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comes immediately to mind. Accordingly, if a = tan:" a and fJ
then we can write

tanfJ - tan a
1 + tan a tanfJ

since fJ - a is also 'incomparably small'. Thus the area under any section
of the curve can be approximated by a sum of differences and the result
follows. The formal proof makes these approximations precise.

area (R) tan (B - a) = fJ - a
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. foo IsinD
X co~ xl

95.33 Integrating 0 ~ dx

Introduction
eo sin" x COSb x

Integrals of the type f ----dx (wherea~ 2, b ~ 0) have
o xl'

~ sin" x COSb x
featured in the Gazette fairly recently [1] and results for f ----- dx

o xl'
(wherea ~ p) can be found in [2]. Here we consider the related integrals

f~ [sin" x COSb xl
Ip(a, b) = 0 --xI'---dx for integers a ~ p ~ 2, b ~ O.

Using a series approach, we reduce these to standard integrals when p is
even, but when p ~ 3 is odd we use a spreadsheet to find numerical
estimates.

For integers a ~ 2. b ~ 0,

f~ [sin" x COSb xl ~ r<k + 1)Jr [sin" x COSb xl
-----dx = z: J, -----dx

o xl' k~O kn xl'

(set t x - k:rr).
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r ('/2 ('12
The elementary result J/(t)dt = J, j(x)dx+ J

o
j(n-x)dx then reduces

this to

(I)

when p is even,

Exact evaluation

Using the identity cosec2 x -i I 1" which is usually derived
k~-~ (x - kst

by differentiating the expansion
~ 1

cot x - '" ---- ~x-kn' (2)

which in tum follows from the logarithmic derivative of Euler's product

sinx = x IT (1 - ~), we find that
k",O kit

/2 (a, b) = f~Isinax 2COShxl dx [12. a - 2 b
= 0 sm x COS x dx,

o x
which is a standard integral that may be tackled by repeated integration by
parts.

I . a I 12
In particular, f~sm

2
x dx = r sina-

2 x dx, which confirms the standard
o x Jo

f~(SinX)2 tt f~ [sin ' xlresult -- dx = - and proves that --2 -dx = 1.° x 2 ° x
When both a and b are odd the result is

[
/2 . 2m-j 2n+1 1 (m-I)!n!

lz(2m + 1,2n + 1) = sm xcos x dx = - ----,° 2 (m - n)!

but when both are even

(3)

/ (2 2) [
12. 2m-2 2n d n(2n)! (2m - 2)!

2 m, n = sm x cos x x = .o 22m+2n-ln!(m-I)!(m+n-l)!

These are both instances of the standard result

('12 . a-2 b 1 r(a.yL)r(tLyl)
J ° sin x cos x dx = 2" --r-(-u..p-+-)--·

Since (/2 sin U x cosiJ x dx = (/2 siniJ x cos" x dx a further general result is
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f
~lsin2xcosxl f~lsin3xl

that /2 (a, b) = /2(b + 2,a - 2) meaning that 2 dx = --2-dx
o x 0 x

<sin/xcosx 2 <sin 'x
whereas (by parts) f 2 dx = - f -3-dx.

o x 3 0 x

Since cot~ = i--2
-, tan~ = -«-~)= - i 2 and

2 _~x - 2kJr 2 2 2 _~x - (2k - I)Jl

cot ~ + tan ~ 1 . (2) I id h identi---- equation a so provi es tel entity
2 sinx

(_I)k
cosecx - L ---

k = _~ (x - kJr)·
If a = 2m - 1 (m ~ I) is odd and b = 2n (n ~ 0) is even, this

identity, used as in the introduction, gives

f~sin2m-lxcos2nxd ('/2(. 2m-I 2n ~ (-I)k)d
------ x = L sm x COS X £.., --- X

o X 0 k~_~X-kJl

('/2 . 2m-2 2nJ
O

sm X COS x dx.

The particular case m = I, n = 0 allowed Lord [3] to confirm that

f
~smx st f~sin2mxcos2nx f~sin2m-lxcos2nx
o -x-dx = '2. Hence, from (3) 0 x2 dx = 0 ---x---dx,

which is a generalisation of a result included in [I].
~ 1

By differentiating cosec/ X = L 2 twice we get
k __ ~(X - kJr)

cosec" X - i cosec'' x = i 1 4' which may be used similarly to
=_~ (x - kJr)

f~lsinaxcosbx1 ("12 . a-4 b ('/2._2show that 0 x4 dx= J
o

sin xcos xdx-iJo sin" xcosbxdx

for a ~ 4, b ~ O. In principle, we can keep going in this way to express
an integral, of the form Ip (a, b) with p even, in terms of standard integrals.

Numerical approach
Despite (from [2]) exact results like

ee sin4x [12
/3 (4,0) = J -3-dx = sin 4x a3(x)dx

o x 0

and, for p > I,

ap(~) = 2P(2~-I)~(p),ap(~) = (y~ I)~(p)andap(~) = 2(2~-1)~(p),

In2

there is no known simple expression for ap (x) when p is odd: numerical
evaluation is needed.

If SN denotes the sum of the first N terms of ap (x) - ~, the remaining

terms, on expanding by the binomial theorem, equal

https://doi.org/10.1017/S0025557200003107 Published online by Cambridge University Press

https://doi.org/10.1017/S0025557200003107


310 THE MATHEMATICAL GAZETTE

2 ~ I{ P(P+I)(X)2 P(P+I)(P+2)(P+3)(X)4 }CN(x)=- ~ -1+---- +-------- +....
:ff' k~N+ 1 kP 2! kn 4! kst

N

Defining ~N (p) = L k -p and ~N(p) = L k -p = ~ (p) - ~N(p), CN(x)
k~1 k=N+1

may be written as a series of correction terms

~ {CN(P)+P(p2~ I)(;fCN(p+2) +p(p+ 1)(p4~2)(p+ 3)(;fcN(p+4) +...}.(4)

The values of C (P) are known exactly or can be readily calculated [4] and a
spreadsheet can be used to calculate SNand CN(P). The values of CN(P) then can
be deduced and the integrand in (l) computed for any non-zero value of x, ready
for numerical integration (the x = 0 value being 1 if a = p and zero if a > p).

Choosing N = 50, and using an Excel spreadsheet, one finds that no
more than four of the correction terms of (4) are needed for maximum
accuracy (15 significant figures), even whenp = 2.

Tables I and 2 show evaluations of Ip(a, b) for odd values of p, with
b = 0 and b = 1 obtained by combining the trapezium rule estimates
using 2, 3, 4, 6, 8, 9, 12, 18, 24, 36 and 72 intervals as described in [5].
With only one exception, these results for odd p, even a, and b = 0 agree,
to 15 decimal places, with the result from [2] in the form

(-It-
k
-
I {m-2 "(2) }Iu: I (2m,0) = 22m-2k-1 (2k)! ~ (-I)' ~ (m - i)2k In(m - i) for m > k ~ 1.

b=Op=3 5 7 9
a = 3 1.20844420949041

4 0.693147180559945
5 0.514649194262908 0.941887861102954
6 0.421751358464106 0.467613876007544
7 0.363777196180142 0.315848628851268 0.802756911753731
8 0.323642331508254 0.242080571455144 0.356440682776443
9 0.293928671969672 0.198644641285563 0.221696177772022 0.711448343691695

10 0.270874295806716 0.170031687922601 0.159469421290094 0.288084273586973

TABLE 1

b=1 P = 3
a=3 0.845237493853565

4 0.384342908662528
5 0.241015389108362
6 0.173186372158086
7 0.134232907817172
8 0.109168841817002
9 0.091781575808846

10 0.079056265312896

5 7 9

0.730912531967594
0.298909128214203
0.172874563057750 0.661481242190141
0.116542930676375 0.250300558465676
0.085780524699383 0.135966634299365 0.609192606398828
0.066845181259216 0.087022659575664 0.215751935782790

TABLE 2
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Using cos! x
from

- sin? x, results for greater values of b can be found

Jp(a,2n + A) = i (-IY(~)Jp(a + u, A), where A
i = 0 I

but it is easier to calculate them directly on the spreadsheet.

o or2,
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95.34 On evaluating the probability integral
In a previous issue of the Gazette [1], Nick Lord showed how the

identity

I~ 2
o e-x dx = v;i 12

could be derived from Wallis's formula for at in an elementary way. While
his argument was later simplified [2], the following proof is even quicker. It
is certainly not new - it appears tucked away as an extended exercise in
Spivak's famous text [3, p. 371] - and undoubtedly it has been discovered
and rediscovered many times. Still it deserves to be far better known than it
is.

We begin with the elementary inequality

eX ;;. 1 + x for every x.

Indeed, the graph of the exponential function is concave up and so never lies
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