https://doi.org/10.1017/jfm.2015.485 Published online by Cambridge University Press

P

@ CrossMark

J. Fluid Mech. (2015), vol. 780, pp. 480-502. (© Cambridge University Press 2015 480
doi:10.1017/jfm.2015.485

Critical control in transcritical shallow-water
flow over two obstacles

Roger H. J. Grimshaw' and Montri Maleewong*{

lDepartment of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK
2Depar‘[ment of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

(Received 2 June 2015; revised 10 August 2015; accepted 13 August 2015;
first published online 4 September 2015)

The nonlinear shallow-water equations are often used to model flow over topography.
In this paper we use these equations both analytically and numerically to study flow
over two widely separated localised obstacles, and compare the outcome with the
corresponding flow over a single localised obstacle. Initially we assume uniform flow
with constant water depth, which is then perturbed by the obstacles. The upstream
flow can be characterised as subcritical, supercritical and transcritical, respectively.
We review the well-known theory for flow over a single localised obstacle, where
in the transcritical regime the flow is characterised by a local hydraulic flow over
the obstacle, contained between an elevation shock propagating upstream and a
depression shock propagating downstream. Classical shock closure conditions are
used to determine these shocks. Then we show that the same approach can be
used to describe the flow over two widely spaced localised obstacles. The flow
development can be characterised by two stages. The first stage is the generation
of upstream elevation shock and downstream depression shock from each obstacle
alone, isolated from the other obstacle. The second stage is the interaction of two
shocks between the two obstacles, followed by an adjustment to a hydraulic flow over
both obstacles, with criticality being controlled by the higher of the two obstacles,
and by the second obstacle when they have equal heights. This hydraulic flow is
terminated by an elevation shock propagating upstream of the first obstacle and a
depression shock propagating downstream of the second obstacle. A weakly nonlinear
model for sufficiently small obstacles is developed to describe this second stage. The
theoretical results are compared with fully nonlinear simulations obtained using a
well-balanced finite-volume method. The analytical results agree quite well with the
nonlinear simulations for sufficiently small obstacles.

Key words: hydraulic control, shallow water flows, topographic effects

1. Introduction
1.1. Background

Shallow-water flow of a homogeneous fluid over bottom topography is a fundamental
problem in fluid mechanics and has been heavily studied from various points of
view. A widely used approach when the topography is a single localised obstacle
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is the application of hydraulic concepts which lead to the classification of the flow
in terms of the value of the upstream Froude number, defined as the ratio of the
uniform upstream flow to the linear long-wave speed. The flow is then described as
supercritical, subcritical or transcritical depending on whether the upstream Froude
number is greater than unity, less than unity, or close to unity, respectively; see for
instance the monograph by Baines (1995) for a comprehensive account of hydraulic
theory and the issues involved. In the supercritical case, waves generated by the
flow interaction with the obstacle propagate downstream away from the obstacle,
and the flow at the obstacle location is a locally steady elevation. In the subcritical
case, waves propagate upstream and downstream away from the obstacle, and the
flow at the obstacle location is a locally steady depression. When wave dispersion is
considered, steady lee waves are also formed downstream of the obstacle. Both these
cases can be well understood, at least qualitatively, using linearised theory.

However, linearised theory fails in the transcritical regime, which is the main
interest here, and then a nonlinear theory is needed to describe the locally steady
hydraulic flow over the obstacle, which has an upstream elevation and a downstream
depression, each terminated by upstream- and downstream-propagating undular bores.
A popular model here in the weakly nonlinear regime when the obstacle has a
small amplitude is the forced Korteweg—de Vries (KdV) equation; see Akylas (1984),
Cole (1985), Grimshaw & Smyth (1986), Lee, Yates & Wu (1989), Binder, Dias
& Vanden-Broeck (2006), Grimshaw, Zhang & Chow (2007) and the recent review
by Grimshaw (2010). Various aspects of the extension to finite amplitudes in the
long-wave regime can be found in El, Grimshaw & Smyth (2006, 2008, 2009).

Thus transcritical shallow-water flow is quite well understood for a single localised
obstacle, but there have been comparatively very few studies of the analogous case
when there are two widely separated localised obstacles. In the context of this paper,
the most relevant is the article by Pratt (1984), where a combination of steady
hydraulic theory, numerical simulations using the nonlinear shallow-water equations
and laboratory experiments are used to infer that the formation of dispersive waves
between the obstacles is needed to obtain a stable solution. More recently Dias &
Vanden-Broeck (2004) and Ee et al. (2010, 2011) have examined the possible presence
of such waves for steady flows, while Grimshaw, Zhang & Chow (2009) considered
the related problem of unsteady flow over a wide hole. Thus a new feature of interest
when considering two obstacles is that the waves generated by each obstacle may
interact in the region between them, and then the question is how this interaction
might affect the long-time outcome. In this paper we examine this scenario using
the nonlinear shallow-water equations, so that, although finite-amplitude effects are
included, wave dispersion is neglected and the generated waves are represented as
shock waves. Our emphasis is on the transcritical regime for two widely spaced
localised obstacles. The nonlinear shallow-water equations are solved numerically
using a well-balanced finite-volume method, and the results are shown in § 3. The
simulations are supplemented by a combination of fully nonlinear hydraulic theory
with classical shock closure conditions, and a reduced model used in the weakly
nonlinear regime, presented in § 2. We conclude in § 4.

1.2. Formulation

The basic model is one-dimensional shallow-water flow past topography, in which
the flow is described by the total local depth H and the depth-averaged horizontal
velocity U. The upstream flow is a constant horizontal velocity V > 0, and the forcing
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is due to a localised topographic obstacle f(x) so that the bottom is at z = —h +
f(x), where h is the undisturbed depth at infinity. Henceforth, we use non-dimensional
coordinates, based on a length scale h, a velocity scale /gh and a time scale of \/h/g,
in terms of which the equation system is

L4 HU),=0, H=1+¢—f, (1.1a,b)
U+ UU, + £, =0. (1.2)

In these non-dimensional coordinates, the constant upstream flow is Fr=V/\/gh, the
Froude number. Here the topography f(x) consists of two obstacles, each symmetrical,
and placed a distance L apart, with respective maximum heights (or depths) of € ,.
Our interest here is when €;, > 0, and the situation when either or both €, <0 will
be considered elsewhere. We assume that the separation distance L is much greater
than the width of the obstacles. Then the main parameters are the Froude number Fr,
and the maximum heights €; ,. This system is to be solved with the initial conditions

H=1, U=Fr, att=0. (1.3a,b)

This is equivalent to introducing the obstacles instantaneously at t=0 into a constant
flow. The solution will initially develop smoothly, but, being a nonlinear hyperbolic
system, we can expect the development of discontinuities in the derivatives of ¢ and U.
The classical procedure is then to introduce shocks, given by

—S[Z14+[HU]=0, —S[HU]+[HU*+ 1H*]=0. (1.4a,b)

Here S is the shock speed, and [- - -] denotes the jump across the shock. In the absence
of the bumps (f(x) =0), these classical shocks conserve mass and momentum.

In the transcritical regime when Fr~ 1, it will be useful also to consider a weakly
nonlinear model for small-amplitude topography, given by

—G— AL+ 308+ 3£=0, A=Fr—1. (1.5)

Here U=Fr+u and u=~ —¢. The reduced model (1.5) can be seen as a dispersionless
forced KdV equation; see the aforementioned references. For convenience, we present
an alternative derivation in appendix A. The initial condition (1.3) is replaced by

=0, attr=0. (1.6)
In this weakly nonlinear limit, the shock conditions (1.4) reduce to
(S— M1+ :[¢1=0. (1.7)
This can also of course be directly deduced from (1.5).
2. Hydraulic flow

2.1. Steady solutions

Here we consider the hydraulic theory, and to begin with we review the well-known
theory (see e.g. Baines 1995) for flow over a single obstacle. Then we will show how
this can be extended to obtain analogous solutions for flow over two obstacles. Thus
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FIGURE 1. (Colour online) Plot of (2.3) at equality. The intersections of the line €, =
const. with the curve (2.3) define Fr,,, respectively. The region below the curve defines
the subcritical and supercritical regimes, and the region above the curve is the transcritical
regime.

we seek steady solutions, so that, on omitting the time derivatives, (1.1) and (1.2)
integrate to
HU=(1+¢-HU=Q, ¢+3;U°=B. (2.1a,b)

Here Q and B are positive integration constants, representing mass flux and energy
flux, respectively (strictly, Q is volume flux, but we are assuming that the fluid density
has been scaled to unity; and B is the Bernoulli constant, while BQ is the energy flux).
Eliminating H or U gives

G 1 _B+1-f U U Q
2 +G2/3_ Q2/3 ’ _Hl/Z_Ql/Z_H3/2’

(2.2a,b)

which determines the local Froude number G as a function of the obstacle height f.
For non-critical flow, this solution must connect smoothly to U = Fr, ¢ =0, that is,
G = Fr, at infinity, and so Q = Fr, B=Fr?/2. Noting that then the right-hand side of
the first expression in (2.2) has a minimum value of 3/2 —¢,, when Fr=1, it can be
established that
Fr>  3Fr/3
O<e,<1l4+—— .
2 2
Here €, is the maximum obstacle height. This expression is plotted in figure 1
at equality (note that this is the curve BAE in figure 2.11 of Baines (1995)). It
defines the subcritical regime Fr < Fr, < 1 where Fr < G < 1, and the supercritical
regime 1 < Fr, < Fr where 1 < G < Fr and a smooth steady hydraulic solution
exists. In the subcritical regime a localised depression forms over the obstacle, and
in the supercritical regime a localised elevation forms over the obstacle. For small
(en)"? <« 1, recalling that A = Fr — 1, we find that

(2.3)

6 m 12 m
) +& 40 (). (2.4)

A, =+
pb 2 4
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FIGURE 2. Schematic for closure using classical shocks.

In the transcritical regime Fr, < Fr < Fr,, (2.3) does not hold and is replaced by

1+ Fr  3Fr/?
€n > —_— - .

2 2
Instead, we seek a solution which has upstream and downstream shocks propagating
away from the obstacle, and which satisfies the critical flow condition at the top of
the obstacle, that is, when f =¢,, G, #0. This condition implies that

(2.5)

3Q2/3

G=1, =B+1—¢, atf=¢,. (2.6a,b)

For a given ¢,, this relation defines B in terms of Q. At this critical location, U =
U,=0"? and 1+¢, —¢€, = 0%>. The local Froude number varies over the range G_ <
G < G4, where + and — denote the downstream and upstream values, respectively. It
transpires that, in order for the shocks to propagate away from the obstacle, the flow
is subcritical upstream where G_ <G <1, ¢{_>¢ > ¢, U_ < U < U, and supercritical
downstream where 1 <G <Gy, (. < <&y, Up > U > U,.

Before proceeding, we note that the expressions (2.2) hold both upstream and
downstream, yielding the relationships

UL
and so Us(1+¢0)'?=0, 74‘4}:3, (2.7a,b)
U2 2
Sl L L=, (2.8)

2 Ur 201+
G 1 B+l
> T T on
For given Q and B, these relations fix Uy and ¢. completely. But we have one
relationship (2.6) connecting B and Q, and so there is just a single constant to

determine. This is found using the classical shock closure described in the next
section.

(2.9)

2.2. Classical shock closure

Outside the obstacle, U = U, and ¢ = ¢ are constants, downstream and upstream,
respectively, and are connected to the undisturbed values U = Fr and ¢ = 0 far
downstream and upstream, using classical shock closure based on the shock conditions
(1.4); see figure 2. Since the steady hydraulic flow over the obstacle conserves mass
and energy, rather than mass and momentum, these are non-trivial conditions to
apply. Further, it transpires that we cannot simultaneously impose upstream and
downstream jumps which connect directly to the uniform flow. Instead, we first
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impose an upstream jump as specified by Baines (1995); see also El et al. (2009).
There is then a downstream jump which connects to a rarefaction wave; see figure 2.

First we consider the upstream jump, which connects ¢, U_ to 0, Fr with S_ <O.
The first relation in (1.4) gives

¢ (S.—U)=U_—Fr or S.¢ =Q-Fr, (2.10a,b)

and the second relation in (1.4) gives

A4+¢H)U-=Fr(S--U-)=¢_ <1+§2>. (2.11)
Eliminating S_, or U_ — Fr, yields the following expressions:
(+¢)U-~Fr*=¢2 <1+§2‘>, (2.12)
¢ 12
S_=Fr— [(1—{—4‘)(1—%—2_)] , (2.13)
¢ 1/2
(I+¢)Fr—¢_ {(1 —|—§)<1 + 2)} =0. (2.14)

Since we need S_ < 0, it follows that we must have ¢ > 0 and U_ < Q < Fr. The
system of equations is now closed, as the combination of (2.8) and (2.14) determines
¢_ in terms of B, so that finally all unknowns are obtained in terms of ¢, from (2.6).
Further, the condition {_ > 0 serves to define the transcritical regime (2.5) in terms
of the Froude number Fr and ¢,,.

Downstream, this procedure also determines U, > Fr, ¢, <0, but, in general, this
cannot be resolved by a jump directly to the state Fr, 0. Instead we must insert
a right-propagating rarefaction wave; see figure 2. The rarefaction wave propagates
downstream into the undisturbed state O, Fr, and so is defined by the values U, and
¢, where

U —2(1+¢)"*=Fr—2. (2.15)

It is then connected to the hydraulic downstream state U,, ¢, by a shock, using the
jump conditions (1.4) to connect the two states through a shock with speed S, > 0.
There are then three equations for the three unknowns ¢,, U,, S. and the system is
closed.

In the weakly nonlinear regime, when the forcing is sufficiently small (the
appropriate small parameter is a ~ ,/€,), the rarefaction wave contribution can
be neglected, as it has an amplitude of order o®> while the shock intensity is O(«). In
this limit we can solve the system of equations by an expansion in « and find that

4A3
30 =24F (66, + )7 +0@).  pr=300 20+ - (216a.b)

3¢s &2 3 3¢+ 3
Si:A_T—i_ﬁ—{_O(a)’ G:t:1+A_T+y:t+0(a),
2.17
9w e
=TT T
3¢2 3
Q=1+A+CiA—T+0(OI)- (2.18)
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Here B+ =O(a?®) and y. = O(«?) are small correction terms, which if needed explicitly
can be evaluated to leading order using the leading-order solution for ¢i. It is useful
to note here that using (2.16) and (2.4), the local Froude numbers

(6€.)'? > >
Gi=14—"7—+0@)=1+4,,+0) (2.19)

and are independent of A at the leading order in «. Also, since the transcritical
regime is defined by A, < A < A, it follows that, at the leading order in «, the local
downstream and upstream Froude numbers G, are outside this transcritical regime,
and hence the downstream and upstream flows are indeed fully supercritical and
subcritical, respectively.

2.3. Two obstacles

The same procedure can now be followed when there are two widely separated
obstacles. Based on our numerical simulations reported in § 3, the solution evolves
in two stages. In the first stage, the theory described above can be applied to each
obstacle separately. Then in the second stage, when the downstream-propagating
waves emitted by the first obstacle interact with the upstream-propagating waves
emitted by the first obstacle, an interaction takes place and there is an adjustment to
a new configuration. There are several scenarios depending on the obstacle heights
€1, and the Froude number Fr. For instance, if both obstacles satisfy the condition
(2.3) for subcritical or supercritical flow, then the solutions obtained for each obstacle
separately will again be obtained. On the other hand, if both obstacles satisfy the
condition (2.5) for transcritical flow, then at the end of the first stage a downstream
depression shock preceded by a rarefaction wave emitted by the first obstacle will
meet an upstream elevation shock emitted by the second obstacle. Our numerical
simulations show that these generate a new shock between the obstacles. The speed
Sin of this shock can be found from (1.4) where the conservation of mass law implies
that

Sii(tr- —01) =+ 6 )Us — 1+ 00U +0(@) =0, — 01 + O(@?).  (2.20)

Here the O(a®) error is due to the presence of the rarefaction wave. Since &_ >
0> &4+, the shock moves in the positive or negative direction depending on whether
0, > (<) Q,. Indeed, using the expressions (2.17) and (2.14),

S =A =21y + 0) + 0@ = H(6€)"* = (66)*] + O(a?) (2.21)

and is independent of A to this order. Thus, this shock will move towards the higher
of the two obstacles, that is, S;,; is positive or negative according to whether ¢, > €,
or € < €, respectively. This is followed by the interaction of this shock with either
the second or first obstacle, followed eventually by an adjustment to a final localised
steady state encompassing both obstacles; this is the second stage.

The final localised steady hydraulic state can now be determined as before, with the
criterion that criticality occurs at the higher obstacle so that the formulae in §§2.1
and 2.2 apply with €, = max[e|, €], the same as if the combination of the two
obstacles was a single obstacle. Indeed, the criticality determined at the first stage
at the higher obstacle persists into the second stage, while the flow at the lower
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FIGURE 3. (Colour online) Hydraulic solution for the case Fr =1 and unequal obstacle
heights €; = 0.1, €, = 0.2. In the steady region over both obstacles, O = 0.8923 and
B =0.5900, and G = 0.6584 at the crest of the first obstacle where the flow is locally
subcritical.

obstacle adjusts in the second stage to be locally subcritical if the lower obstacle is
the first obstacle, or is locally supercritical if the lower obstacle is the second obstacle.
Illustrative examples taken from the numerical simulations are shown in figures 3
and 4, respectively. Note that criticality is controlled by the higher obstacle which
has the same height in the two cases, and hence the same constant values of Q and
B are generated in the region containing both obstacles.

When the obstacles have equal heights, €; = €;, then also O = @, and the shock
speed S;,; = 0(c?), so that the error term in (2.20) is needed to determine the shock
speed. This error term is due to the neglected rarefaction wave, and when this has
a negative mass flux, as sketched in the scenario shown in figure 2, S;, < 0. The
numerical solutions show that this is indeed the case. Hence it is then the second
obstacle that controls criticality. An example taken from our numerical simulations is
shown in figure 5. In the region over both obstacles combined, there is a steady state
with constant values of Q and B satisfying the relation (2.6). The local Froude number
G =1 at the crest of the second obstacle, where G passes smoothly from subcritical
G < 1 to supercritical G > 1. The flow is subcritical over the first obstacle, but G=1
at the crest of the first obstacle. At this location there is a discontinuity in the slope
of G, and hence also in the slopes of U and H, but all quantities are continuous. This
can be deduced from (2.2) and (2.6) where near the crest of either obstacle

e —1)
(G—1)y°=~ T (222)
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FIGURE 4. (Colour online) Hydraulic solution for the case Fr=1 and unequal obstacle
heights €, = 0.2, ¢, = 0.1. In the steady region over both obstacles, QO = 0.8923 and
B=0.5900, and G =1.463 at the crest of the second obstacle where the flow is locally
supercritical.

There are two possible solutions. We consider for simplicity the generic case when
€, —f~8(xxL)?>, §>0. Then at the second obstacle there is a smooth solution for
which G— 1~ C(x—L), C=+/358/20%3, but at the first obstacle the solution is 1 —
G =~ C|x+ L|, which is continuous but has a discontinuous slope. This can be regarded
as a stationary contact discontinuity. This scenario is asymmetrical and so differs from
those considered by Pratt (1984), who examined only symmetrical configurations and
showed that these could not be stable. Further, he pointed out that it is not possible to
construct a steady stable solution using a stationary shock, as this would then dissipate
energy (see the last paragraph of his § 1 and footnote on p. 1216).

2.4. Reduced model

Before presenting the numerical results, it is useful to examine the same scenario
as presented above in §§2.1-2.3 using the reduced model, especially as then the
initial value problem can be solved (see e.g. Grimshaw & Smyth 1986; Grimshaw
2010). With the initial condition that { = 0 at t+ = 0, (1.5) can be solved using
characteristics,

dx

dr 2

x=xy, ¢=0, atr=0.

a3 S
2

(2.23)
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FIGURE 5. (Colour online) Hydraulic solution for the case Fr =1 and equal obstacle
heights €, =€, =0.1. In the steady region over both obstacles, 0 =0.9469 and B =0.5464,
and G =1 at the crest of the first obstacle, but G < 1 in the vicinity of the first obstacle
where the flow is locally subcritical.

The system (2.23) can be integrated to yield

322 1
AL — Vi E(f(x) —f(x0)), (2.24a)
3¢ =2AF A[BA* +6[f(xo) —f()]}V2 (2.24b)

Here the upper sign is chosen until the characteristic reaches a turning point where
2A =3¢ and then the lower sign is chosen. When A =0 the upper (lower) sign is
chosen on the left-hand (right-hand) side of the maximum point where f =¢,,. Where
characteristics intersect, a shock forms with speed S, given by (1.7) Then when

2A2 < 3612 (225)

there is a critical x,. for each obstacle such that all characteristics with x; < xq.
have a turning point, propagate upstream and form an upstream shock. Otherwise all
characteristics with xq > xo. have no turning points, propagate downstream and form a
downstream shock. The critical point is defined by 3f(xo.) = 3€;, — 2A2. Then, in the
first stage, a steady solution will emerge over each obstacle, terminated by upstream
and downstream shocks, determined by that characteristic emanating from x,. and the
corresponding steady solution is found using (2.24a),

AA* — 12A7 + 927 = 6(€,, — (X)), (2.26a)

3¢ =2A Fsign[x F L]{6[€,, — f(x)]}"/>. (2.26b)
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The upstream (downstream) shock has a magnitude ¢, where
3¢: =2A £ {6¢,}"?, (2.27)

respectively. Note that ¢, >0 and {_ <0 so that the upstream shock is elevation and
the downstream shock is depression. The speeds of these shocks are found from (1.7),
that is,

48 =2A F {6¢,,}'? (2.28)

and S_ <0, S, >0, while the local Froude number is

{6}

G=1+A-3;/2 andso G=17F >

(2.29a,b)

In the first stage, this local steady solution holds only for each obstacle separately.
When there are two obstacles, the upstream elevation shock from the obstacle will
meet the downstream depression shock from the obstacle. This generates a new shock,
with speed

Sin=A = (s + ) = L6 — (662, (2:30)

which is independent of A, and is positive or negative according to whether €, > €,
or €] < €,, respectively. These results all agree with the small-amplitude limits of the
corresponding expressions in the preceding subsections.

3. Numerical results
3.1. Numerical method

The nonlinear shallow-water equations (1.1) and (1.2) can be written as
U+ F.=9, (3.1

where %, % and ¥ represent the density vector, flux vector and source term,
respectively,

H o UH To
we[B]. F el 9= Y] G2

The computational domain, 0 < x < x;, is discretised by uniform cell size Ax. The
cell centre is denoted by x;, where x;_i,, and x;,, refer the left and the right cell
interface, respectively.

In discretisation form, (3.1) can be written as

%er —ur n ‘0}\1':-1/2 - 5471—1/2
At Ax

=9 (3.3)

Superscript n refers to the time-step level. The gradient of the flux function is
approximated by the difference of numerical fluxes at the left, %, 12> and the right,
Fl1 ) of cell interfaces, respectively. At the cell interface i+ 1/2,

9711/2 = y(q/ij—lﬂ—’ %iil/z+)~ (3.4)
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Numerical flux at the cell interface is a function of an unknown variable on the left
and the right limits, and

H}! 1/2 H;! 1/2
%nl = |: /2= 2:| , %nl = |: " +2 :| . (35a,b)
y Hzn+1/27 Ui e Hin+1/2+Uin+l

Applying the hydrostatic reconstruction from Audusse et al. (2004),
H \p =max(0, H;i+fi—fiy12) and  H},,,», =max(0, Hiyi +fir1 —fiv12). (3.6a,b)

Bottom slope is now included in the reconstruction of water depth. The value of
bottom height at the corresponding interface is approximated by upwind evaluation,

Six12 = max(f;, fiz1). 3.7
To obtain a well-balanced scheme, the gradient of source term and flux difference
must be balanced at steady state (Audusse et al. 2004), so (3.3) can be rewritten as
ﬁ%""!‘] - ﬁ%n + {%ﬂ(%n %li]’ﬁaf;-‘r]) - 9}«”(%,115 %inaﬁ—laﬁ)
At Ax
with modified numerical fluxes

=0, (3.8)

FU, l+1’fl’f+1)_ (%11/27’%11/2+)+[07Hn Hln+1/2 172, (3.9a)
TIU U Foo o)) = T U oy Ul o) + 10, HEy = HE 5, 1/2. (3.9D)

In this work, we apply the weighted average flux (WAF) proposed by Toro
(1992), Toro, Spruce & Speares (1994) and Siviglia & Toro (2009) to obtain the
approximation of F (%}, , %,,,).- We also apply the minmod flux limiter based
on the total variation diminishing (TVD) proposed by Toro (1992) in our numerical
scheme to remove spurious oscillations when simulating the moving shock problem.

In our simulations, we apply transmissive boundaries to allow waves to propagate
outwards on both boundaries. The bottom elevation is assumed to be two Gaussian
obstacles given by

f0) = €1 exp(—(x — x,)°/w) + € exp(—(x — x,)* /W), (3.10)

where €, and ¢, are the obstacle heights, x, and x, = x, + L are the centre locations
of the first and the second obstacle, respectively, and the width of each obstacle is
w=10.

3.2. Equal obstacle heights

3.2.1. The case ¢, =0.1, ¢, =0.1

Simulations for a subcritical case Fr = 0.5 are shown in figure 6. Initially, in the
first stage (r = 50), steady depression waves are produced over each obstacle, and
small transient elevation waves travel upstream from each obstacle. In the second stage
(t=70), the transient wave from the second obstacle has passed over the first obstacle
and proceeded upstream. In the final stage (# =300), only the steady depression waves
over each obstacle are left. In this case, the Froude number is outside the transcritical
regime for both obstacles; see (2.3) and figure 1.
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FIGURE 6. (Colour online) Simulations for Fr = 0.5, ¢ =0.1, € =0.1: (a) t = 50;
(b) t="70; and (c¢) t=300.

Simulations for a transcritical flow case Fr = 1 are shown in figure 7. In the
first stage (¢t = 50), a transcritical flow is generated over each obstacle separately,
consisting of an elevation shock propagating upstream connected by a steady solution
to a depression shock propagating downstream. The depression shock from the first
obstacle meets the elevation shock from the second obstacle at around # =130 forming
a single shock, which then propagates upstream. In the second stage (f =400), there
is an adjustment in which a locally steady subcritical depression wave forms over the
first obstacle, while a locally steady transcritical flow forms over the second obstacle.
At the same time, the elevation shock and depression shock outside both obstacles
continue to propagate in their separate ways. As time increases (¢ = 1000), the flow
over both obstacles reaches a locally steady state with criticality controlled by the
second obstacle.

Next, we examine a quantitative comparison between the nonlinear shallow-water
simulations and the theoretical results from the reduced model presented in §3.2.
From the numerical simulations shown in figure 7 over the time range ¢ = 400-1000,
we find that the respective shock magnitudes and speeds are ¢, = —0.2574,
.- =0.2670, S, =0.1880, S_ = —0.1980. With ¢, = 0.1 the local Froude numbers
in (2.29) are G, = 1.3873, G_ = 0.6127, while the shock magnitudes from (2.27)
are ¢, = —0.2582, ¢ =0.2582, and the shock speeds from (2.28) are S, = 0.1937,

_ = —0.1937. These values are in reasonable agreement with the numerically
determined values. Using the more exact formulae (2.16) and (2.17) up to the O(a?)
terms leads to ¢, = —0.2468, ¢_ = 0.2691 and S, = 0.1871, S_ = —0.1996, which
is an improvement. Note that the effective small parameter here is (6¢,)"? =0.7746
and so is not small enough for the reduced model to be completely accurate.

Simulations for a supercritical flow case Fr = 1.5 are shown in figure 8. Initially,
in the first stage (¢ = 30), steady elevation waves are produced over each obstacle,
and small transient depression waves travel downstream from each obstacle. At the
beginning of the second stage (+=70), the transient wave from the first obstacle passes
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FIGURE 7. (Colour online) Simulations for Fr = 1.0, ¢, = 0.1, ¢ =0.1: (a) t = 50;
(b) t=130; (c) t=400; and (d) t=1000.

over the second obstacle and proceeds upstream. In the final stage (r=400), only the
steady elevation waves over each obstacle are left. In this case, the Froude number is
outside the transcritical regime for both obstacles; see (2.3) and figure 1.

It should be noted that, in the reduced model, the local Froude number (2.29)
satisfies 0.6127 < G < 1.3873 for €, = 0.1. This prediction is consistent with the
nonlinear simulations shown in figure 6 for subcritical flow, in figure 7 for transcritical
flow and in figure 8 for supercritical flow.

3.2.2. The case ¢, =0.2, €,=0.2

Four simulations for Fr=0.5, 1.0, 1.5, 2.0 are shown in figures 9-12. When ¢, =
0.2, transcritical flow occurs in the range of 0.48 < Fr < 1.56; see (2.3) and figure 1.
The reduced model predicts transcritical flow when 0.45 < Fr < 1.55; see (2.4). Thus
the flow is slightly transcritical for Fr=0.5 and 1.5, respectively nearly subcritical or
supercritical, while it is transcritical for Fr=1.0, and supercritical for Fr=2.0. In all
cases we expect the reduced model to provide quite good interpretation.

The nearly subcritical case shown in figure 9 can be compared with the subcritical
case shown in figure 6 for €, =€, =0.1. Although the first stage (=30, 60) is similar,
there are now visible two small rarefaction waves propagating to the left, and in the
second stage (=130, 800) a pronounced asymmetry develops with a larger depression
wave over the second obstacle. This is due to this case being in the transcritical
regime, and hence the second obstacle controls criticality.

The transcritical case shown in figure 10 is qualitatively similar to that in figure 7
for €, =0.1, €, =0.1. From the numerical simulations shown in figure 7 over the time
range ¢t =40-800, we find that the respective shock magnitudes and speeds are ¢, =
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FIGURE 8. (Colour online) Simulations for Fr = 1.5, ¢, =0.1, ¢ =0.1: (a) t = 30;
(b) t=060; and (¢) r=400.
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FIGURE 9. (Colour online) Simulations for Fr =0.5, ¢ =0.2, ¢ =0.2: (a) t = 30;
(b) t=060; (¢) t=130; and (d) r=800.

—0.3600, ¢_=0.3810, S, =0.2535, S_=-0.2814. With ¢, =0.2 the local Froude
numbers in (2.29) are G, = 1.5477 and G_ = 0.4523, while the shock magnitudes
from (2.27) are ¢, =—0.3651 and {_ =0.3651, and the shock speeds from (2.28) are
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FIGURE 10. (Colour online) Simulations for Fr = 1.0, ¢ =0.2, € =0.2: (a) t = 40;
(b) t=200; (¢) t=400; and (d) t=800.

S+ =0.2739 and S_ = —0.2739. These values are in reasonable agreement with the
numerically determined values. Using the more exact formulae (2.16) and (2.17) up to
the O(a?) terms leads to ¢, =—0.3422, ¢_=0.3867 and S, =0.2603, S_=—0.2853,
which is overall some improvement. But note here that the effective small parameter
is (6€,,)"/> =1.0954 and can hardly be considered small.

The nearly supercritical case shown in figure 11 can be compared with the
supercritical case shown in figure 8 for ¢, =€, =0.1. Although the first stage (+=300)
is rather similar, there is already an asymmetry in that the elevation wave over the
second obstacle is already slightly smaller than that over the first obstacle, indicating
that the adjustment process to the second obstacle is beginning. This adjustment
continues at ¢ =300 and the final locally steady state is achieved at ¢t = 660, 1200, in
which there is criticality controlled by the second obstacle, and a locally subcritical
flow over the first obstacle.

The fully supercritical case is shown in figure 12 and can also be compared with
the supercritical case shown in figure 8 for €; =€, =0.1. It is quite similar, although
the time then to reach the second stage is much shorter.

3.3. Unequal obstacle heights

3.3.1. The cases €, =0.01, €,=0.02 and ¢, =0.1, ¢,=0.2

A transcritical case (Fr=1) when the second obstacle is larger is shown in figure 13
for quite small amplitudes. At the first stage (+=150), each obstacle generates elevation
and depression shocks that can be described by the single-obstacle theory. As time
increases (t = 460), the depression shock from the first obstacle interacts with the
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FIGURE 11. (Colour online) Simulations for Fr=1.5, ¢, =0.2, ¢ =0.2: (a) t=100;
(b) t=300; (c) t=0660; and (d) t=1200.

upstream elevation shock generated by the second obstacle. A new shock is formed,
called an intermediate shock as described in the analysis of §2. Since the second
obstacle is larger, the intermediate shock travels upstream and passes over the first
obstacle, leaving a locally steady depression wave in a locally subcritical flow (¢ =
1000). The speed of the intermediate shock is greater than the speed of the travelling
elevation shock from the first obstacle. These two shocks merge and finally form a
new shock moving further upstream (¢ = 1800).

Next, we compare these nonlinear simulations quantitatively with theoretical results
from §2. For ¢, = 0.01, we find from the nonlinear simulations that the upstream
shock magnitude and speed are (. = 0.0822 and S_ = —0.0615, while the reduced
model predicts that ¢ = 0.0816 and S_ = —0.0612, and using the more exact
formulae (2.16) and (2.17) leads to ¢_ = 0.0828 and S_ = —0.0619. Similarly, for
the second obstacle with €, =0.02, the downstream shock magnitude and speed from
the simulations are ¢, = 0.1134 and S, = 0.0847 while the reduced model predicts
that ¢, = —0.1155 and S, = 0.0866, and using the more exact formulae (2.16) and
(2.17) leads to ¢ = 0.1132 and S, = 0.0853. These comparisons show very good
agreement for these small-amplitude obstacles. Further, the intermediate shock speed
from the simulation is §;,, = —0.0262, while the theoretical expression (2.30) yields
Sy = —0.0254. Also, note that for the nonlinear simulations when ¢ = 1000-1800,
the two upstream elevation shocks merge to form a new one with the new speed
S_=—-0.0867, which is nearly the addition of S;, and S_ (for ¢, =0.01).

A case with higher obstacle amplitudes, €, =0.1, ¢, =0.2, is shown in figure 14.
The flow behaviour is quite similar to the smaller-amplitude case. Here the
intermediate shock speed from the simulation is S;, = —0.1286, but from (2.30),
Sy = —0.0802. The quite large difference is due to higher-order nonlinear effects.
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FIGURE 12. (Colour online) Simulations for Fr =2.0, ¢ =0.2, ¢ =0.2: (a) t = 10;
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FIGURE 14. (Colour online) Simulations for Fr =1.0, ¢ =0.1, € =0.2: (a) t =50;
(b) t=280; (¢) t=150; and (d) t=290.

3.3.2. The cases €, =0.02, €, =0.01 and ¢, =0.2, ¢, =0.1

A transcritical case (Fr=1) when the first obstacle is larger is shown in figure 15
for quite small amplitudes. At the first stage (+ = 150), each obstacle generates
elevation and depression shocks that can be described by the single-obstacle theory.
As time increases (t =460), the downstream depression shock from the first obstacle
interacts with the upstream elevation shock generated by the second obstacle,
and an intermediate shock is formed. Because the first obstacle is larger, it now
controls criticality. The intermediate shock travels downstream and passes over the
second obstacle, leaving a locally steady elevation wave (¢ = 1400) in a locally
supercritical flow. The speed of the intermediate shock is greater than the speed
of the downstream-travelling depression shock from the second obstacle. These two
shocks merge and form a new shock moving further downstream (¢ = 1800).

Next, we compare these nonlinear simulations quantitatively with the theoretical
results. For €, =0.02, we find from the nonlinear simulations that the upstream shock
magnitude and speed are (- = 0.1170 and S_ = —0.0880, while the reduced model
predicts that ¢ =0.1155 and S_ = —0.0866, and using the more exact formulae (2.16)
and (2.17) leads to ¢ =0.1165 and S_ = —0.0870. Similarly, for the second obstacle
with €, =0.01, the downstream shock magnitude and speed from the simulations are
¢, =—0.0811 and S, =0.0607, while the reduced model predicts that {, = —0.0816
and S, =0.0612, and using the more exact formulae (2.16) and (2.17) leads to ¢{_ =
0.0802 and S_ = —0.0604. These comparisons show very good agreement for small-
amplitude obstacles. Further, the intermediate shock speed from the simulation is S;,; =
0.0260, while the theoretical expression (2.30) yields S;,; =0.0254. Also, note that for
the nonlinear simulations when ¢ = 1400-1800, the two downstream depression shocks
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FIGURE 15. (Colour online) Simulations for Fr=1.0, ¢, =0.02, ¢, =0.01: (a) t=150;
(b) t=460; (c) t=1400; and (d) t= 1800.

merge to form a new shock with the new speed S, = 0.0812, which is nearly the
addition of S;,; and S, (for € =0.01).

A case with higher obstacle amplitudes, € =0.2, €, =0.1, is shown in figure 16. The
flow behaviour is similar to the smaller-amplitude case. Here the intermediate shock
speed from the simulation is S;,, = 0.0281, but from (2.30), S;,; =0.0802. Again, the
quite large difference is due to higher-order nonlinear effects.

4. Summary

Transcritical shallow-water flow over two localised and widely spaced obstacles
has been examined using the fully nonlinear shallow-water equations (1.1) and (1.2)
and with a combination of numerical simulations and theoretical analysis based on
hydraulic flow concepts. For a single obstacle, the solution is typically a locally steady
hydraulic flow over the obstacle contained between an upstream elevation shock and a
downstream depression shock. For the case of two obstacles, there are two stages. At
the first stage, each obstacle generates an upstream-propagating elevation shock and a
downstream-propagating depression shock, each well described by the single-obstacle
theory. Then, in the second stage, the downstream-propagating depression shock from
the first obstacle interacts with the upstream-propagating elevation shock from the
second obstacle to produce an intermediate shock, which propagates towards the
larger obstacle, or, if the obstacles have equal heights, towards the second obstacle.
There is an adjustment to a locally steady flow over both obstacles, where the higher
obstacle controls criticality, or if the obstacles have equal heights, the second obstacle
controls criticality. This outcome agrees with the analytical theory based on hydraulic
flow concepts extended here from a single obstacle to two obstacles.
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FIGURE 16. (Colour online) Simulations for Fr =1.0, ¢ =0.2, ¢ =0.1: (a) t =50;
(b) t=280; (¢) t=400; and (d) t = 650.

As is known, the case of flow over a single negative obstacle, or hole, is more
complicated, as the shock waves are generated at the obstacle location; see Grimshaw
& Smyth (1986) and Grimshaw et al. (2007, 2009). Hence we expect that the case
when either or both of the obstacles are holes could lead to different and more
complicated scenarios, which will be the subject of a future study. Further, the
present study is restricted to non-dispersive waves. Extensions to include even just
weak dispersion using the forced KdV equation, or the fully nonlinear Su—Gardner
equations, as done by El et al. (2009) for a single obstacle, will certainly lead to
rather different behaviour. In that case, the shocks are replaced by undular bores
and the shock interactions described here are replaced by the interactions of these
nonlinear wave trains. For instance, some of the numerical simulations reported
by Grimshaw et al. (2009) using just the forced KdV equation indicate that the
interaction of these nonlinear wave trains can produce very complicated behaviour.
This is also a topic needing much further study.
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Appendix A

The weakly nonlinear model (1.5) for small-amplitude topographic forcing in the
transcritical regime can be derived as follows. First, we introduce the Riemann
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variables
R=U+2C, L=U-2C, C=+/H, (A la,b)

so that (1.1) and (1.2) become
R+ U+COR+£=0, L+ U—C)L+f=0. (A 2a,b)

Then we assume that f ~ > where o < 1, and that { ~ o, ¢, ~a?, u=U — Fr~a«a
and A = Fr — 1 ~ «. Next, noting that U + C = Fr + 1 4+ O(«), we can find an
approximation to the right-going Riemann invariant in the vicinity of the topography,
_ f 3 e f 3
R_Fr+2—§+0(a) so that u+§—Z+§+0(a ). (A3a,b)
Here a transient propagating rapidly with a speed Fr+4 1+ O(«) to the right is ignored.
Then we find that, for the left-going Riemann invariant,

L=2U / H = cLy 3
—(Fr+2)+§+0(oe) Fr—2—2§+7+?+0(a ),  (Ada)
_ _37_ rt2 f 3 _3£ 2
U-C= 2[ ! 5 +4+0(a)_A 5 + O(a?). (A 4b)

Thus, finally, the equation for L in (A 2) reduces to (1.5), with an error of O(a?).
Similarly, the mass shock condition in (1.4) reduces to (1.7) with an error of O(a?),
while the momentum shock condition has all terms of O(c?).
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