= 1.5, the jet boundaries become more distorted. While the
SV x–y plane expands with downstream distance, the DV span shrinks. Eventually,
at x/a = 3.9, the jet cross-section evolves into rather elliptic/circular shapes due
to axis switching. The relevant underlying physics governing the axis-switching
phenomenon is described in the following sections by exploring the spatio-temporal
vortex dynamics. It should be noted that the shifted high-velocity regions at x/a= 1.5
and 2.3 are due to the directional effect of the acoustic excitation on the tilting of the
vortex rings, as discussed later in figures 16 and 17. In addition, beyond x/a = 3.1
the jet core starts to bifurcate into a pair of high-speed zones which are commonly
observed in elliptic (Hussain & Husain 1989) and rectangular (Grinstein 2001) jets.

3.2. Jet evolution along the centreline and the higher-order moments
In figure 9, HW data are presented along the jet centreline (y/a = z/a = 0) for
different acoustic excitations (LFLA, LFHA, HFLA, HFMA HFHA, NAT). The
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FIGURE 8. (Colour online) Phase-averaged streamwise velocity in the cross-sectional
views (y–z planes at x/a = 0.7, 1.5, 2.3, 3.1 and 3.9) of the rectangular jet acoustically
actuated at high frequency and high amplitude (HFHA).

shaded band regions overlaid on the line plots are associated with the uncertainty
levels of the HW. As seen in figure 9(a), the time-averaged streamwise velocity
decays (when u/U < 0.98) after the potential (unmixed) core x/a = 2.5–3 (or
x/Dh = 1.9–2.25). Similar to non-circular jets of different shapes (x/Dh = 1–3.5),
the present rectangular jet develops a shorter potential core compared to the round
jets issued from the smooth contraction nozzles (x/Dh = 5.5) and orifice plates
(x/Dh = 4) (Mi & Nathan 2010). This is a consequence of the axis switching which
results in enhanced entrainment of the ambient fluid as well as the earlier shear layer
merging/breakdown (Grinstein 2001). The subharmonic (LF) forcing at high amplitude
(HA), or the LFHA case, which is known to promote vortex pairing (Ghasemi et al.
2018), results in the shortest potential core length. Therefore, in the fully developed
region of the jet where the velocity profiles are self-similar, the larger spreading rate
implies a higher rate of entrainment.

The r.m.s. of the streamwise velocity fluctuations (urms) in the natural case, shown
in figure 9(b), develops an overshoot due to the wobbling of the large-scale structures,
which fades away after the potential core breakdown. This ‘wobbling’ is associated
with the unsteady fluctuations of the large scales mostly taking place in the lateral
direction due to the vortex pairing and breakdown which result in the lateral expansion
of the jet near the end of the potential core. In addition, they are correlated with
increased local anisotropy and intermittency. Mi & Nathan (2010) suggest that the
overshoot (hump) after the linear increase of urms does not occur for the circular,
square, cross- and star-shaped jets which have an aspect ratio of one. On the other
hand, the overshoot is observed in triangular, rectangular and elliptic jets. For both
the fundamental and subharmonic frequencies, increasing the excitation amplitude
weakens the overshoot. The centreline urms overshoot disappears completely for the
subharmonic LFHA case.

The higher-order moments of the statistics are presented in terms of the skewness
(Su) and kurtosis (Ku) of the streamwise velocity fluctuations in figure 9(c) and (d),
respectively. The typical values of the skewness (Su = 0) and kurtosis (Ku = 3)
characterize a normal Gaussian distribution of the statistics and hence are associated
with the isotropic fluctuations. For round jets, the centreline (Su = 0) and (Ku = 3)
demonstrates an isotropic state in the near-exit and far-field regions while they
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FIGURE 9. (Colour online) HW measurements along the jet centreline (along the x-axis
at y/a= z/a= 0). (a) Time-averaged streamwise velocity (u). (b) R.m.s. of the streamwise
velocity fluctuations (urms). (c) Skewness of the streamwise velocity fluctuations (Su).
(d) Kurtosis of the streamwise velocity fluctuations (Ku).
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deviate from these values near the end of the potential core. It should be noted
that the far-field skewness and kurtosis approach isotropy, but never attain the exact
isotropic values. This continually occurs by the small-scale entrainment mechanisms
nibbling the non-turbulent patches of the fluid into the far-field jet. Conversely, the
large-scale entrainment mechanisms, such as engulfment and flow induction in the
near field, eventually result in the shear layer merging and vortex breakdown at the
end of the potential core and hence intensify the anisotropy. As also seen here, for
non-circular jets the anisotropic values start before the end of the potential core due
to axis switching (Mi & Nathan 2010; Ghasemi et al. 2016).

The negative skewness in the time signal implies the dominance of values smaller
than the mean compared to the larger ones. Also, the large values of the kurtosis are
an indication of the higher probability of finding large peaks (either smaller or larger
than the mean) in the time signal, which are associated with elevated intermittency
(Frisch 1995) levels replacing the orderly oscillations. The large value of the kurtosis
at the end of the potential core suggests the intermittent nature of the flow due to the
shear layer merging and vortex breakdown. In addition, the negative skewness can be
associated with the interference of the slower vortical structures abruptly entrained
inwards (Bogey, Bailly & Juvé 2003; Bogey & Bailly 2007). Acoustic excitation is
found to increase the intermittency level and broaden its region of effectiveness. The
high-amplitude (HA) subharmonic excitation (LF), which develops the shortest length
of the potential core, demonstrates earlier intermittency generation. The positive
skewness observed near the exit can be associated with the local curvature-induced
velocities of the perturbed corners of the rectangular vortex ring increasing the
occurrence of fluctuations larger than the mean value.

The centreline u/U and urms from the PIV (lines) nicely align with the HW
(symbols) in figure 10. In addition, the transverse and spanwise velocity fluctuations
(vrms and wrms) in the y- and z-directions, respectively, presented in figure 10(b,d),
reveal interesting information. While the centreline variation of vrms is significantly
augmented under the acoustic excitation, the wrms is not strongly affected. This
observation reveals the directional effectiveness of the acoustic waves being emitted
in the y-direction aligned with the vrms. Further, the subharmonic (LFHA) excitation is
found to intensify the spanwise velocity fluctuations while it decreases the streamwise
component. This is a justifiable observation as the subharmonic forcing is suggested
(Ghasemi et al. 2018) to enhance the vortex pairing and results in the lateral
expansion of the jet.

3.3. Time-averaged flow field in the side, top and diagonal views
The mean velocity (u/U) and the vorticity (Ω = Ωxy, Ωzy, Ωxζ ) component normal
to each plane of view (SV, TV or DV in figure 3d) obtained from the PIV are
respectively presented in figure 11(a–f ) for the naturally developing jet (NAT). Out
of the multiple FOVs, one sample mid-plane is illustrated in figure 3(d) for each of
the SV (the x–y plane at z/a= 0), TV (the x–z plane at y/a= 0) and DV (the x–ζ
plane at y/z= 0.5) views. If otherwise the SV (the x–y plane at z/a= 1) and TV (the
x–z plane at y/a = 0.5) views are shifted to the edges of the jet, it is stated in the
figure captions as well as the text. The high velocity near the centreline describes the
potential core while the jet is decelerated near the edges as shown in figure 11(a–c).
While the vorticity is negligible inside the potential core, the largest values occur
near the edges subjected to the low-speed ambient (figure 11d–f ). The opposite signs
of the vorticity on either side of the jet describe the sense of rotation of the passing
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FIGURE 10. (Colour online) PIV measurements along the jet centreline (along the x-axis
at y/a= z/a= 0). (a) Time-averaged streamwise velocity (u). (b) R.m.s. of the spanwise
velocity fluctuations (vrms) in the SV (z/a = 0) or the x–y plane. (c) R.m.s. of the
streamwise velocity fluctuations (urms). (d) R.m.s. of the transverse velocity fluctuations
(wrms) in the TV (y/a= 0) or the x–z plane.

vortices. This sense of rotation describes the roll-up of the shear layer from the
high-speed side (potential core) towards the low-speed side (ambient fluid). Therefore,
the near-field vorticity field describes the time-averaged evolution of the shear layer
in different planar views. In the SV plane (figure 11d), the shear layer clearly grows
in thickness and expands outwards. On the other hand, the shear layers go through
a contraction in the DV plane as seen in figure 11(e). The TV shear layers start
with an expansion, which declines with the downstream distance. These differences
in the relative evolution of the shear layers in the SV, TV and DV planes are the
outcomes of the instantaneous vortex dynamics during the axis switching reflected
in the time-averaged flow fields (Grinstein & Devore 1996; Grinstein 2001; Ghasemi
et al. 2016).

In figures 12–14, the line plots obtained from the PIV measurements are extracted
at different streamwise locations (x/a = 1, 2, 3) in the SV, TV and DV planes for
the NAT, LFLA, LFHA, HFLA, HFMA and HFHA excitations. The traverse origins
of the profiles are shifted to the local in-plane half-width of the jet (y0.5, z0.5, ζ0.5).
The half-width values at each streamwise location in the corresponding planes of
view are defined as the lateral locations at which the local velocity is 50 % of the
centreline value. In figure 12(a,d,g), the u profiles start with a rather top-hat shape
at x/a = 1 and almost maintain the incoming laminar boundary layer characteristics
at the separation edge. The half-width locations (y − y0.5 = z − z0.5 = ζ − ζ0.5 = 0)
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FIGURE 11. (Colour online) Time-averaged PIV measurements for the natural (NAT)
or unexcited jet. Streamwise velocity (a–c) and plane-normal vorticity (d–f ) in the SV
(z/a= 0) or the x–y plane, TV (y/a= 0) or the x–z plane, and DV (y/z= 0.5) or the x–ζ
plane.

approximately coincide with the inflection point in the velocity profiles which can be
interpreted as the location of the critical layer in the shearing region. The presence
of the inflection point in the velocity profiles suggests that the flow is prone to
the onset of the instabilities. According to ‘Rayleigh’s inflection-point theorem’, a
necessary condition for the instability is the presence of an inflection point in the
base flow velocity profile (Drazin & Reid 2004). Even if the boundary layer profile
at the separation edge does not have an inflection point, it appears eventually due to
the shear layer instability.

Interestingly, the velocity profiles located in the diagonal plane (figure 12g)
demonstrate an extra inflection point indicating an additional destabilizing mode

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

98
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.988


158 A. Ghasemi, B. A. Tuna and X. Li

-0.5 0 0.5
0

0.5

1.0

-0.5 0 0.5
0

0.5

1.0

-0.5 0 0.5
0

0.5

1.0

-0.5 0 0.5
0

0.5

1.0

-0.5 0 0.5
0

0.5

1.0

-0.5 0 0.5
0

0.5

1.0

-0.5 0 0.5
0

0.5

1.0(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

-0.5 0 0.5
0

0.5

1.0

-0.5 0 0.5
0

0.5

1.0
NAT
LFLA
LFHA

HFLA
HFMA
HFHA

SV
(z/a = 0)

TV
(y/a = 0)

DV
(y/z = 0.5)

x/a = 2

x/a = 1

u/U
(y - y0.5)/y0.5

u/U
(z - z0.5)/z0.5

u/U
(Ω - Ω0.5)/Ω0.5

x/a = 3

FIGURE 12. (Colour online) Time-averaged streamwise velocity (u) measured by the PIV
for the NAT, LFLA, LFHA, HFLA, HFMA and HFHA excitations: (a–c) SV (z/a= 0) or
the x–y plane, (d–f ) TV (y/a= 0) or the x–z plane, and (g–i) DV (y/z= 0.5) or the x–ζ
plane.

near the corners of the jet. This observation further motivates the following sections
in a search for the peculiar phenomena taking place at the high-curvature corners
of the jet. Farther downstream, the streamwise velocity profiles evolve into rather
Gaussian shapes with a tendency towards a fully developed distribution (Quinn &
Militzer 1988; Grinstein & Devore 1996; Grinstein 2001; Ghasemi et al. 2016). This
is in accordance with the jet expansion due to the increased entrainment with the
downstream distance. As can be seen, the acoustic forcing does not result in the
significant variation of the time-averaged streamwise velocity. However, there is a
minor effect at x/a = 1 where forcing the jet at the fundamental frequency (HFHA)
results in the slightly more developed velocity profile in the SV plane (figure 12a). At
x/a=2 and 3, the subharmonic excitation (LFHA) results in an advanced development
in the SV and DV planes while the TV view shows a delayed evolution.

The PIV data for the lateral variation of urms are presented in figure 13 in the SV
(a–c), TV (d–f ) and DV (g–i) planes for the NAT, LFLA, LFHA, HFLA, HFMA
and HFHA excitations at x/a = 1, 2 and 3. The urms attains high values within the
shear layer region due to the fluctuating motion of the large-scale vortical structures.
The fluctuations decrease towards the outer low-speed flow as well as within the
potential core. At x/a = 1, the double-peaked urms profiles are observed with a
major peak near the high-speed side and a minor one located towards the low-speed
region (figure 13a,d,g). This peculiar double peaking of the urms appears as a result
of the shear/rotation counteractions due to the interaction of the fundamental and
subharmonic modes as elaborated by Ghasemi et al. (2018). The fundamental mode
is associated with the shear layer roll-up due to the KH instability which produces
the vortex rings. Farther downstream, the vortex rings tend to merge where the
subharmonic mode dominates. At x/a = 1, the double peak is more evident in the
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FIGURE 13. (Colour online) R.m.s. of the streamwise velocity fluctuations urms measured
by the PIV for the NAT, LFLA, LFHA, HFLA, HFMA and HFHA excitations: (a–c) SV
(z/a= 0) or the x–y plane, (d–f ) TV (y/a= 0) or the x–z plane, and (g–i) DV (y/z= 0.5)
or the x–ζ plane.
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FIGURE 14. (Colour online) R.m.s. of the spanwise velocity fluctuations (vrms, wrms, ηrms)
measured by the PIV for the NAT, LFLA, LFHA, HFLA, HFMA and HFHA excitations:
(a–c) SV (z/a= 0) or the x–y plane, (d–f ) TV (y/a= 0) or the x–z plane, and (g–i) DV
(y/z= 0.5) or the x–ζ plane.
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SV plane (figure 13a) and it transitions to a single one with downstream distance
(x/a= 2 and 3). Especially in the SV plane, the acoustic excitation at the fundamental
frequency (HFHA) amplifies the minor peak which is located near the low-speed side.
This is because the HFHA excitation causes the more upstream occurrence of the
KH roll-ups which tend to lean outside towards the low-speed ambient (Ghasemi
et al. 2018). On the other hand, the major peak on the high-speed side is augmented
under the subharmonic excitation which is found to contract more vortices inwards
due to enhanced vortex pairing (Ghasemi et al. 2018). The r.m.s. profiles laterally
expand with downstream distance. This is in accordance with the growth of the
vortical structures and the consequent thickening of the shear layer due to the viscous
diffusion.

In figure 14, the lateral variation of the spanwise velocity fluctuations corresponding
to the SV (a–c), TV (d–f ) and DV (g–i) planes are presented as vrms, wrms and ηrms,
respectively. At x/a = 1, the peaks of the spanwise fluctuations are augmented
proportional to the forcing amplitude of the fundamental mode (HFHA, HFMA) in
the SV (figure 14a), TV (figure 14d) and DV (figure 14g) planes. This occurs due to
the advanced upstream location of the KH roll-ups which laterally undulate the shear
layer. It should be noted that the effect of the subharmonic forcing is not significant
at x/a = 1 since this region is dominated by the KH instability and the shear layer
roll-ups. On the other hand, at x/a = 2 where the subharmonic (LFHA) excitation
enhances the vortex pairing (Ghasemi et al. 2018), the r.m.s. peak of the spanwise
velocity fluctuations tends to become stronger. Eventually, the peak of the spanwise
velocity fluctuations associated with the subharmonic forcing dominates at x/a= 3. In
parallel with the aforementioned observations (figure 10) for the centreline values, the
spanwise fluctuations are stronger in the SV plane due to the fact that the acoustic
source emits along the y-axis which is aligned with the direction of vrms.

3.4. Axis switching and vortex dynamics under various acoustic forcing
According to the schematic definition given in figure 7, the outward expansion and
the inward contraction of the velocity/vorticity fields observed in different planes of
view describe the axis-switching phenomenon. In order to quantify the streamwise
locations within which the axis switching is initiated and completed, the relative
expansion/contractions among different planar fields are determined. To this end,
the streamwise evolution of the spanwise locations (yΩmax, zΩmax, ζΩmax ) at which the
maximum vorticity occurs in the shear layer are detected. The obtained locations for
the SV (yΩmax ), TV (zΩmax ) and DV (ζΩmax ) planes are shown in figure 15 for the NAT,
LFLA, LFHA, HFLA, HFMA and HFHA excitations. It should be noted that these
locations are normalized by their corresponding near-exit values (yΩmax,0, zΩmax,0, ζΩmax,0)
so that they all start from unity. Therefore, in all the cases the peak vorticity location
remains constant (unity) almost up to the downstream location x/a= 1. This implies
that the shear layers neither expand nor contract from their original positions located
near the edges. Then, beyond a certain downstream distance, the locations of the peak
vorticity in the DV drops below unity, meaning that the shear layer is contracting in
this plane.

On the other hand, the SV and TV planes show an increase to larger than unity
characterizing the outward expansion of the shear layer. This characterizes the region
within which the first axis switching is started between the DV plane with respect
to the SV and TV views. The first axis switching is known to occur mostly due to
the self-induced deformation of the initially non-circular (rectangular here) KH vortex
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FIGURE 15. (Colour online) Streamwise evolution of the traverse locations of the
maximum vorticity (yΩmax , zΩmax , ζΩmax ) respectively shown in the SV (z/a= 0) or the x–y
plane, the TV (y/a = 0) or the x–z plane and the DV (y/z = 0.5) or the x–ζ plane: (a)
NAT, (b) HFLA, (c) LFLA, (d) HFMA, (e) LFHA and ( f ) HFHA excitations.

rings (Grinstein & Devore 1996; Ghasemi et al. 2016). Even though weaker, a second
axis switching may be characterized between the SV and TV planes by the cross-over
observed in the peak vorticity locations. This weak cross-over means that one side of
the jet becomes slightly wider than the other one (Grinstein & Devore 1996; Ghasemi
et al. 2016). This second axis switching is known to be associated with the interaction
of the primary KH vortex ring with the secondary streamwise vortex loops as well as
the corner hairpin vortices (Grinstein & Devore 1996; Ghasemi et al. 2016).

The expansions/contractions in different view planes and the consequent axis-
switching characteristics are not significantly influenced under the low-amplitude
(LFLA and HFLA) excitations. However, the streamwise locations of the second axis
switching observed in figure 15(b,c) are slightly advanced. Under the subharmonic
excitation (LF) at high amplitude (HA), the expansion rate in the SV is decreased
while it is increased in the TV plane. In addition, the contraction of the DV plane
is somewhat enhanced. Unlike the subharmonic, the fundamental excitation (HF)
increases the expansion in the SV with respect to the TV. Furthermore, increasing
the amplitude of the HF excitation results in the faster contraction in the DV plane.
Therefore, increasing the excitation amplitude from LA to HA at the fundamental
(HF) frequency advances the location of the first axis switching by earlier expansion
of the SV shear layer and the contraction in the DV plane. On the other hand, it
postpones the second axis switching by delaying the expansion of the TV plane.

The above discussed jet dynamics reflected into the time-averaged flow features
are associated with axis switching. Instantaneously, the axis-switching phenomenon
is initiated by the deformations of the non-circular (e.g. rectangular) vortex rings
due to the self-induced velocity (Callegari & Ting 1978; Grinstein 2001; Margerit &
Brancher 2001; Ghasemi et al. 2016). To further investigate the governing mechanisms
of the axis switching in rectangular jets, the spatio-temporal dynamics of the
initially rectangular ring needs to be explored. To this end, planar phase-locked
PIV conducted in multiple SV and TV planes are interpolated into the volumetric
structures constructing the three-dimensional vortical structures. The Qp-criterion
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FIGURE 16. (Colour online) Isosurfaces of the instantaneous Qp-criterion during the
phases (φ = 0◦, 120◦, 240◦) for the acoustic forcing at HFHA. Vortical structures are
coloured by the vorticity component corresponding to the roll-up sense of rotation. See
supplementary movie 1 available at https://doi.org/10.1017/jfm.2018.988, together with
movie 2 which shows forcing at HFMA for comparison.
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FIGURE 17. (Colour online) Sample SV (z/a= 0) instantaneous snapshots of the vorticity
(Ωxya/U) and the Q-criterion to compare the symmetric and non-symmetric (tilted) vortex
shedding for the natural and the acoustically forced (HFHA) jets, respectively. The side
near the acoustic source demonstrates roll-up and vortex shedding at more upstream
locations compared to the farther shear layer.

(Jeong & Hussain 1995) is calculated to identify the vortex cores where the
second invariant (Q) of the velocity gradient tensor is positive. For instance, the
isosurfaces of the instantaneous Qp-criterion are presented in figure 16 to visualize
the three-dimensional vortical structures during the phases of HFHA excitation. The
vortex loops constructing each of the four sides of the rectangular ring are coloured
by the vorticity component which characterizes their roll-up sense of rotation. The
volumes are presented for the three phases of φ = 0◦, 120◦, 240◦ during the period of
acoustic excitation. Three viewpoints are presented for each phase. The SV is located
at the upper-left corner and the cross-sectional view in the lower-right corner. The
middle large volume is then viewed at an angle best illustrating the three-dimensional
structures.
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In the spatial point of view, the rectangular vortex ring of figure 16 is formed due
to the KH instability in the near-exit region. With increased downstream distance, the
originally rectangular shape turns into the more distorted geometry. Any given point
on the vortex ring moves by the advection velocity of the main flow as well as the
local self-induced velocity (Saffman & Baker 1979; Saffman 1992). The self-induced
velocity is related to the local curvature at that point, the inverse of the vortex core
radius and the local circulation (Saffman & Baker 1979; Saffman 1992). The major
factor for the self-induced velocity of the rectangular vortex rings is the presence of
the sharp corners. Therefore, the additional curvature-induced velocity on top of the
convective velocity of the vortex ring generates the local acceleration at the corners
with respect to the flat sides.

According to the Biot–Savart law (Margerit & Brancher 2001), higher velocities are
induced at the high-curvature regions of a vortex filament. See appendix A for further
details on the Biot–Savart integral and its correlation with the curvature-induced
velocity. Farther downstream, the deformed vortex rings tend to break down and the
small-scale vortical structures appear in the shear layer. It is worth mentioning that
the self-induced velocity of an axisymmetric vortex ring is mostly related to the radii
of the circular ring and the vortex core since the curvature distribution is uniform.
A circular structure is decelerated while evolving in time/space as a result of the
increased radii of the vortex ring as well as the core thickening due to the viscous
diffusion.

From a temporal point of view, one could track the vortex rings of figure 16 in
time/phase. At the phase φ = 0◦, the vortex ring R1 which emerges first is advected
farther downstream compared to its following ring R2. At this instant, R1 appears to
be more distorted while R2 still maintains its rather rectangular shape. At the phase
φ = 120◦, the vortex ring R3 starts to form and enter the domain. Also, the rings
R2 and R1 are now advected farther downstream compared to the previous phase
(φ = 0◦). Also at φ = 120◦, the ring R1 is surrounded by the small-scale vortices
shedding from the primary KH ring due to the growth of the perturbations. The ring
R1 does not maintain its intact shape at φ= 240◦ and the upstream R2 and R3 rings go
through the deformations. Observing the vortex cores from the downstream towards
the upstream reveals the formation of a rather elliptic shape of the cross-section. This
elliptic shear layer recognized from the downstream demonstrates the small-scale
vortices near the jet boundaries. The spatio-temporal evolution of the volumetric
vortical structures reveals the deformations of the rings due to the axis switching.
The near-exit rectangular shape is found to evolve into the rather elliptic shape
accompanied with the increased small-scale activities with downstream distance.

Another interesting observation in figure 16 is that the vortex rings appear to be
tilted when looking from the SV. This is due to the directional effect of the excitation
observed earlier in the lateral velocity fluctuations (vrms) in figure 10. Since the
acoustic source, which is located near the y/a=−0.5 edge, emits the pressure waves
along the y-axis (normal to the TV or the x–z planes), the shear layer closer to the
acoustic source (y/a=−0.5) tends to roll up in more upstream locations compared to
the farther edge (y/a= 0.5). To better visualize and clarify the occurrence of the KH
roll-ups in more upstream locations at the vicinity of the acoustic source, figure 17
presents the sample SV (z/a = 0) snapshots of the instantaneous vorticity (Ωxya/U)
and the Q-criterion. Symmetric and non-symmetric (tilted) vortex shedding for the
natural and the acoustically forced (HFHA) jets are observed in both the vorticity and
the Q-criterion fields. The side near the acoustic source demonstrates KH roll-ups and
vortex shedding taking place at more upstream locations compared to the farther side
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of the shear layer. Ghasemi et al. (2018) used a vortex tracking algorithm to obtain
the probability density function (p.d.f.) of the vortex core locations and suggest that
the KH roll-ups are statistically shifted upstream when the shear layer is forced at its
fundamental frequency. Observation of the vortex ring tilting could also be interpreted
in terms of the earlier transition from the shear layer varicose (symmetric) mode of
instability into the sinusoidal (antisymmetric) undulations.

In the sinusoidal mode, the lateral undulations of the vortices are expected to
play an important role. Also, the directional effects of the acoustic source described
instantaneously above need to be analysed in a time-averaged manner. To this
end, figure 18 shows the r.m.s. of the spanwise velocity fluctuations (vrms) and the
time-averaged vorticity (Ωxya/U) in the SV plane under the effect of the fundamental
and the subharmonic excitation. The peak values of the vorticity and vp are found
to be shifted to more upstream locations and decay earlier for the excitation of
the fundamental (HFHA) mode compared to the natural (NAT) shear layer. This
suggests the advanced upstream location of the shear layer roll-up while the tilting
of the vortex rings is not reflected in the time-averaged results. On the other hand,
excitation of the subharmonic (LFHA) mode does not affect the streamwise location
of the roll-ups. Instead, a thicker vrms region is formed due to the enhanced vortex
pairing at LFHA. In addition, the vrms peaks are sustained farther downstream and
appear earlier in the centreline region.

3.5. Curvature-induced perturbations in rectangular vortex rings
To enhance the understanding of the driving mechanisms of the axis-switching
phenomenon, the local variation of the self-induced velocity on the vortex ring needs
to be characterized. To this end, the shorter and longer sides of the rectangular
vortex ring shown earlier in figure 16 are considered as individual vortex loops under
curvature-induced deformations. The x–z plane shown in figure 19 is passed through
the vortex loop constructing the longer side of the initially rectangular vortex (see
figure 16). This vortex loop, which is demonstrated by the yellow-coloured isosurface
of the instantaneous Qp-criterion, is aligned with the z-axis and advects downstream
in the x-direction. The intersecting TV (x–z plane at y/a= 0.5 edge) is coloured by
the instantaneous streamwise velocity. The snapshots are presented for the acoustic
forcing at HFHA during the phases φ = 0◦, 60◦, 120◦, 180◦, 240◦, 300◦.

During the phases φ = 0◦–60◦, the segment of the vortex ring R3, which is just
entering the domain, clearly shows two high-velocity spots near the high-curvature
corners (z/a=∓1). These local accelerations at the sharp corners with respect to the
flat sides in the middle characterize the additional curvature-induced velocity. During
this stage, the newly formed vortex loop R3 viewed from the top maintains its rather
straight geometry. However, its faster-moving sharp corners initiate the deformations
as predicted by the Biot–Savart law (Margerit & Brancher 2001) described in
appendix A. After the fast motion of the corners, the initially flat mid-part which
is now left behind attains a high curvature. Therefore, another high-velocity spot is
induced in the middle part of the vortex loop. This stage is nicely visible during
the phases φ = 60◦–180◦ through which the ring R2 demonstrates development of a
slightly arced shape. Accordingly, the three high-velocity spots on the corners and the
middle of R2 can be correlated with the local curvature. The vortex loop associated
with the ring R1, which is evolved further in time/space, appears to be more distorted
compared to R2 and R3.

This wavy shape characterizes the increased number of high-curvature regions
on the loop. Accordingly, the high-velocity spot in the middle splits into two.
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FIGURE 18. (Colour online) Side view (z/a= 0) or the x–z plane coloured by: (a–c) the
transverse velocity fluctuations (vrms) and (d–f ) time-averaged vorticity (Ωxya/U) for the
NAT, LFHA and HFHA cases.

The outcome is the formation of four high-velocity zones over the span of the
vortex segment which are associated with the two corners and the two high-curvature
regions in the middle. Alternative variations of the high/low-velocity spots along the
span of the vortex loop describe the formation of the azimuthal instabilities over the
ring. Likewise, the increased number of high-velocity regions suggests the shorter
wavelength (higher frequency) of the azimuthal instability. By further evolving in
time and correspondingly with downstream distance, the two high-velocity spots at
the corners tend to decay. On the other hand, the high-velocity pairs in the middle
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FIGURE 19. (Colour online) Top view (near the y/a = 0.5 edge) or the x–z plane
coloured by the phase-averaged streamwise velocity. The TV plane is passed through
the local vortex loop demonstrated by the yellow-coloured isosurface of the instantaneous
Qp-criterion. The vortex loop is isolated from the longer side of the initially rectangular
vortex ring. Instantaneous snapshots are presented for the acoustic forcing at HFHA during
the phases (φ = 0◦, 60◦, 120◦, 180◦, 240◦, 300◦). See supplementary movie 3.
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tend to merge into one where a single mode prevails. The self-induced deformations
and the resulting distortions of the vortex loop finely correlate with the curvature
distribution on the vortex loops. This wavy shape of the ring is the consequence of
nonlinear growth of the azimuthal perturbations on top of the initial KH instability.
These perturbations grow in time and space until the ring starts to disintegrate into
the smaller scales.

The curvature-induced velocity over the vortex loop and its correlation with the
spatio-temporal evolution of the azimuthal perturbations can be further elucidated
by the surface plot given in figure 20. The phase-averaged streamwise velocity
information is extracted from the TV (x–z plane at y/a = 0.5 edge) plane passed
through the vortex loop located on the longer side of the rectangular opening. The
surface height and colour account for the local magnitude of the phase-averaged
streamwise velocity. Near the nozzle exit, two small spikes appear which describe
the curvature-induced velocities at the corners of the ring R3. These two spikes
grow in magnitude through the phases φ = 0◦–60◦ and advect downstream with time.
The ring R2, which is located farther downstream during the phases φ = 0◦–60◦,
develops an additional spike corresponding to its high curvature in the middle.
Further in time and downstream distance, the ring R1 forms larger spikes at the
corners. In addition, two smaller spikes are formed in the middle. The increased
number of these spikes on the span of the vortex loop demonstrates the formation
of multiple high-curvature regions at shorter wavelengths. These peaks and valleys
characterize a spatial instability at each specific downstream location. In addition,
the spatial perturbations are monitored as they advect downstream, grow or decay
spatio-temporally. For instance, between x/a= 2.5 and 3, while there is still a spike
in the middle, the corner spikes have almost decayed. Furthermore, beyond x/a= 3,
the curvature gradient becomes negligible on the ring and the ring does not remain
intact due to breakdown into the smaller scales. Therefore, no preference in the
self-induced velocity is observed.

Another important observation in the TV plane is the symmetry of the self-induced
velocity spikes with respect to the mid-plane (z/a = 0). This accordingly suggests
that the perturbations within this plane propagate symmetrically. It should be noted
that the corner and the middle spikes of the self-induced velocity characterized and
discussed in figure 20 can be associated with the corner and centre modes of the
pressure perturbations described by Tam & Thies (1993). In their vortex sheet model,
the centre instability modes of the pressure perturbations are found to prevail over the
corner modes with the downstream distance. In addition, the large eddy simulation
by Ghasemi et al. (2016) correlates the corner pressure perturbations with the self-
induced velocity during the axis switching of the square-shaped vortex rings. The
present measurements verify the findings of the above theoretical/numerical efforts by
explaining the growth of the corner instabilities, their decay in time/space and the
domination of the middle spikes with downstream distance.

The corresponding curvature-induced velocity information displayed for the TV in
figures 19 and 20 are also presented for the SV plane in figures 21 and 22. The x–y
plane displayed in figure 21 passes through the vortex loop constituting the shorter
edge of the initially rectangular vortex ring. The vortex loop which is illustrated by
the yellow-coloured isosurface of the instantaneous Qp-criterion is oriented along the
y-axis and travels downstream in the x-direction. The intersecting SV (near the z/a= 1
edge) or the x–y plane is coloured by the phase-averaged streamwise velocity. The
phase-averaged images are shown for the acoustic forcing at HFHA during the phases
φ = 0◦–60◦, 120◦, 180◦, 240◦, 300◦. The main observation is the tilting of the shorter
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FIGURE 20. (Colour online) Phase-averaged streamwise velocity spikes characterizing the
curvature-induced velocity. Instantaneous information is extracted from the TV (near the
y/a= 0.5 edge) or the x–z plane. Instantaneous snapshots are presented for the acoustic
forcing at HFHA during the phases (φ=0◦,60◦,120◦,180◦,240◦,300◦). See supplementary
movie 4.
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FIGURE 21. (Colour online) Side view (near the z/a= 1 edge) or the x–y plane coloured
by the phase-averaged streamwise velocity. The plane is passed through the local vortex
loop demonstrated by the isosurface of the instantaneous Qp-criterion. The vortex loop
is isolated from the shorter side of the initially rectangular vortex ring. Instantaneous
snapshots are presented for the acoustic forcing at HFHA during the phases (φ =
0◦, 60◦, 120◦, 180◦, 240◦, 300◦). See supplementary movie 5.

segment of the vortex ring viewed from the side. As discussed earlier for figures 16
and 17, this happens because of the more upstream KH roll-ups in the shear layer
located near the acoustic source. Accordingly, the curvature-induced velocity in the SV
plane exhibits an asymmetric pattern for either of the sharp corners (y/a=∓0.5). The
high-velocity spots are present again in accordance with the curvature variations over
the vortex loop. However, they are not distinguished as clearly as in the TV vortex
loop. This could be explained by the shorter length of the SV vortex loop where the
spanwise (azimuthal) perturbations behave differently.

The dynamics of the vortex loop constructing the shorter edge in the SV (x–y plane
near the z/a = 1 edge) can be further clarified by exploring the curvature-induced
velocity spikes presented in figure 22. At the phase φ = 0◦, the two spikes near
the edges (y/a = ∓0.5) of the R2 loop characterize the curvature-induced velocity.
Unlike the TV, the self-induced velocity spikes at the corners of the SV plane are not
significantly larger relative to the middle of the loop. In addition, the count of the
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FIGURE 22. (Colour online) Phase-averaged streamwise velocity spikes characterizing the
curvature-induced velocity. Instantaneous information is extracted from the SV (near the
z/a = 1 edge) or the x–y plane. Instantaneous snapshots are presented for the acoustic
forcing at HFHA during the phases (φ=0◦,60◦,120◦,180◦,240◦,300◦). See supplementary
movie 6.
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spikes on the span of the SV loop never grows beyond three while it reaches up to
four on the vortex loop along the longer edge TV (x–z plane near the y/a= 0.5 edge).
On this shorter side of the rectangular vortex ring, the middle spike does not split
into two. Instead, the middle spike is shifted away from the acoustic source which
is located near the y/a = −0.5 edge. After the shifting, the middle spike eventually
merges into the corner spike passing near the y/a= 0.5 edge. As the flow develops
further in time and downstream of the merging point, the self-induced velocity spikes
are again only present at the two corners. Ultimately, these two corner spikes also
approach the centre and coalesce. Beyond this coalescence, the centre mode prevails
as previously observed for the longer side TV vortex loop.

4. Conclusions

Particle image velocimetry (PIV) and hot-wire (HW) anemometry measurements
are employed to study the curvature-induced deformations of the vortex rings
generated in the jet flows emerging from a rectangular duct of aspect ratio 2. At the
Reynolds number of Re = UDh/ν = 17 750, the near exit of the naturally evolving
jet demonstrates the fundamental ( fn) frequency due to the Kelvin–Helmholtz (KH)
instability as determined by the HW-based velocity spectra and the PIV-based spatial
theory of linear stability (LST). With increased downstream distance, the passage
frequency of the vortices drops until the subharmonic ( fn/2) mode dominates due to
the vortex pairing. The characterized fundamental and subharmonic modes are then
used to acoustically excite the jet at different amplitudes. The PIV measurements
of the jet show that the near-field rectangular cross-section evolves into more
elliptic/circular shapes farther downstream. This observation, which is accompanied
with the contraction of the jet diagonal as well as the mild expansion of the longer
and shorter sides, is attributed to the axis-switching phenomenon. By means of the
acoustic forcing, the relative expansion/contraction of the jet in the top (TV), side
(SV) and diagonal (DV) views are found to be controllable. This alters the occurrence
of the first (stronger) and second (weaker) axis switching and their corresponding
locations.

Excitation of the subharmonic mode results in the shorter length of the potential
core and larger spread rates due to the enhanced vortex pairing. Furthermore, the
overshoot commonly formed in the centreline streamwise velocity fluctuations (urms)
is suppressed under the excitation at fn/2. On the other hand, excitation of the
fundamental mode advances the first KH roll-up to more upstream locations. It
is found that the acoustic excitation imposes directional effects on the jet flow.
The lateral velocity fluctuations aligned with the direction of the acoustic waves
are significantly increased. In addition, the instantaneous KH roll-ups occur at more
upstream locations within the shear layer located near the acoustic source. As a result,
the vortex rings viewed from the side appear to be tilted. The urms profiles demonstrate
a peculiar double-peaking phenomenon due to the interaction of the fundamental and
subharmonic modes which can be altered by applying the different acoustic forcing
strategies. The skewness and kurtosis of the fluctuations in the near-separation region
of the rectangular jets demonstrate increased anisotropy/intermittency, in contrast to
that of circular jets, which only become anisotropic near the end of the potential
core. Such a deviation from the round jet behaviour can be associated with the
local curvature-induced velocities at the perturbed corners of the rectangular vortex
ring. Under the effect of the acoustic excitation, the intermittency levels grow and
take place in a broader region. In addition, the high-amplitude (HA) subharmonic
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excitation (LF), which results in the shortest length of the potential core, causes the
earlier production of the intermittent flow.

The global observations in the time-averaged flow fields are better interpreted
by exploring the instantaneous three-dimensional vortex dynamics. The phase-locked
spatio-temporal tracking of the three-dimensional flow structures exhibits the formation
of initially rectangular vortex rings due to the KH instability. As the vortex rings are
advected along with the bulk flow motion, they deform and eventually break down
as a result of the curvature-induced velocity. Owing to the additional self-induced
velocities, the high-curvature corners of the initially rectangular KH rings are found to
move faster relative to the initially flat regions of the ring. Therefore, the rectangular
ring loses its two-dimensionality and develops a three-dimensional structure due to
the increased number of high-curvature regions (at shorter wavelengths) and the
consequent self-induced velocity. This results in the formation of nonlinear azimuthal
perturbations over the distorted ring which eventually breaks down into the smaller
scales. The corner modes of the curvature-induced velocity eventually coalesce into a
single mode in the middle. Unlike the isolated rectangular vortex rings, those formed
in continuous jets do not demonstrate a rotation-like deformation. Instead, the vortical
structures reshape into the more round geometry due to the axis switching.

Propagation of the perturbations produced by the curvature-induced velocities
is found also to be influenced by the directional effect of the acoustic source.
The small curvature-induced velocity spikes appear symmetrically in the TV plane
passing through the longer vortex loop near the separation edge. Owing to the
normal orientation of the acoustic source with respect to the TV plane, the first
KH roll-up and the self-induced velocity distributions occur symmetrically. This
symmetric shedding of the vortices resembles the varicose mode of instability. While
propagating farther downstream, these two small spikes grow in magnitude. Later,
an additional spike appears in the middle of the vortex loop corresponding to the
formation of the local high curvature. Increased waviness of the vortex loop is found
to be correlated with the appearance of more spikes and high-curvature regions
suggesting higher-frequency (shorter-wavelength) perturbations. Eventually, the middle
spike dominates while the corner spikes decay. Since the acoustic source emits along
the shorter loops, the shear layer closer to the source rolls up in more upstream
locations compared to the farther side. Consequently, the vortex rings observed from
the SV appear to be tilted. Accordingly, a non-symmetric curvature-induced velocity
distribution takes place along the vortex loop. This non-symmetric shedding of the
vortices appears similar to the sinusoidal mode of the instability. Unlike the TV
loop, the middle spike associated with the SV loop is shifted away from the acoustic
source and merges into the corner spike located in the farther edge.
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Appendix A. The Biot–Savart integral and its correlation with the curvature-
induced velocity

The experimental observations presented in the main body of the paper demonstrate
the formation of high-velocity spots near the high-curvature regions of the vortex rings.
In order to expand the relevant theoretical discussions, we consider the velocity UT of
a given point P in the vicinity of a three-dimensional curved vortex line of the form
X(s, t) subjected to the inviscid flow condition. Here, s is the arc length along the
line and P denotes the position vector. The total velocity UT at a given point on the
vortex comprises two components:

UT =UF +UI. (A 1)

The UF component of the velocity is due to the bulk flow, which is finite along the
vortex line. The UI part of the velocity is induced by the presence of a vorticity field.
Such a velocity/vorticity relationship can be investigated by taking the curl of the
momentum equation to obtain the vorticity transport equation (Leonard 1985). Further
calculations (Leonard 1985) result in the Biot–Savart integral along the vortex line
curve { (Saffman & Baker 1979; Saffman 1992):

UI(P, t)=−
Γ

4π

∫
{

[P−X(s′, t)] × ds′

|P−X(s′, t)|3
, (A 2)

where Γ is the circulation of the vortex line considered positive in the direction
of s. It can be noted that UI(P, t) diverges as |P − X(s′, t)| → 0. In order to deal
with the singularity issue of the Biot–Savart integral, techniques such as the method
of matched asymptotic expansion of singular integrals (MAESI) are implemented
(Margerit & Brancher 2001). It should be noted that the time t appears due to the
motion of the curved vortex line. For convenience, the position vector P can be
represented in the curvilinear coordinate system of (r, θ, s) corresponding to the point
P(s, t) located on the vortex line:

P(x, y, z)=X(s, t)+ rr̂(θ, y, z), (A 3)

where r defines the minimum distance between the points P and X(s, t) on the vortex
line. The expansion of the Biot–Savart integral yields (Callegari & Ting 1978):

UI(P, t)=UI(r, t)=
Γ

2πr
θ̂ +

κΓ

4π

[
ln
(

R
r

)]
b̂+

Γ

4πR
(cos φ)θ̂ +Qf . (A 4)

Here, θ̂ and b̂ introduce the local unit vectors in the circumferential and binormal
directions, respectively. As inferred from the second term on the right-hand side, κ =
1/R(s, t) accounts for the local curvature of the vortex filament. Accordingly, the local
self-induced velocity UI(P, t) varies proportional to the curvature κ as also observed
by the present measurements.

Appendix B. Characterization of sound pressure levels for acoustic excitation
As explained in the main body of the paper, the fundamental ( fn) and its

subharmonic ( fn/2) mode, respectively referred to as the high-frequency (HF)
and the low-frequency (LF), are detected using the HW-based spectra and then
verified by the PIV-based stability analysis. Afterwards, they are used to acoustically

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

98
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.988


Curvature-induced deformations of vortex rings 175

Tunnel-OFF SPL (dB) Tunnel-ON excitation amplitude SPL (dB)

Natural 76.33 91.2
Low amplitude (LA) 79.11 91.5
Mid-amplitude (MA) 88.04 92.9
High amplitude (HA) 95.55 96.87

TABLE 1. Characterization of the sound pressure level (SPL) for the low (LA), mid-
(MA) and high (HA) amplitudes for the acoustic excitations at the fundamental ( fn) and
subharmonic frequencies ( fn/2).

excite the rectangular jet. The characteristics of the low (LA), mid- (MA) and high
(HA) excitation amplitudes and the corresponding sound pressure levels (SPLs) are
presented in table 1. The pressure levels are measured using a Brüel and Kjær 4192
free-field condenser microphone. The SPL level is evaluated using the r.m.s. of the
pressure (prms) in the equation:

Li = SPLi = 10 log
(

prms,i

pref

)2

= 20 log
(

prms,i

pref

)
, (B 1)

where pref = 20 µPa is the reference pressure used for the calculations in air.
Summation of the n different SPLs can be achieved using the equation:

Lsum = 10 log
(

p2
rms,1 + p2

rms,2 + · · · + p2
rms, n

p2
ref

)
. (B 2)

Considering the equation (
prms,i

pref

)2

= 10Li/10, (B 3)

the summation of the SPLs can be obtained as

Lsum = 10 log(10L1/10
+ 10L2/10

+ · · · + 10Ln/10). (B 4)

First, the ambient noise level of SPL = 76.3 (dB) is characterized when the tunnel
air flow and the acoustic source are OFF. Afterwards, the SPL levels due to the LA,
MA and HA amplitudes are characterized as 79.1 (dB), 88.1 (dB) and 95.5 (dB) when
the tunnel air flow and the acoustic source are ON. The tunnel-OFF SPL values are
given in the left column of table 1. In order to obtain the SPL levels of the natural
(NAT) jet, measurements conducted at the centre of the channel exit yield SPL =
91.2 (dB). In order to obtain the tunnel-ON values in the right column (SPLR) of
table 1, the tunnel-OFF levels in the left column (SPLL) are added to the SPL of the
natural case (SPLNAT = 91.2 (dB)) using the equation below:

SPLR = 10 log(10SPLL/10
+ 10SPLNAT/10). (B 5)

For example, 91.5 (dB) = 10 log(1079.11/10
+ 1091.2/10) is the SPL level of the LA

excitation of the jet given in the right column of the second row of table 1.
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Appendix C. Spatial analysis of the linear stability modes
In linear stability (LST) analysis, the hydrodynamic theory of stability treats the

shear layer in terms of the dynamics of the group of waves which may propagate,
amplify or decay in the space/time medium (Drazin & Reid 2004; Betchov 2012).
The transport and dynamics of the waves are analysed in Fourier space instead of
the conventional physical time/space. In order to predict the stability criteria, the Orr–
Sommerfeld equation is solved, which can be derived from the incompressible Navier–
Stokes equations (Schmid & Henningson 2012):

∇ ·V = 0, (C 1)

ρ
DV
Dt
=−∇P+µ∇2V. (C 2)

Here, V, P, µ and ρ denote the velocity vector, pressure, dynamic viscosity and
density, respectively. The velocity and pressure perturbations Vx=U+ u′, Vy= V + v′
and p= P+ p′ are introduced into the above continuity and momentum equations:

∂u′

∂x
+
∂v′

∂x
= 0, (C 3)

∂u′

∂t
+U

∂u′

∂x
+ V

∂u′

∂y
+ u′

∂U
∂x
+ v′

∂U
∂y
=−

1
ρ

∂p′

∂x
+
µ

ρ

(
∂2u′

∂x2
+
∂2u′

∂y2

)
, (C 4)

∂v′

∂t
+U

∂v′

∂x
+ V

∂v′

∂y
+ u′

∂V
∂x
+ v′

∂V
∂y
=−

1
ρ

∂p′

∂y
+
µ

ρ

(
∂2v′

∂x2
+
∂2v′

∂y2

)
. (C 5)

Using the parallel flow assumption as U=U(y) and V = 0, the above equations are
reduced to

∂u′

∂x
+
∂v′

∂x
= 0, (C 6)

∂u′

∂t
+U

∂u′

∂x
+ v′

∂U
∂y
=−

1
ρ

∂p′

∂x
+
µ

ρ

(
∂2u′

∂x2
+
∂2u′

∂y2

)
, (C 7)

∂v′

∂t
+U

∂v′

∂x
=−

1
ρ

∂p′

∂y
+
µ

ρ

(
∂2v′

∂x2
+
∂2v′

∂y2

)
. (C 8)

The following form of the normal instability modes can be introduced into the
above perturbation equations (Schmid & Henningson 2012):

ψ = φ(y)ei(αx−ωt), (C 9)

u′ =
∂ψ

∂y
=
∂φ

∂y
ei(αx−ωt), (C 10)

v′ =−
∂ψ

∂x
=−iαφei(αx−ωt). (C 11)

In the spatial theory of the LST, α is considered as a complex wavenumber to
account for the exponential growth/decay of the perturbations in space (Michalke
1972; Schmid & Henningson 2012). On the other hand, ω is a real frequency
parameter to allow for the purely convective oscillations of the perturbations in time
without any amplification/damping (Michalke 1972; Schmid & Henningson 2012).
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After the calculation and substitution of the corresponding derivatives as well as the
elimination of the pressure terms, we obtain:

− iω
∂2φ

∂y2
+ iαU

∂2φ

∂y2
− iαφ

∂2U
∂y2
+
µ

ρ

(
−
∂4φ

∂y4
+ 2α2 ∂

2φ

∂y2
− α4φ

)
+ iα2ωφ − iα3Uφ = 0.

(C 12)

Further simplifications result in a fourth-order linear differential equation which
is known as the Orr–Sommerfeld equation and describes the linear two-dimensional
modes of the perturbations in a viscous parallel flow (Schmid & Henningson 2012):(

U −
ω

α

)(∂2φ

∂y2
− α2φ

)
− φ

∂2U
∂y2
+

iν
α

(
∂4φ

∂y4
− 2α2 ∂

2φ

∂y2
+ α4φ

)
= 0. (C 13)

It should also be noted that the Orr–Sommerfeld equation can be simplified to the
Rayleigh equation for inviscid flow (Schmid & Henningson 2012). By defining the
scaling variables below:

c=
ω

α
, ξ =

y
δ
, φ =

φ

δU∞
, c=

c
U∞

, α = αδ, Reδ =
U∞δ
ν
, (C 14a−f )

the dimensionless form of the Orr–Sommerfeld equation can be derived as

(U − c)(φ
′′

− αφ)−U′′φ +
i

αReδ
(φ
′′′′

− 2α2φ
′′

+ α4φ)= 0, (C 15)

where c=ω/α, δ, α, ω, ν and Reδ denote the phase velocity, displacement thickness,
complex wavenumber, real frequency, kinematic viscosity and the Reynolds number,
respectively.

Since the coefficients are not constant, the exact solutions can only be obtained
for very specific conditions, for instance, when the second spatial derivative of the
velocity is zero, as seen in the case of the piecewise-linear profiles (Charru 2011).
Therefore, a numerical solution approach needs to be implemented for a more realistic
base flow. Prior to the solution of the Orr–Sommerfeld equation, the base velocity
U(y) around which the flow is perturbed needs to be determined. For each of the
natural or acoustically excited cases, different base flows are considered. To this end,
the corresponding time-averaged velocity profiles obtained from the PIV measurements
are extracted for different streamwise locations. It is worth mentioning that the spatial
LST has previously been carried out for excited flows, namely the studies by Marxen
et al. (2015) and Yarusevych & Kotsonis (2017). For the convenience of the numerical
implementations, the velocity profiles are fitted to the hyperbolic tangent (tanh) profile
using the method of least squares (Dini et al. 1992):

U(y)= c5

{(
1− c1

2

)
+

(
1+ c1

2

)
tanh

[
c2

(
y− c3

c4

)]}
. (C 16)

For each of the downstream locations, using the time-averaged streamwise velocity
profile as the base flow describes the local LST analysis of the spatial perturbations
(Monkewitz & Huerre 1982). The Orr–Sommerfeld equation defines an eigenvalue
problem which is numerically solved by applying the proper homogeneous boundary
conditions. The nonlinearity issue in the eigenvalue system is resolved by means
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of the companion matrix according to Bridges & Morris (1984). In comparison to
the conventional numerical techniques such as the finite difference schemes, spectral
methods based on the expansion of the Chebyshev polynomials are preferred as
they provide higher accuracy with less demanding computational resources. The
eigenfunction φ(y) in the Orr–Sommerfeld equation is obtained by the spectral
collocation solution method in which expansions in the form of the Chebyshev
polynomial approximations are considered:

φ(y)=
∞∑

n=0

anTn(y). (C 17)

The nth-degree Chebyshev polynomial of the first kind, Tn(x), is defined as

Tn(cos θ)= cos(nθ), (C 18)

where the positive integers n= 0, 1, 2, 3, . . . recursively yield T0(x)= 1, T1(x)= x and
Tn+1(x)= 2xTn(x)− Tn−1(x). The coefficients an are obtained from the integration

an =
2

πcn

∫ 1

−1
v(y)Tn(y)(1− y2)−(1/2) dy (C 19)

in which c0 = 2 for n = 0 and we have cn = 1 for n > 0. For further details on the
numerical implementation see Lie & Riahi (1988).
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