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1. Introduction

In the study of Dirichlet series, Harald Bohr in 1914 showed a remarkable
phenomenon saying that

Theoremal 1.1 Bohr theorem. Let F (z) =
∑+∞
n=0 anz

n be a holomorphic function
in the open unit disk D = {z ∈ C : |z| < 1} such that |F (z)| � 1 for all z ∈ D. Then

+∞∑
n=0

|anzn| � 1, |z| � 1
3
. (1.1)

Moreover, the constant 1/3, called the Bohr radius, is the best possible.

This inequality for the best constant 1/3 was actually established independently
by Wiener, Riesz and Schur. This old result was forgotten seemly until 1995 when
Dixon applied the Bohr theorem to the characterization of the long-standing prob-
lem of Banach algebras satisfying the von Neumann inequality [14]. Over the last
two decades, the Bohr theorem has obtained great attention. The study of the Bohr
radius for holomorphic functions in several complex variables becomes very active,
see e.g., [2,5,9,12]. See [26] for an operator-theoretic proof of Bohr’s inequal-
ity and more operator-valued generalizations in the single variable case [27], in
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multivariable cases for free holomorphic functions in non-commutative setting [28–
30]. The Bohr type inequality has also been formulated for holomorphic functions
valued in Banach spaces [8,23,25]. The reader may refer to the survey [1] and ref-
erences therein for various generalizations and variants of the Bohr theorem, such
as in the setting of complex polynomials, harmonic (or poly-harmonic) mappings,
holomorphic functions in several complex variables and more abstract settings.

Historically, Bohr in [10] discovered a weak version of theorem 1.1 for |z| � 1/6
by the Carathéodory inequality

|F (z)| � |γ| + 1 + r

1 − r
|β| + 2r

1 − r
sup
z∈D

ReF (z), r = |z| < 1,

for the holomorphic function F (z) in D with F (0) = β + γi for β, γ ∈ R.
The Carathéodory inequality above reveals that the modulus of a holomor-

phic function is essentially bounded by its real part. Another related and classical
inequality is the well-known Borel-Carathéodory theorem (cf. [24]).

Theoremal 1.2 Borel-Carathéodory theorem. Let F (z) be a holomorphic function
in D with A = supz∈D ReF (z) < +∞. Then, we have, for r = |z| < 1,

|F (z) − F (0)| � 2r
1 − r

(A− ReF (0)),

and its corollary

|F (z)| � 1 + r

1 − r
|F (0)| + 2r

1 − r
A.

As a generalization of the class of holomorphic functions of one complex vari-
able, the theory of slice regular functions of one quaternionic variable was initiated
by Gentili and Struppa [16] and further developed for Clifford algebras [11] and
octonions [17]. Based on the concept of stem functions, these three function classes
were eventually unified and generalized into real alternative algebras [18]. Following
the historical path, theorems 1.1 and 1.2 recently have been generalised into the
non-commutative (but associative) algebra of quaternions for slice regular functions
[13,31]. The interested readers refer to [21] and [22] for the monogenic versions of
theorems 1.1 and 1.2 in the framework of quaternionic analysis, respectively.

In the present paper, we shall establish the Bohr theorem for slice regular func-
tions over the non-commutative and non-associative algebra of octonions, which is
the largest (finite-dimensional) alternative division algebras.

Theorem 1.3. Let f(x) =
∑+∞
n=0 x

nan with an ∈ O be a slice regular function in
the open unit ball B of O such that |f(x)| � 1 for all x ∈ B. Then

+∞∑
n=0

|xnan| � 1, |x| � 1
3
.

Moreover, the constant 1/3 is sharp.
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Remark 1.4. Note that Della Rocchetta, Gentili and Sarfatti have established
the special case of theorem 1.3 for quaternions in [13] where regular quaternionic
rational transformations in [6,32] are heavily used due to the fact that quaternions
are a skew but associate field. However, these results are still unknown for the
algebra of octonions. To overcome the difficulties caused by the non-commutativity
and non-associativity of octonions, our proof turns back to the relationship between
slice regularity and complex holomorphy (see lemma 2.3) and requires some more
technical results (see lemmas 3.1 and 5.1).

Remark 1.5. Restricted to each slice, the function f described in theorem 1.3 can
be viewed, by lemma 2.3, as the vector-valued holomorphic function from D into the
unit ball of C

4 endowed with the standard Euclidean norm. Blasco introduced the
Bohr radius for holomorphic functions from D into the unit ball of C

n(n � 2) and
showed that it is zero; see [8, theorem 1.2] for more details. From this point of view,
the theory of slice regular functions is different from the vector-valued holomorphic
functions.

See [33] for generalized Bohr radius for slice regular functions over quaternions.
What is more, by a recent result in [34, proposition 3.6], we formulate a new
generalized version of theorem 1.1 for the associative algebra of quaternions H.

Theorem 1.6. Let f(x) =
∑+∞
n=0 x

nan with an ∈ H and g(x) =
∑+∞
n=0 x

nbn with
bn ∈ H be slice regular functions in the open unit ball BH of H such that |f(x)| �
|g(x)| for all x ∈ BH. Then

+∞∑
n=0

|xnan| �
+∞∑
n=0

|xnbn|, |x| � 1
3
.

Note that inequality (1.1) can be rewritten as

+∞∑
n=1

|anzn| � 1 − |F (0)| = dist (F (0), ∂D), |z| � 1
3
.

From this viewpoint, we give another version of the Bohr theorem for octonions as
follows.

Theorem 1.7. Let f(x) =
∑+∞
n=0 x

nan with an ∈ O be a slice regular function in
the open unit ball B of O such that f(B) ⊂ Π := {x ∈ O : Rex � 1}. Then

+∞∑
n=1

|xnan| � dist (f(0), ∂Π), |x| � 1
3
.

The remaining part of this paper is organized as follows. Section 2 is devoted
to necessary preliminaries for slice regular functions over octonions. To prove
theorem 1.3, we establish in § 3 the analogue of Wiener inequality for slice reg-
ular functions over octonions making use of the splitting lemma. Thereafter, the
proof of theorem 1.6 is also given in § 3. In § 4, we first formulate the coefficient
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estimate for the Carathéodory class in O which allows to extend theorem 1.2 into
the octonionic setting (see theorem 4.2) and then apply it to prove theorem 1.7.
Besides, the growth theorem is proven for the Carathéodory class, which has its own
independent interest. In § 5, as a further application of theorem 4.2, the 1/2-covering
theorem is established for slice regular functions over octonions with convex image.

2. Preliminaries

In this section, we recall necessary definitions and preliminary results used in the
sequel for slice regular functions from [18].

2.1. The algebra of octonions

Denote by C,H,O the algebras of complex numbers, quaternions and octo-
nions, respectively. Let {1, i, j, k} be the standard basis of the non-commutative,
associative, real algebra of quaternions with the multiplication rules

i2 = j2 = k2 = ijk = −1.

The conjugate of a = x0 + x1i+ x2j + x3k ∈ H (x0, x1, x2, x3 ∈ R) is defined as
a = x0 − x1i− x2j − x3k. By the well-known Cayley-Dickson process, the real
algebra of octonions can be built from H as O = H + lH with a+ lb = a− lb,
(a+ lb) + (c+ ld) = (a+ c) + l(b+ d) and (a+ lb)(c+ ld) = (ac− db) + l(ad+ cb)
for all a, b, c, d ∈ H. As a consequence, {1, i, j, k, l, li, lj, lk} forms the canonical
real vector basis of O. Every element x ∈ O can be composed into the real part
Rex = (x+ x)/2 and the imaginary part Imx = x− Re (x). Define the modulus of
x as |x| =

√
xx, which is exactly the usual Euclidean norm in R

8. Furthermore, the
modulus is multiplicative, i.e., |xy| = |x||y| for all x, y ∈ O. Every non-zero element
x ∈ O has a multiplicative inverse given by x−1 = |x|−2x. The construction above
shows that O is a non-commutative, non-associative, normed and division algebra.
See for instance [4] for more explanation on the octonions.

The set of square roots of −1 in O is the six-dimensional unit sphere given by

S = {I ∈ O | I2 = −1}.

For each I ∈ S, denote by CI := 〈1, I〉 ∼= C the subalgebra of O generated over R

by 1 and I.
Notice that each x ∈ O can be expressed as x = α+ βIx with α ∈ R, β ∈ R

+ and
Ix ∈ S. This inconspicuous observation allows decomposing O into ‘complex slices’

O =
⋃
I∈S

CI ,

which derives the remarkable notion of slice regularity over octonions.
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2.2. Slice functions

Given an open set D of C, invariant under the complex conjugation, its
circularization ΩD is defined by

ΩD =
⋃
I∈S

{
α+ βI : ∃ α, β ∈ R, s.t. z = α+ iβ ∈ D

}
.

A subset Ω in O is called to be circular if Ω = ΩD for some D ⊆ C. The open
unit ball B = {x ∈ O : |x| < 1} and the right half-space {x ∈ O : Rex > 0} are two
typical examples of the circular domain.

Definition 2.1. A function F : D −→ O ⊗R C on an open set D ⊆ C invariant
under the complex conjugation is called a stem function if the O-valued components
F1, F2 of F = F1 + iF2 satisfies

F1(z̄) = F1(z), F2(z̄) = −F2(z), ∀ z = α+ iβ ∈ D.

Each stem function F induces a (left) slice function f = I(F ) : ΩD −→ O given by

f(x) := F1(z) + IF2(z), ∀ x = α+ Iβ ∈ ΩD.

We will denote the set of all such induced slice functions on ΩD by

S(ΩD) :=
{
f = I(F ) : F is a stem function on D

}
.

Each slice function f is induced by a unique stem function F since F1 and F2 are
determined by f . In fact, it holds that

F1(z) =
1
2
(
f(x) + f(x)

)
, z ∈ ΩD,

and

F2(z) =
{

1
2Ix

(
f(x) − f(x)

)
if z ∈ ΩD \ R,

0, if z ∈ ΩD ∩ R,

Recall that a C1 function F : D −→ O ⊗R C is holomorphic if and only if its
components F1, F2 satisfy the Cauchy-Riemann equations

∂F1

∂α
=
∂F2

∂β
,

∂F1

∂β
= −∂F2

∂α
, z = α+ iβ ∈ D.

Definition 2.2. A (left) slice function f = I(F ) on ΩD is regular if its stem func-
tion F is holomorphic on D. Denote the class of slice regular functions on ΩD
by

SR(ΩD) :=
{
f = I(F ) ∈ S(ΩD) : F is holomorphic on D

}
.

For f ∈ SR(ΩD), the slice derivative is defined to be the slice regular function f ′

on ΩD obtained as

f ′(x) := I
(
∂F

∂z
(z)

)
=

1
2
I

(
∂F

∂α
(z) − i

∂F

∂β
(z)

)
.
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Recall that O is non-associative but alternative, i.e., the associator (x, y, z) :=
(xy)z − x(yz) of three elements x, y, z ∈ O is an alternating function in its argu-
ments. Meanwhile, the Artin theorem asserts that the subalgebra generated by two
elements of O is associative. Hence, a class of examples of slice regular functions is
given by polynomials of one octonionic variable with coefficients in O on the right
side. Indeed, each slice regular function f defined in B admits the expansion of
convergent power series

f(x) =
∞∑
n=0

xnan, {an} ⊂ O,

for all x ∈ B.
For simplicity, let BI the intersection B ∩ CI for any I ∈ S. Then the restriction

f |BI
is holomorphic on BI . Furthermore, the relation between slice regularity and

complex holomorphy can be presented as follows.

Lemma 2.3 Splitting lemma. Let {I0 = 1, I, I1, II1, I2, II2, I3, II3} be a splitting
basis for O. For f ∈ SR(ΩD), there exist holomorphic functions fm : ΩD ∩ CI −→
CI ,m ∈ {0, 1, 2, 3}, such that

f(z) =
3∑

m=0

fm(z)Im, ∀ z ∈ ΩD ∩ CI .

Due to that the pointwise product of two slice functions is not a slice function
generally, the notion of slice product was introduced.

Definition 2.4. Let f = I(F ) and g = I(G) be in S(ΩD) with stem functions
F = F1 + iF2 and G = G1 + iG2. Then FG = F1G1 − F2G2 + i(F1G2 + F2G1) is
still a stem function. The slice product of f and g is the slice function on ΩD
defined by

f · g := I(FG).

In general, f · g �= fg. If the components F1, F2 of the first stem function F are
real-valued, then f = I(F ) is termed as slice preserving. For the slice preserving
function f and slice function g, the slice product f · g coincides with fg.

Definition 2.5. For f = I(F ) ∈ S(ΩD) with F = F1 + iF2, define the slice conju-
gate of f as

fc = I(F1 + iF2),

and the normal function (or symmetrization) of f as

N(f) = f · fc = fc · f,

which is slice preserving on ΩD.

Let Zf denote the zero set of f on ΩD.
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Definition 2.6. Let f ∈ S(ΩD). If f does not vanish identically, then its slice
reciprocal is defined as

f−•(x) := N(f)(x)−1 · fc(x) = N(f)(x)−1fc(x)

which is a slice function on ΩD \ ZN(f).

More recently, Ghiloni, Perotti and Stoppato in [19] found a new and nice relation
between the values of reciprocals f−•(x) and f(x)−1 for slice functions f ∈ S(ΩD)
as

f−•(x) = f(Tf (x))−1, (2.1)

where Tf is a bijective self-map of ΩD \ E with E = {α+ βI : I ∈ S, z = α+ βi ∈
D for F2(z) = 0} given by

Tf (x) = (fc(x)−1((xfc(x))F2(z)))F2(z)−1,

which reduces to the known result Tf (x) = fc(x)−1xfc(x) for the associative
algebra of quaternions.

Formula (2.1) allows to draw the following consequence.

Theorem 2.7. Let f : B → O be a non-constant slice regular function. Then the
image f(B) is open.

3. Proof of theorems 1.3 and 1.6

To prove theorem 1.3, following the idea of Wiener, we first establish the analogue
of Wiener inequality for slice regular functions over octonions. Due to the non-
associativity of octonions, we need a technical lemma.

Lemma 3.1. Let f be a slice function in the open unit ball B of O and a ∈ O \ {0}.
Then

|f(x)a| < 1 on B ⇔ |f(x) · a| < 1 on B.

Proof. Firstly, assume that f(x) = F1(z) + IF2(z) for z = α+ βi ∈ D with
|f(x)a| < 1 for all x = α+ βI ∈ B. Note that f(x) · a = F1(z)a+ I(F2(z)a). If
F2(z) = 0, then f(x) · a = f(x)a and so |f(x) · a| < 1. Otherwise, choosing J =
((I(F2(z)a))a−1)F2(z)−1 ∈ S, we have f(x) · a = f(α+ βJ)a. Hence, |f(x) · a| < 1
for all x ∈ B.

Conversely, if F2(z) = 0, then f(x)a = f(x) · a and so |f(x)a| < 1. Otherwise,
choosing K = ((IF2(z))a)(F2(z)a)−1 ∈ S, we obtain f(x)a = f(α+ βK) · a. Hence,
the condition |f(x) · a| < 1 for all x ∈ B implies that |f(x)a| < 1 for all x ∈ B. The
proof is complete. �

Fortunately, we can now establish the following useful coefficient estimates. Its
complex version is known as the Wiener inequality; see e.g., [10].
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Lemma 3.2. Let f(x) =
∑+∞
n=0 x

nan be a slice regular function in the open unit ball
B of O such that |f(x)| � 1 for all x ∈ B. Then

|an| � 1 − |a0|2, n = 1, 2, 3, . . . (3.1)

Proof. Suppose a0 ∈ [0, 1]. Let us show the validity of inequality (3.1) for n. Fix
n and note that an ∈ CI for some I ∈ S. According to lemma 2.3, there exist
holomorphic functions fm : BI −→ CI ,m ∈ {0, 1, 2, 3}, such that

f |BI
=

3∑
m=0

fmIm,

which implies

a0 = f(0) = f0(0), an =
f (n)(0)
n!

=
f

(n)
0 (0)
n!

.

Notice that |f0(z)| � |f(z)| < 1. Then the classical Wiener inequality for the
complex-valued holomorphic function f0 gives that

|f (n)
0 (0)|
n!

� 1 − |f0(0)|2,

i.e.,

|an| � 1 − |a0|2.
For the other cases a0 ∈ B \ [0, 1], the function f(x)a, taking the value in B, is
not slice regular generally, where a = a0/|a0|. However, taking into account of
lemma 3.1, we obtain the slice regular function g(x) = f(x) · a with its norm
|g(x)| < 1 for all x ∈ B, g(0) = |a0| ∈ (0, 1), and g(n)(0) = f (n)(0)a. Now the desired
result follows when we apply the former conclusion to g. The proof is complete. �

Remark 3.3. The complex version of (3.1) for n = 1 can be viewed as a special
case of the Schwarz-Pick lemma which says that, for holomorphic self-maps F of D,

|F ′(z)| � 1 − |F (z)|2
1 − |z|2 , ∀ z ∈ D. (3.2)

Inequalities (3.1) and (3.2) do not hold generally for vector-valued holomorphic
functions defined in D. For instance, the function F (z) = (z, 1)/

√
2 from D to B2 =

{z ∈ C
2 : |z| < 1} satisfies

|F ′(0)| =
1√
2
>

1
2

= 1 − |F (0)|2.

It is worth pointing out that a version of the Schwarz-Pick lemma was proved in
[3,7] for the self-map f of the quaternionic open unit ball which is slice regular
while f , restricted to each slice, can be viewed as a holomorphic mapping from D

into B2.
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Proof of theorem 1.3. Under the condition of theorem 1.3, it follows that, by
lemma 3.2,

|an| � 2(1 − |a0|), n = 1, 2, 3, . . .

which implies that

+∞∑
n=1

|xnan| =
+∞∑
n=1

|x|n|an| � 2(1 − |a0|)
+∞∑
n=1

|x|n = 2(1 − |a0|) |x|
1 − |x| , |x| < 1.

Hence,
+∞∑
n=0

|xnan| � 1, |x| � 1
3
.

To show the sharpness, given a ∈ (0, 1), we consider as in the complex case slice
regular function

f(x) = (1 − xa)−• · (a− x) = a− (1 − a2)
+∞∑
n=1

xnan−1, x ∈ B.

Now the inequality
+∞∑
n=0

|xnan| = a+
r(1 − a2)
1 − ar

� 1

is equivalent to r � 1/(1 + 2a). Hence, the radius 1/3 cannot be improved if we set
a→ 1−. The proof is complete. �

Remark 3.4. When we restrict the slice functions f and g into the quaternionic
setting, the connection between the slice product and point-wise product of two
slice functions is explicitly formulated as following results:

f · g(x) = f(x)g(f(x)−1xf(x)), x /∈ Zf ,
and

f−• · g(x) = f(Tf (x))−1g(Tf (x)), x /∈ ZN(f). (3.3)

However, these two formulas above do not hold for the octonionic case as shown by
[19, examples 4.15 and 4.16].

Note that the function g(x)−1f(x) is not slice regular generally for slice reg-
ular functions f and g. Hence, making use of formula (3.3), the authors in [34]
formulated a useful result which is vital in the proof of theorem 1.6.

Proposition 3.5. Let f and g be slice regular functions in the circular domain Ω
of H such that Zg = ∅. Then we have

|f(x)| � |g(x)| on Ω ⇔ |g−• · f(x)| � 1 on Ω.
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Proof of theorem 1.6. Based on proposition 3.5, we can define the quaternionic slice
regular function

ϕ(x) = g−• · f(x) : BH \ ZN(g) → H

whose modulus is bounded by one. Furthermore, the domain of definition of ϕ can
be extended to the whole ball BH keeping its slice regularity and norm. In fact, the
bounded slice regular function g can be factored as (cf. [15, theorem 3.36])

g(x) = ψ · ĝ(x),

where ψ, ĝ are slice regular in BH such that Zψ = Zg and ĝ(x) �= 0 for all x ∈
BH. The condition of |f(x)| � |g(x)| implies that Zg ⊆ Zf , which gives also the
factorization of f as

f(x) = ψ · f̂(x),

for some slice regular function f̂ in BH.
Hence,

ϕ = (ψ · ĝ)−• · (ψ · f̂) = (ĝ−• · ψ−•) · (ψ · f̂) = ĝ−• · (ψ−• · ψ) · f̂ = ĝ−• · f̂ .

The slice regular function ĝ−• · f̂(x) is well defined in BH and then its value can be
identified as ϕ(x) for x ∈ ZN(g).

Now we write the expansion of power series for ϕ(x) as
∞∑
n=0

xncn for x ∈ BH. Then

the equation f(x) = g · ϕ(x) gives

∞∑
n=0

xnan =
∞∑

n,m=0

xn+mbncm.

Note that |xy| = |x||y| for all x, y ∈ H. The formula above implies

∞∑
n=0

|xnan| =
∞∑

n,m=0

|xn+mbncm| =
∞∑
n=0

|xnbn|
∞∑
n=0

|xncn|.

From the quaternionic version of theorem 1.3, we have

∞∑
n=0

|xncn| � 1, |x| � 1
3
.

Consequently, for |x| � 1
3 ,

∞∑
n=0

|xnan| �
∞∑
n=0

|xnbn|,

as desired. �
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4. Proof of theorem 1.7

To prove theorem 1.7, we formulate the coefficient estimates for the Carathéodory
class in O. The following result has been obtained for quaternionic slice regular
function [31] in which the method is not valid for O.

Theorem 4.1. Let f(x) = 1 +
∞∑
n=1

xnan be a slice regular function in the open unit

ball B of O with an ∈ O for all n. If Re f(x) > 0 for all x ∈ B, then

1 − |x|
1 + |x| � Ref(x) � |f(x)| � 1 + |x|

1 − |x| , ∀ x ∈ B, (4.1)

and

|an| � 2, n = 1, 2, . . . (4.2)

Proof. Let us first consider (4.1) in the the case of x = α+ βI ∈ BI for a fixed
I ∈ S. According to lemma 2.3 for slice regular functions, there exist holomorphic
functions fm : BI −→ CI ,m ∈ {0, 1, 2, 3}, such that

f |BI
=

3∑
m=0

fmIm.

Then f0(0) = f(0) = 1, and Re f0(x) = Re f(x) > 0 on BI . Applying the
Carathéodory theorem to the complex-valued holomorphic function f0 (cf. [20]),
we obtain

1 − |x|
1 + |x| � Ref0(x) = Ref(x), x ∈ BI .

Due to the arbitrariness of I ∈ S, it follows that

1 − |x|
1 + |x| � Ref(x), x ∈ B. (4.3)

The condition Re f(x) > 0 implies that f(x) �= 0 for all x ∈ B. Then f−•(x) is slice
regular on B with f−•(0) = 1 and Ref−•(x) > 0 by [19, Corollary 4.12]. The former
result (4.3) gives that

1 − |x|
1 + |x| � Ref−•(x), x ∈ B.

Assume that f(x) = F1(z) + JF2(z) with z = α+ βi ∈ D and x = α+ βJ ∈ B for
J ∈ S. Denote E = {α+ βI : I ∈ S, z = α+ βi ∈ D for F2(z) = 0}. For x ∈ E, it
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holds that f−•(x) = f(x)−1. Then

1 − |x|
1 + |x| � Ref−•(x) = Ref(x)−1 � 1

|f(x)| ,

i.e.,

|f(x)| � 1 + |x|
1 − |x| , x ∈ E. (4.4)

For x ∈ B \ E, by [19, theorem 4.5], it holds that

f−•(x) = f(Tf (x))−1,

where Tf is a bijective self-map of Ω \ E given by

Tf (x) = (fc(x)−1((xfc(x))F2(z)))F2(z)−1.

Then

1 − |x|
1 + |x| � Ref(Tf (x))−1 � 1

|f(Tf (x))| ,

i.e.,

|f(Tf (x))| � 1 + |x|
1 − |x| , x ∈ B \ E.

Furthermore, the fact Tf (Tf−•(x)) = x for x ∈ Ω \ E gives that

|f(x)| = |f(Tf (Tf−•(x)))| � 1 + |Tf−•(x)|
1 − |Tf−•(x)| =

1 + |x|
1 − |x| , x ∈ B \ E. (4.5)

Now inequality (4.1) follows from inequalities (4.3), (4.4), and (4.5).
Let us establish the coefficient estimates (4.2) for any n � 1. Fix n and note that

an ∈ CI for some I ∈ S. As before, the restriction of f on BI can be written as

f |BI
=

3∑
m=0

fmIm,

where fm : BI −→ CI ,m ∈ {0, 1, 2, 3}, are holomorphic functions.
Note that

f(0) = f0(0) = 1, an =
f (n)(0)
n!

=
f

(n)
0 (0)
n!

.

Taking into account the coefficient estimates for the holomorphic Carathéodory
class, we obtain the desired inequality |an| � 2. The proof is complete. �

As a direct consequence, the Borel-Carathéodory theorem for octonions is
obtained.
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Theorem 4.2. Let f(x) =
∑+∞
n=0 x

nan be slice regular in the open unit ball B of O

with A = supx∈B Re f(x) < +∞. Then

|an| � 2(A− Re f(0)), n = 1, 2, 3, . . .

and

|f(x) − f(0)| � 2r
1 − r

(A− Re f(0)), r = |x| < 1.

Proof. Define the slice regular function

g(x) =
−f(x) − f(0) + Re f(0) +A

A− Re f(0)
: B −→ O

with g(0) = 1 and Re g(x) > 0 on B.
By theorem 4.1, it follows that

|an| =
|g(n)(0)|

n!
(A− Re f(0)) � 2(A− Re f(0)), n = 1, 2, 3, . . .

Hence,

|f(x) − f(0)| �
∞∑
n=1

|x|n|an| � 2(A− Re f(0))
∞∑
n=1

|x|n =
2r

1 − r
(A− Re f(0)).

The proof is complete. �

Proof of theorem 1.7. Under the condition of theorem 1.7, it follows that, by
theorem 4.2,

|an| � 2
(
1 − Re f(0)

)
, n = 1, 2, 3, . . .

which implies that

+∞∑
n=1

|xnan| � 2
(
1 − Re f(0)

) +∞∑
n=1

|x|n � 1 − Re f(0) = dist (f(0), ∂Π), |x| � 1
3
,

as desired. �

5. Covering theorem

In this section, as a further application of theorem 4.2, we establish 1/2-covering
theorem for slice regular functions over octonions with convex image. We first give
a useful lemma, in a more general version.

Lemma 5.1. Let f, g be two slice functions in the open unit ball B of O. Then

Re
(
f · g(x)) = Re

(
f(x)g(Tf (x))

)
,

where Tf (x) = f(x)−1xf(x) for x /∈ Zf .
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In particular, for all a ∈ O,

Re
(
f(x) · a) = Re

(
f(x)a

)
.

Proof. Assume that f(x) = F1(z) + IF2(z), g(x) = G1(z) + IG2(z) for z = α+
βi ∈ D and x = α+ βI ∈ B with α, β ∈ R, I ∈ S. By definition, it follows that

f · g(x) = F1(z)G1(z) − F2(z)G2(z) + I(F1(z)G2(z) + F2(z)G1(z)).

Hence,

Re
(
f · g(x)) = Re

(
F1(z)G1(z) + I(F2(z)G1(z))

)
+ Re

( − F2(z)G2(z) + I(F1(z)G2(z))
)

= Re
(
F1(z)G1(z) + (IF2(z))G1(z)

)
+ Re

( − F2(z)G2(z) + (IF1(z))G2(z)
)

= Re
(
f(x)G1(z)

)
+ Re

(
(−F2(z) + (IF1(z)))G2(z)

)
= Re

(
f(x)G1(z)

)
+ Re

(
(I(IF2(z) + F1(z)))G2(z)

)
= Re

(
f(x)G1(z)

)
+ Re

(
(If(x))G2(z)

)
.

As for Tf (x) = f(x)−1xf(x) = α+ βJ with J = f(x)−1If(x) ∈ S for x /∈ Zf , we
have

f(x)g(Tf (x)) = f(x)G1(z) + f(x)(JG2(z)),

and then

Re
(
f(x)g(Tf (x))

)
= Re

(
f(x)G1(z) + f(x)(JG2(z))

)
= Re

(
f(x)G1(z) + (f(x)J)G2(z)

)
= Re

(
f(x)G1(z) + (If(x))G2(z)

)
= Re

(
f · g(x)),

which completes the proof. �

Theorem 5.2. Let f be a slice regular function in the open unit ball B of O with
convex image and normalized by f ′(0) = 1. Then f(B) contains an open ball centred
at f(0) of radius 1/2. Moreover, the constant 1/2 is sharp.

Proof. Let f be as described in the theorem and assume that f(0) = 0 for otherwise
we can consider the slice regular function f − f(0). Let p ∈ ∂f(B) be a point at
minimum distance from the origin. By theorem 2.7, we have |p| > 0. If |p| = +∞,
the theorem holds naturally. Otherwise, 0 < |p| < +∞, we obtain that

Re
(
f(x)

p

|p|
)
< |p|, ∀ x ∈ B, (5.1)

since the image f(B) is convex.
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By (5.1) and lemma 5.1, the slice regular function g(x) = f(x) · (p/|p|) satisfies

Re g(x) < |p|, ∀ x ∈ B.

By theorem 4.2, we have

|g′(0)| � 2(|p| − Re g(0)),

i.e. ∣∣∣∣f ′(0)
p

|p|
∣∣∣∣ = 1 � 2(|p| − Re g(0)) = 2|p|.

Therefore, f(B) contains an open ball centred at f(0) of radius 1/2.
To see that the constant 1/2 is optimal, we consider the slice regular function

given by

f(x) = (1 − x)−• · x = x(1 − x)−1, ∀ x ∈ B.

It is easy to show that f ′(0) = 1 and the image f(B) = {x ∈ O : Rex > −1/2} is
convex and contains the open ball centred at 0 of radius 1/2 while 1/2 is optimal,
as desired. �
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