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PROFINITENESS IN FINITELY GENERATED VARIETIES IS
UNDECIDABLE

ANVARM. NURAKUNOVANDMICHAŁM. STRONKOWSKI

Abstract. Profinite algebras are exactly those that are isomorphic to inverse limits of finite algebras.
Such algebras are naturally equipped with Boolean topologies. A variety V is standard if every Boolean
topological algebra with the algebraic reduct in V is profinite.
We show that there is no algorithm which takes as input a finite algebra A of a finite type and decide

whether the variety V(A) generated by A is standard. We also show the undecidability of some related
properties. In particular, we solve a problem posed by Clark, Davey, Freese, and Jackson.
We accomplish this by combining two results. The first one is Moore’s theorem saying that there

is no algorithm which takes as input a finite algebra A of a finite type and decides whether V(A) has
definable principal subcongruences. The second is our result saying that possessing definable principal
subcongruences yields possessing finitely determined syntactic congruences for varieties. The latter property
is known to yield standardness.

§1. Introduction.
1.1. What we prove. Let V be a variety (an equationally defined class of algebras,
see Section 2 for definitions). We consider the class of VBt of Boolean topological
algebras with the algebraic reducts in V and the class VBc of profinite algebras
(considered also as Boolean topological algebras) with the algebraic reducts in V .
The class VBc is called the Boolean core of V . We call V standard provided that
VBt = VBc , i.e., when all Boolean topological algebras with the algebraic reducts in
V are profinite. Let us formulate our main result.
Theorem 1.1. There is no algorithm which decides if a given finite algebra of a
finite type generates a standard variety.

The most widely applicable condition forcing standardness for varieties is pos-
sessing finitely determined syntactic congruences (FDSC) [5]. This prompted the
authors of [5] to formulate the following question.

Problem 1.2 ([5, Problem 9.3]). Is there an algorithm to decide if a given
finite algebra of finite type generates a variety with finitely determined syntactic
congruences?

We present the answer to this question.

Theorem 1.3. There is no algorithm which decides if a given finite algebra of a
finite type generates the variety with finitely determined syntactic congruences.
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PROFINITENESS IN FINITELYGENERATED VARIETIES IS UNDECIDABLE 1567

The standardness ofV maybe restated as the property that profinite algebras from
V (equipped with a natural topology) may be distinguished among all Boolean
topological algebras of the same type as V just by checking the satisfaction of
identities defining V . In particular, we can do it without referring to topology. We
may then askwhen this distinction can be donewithin a particular logic andwithout
referring to topology. The case of first-order logic was addressed in [7]. With respect
to this issue, we obtain the following fact.

Theorem 1.4. There is no algorithm which decides if a given finite algebra of a
finite type generates the variety with the Boolean core definable (relative to the class
of all Boolean topological algebras of the same type as V) by a set of sentences in a
first-order logic.

1.2. How we prove it. A general strategy for Problem 1.2 was already proposed
in [5]. It is based on McKenzie’s construction [16]. It effectively assigns to each
Turing machine T the algebra A(T) (constructed in [16]) such that T halts iff
there is a finite bound on the cardinality of subdirectly irreducible algebras in the
variety V(A(T)) generated by A(T). In fact, if T does not halt, then, up to term
equivalence, the particular subdirectly irreducible algebraQ� (described in Section
4) is in V(A(T)). The algebra Q� admits a compatible Boolean topology. Thus Q�
with this topology belongs to V(A(T))Bt and does not belong to V(A(T))Bc . Hence
it witnesses that V(A(T)) is not standard. In particular, V(A(T)) does not have
FDSC [5, Example 7.7].
What remains to be proved is thatV(A(T)) hasFDSC ifT halts.However, recently
Moore verified that it is not true [18]. In the same article he also showed that
V(A(T)) does not have definable principal subcongruences (DPSC) (see Section 3
for the definition). This propertywas invented in order to give themost elegant proof
of Baker’s finite basis theorem [2] saying that every finitely generated congruence-
distributive variety of a finite type is finitely axiomatizable [1]. (The idea of Baker
and Wang was subsequently used also in the context of quasivarieties [19] and of
deductive systems [20].)
In [17]Mooremanaged tomodify the algebraA(T) by adding onebasic operation.
The resulting algebra A′(T) allows him to obtain the following fact: V(A′(T)) has
DPSC iff T halts. Consequently, he proved that the problem whether the variety
generated by a given finite algebra of finite type has DPSC is undecidable. In [18]
he suggested that the construction of A′(T) would be used in Problem 1.2. Indeed,
again, up to term equivalence, the algebraQ� belongs toV(A′(T)). The author also
wrote that a detailed analysis of polynomials in V(A′(T)) might be needed in order
to show that V(A′(T)) has FDSC when T halts.
It led us to the idea that having DPSC may yield having FDSC in general. If
it is true, then actually no additional analysis of the variety V(A′(T)) is needed.
Let us look at both properties from a common perspective of defining principal
congruences. The principal congruence �(a, b) generated by a pair (a, b) in an
algebraA is a transitive closure of the relationRwhich is the carrier of the subalgebra
R of A2 generated by {(a, b), (b, a)} ∪ {(c, c) | c ∈ A}. This fact may be expressed
in the following way: a pair (c, d ) is in �(a, b) iff there is a congruence formula (see
Section 2 for formal definitions) witnessing it. These are two dimensional objects.
They have length which expresses how many compositions of the relation R we
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have to use to include the pair (c, d ). They also have depthwhich expresses, roughly
speaking, how complex termswe have to use in order to get a subrelation ofRwhose
transitive closure includes (c, d ). A variety V has definable principal congruences
(DPC) if there is a finite bound on length and depth in a whole V . There are many
ways to weaken this property. It appears that V has FDSC exactly when there is a
finite bound only on depth (we assume that the type of V is finite) and length is
arbitrary. And V has DPSC when we have length and depth bounded by a finite
number just for some principal congruences.
At first glance, it seems that the properties of having FDSC and DPSC are
incomparable. The group S3 of all permutation on a three element set generates
the variety with FDSC (every variety of groups has FDSC) and without DPSC
[2]. Also, every finite nondistributive lattice generates the variety without DPC [15]
but, by the main result in [12, 27] (see also our Corollary 3.5), with FDSC. But an
example of a variety with DPSC and without FDSC is unknown.
The main technical contribution of this article is the introduction of a common
weakening of the properties of having FDSC and having DPSC.When a variety has
this property, we say that it has term finite principal subcongruences (TFPSC). We
show that having TFPSC is equivalent to having FDSC for varieties (Theorem 3.3).
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Thus it is indeed the case that having DPSC yields having FDSC. This fact,
Moore’s result and the analysis of Q� lead to a negative answer for the question in
Problem 1.2. Thus Theorems 1.1 and 1.3 hold. A bit of additional work on algebra
Q� , based on a technique from [7], leads to the conclusion that the Boolean core of
V(A′(T)) is not axiomatizable in first-order logic when T does not halt. This gives
Theorem 1.4.

1.3. Why we prove it; A little history. Let A˜ be a finite structure (a set withoperations and relations of finite arities) equippedwith a discrete topology. The class
ISCP

+(A˜) of all isomorphic images of closed subalgebras of nonzero direct powersofA˜ is called the topological prevariety generated byA˜ . Such classes appear in dualitytheory as dual categories [4,11]. For example, in Stone duality for Boolean algebras
as A we take a two element set (no operations and relations) and then ISCP+(A˜) isthe class of Boolean topological spaces (aka Stone spaces) [24]. In Priestley duality
for bounded distributive lattices asAwe take a two element linearly ordered set and
then ISCP+(A˜) is the class of Priestley spaces [22]. In Pontryagin duality restrictedto abelian groups of exponent at most m we may take the group Zm of integers
modulo m. Then ISCP+(Zm˜ ) is the class of Boolean topological abelian groups ofexponent at most m [21].
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It is a convenient situation when we have a good description of members of
ISCP

+(A˜). A general scheme, based on the idea from [26], for axiomatizations oftopological varieties was given in [8]. However, it involves infinite, possibly difficult
to work with, expressions. They refer to topological properties of the structures
under consideration. Consequently, such axiomatizations are not considered as
good. The property of standardness, introduced in [6] was intended as a formaliza-
tion of the idea of good behavior for topological prevarieties with respect to the
axiomatization.
A theory for standardness was developed in [5], and the following general suffi-
cient condition was presented. (Standardness was defined there as the property for
topological prevarieties, not for quasivarieties.)

Theorem 1.5 ([5, FDSC-HSP Theorem 4.3]). Let Q be the quasivariety (i.e., a
universal Horn class with a trivial algebra) generated by a finite algebra. If Q is a
variety and has FDSC, then Q is standard.

Stone duality and restricted Pontryagin duality fall into the scope of this theorem.
But Priestley duality, even if we extend this theorem to relational case, does not [25].
We will use a slight extension of the FDSC-HSP theorem, see Theorem 2.7.
In [5] a main problem in this area was formulated.

Problem 1.6 ([5, Problem 9.1]). Is there an algorithm to decide if a given finite
algebra of finite type generates a standard universal Horn class?

Problem 1.6 seems to be very difficult. It is open even when we restrict it to finite
lattices [7, Problem 2]. Thus the authors of [5] also formulated a simpler Problem
1.2, together with some hints how to approach it.
In [7] two extensions were made. Firstly, not only finitely generated, but also
topological prevarieties generated by sets of finite structures are considered. Sec-
ondly, a weakening of standardness to first-order axiomatization, as still a good
description, was proposed. General techniques for disproving standardness and
first-order axiomatization were presented. In particular, it appears that Priestley
duality is as bad as it can be: the topological prevariety of Priestley spaces in not
first-order axiomatizable [7, Example 6.2]. An analogous problem to Problem 1.6
for first-order aximatizability is formulated [7, Problem 1]. It is also suggested that
standardness may yield finite aximatizability for finitely generated universal Horn
classes. There are known standard finitely generated varieties which are not finitely
axiomatizable (for instance of semigroups). However, such finitely generated uni-
versal Horn classes are unknown [7, Problem 3]. Note that the converse implication
does not hold. The class of ordered sets is not standard [25]. Moreover, a non-
standard finitely axiomatizable universal Horn class generated by a four-element
algebra in presented in [13, Section 5].

We would like to point out the following quotation of Johnstone
[14, Section VI.2.6]:

The question thus arises: given an algebraic category A, when can we say that
every Stone topological A-algebra is profinite? It seems hard to give a simple
condition on A which is both necessary and sufficient;
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The meaning of the adjective simple is unclear. But one could argue that sim-
plicity should yield decidability for varieties presented in a finitary way. Thus
Theorem 1.1 confirms Johnstone’s supposition in case of presenting a variety by a
finite generating algebra. Yet, there is another finitary way of presenting varieties:
by a finite set of defining identities. For this case Jackson proved an analogous
theorem.

Theorem 1.7 ([13, Theorem 6.1]). There is no algorithm which decides if a given
finite set of identities defines a standard variety or a variety with FDSC.

§2. Toolbox. Here we provide the required definitions and facts. If necessary, the
reader may consult [3] for notions in universal algebra and [7, 14] for notions on
topological prevariety. We adopt the terminology from [7].

2.1. Algebras, topological algebras and Boolean cores. Let us fix an arbitrary
finite algebraic type �, i.e., a finite set of symbols of basic operations with ascribed
arities. Except Section 4, all (topological) algebraswill be of type�. A universalHorn
class of algebras is a class definable by (first-order) universal Horn sentences, i.e.,
universal sentences which are universally quantified disjunctions of equations and
negated equations. Equivalently, a class of algebras is a universal Horn class iff it is
closed under the formation of isomorphic images, subalgebras and direct products
over a nonempty indexing sets [3, Theorem V.2.23]. Our results refer to classes
closed under homomorphic images, in particular to varieties. A variety is a class
of algebras definable by identities, i.e., sentences which are universally quantified
equations. Equivalently, a class of algebras is a variety iff it is closed with respect
to the formation of homomorphic images, subalgebras and direct products over
arbitrary indexing sets [3, Theorem II.11.9].
A topological algebra A˜ is a pair (A,T ) where A is an algebra of type � and T isa topology such that every basic operation � : An → A is a continuous map with
respect to topological spaces (A,T ) and its power (A,T )n (we also say that T is
compatible with basic operations of A).
In this article all considered topological spaces are Boolean. This means that they
are Hausdorff, compact and totally disconnected. Topological algebras with such
topologies are called Boolean topological algebras. Most commonly encountered
Boolean topological algebras are profinite (groups, rings, semigroups, distributive
lattices, Heyting algebras, closure algebras, all of them have FDSC [5]). This means
that they are isomorphic to inverse limits of finite algebras.However, not all Boolean
topological algebras are profinite. For instance, one may take an infinite subdirectly
irreducible algebra (i.e., having a least congruence which is not the identity relation)
admitting a Boolean topology. An example of such unary algebra is given in [14,
Point VI.2.5] and of modular lattice in [9], see also [7, Example 2.10]. One such
example, presented in Section 4, will be crucial for us.
Following [7], we call a class of Boolean topological algebras which is closed
under the formation of isomorphic images, topologically closed subalgebras and
direct products over a nonempty indexing set a topological prevariety. (The fact that
we disallow empty indexing set is not relevant here. Indeed, the difference is only
with adding or excluding a trivial algebra. It has its origin in duality theory, where
this definition is natural.)
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For every classK of Boolean topological algebras there exists a smallest topologi-
cal prevariety containingK. It consists of topological algebraswhich are isomorphic
to closed subalgebras of nonzero products of members of K.
With a given universal Horn class H (in particular, with a variety) we associate
two topological prevarieties: The first one, denoted by HBt consists of all Boolean
topological algebras with the algebraic reducts in H. The second one, denoted by
HBc and called the Boolean core of H, is the topological prevariety generated by
finite members ofH, each of them considered as a Boolean topological algebra with
the discrete topology. In general, we have the inclusion HBc ⊆ HBt . We say thatH
is standard if HBt = HBc .
It appears that themembers ofHBc are exactly thoseBoolean topological algebras
which are isomorphic to inverse limits of finite algebras from H [7, Corollary 2.4].
Moreover, profinite algebras are exactly those algebras which are isomorphic to
inverse limits of their finite homomorphic images. Thus, since varieties are closed
under the formation of (finite) homomorphic images, we have the following fact.

Fact 2.1. Let V be a variety. Then VBc consists of all profinite algebras which have
the algebraic reducts in V . Consequently, V is standard if and only if every Boolean
topological algebra whose algebraic reduct in V is profinite.
We say that a topological prevariety G is first-order axiomatizable if there exists
a set S of first-order sentences such that G consists of all Boolean topological
algebras of type � with algebraic reducts satisfying all sentences from S. We are
interested in the existence of first-order axiomatization of Boolean cores. Clearly, if
H is a standard universal Horn class, then HBc is first-order axiomatizable by any
set of first-order sentences defining H. However, there are nonstandard universal
classes with the first-order axiomatizable Boolean core. Such an universal Horn
class generated by a finite lattice is presented in [7, Example 4.3]. We will need the
following fact. Recall that an algebra A is locally finite if every finitely generated
subalgebra of A is finite. In this article by a one-point compactification we mean a
topological space (A,T ) with a distinguish element 0, where

T = {B ∈ P(A) | 0 ∈ B and A− B is finite} ∪ P(A− {0}).

Here P(X ) denotes the powerset of X . The point 0 is called then the condensation
point of (A,T ). Note that (A,T ) is simply the Alexandrov compactification of the
discrete spaces on the set A− {0}.
Proposition 2.2 (A special case of [5, Second Ultraproduct Technique 5.3]). Let
A˜ = (A,T ) be a Boolean topological algebra such that
1. A is locally finite,
2. A has a constant 0,
3. (A,T ) is the one-point compactification with the condensation point 0,
4. A˜ ∈ VBt − VBc ,
5. for every algebra B of the same type as A, if B is a model of the universal theory
of A and (B,T ′) is the one-point compactification with the condensation point
0, then the topology T ′ is compatible on B (i.e., (B,T ′) is a Boolean topological
algebra).

Then VBc is not first-order axiomatizable.
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2.2. Determining principal congruences. Let us fix a denumerable set X =
{x, p0, p1, p2, . . .} of variables. We consider x as a distinguished variable. Let us
also fix one set of terms over X satisfying the following conditions:

• x ∈ Tx ,
• if � is a basic operation of positive arity n, then
�(p0, . . . , pi−1, x, pi+1, . . . , pn−1) ∈ Tx ,

• if s(x, p̄), t(x, q̄) ∈ Tx , then s(t(x, q̄), p̄) ∈ Tx .
From the perspective of this article it is not relevant which set Tx satisfying the
listed conditions is chosen (actually, we could simply take Tx to be the set of all
terms overX ). What is important is the following result known asMal’cev’s lemma.
For an algebra A and a pair a, b of its elements let �(a, b) denote the principal
congruence of A generated by (a, b).
By a congruence formula �(u, v, x, y) we mean a first-order formula of the form

∃p̄
(
u ≈ t0(z′0, p̄) ∧

(
n−1∧
i=0

ti(z′i , p̄) ≈ ti+1(z′i+1, p̄)
)

∧ tn(z′n, p̄) ≈ v
)
, (CF)

where ti (x, p̄) ∈ Tx and {zi , z′i } = {x, y} for all 0 ≤ i ≤ n. Let us denote the
set {t0, . . . , tn} of terms appearing in (CF) by term(�). The set of all congruence
formulas will be denoted by Π. (Now we may formalize the notions from the
introduction: the length of � in (CF) equals n, and the depth is the maximal depth
of x in the terms t0, . . . , tn .)

Lemma 2.3 ([3, Theorem V.3.3]). For an algebra A and elements a, b, c, d ∈ A we
have (c, d ) ∈ �(a, b) if and only if there is a congruence formula �(u, v, x, y) such
that A |= �(c, d, a, b).
The above lemma suggests that we may impose various restrictions on deter-
mining principal congruences. For instance, a class C of algebras has definable
principal congruences (DPC in short) if there is a finite set P ⊆ Π such that
�(a, b) = {(c, d ) ∈ A2 | ∃� ∈ P A |= �(c, d, a, b)} for all a, b ∈ A, A ∈ C.
(This topic is covered in a more general context of relative congruences in [10].) In
this article a weaker restriction will be crucial. For F ⊆ Tx , let

ΠF = {� ∈ Π | term(�) ⊆ F }.
For an algebra A and its elements a, b define

�F (a, b) = {(c, d ) ∈ A2 | ∃� ∈ ΠF A |= (c, d, a, b)}.
We say that a subset F of Tx determines principal congruences in a class C if for
every A ∈ C and a, b ∈ A we have �(a, b) = �F (a, b). We say that C has term
finite principal congruences (TFPC in short) if there is a finite subset of Tx which
determines principal congruences in C.
For F ⊆ Tx and an algebra A let F A be the set of all translation on A induced by
terms in F . Formally,

F A = {f ∈ AA | ∃t(x, p̄) ∈ F, ē ∈ An ∀a ∈ A f(a) = t(a, ē)}.
For an equivalence relation � on the carrier of an algebra A let

�F = {(a, b) ∈ A2 | ∀f ∈ F A (f(a), f(b)) ∈ �}.
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Then �F is an equivalence relation on A. Note that �{x} = � and if x ∈ F , then
�F ⊆ �. More generally, �G ⊆ �F whenever F ⊆ G . Moreover, �Tx is the largest
congruence onA contained in � [5, Lemma 2.1]). It is called the syntactic congruence
of � and is denoted by syn(�).
We say that F ⊆ Tx determines syntactic congruences in a class C of algebras
provided that syn(�) = �F for every equivalence relation � on the carrier of an
algebra in C. We say that C has finitely determined syntactic congruences if there is a
finite subset of Tx determining syntactic congruences in C.
It appears that the properties of having FDSC and TFPC are equivalent.

Lemma 2.4 ([5, Lemma 2.3]). Let C be a class of algebras and F ⊆ Tx . Then F
determines syntactic congruences in C if and only ifF determines principal congruences
in C.
From the proof of Lemma 2.4 we may extract the following fact.

Lemma 2.5. Let A be an algebra, a, b ∈ A, and � be an equivalence relation on A.
If (a, b) ∈ �F , then �F (a, b) ⊆ �.
What makes the property of having FDSC relevant in the context of topological
algebras is the fact that this property yields profiniteness. The following observation
was first proved for many special cases, see the historical comments preceding
[5, Clopen Equivalence Lemma 4.2]. (The reader may also see [23] for a related
characterization of profiniteness.)

Proposition 2.6 ([7, Theorem 2.13]). Let A˜ be a Boolean topological algebra. Ifthere is a finite set of terms that determines syntactic congruences on A, then A˜ isprofinite.

Proposition 2.6 and Fact 2.1 give the following theorem.

Theorem 2.7 ([7, Theorem 2.13], see also [5, FDSC-HSP Theorem 4.3]). Let V
be a variety. If V has FDSC, then V is standard.

§3. Determining principal subcongruences. We say that a pair F,G of subsets of
Tx determines principal subcongruences in a class C of algebras if for everyA ∈ C and
for every pair a, b of distinct elements of A there is a pair c, d of distinct elements
of A such that

(c, d ) ∈ �F (a, b) and �(c, d ) = �G(c, d ).

A class C has term finite principal subcongruences (TFPSC in short) if there is a pair
of finite subsets of Tx which determines principal subcongruences in C.
Let �, � be equivalence relations on a setA. If � ⊆ � then the quotient equivalence
relation �/� on the set A/� is given by

(a/�, b/�) ∈ �/� iff (a, b) ∈ �.

Lemma 3.1. Let F ⊆ Tx , � be an equivalence relation on the carrier of an algebra
A and a, b ∈ A. Then (a, b) ∈ �F if and only if (a/syn(�), b/syn(�)) ∈

(
�/syn(�))

F
.

Consequently, syn(�/syn(�)) is the identity relation on A/syn(�).
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Proof. By definition of �F , we have

(a, b) ∈ �F iff (f(a), f(b)) ∈ � for all f ∈ F A

iff (f(a)/syn(�), f(b)/syn(�)) ∈ �/syn(�) for all f ∈ F A

iff (g(a/syn(�)), g(b/syn(�))) ∈ �/syn(�) for all g ∈ F A/syn(�)

iff (a/syn(�), b/syn(�)) ∈
(
�/syn(�))

F
.

The third equivalence follows from the fact that syn(�) is a congruence on A. By
setting F = Tx , we obtain the second assertion. �
For F,G ⊆ Tx we define

F ◦G = {s(t(x, q̄), p̄) | s(x, p̄) ∈ F and t(x, q̄) ∈ G}.

Then for every algebra A and every equivalence relation � on A we have

�F◦G = (�F )G. (COMP)

Proposition 3.2. Let C be a class of algebras and assume that C is closed
under homomorphic images. Let F,G ⊆ Tx . If the pair F,G determines principal
subcongruences in C, then G ◦ F determines syntactic congruences in C.
Proof. Let A be an algebra in C and � be an equivalence relation on A. We want
to show that syn(�) = �G◦F . Let B = A/syn(�) and � = �/syn(�). By Lemma 3.1,
syn(�) is the identity relation on B. Thus we should show that �G◦F is the identity
relation on B. Assume that it is not the case, i.e., there is a pair a, b of distinct
elements in B such that (a, b) ∈ �G◦F .
By assumption, B = A/syn(�) ∈ C. Thus the pair F,G determines principal
subcongruences in B. This yields that there exists a pair c, d of distinct elements
such that

(c, d ) ∈ �F (a, b) and �(c, d ) = �G(c, d ).

By (COMP), �G◦F = (�G)F . Hence, by Lemma 2.5,

(c, d ) ∈ �F (a, b) ⊆ �G.

Applying Lemma 2.5 once more, but for c, d and G , we infer that

�(c, d ) = �G(c, d ) ⊆ �.

It follows that (c, d ) ∈ �Tx . Since �Tx = syn(�) and syn(�) is the identity relation
on B, c = d . This is a contradiction with the choice of c, d . �
Theorem 3.3. Let C be a class of algebras and assume that C is closed under
homomorphic images. Then C has FDSC if and only if C has TFPSC.
Proof. The forward implication follows from Lemma 2.4 and the obvious
fact that having TFPC yields TFPSC. The backward implication follows from
Proposition 3.2. �
We present two corollaries.
We say that a class C has definable principal subcongruences (DPSC for short) if
there are finite sets P,R of congruence formulas such that for every algebra A ∈ C
and for every pair a, b of distinct elements in A there are a pair c, d of distinct
elements in A and a congruence formula � ∈ P such that
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A |= �(c, d, a, b) and �(c, d ) = {(e, f) ∈ A2 | ∃� ∈ R A |= �(e, f, c, d )}.

In [5, Proposition 2.8] it is pointed that having DPC yields having TFPC, and hence
also having FDSC. But clearly, also having DPSC yields TFPSC. Thus Theorem
3.3 gives the following stronger fact.

Corollary 3.4. Let C be a class of algebras and assume that C is closed under
homomorphic images. If C has DPSC, then C has FDSC.
The following corollary was proved in [27], and then reproved in [12]. The novelty
here is the fact that we do not need to use Jónsson’s terms in order to prove it.
Indeed, one of the main results in [2] is the proof (without Jónsson’s terms) that
finitely generated congruence distributive varieties have DPSC.

Corollary 3.5. Let V be a congruence distributive finitely generated variety. Then
V has FDSC.
Proof. It follows by Corollary 3.4 and [2, Theorem 2]. �

§4. Undecidability. By modifying McKenzie construction [16], Moore [17] pro-
vided an effective construction that takes a TuringmachineT and returns the algebra
A′(T) with some properties depending on whether T halts or not. The construction
is quite complicated. However, we extract some information relevant for our article
in the next theorem.
We say that two algebras are term equivalent if they have the same carrier and the
same set of term operations. This means that every basic operation of one of this
algebras is a term operation of the second algebra.
Let Q� = (Q�,�, ·, 0) be the algebra with the carrier

Q� = {a0, b0, a1, b1, . . .} ∪ {0},

where 0 is a constant and �, · are binary operations given by

a � b =
{
a if a = b,
0 if a �= b,

a · b =
{
bi if a = ai , b = bi+1 and i ∈ N,

0 otherwise.

Note thatQ� is subdirectly irreducible and locally finite.

Theorem 4.1 ([17]). Let T be a Turing machine and A′(T) be the algebra
constructed as in [17] for T. Then

• if T halts on empty input, then V(A′(T)) has DPSC;
• if T does not halt on empty input, then there is an algebraQ in V(A′(T)) which is
term equivalent to Q� .

The following fact holds.

Proposition 4.2. Assume that there is an algebraQ in V which is term equivalent
toQ� . Then VBc is not first-order axiomatizable.
Proof. We equip the set Q� with a Boolean topology T such that (Q�,T ) is the
one-point compactification with the condensation point 0. It is the case that T is
compatible with basic operations ofQ� , and hence with basic operations ofQ. This
means thatQ˜ = (Q,T ) is a Boolean topological algebra.We use Proposition 2.2 forQ˜ . The conditions (1)–(3) from this theorem hold. The argument for the condition
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(4), which says that Q˜ witnesses nonstandardness for V , was given in [5, Example7.7]: Since Q is infinite subdirectly irreducible, Q˜ cannot be profinite.Let us check the condition (5). Let Q′ be an algebra of the same type as Q
and assume that Q′ satisfies every universal sentence which holds in Q. Let T ′ be
the Boolean topology such that (Q′,T ′) is the one-point compactification with the
condensation point 0. InQ′ we have (term) operations ·, � and 0. We have to verify
their continuity. Indeed, all basic operations inQ′ may be obtained by composition
of these three ones. Thus their continuity will follow.
The operation 0, as a constant, is obviously continuous. LetC ∈ T ′ and a, b ∈ Q′

be such that a ◦ b ∈ C , where ◦ = · or ◦ = �. We have to find two sets A,B in T ′

such that (a, b) ∈ A× B and A ◦ B ⊆ C .
In order to do it let us first observe thatQ, and hence alsoQ′, satisfy the sentence

(∀x, y) x ◦ y �≈ 0 → (x �≈ 0 ∧ y �≈ 0).

Thus, in the case when 0 �∈ C we may put A = {a} and B = {b}.
Let us assume that 0 ∈ C . Then the set Q′ − C is finite and does not contain 0.
Note thatQ andQ′ satisfy the sentence

(∀x, y, x′, y′) (x ◦y ≈ x′ ◦y′ ∧ x ◦y �≈ 0) → (x ≈ x′ ∧ y ≈ y′ ∧ x �≈ 0 ∧ y �≈ 0).

Hence the cardinalities of the sets

L = {a ∈ Q′ | ∃d ∈ Q′ a ◦ d ∈ Q′ − C},
R = {b ∈ Q′ | ∃c ∈ Q′ c ◦ b ∈ Q′ − C}

are not greater than the cardinality of Q′ − C . Thus they are finite. Moreover,
0, a �∈ L and 0, b �∈ R. Hence we may put A = Q′ − L and B = Q′ −R. �
Theorem 4.3. Let T be a Turing machine andA′(T ) be the algebra constructed as
in [17] for T. Then

• if T halts on empty input, then V(A′(T)) has FDSC;
• ifT does not halt on empty input, thenV(A′(T))Bc is not first-order axiomatizable.

Proof. It follows from Corollary 3.4, Theorem 4.1, and Proposition 4.2. �
Proof of Theorems 1.1, 1.3, and 1.4. ByTheorem 2.7, havingFDSC yields stan-
dardness for varieties and, clearly, standardness yields first-order axiomatizability
of the Boolean core. Thus the theorem follows from the undecidability of halting
problem and Theorem 4.3. �
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