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comes immediately to mind. Accordingly, if @ = tan"'aand 8 = tan™'b,
then we can write

tanf — tana
area(R) = ———— =tan{f - a)=F - a
(R) 1 + tana tan 8 (6 ) ~8
since 8 — a is also ‘incomparably small’. Thus the area under any section
of the curve can be approximated by a sum of differences and the result
follows. The formal proof makes these approximations precise.
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95.33 Integrating fo ""‘ﬂ%—xl

Introduction
= sin®x cos’ x
Integrals of the type f Y

sinx cos® x

featured in the Gazette fairly recently [1] and results for I — dx

(wherea > p)can be found in [2]. Here we consider the related integrals

dx (wherea > 2, b > 0) have

oo |aind b
I,(a, b) = jo de for integersa > p > 2,b > 0.

Using a series approach, we reduce these to standard integrals when p is
even, but when p > 3 is odd we use a spreadsheet to find numerical
estimates.

Forintegersa > 2,b > 0,

o |cin? b fd k+ D |ein? b
J-O |sin? x cos® x| dx = f+ |sin®x cos® x| A

x = x

|sin®¢ cos® |
tt = x — k).
zr « + kny dt (se X )
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The elementary result J-”f (t)dt r lzf (x)dx + r nf (7t — x)dx then reduces
= X —_—

i i 0 0 0

this to

I(a,b) = f:lz(sin”x cosbx)ap (x)dx (1)

1 1 1
where 0,(x) = x_’ + ,Z{{(kn g + = —x)"} or, when p is even,

s 1
o0 = X, (x - kmy”

k=—co

Exact evaluation
had 1

Using the identity cosec’x = k;ﬂ m, which is usually derived
by differentiating the expansion
- 1
cotx = , 2
* _Z_,‘ x — km @

which in tumm follows from the logarithmic derivative of Euler's product

sinx = x H(l - —) we find that

k=0
= |sin® x cos’ x| 7. b
L(a, b) = I — —dx = JJ' sin“” “x cos’ x dx, 3
0 x 0
which is a standard integral that may be tackled by repeated integration by

parts.

. = [sin“x| 2 . 4 .
In particular, J. — dx = sin®” “x dx, which confirms the standard
0 x 0

2 w |qin3
resultf ( mx) dx = gand proves thatI de = 1.
0 X

When both g and b are odd the result is
L2m+12n+1)= sz sin? 'xcos”*'x dx = % %,
but when both are even
an)! (2m - 2)!
22m+=-Ipl(m — Y (m+n- 1)
These are both instances of the standard result

1rEHrEEh)
NCON

12 12
Since r sin®x cos’x dx = JJr sin’x cos®x dx a further general result is
0 0

2 2m-2 2n
I, (2m2n) = r sin xcos“ xdx =
0

2 a-2 b
.I.” sin® " “x cos xdx =
0
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that I;(a,b) = I,(b +2,a-2) meaning that J' M J‘O |Slﬂzx|
x
sin?x cosx 2 (=sin’x
whereas (by parts)f T =§ o dox.

- X b 4 - 2
si tanZ = cot(2 - %) =-F ——— and
ince coty ZJ\t 2%kn’ an2 0 2 2 g‘x—(Zk—l)n an

t3 +t l
&2“—5 =—— equation (2) also provides the identity
sinx
o0 -1 %
cosecx = ), G
fet (x - ki)

Ifa=2m—-1(m > 1)is odd and b = 2n (r 2 0) is even, this
identity, used as in the introduction, gives

= oin2m -1 2n 12 k
sin x cos™"x . 2m- (- 1)
f——dx =JJ sin®™ ™' x cos™x 2
0

0 x o mx—kn

12
= r sin®™~ % x cos® x dx.
0

The particular case m = =0 2allowec21 Lord [3] tcz) clonﬁrnz] that
m n o a1 m- n
J- sinx o f. Hence, from (3)"' sin xzcos X = sin XCos xdx,
0 x x 0 x
which is a generahsatlon of a result included in [1].
— 1
B differentiatin cosec’x = — twice we et
y g x k_Z_,m = g
hat 1
cosec’x — 4 cosec’x = Y, gy which may be used similarly to
~ (x - kn
"’Isin“xcosbxlj L b
show that J'o de —f: sin® *xcos’x dx — %JJ' sin® 2 xcos®x dx

fora > 4,5 > 0. In principle, we can keep going in this way to express
an integral, of the form I, (a, b) with p even, in terms of standard integrals.

Numerical approach
Despite (from [2]) exact results like

L(40) = f” s‘:3xdx = [: ” sin'x o3 (0 dx = In2
and, forp > 1,
a,,(%) 2p(2p_1)§(p), p(n) (3" )C(p) odo (n) 2(2; 1) )

there is no known simple expression for 0, (x) when p is odd: numerical
cvaluation is needed.

the remaining

If Sy denotes the sum of the first N terms of o, (x) — xl‘”

terms, on expanding by the binomial theorem, equal
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2 o L[ pp+D(xV pe+DE+D@E+3) x\ }
Cvw =2 2 k”{l+ 20 (kn) * 2 (kn) + o

k=N+1

N =
Defining {y(p) = Y k" andZu(p) = Y, k7 = £() - tn(d) Cn(®)

may be written as aks=ell'ies of correction tef’r;g i
1 2 3
2+ B 5 g 1y DO DOD 2y

The values of § (p) are known exactly or can be readily calculated [4] and a
spreadsheet can be used to calculate Sy and {y (p). The values of y (p) then can
be deduced and the integrand in (1) computed for any non-zero value of x, ready
for numerical integration (the x = 0 value being 1 if @ = p and zero if a > p).

Choosing N = 50, and using an Excel spreadsheet, one finds that no
more than four of the correction terms of (4) are needed for maximum
accuracy (15 significant figures), even whenp = 2.

Tables 1 and 2 show evaluations of I,(a, b) for odd values of p, with

= 0 and b = 1 obtained by combining the trapezium rule estimates

using 2, 3, 4, 6, 8, 9, 12, 18, 24, 36 and 72 intervals as described in [S].
With only one exception, these results for odd p, even a, and b = 0 agree,
to 15 decimal places, with the result from {2] in the form

m-2
{2( 1y 2m)(m ¥ In(m - l)} form>k>

(—l m—k—1

Ly (2m,0) = ST

3 5 7 9
1.20844420945041

0.693147180559945

0.514649194262908 0.941887861102954

0.421751358464106 0.467613876007544

0.363777196180142 0.315848628851268 0.802756911753731

0.323642331508254 0.242080571455144 0.356440682776443
0.293928671969672 0.198644641285563 0.221696177772022 0.711448343691695
0.270874295806716 0.170031687922601 0.159469421290094 0.288084273586973

8 o
SwVmwaawma
w o

~

I

—_—

TABLE 1

a o
o
w —

p=3 5 7 9
0.845237493853565

0.384342908662528

0.241015389108362 0.730912531967594

0.173186372158086 0.298909128214203

0.134232907817172 0.172874563057750 0.661481242190141

0.109168841817002 0.116542930676375 0.250300558465676

0.091781575808846 0.085780524699383 0.135966634299365 0.609192606398828
0.079056265312896 0.066845181259216 0.087022659575664 0.215751935782790

AT=T- I - NV T N

—
[=4

TABLE 2
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2 x, results for greater values of b can be found

Using cos’x = 1 — sin
from

n

I@2n + %) = 2(-1)"(’;)1,,(‘1 + 2i, 1), where A = 0 or2,
i=0
but it is easier to calculate them directly on the spreadsheet.
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95.34 On evaluating the probability integral

In a previous issue of the Gagzette [1], Nick Lord showed how the
identity

J.:e_’zdx = Va/2

could be derived from Wallis's formula for & in an elementary way. While
his argument was later simplified [2], the following proof is even quicker. It
is certainly not new ~- it appears tucked away as an extended exercise in
Spivak's famous text [3, p. 371] — and undoubtedly it has been discovered
and rediscovered many times. Still it deserves to be far better known than it
is.

We begin with the elementary inequality

€ >1+x for every x.
Indeed, the graph of the exponential function is concave up and so never lies
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