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Small ball inequalities have been extensively studied in the setting of Gaussian processes

and associated Banach or Hilbert spaces. In this paper, we focus on studying small ball

probabilities for sums or differences of independent, identically distributed random elements

taking values in very general sets. Depending on the setting – abelian or non-abelian groups,

or vector spaces, or Banach spaces – we provide a collection of inequalities relating different

small ball probabilities that are sharp in many cases of interest. We prove these distribution-

free probabilistic inequalities by showing that underlying them are inequalities of extremal

combinatorial nature, related among other things to classical packing problems such as the

kissing number problem. Applications are given to moment inequalities.
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Secondary 05D05, 60B15

1. Introduction

Given the ubiquity of sums of independent, identically distributed (henceforth, i.i.d.)

random variables in probability theory (as well as, indirectly, in many other parts of

mathematics), it is natural to look for ways to estimate the probability that a sum lies

in a given measurable set. In general, this can be a rather complex calculation, and is

often intractable. The raison d’être of this paper is the fact that it is often much easier to

estimate the probability that a symmetric random variable lies in a symmetric set; so if

we can find a way to relate the desired probability to a probability of this type, then in

many circumstances our task is significantly simplified.

The most general setting in which we can talk about sums (and symmetry) is that of

group-valued random variables, where the group operation represents summation. Thus,

to state our problem more precisely, consider i.i.d. random variables X and Y taking
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values in a (possibly non-abelian) topological group with group operation + and its

Borel σ-field; then our problem is to find good bounds on P(X + Y ∈ F) for arbitrary

measurable F in terms of P(X − Y ∈ K) for symmetric (i.e. closed with respect to inversion

in the group) measurable sets K . Since the distribution of X − Y is always symmetric in

that it is invariant with respect to inversion of the random variable, this would provide

a reduction of the form mentioned earlier. We also study a related problem, namely that

of estimating P(X − Y ∈ F) for arbitrary measurable F in terms of P(X − Y ∈ K) for

symmetric measurable sets K .

It might seem that the problem stated is somewhat abstruse; however, it is closely related

to a number of influential streams of recent research. To highlight these connections, we

discuss the problem from various perspectives.

Symmetrization. Symmetrization is a basic and powerful meta-technique that arises

in many different guises in different parts of mathematics. Instances include Steiner

symmetrization in convex geometry and the study of isoperimetric phenomena [13, 14],

Rademacher symmetrization in probability in Banach spaces and empirical process theory

[30, 35, 61, 67], the use of rearrangements in functional analysis [3, 53], the study of

partial differential equations [46] and probability theory [15, 73, 74], and others too

numerous to mention. One goal of this paper is to develop a symmetrization technique for

estimating small ball probabilities of sums and differences of i.i.d. random variables. We

call these small ball probabilities even though there may be no ‘ball’ under consideration

(for instance, no norm in the general group settings that we will consider), because

when considered in the context of finite-dimensional vector spaces, these are related to

inequalities for the probability of lying in a ball with respect to some norm.

Concentration functions. The notion of the concentration function was introduced by

Paul Lévy, as a means of describing in a flexible way the spread or concentration of

a real-valued random variable that may not have finite moments. For a real-valued

random variable X with distribution PX , the Lévy concentration function is given by

Q(X, s) = supx∈R PX([x, x + s])) for s > 0. While a great deal of attention had already

been paid to concentration functions in classical probability theory (see e.g. [20, 23,

24, 34, 36, 47, 48, 52, 63, 68]), their study has received renewed attention in recent years

[18, 19, 22, 27, 65, 69] because of the relevance of arithmetic structure to the concentration

function of linear combinations of i.i.d. random variables, as well as applications to

random matrix theory. While we do not directly address the literature on concentration

functions in our paper, our results may be seen as providing bounds on multidimensional

or non-Euclidean analogues of concentration functions in general spaces. Indeed, a natural

way to define the concentration function in a general setting, say an abelian group G,

would be to set

Q(X, F) = sup
x∈G

P(X ∈ x + F),

where the set-valued parameter F plays the role of the parameter s in the definition Q(X, s)

of the concentration function for real-valued random variables. Since the constants that
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appear in our results are packing numbers N(F,K) that are invariant with respect to

translations of F , our results directly imply concentration function bounds. For instance,

Theorem 3.2 implies the following statement: If F is an arbitrary measurable subset of an

abelian topological group G and K is a symmetric measurable subset of G containing the

identity in its interior, then for any pair X,Y of G-valued i.i.d. random variables, we have

Q(X + Y , F) � N(F,K) · Q(X − Y ,K). (1.1)

Rényi entropy comparisons. By taking balls of vanishing radius in a metrizable, locally

compact abelian group G, and considering independent random variables X and Y drawn

from a distribution on G that has a density with respect to the Haar measure, the inequality

(1.1) yields an inequality relating the essential supremum of the density of X + Y and

that of the density of X − Y . This may be interpreted as relating the Rényi entropies of

order ∞ of X + Y and X − Y . Inequalities for these quantities have attracted interest

from different communities including information theory and convex geometry (see e.g.

[57, 58, 59, 60]), and comparing Rényi entropies of X + Y and X − Y in particular is

closely related to the study of more-sums-than-differences sets (see e.g. [1]) as well as

sum-difference inequalities (see e.g. [55, 56]) in additive combinatorics.

Packing problems/extremal combinatorics. In 1995, Alon and Yuster [2] showed that for

i.i.d. real-valued random variables X and Y ,

P(|X − Y | � b) < (2�b/a� − 1) · P(|X − Y | � a), (1.2)

thus answering a question raised by Margulis. They also observed that the optimal

constants in such estimates are closely related to the kissing number problem, which is

a long-standing problem in geometry; indeed, the kissing number in R
3 was a subject of

discussion between Isaac Newton and David Gregory in the 1690s. A similar probabilistic

inequality proved by Katona [38] is closely related to Turán-type theorems for triangle-free

graphs. It turns out that behind the main results of this paper, which among other things

significantly generalize the inequality (1.2) of [2], are actually statements from extremal

combinatorics, which we prove en route to proving our main results. This strengthens the

link between extremal combinatorial phenomena and probabilistic inequalities, in a much

more general setting than that of [2], in analogy with similar links developed by Katona

in a series of papers (see e.g. [37, 45]).

Moment inequalities. Probability bounds are of course closely related to moment inequal-

ities, and our results in particular can be used to develop a number of moment inequalities

for functions of sums and differences of random variables under various assumptions on

the distribution and/or the function. Such inequalities are of intrinsic interest since they

serve as tools in a variety of areas.

Random walks. For 0 < a < 2b, the following sharp symmetrization inequality for i.i.d.

real-valued random variables X and Y is proved in [21]:

P(|X + Y | � b) < �2b/a� · P(|X − Y | � a). (1.3)
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For a � 2b, the estimate still holds with ‘�’ in the middle. This generalizes the earlier work

of Siegmund-Schultze and von Weizsächer [71], which considered the special case a = b

and used it as a key ingredient in studying the level crossing probabilities for random

walks on the real line. The results of this paper contain those of [21], and although we

do not investigate this direction further here, it is conceivable that our results would be

useful in the study of random walks on groups.

Having briefly provided motivation from different points of view, let us say something

about our methods, especially as compared with those of [21], which focused on random

variables taking values in a separable Banach space and may be seen as a precursor to

this paper. In exploring small ball inequalities for sums and differences on general groups,

the reason we study the problem from a combinatorial point of view is twofold: firstly,

it seems to be impossible to generalize the analytical technique developed in [21] to the

group setting because it relies essentially on the availability of a dilation operation on the

space, and secondly (and perhaps more importantly), it is reasonable to expect a certain

extremal combinatorial nature underlying these probabilistic inequalities, given that they

are independent of the probability distributions imposed on our random variables.

In Section 2, we justify this intuition that distribution-free probabilistic estimates should

be connected to extremal combinatorial phenomena, which essentially follows from the

Law of Large Numbers. Since our findings, not surprisingly, differ according to how much

structure we assume of our ambient set, we deploy Sections 3, 4 and 5 respectively to

explore what can be said for abelian topological groups, non-abelian topological groups,

and topological vector spaces. In Section 6, we discuss the tightness of our inequalities.

Section 7 is devoted to various applications, including moment inequalities in normed

vector spaces.

2. A combinatorial perspective on distribution-free inequalities

In this section, we demonstrate a combinatorial approach, which enables us to prove

distribution-free probabilistic inequalities by considering their combinatorial analogues.

The idea was originally used by Katona [38] to prove probabilistic inequalities using

results from graph theory.

Let X be a random variable taking values in a certain measurable space. Let F and K

be two measurable subsets of the k-fold product space. Given a sequence X1, . . . , Xm of

independent copies of X, the random variable Tm(X, F) is defined to be

Tm(X, F) = |{(i1, . . . , ik) : i1 �= · · · �= ik, (Xi1 , . . . , Xik ) ∈ F}|.

Similarly we can define Tm(X,K). Their combinatorial counterparts can be defined for a

deterministic sequence x1, . . . , xm. More specifically, we define

Tm(F) = |{(i1, . . . , ik) : i1 �= · · · �= ik, (xi1 , . . . , xik ) ∈ F}|.

We define Tm(K) in a similar manner. Clearly, Tm(F) and Tm(K) depend on the selection

of the deterministic sequence. We will not emphasize this when it is clear from the context.
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Proposition 2.1. Suppose that there is a function hk(m) = o(mk) and an absolute constant

C(F,K) such that the inequality

Tm(F) � hk(m) + C(F,K) · Tm(K) (2.1)

holds for any deterministic sequence x1, . . . , xm. Then the inequality

P((X1, . . . , Xk) ∈ F) � C(F,K) · P((X1, . . . , Xk) ∈ K) (2.2)

holds for any i.i.d. random variables X1, . . . , Xk .

Proof. Since inequality (2.1) holds for any deterministic sequences, we have

Tm(X, F) � hk(m) + C(F,K) · Tm(X,K).

This implies in particular that

E(Tm(X, F)) � hk(m) + C(F,K) · E(Tm(X,K)). (2.3)

Notice that Tm(X, F) can be written as the summation of Bernoulli random variables with

the same distribution

Tm(X, F) =
∑

1{(Xi1
,...,Xik

)∈F}, (2.4)

where the summation is taken over all ordered k-tuples (i1, . . . , ik) with distinct coordinates.

Therefore we have

E(Tm(X, F)) = (m)k · P((X1, . . . , Xk) ∈ F), (2.5)

where the notation (m)k stands for the product m(m − 1) · · · (m − k + 1). Similarly we have

E(Tm(X,K)) = (m)k · P((X1, . . . , Xk) ∈ K). (2.6)

Combining (2.3), (2.5) and (2.6), we have

P((X1, . . . , Xk) ∈ F) � hk(m)

(m)k
+ C(F,K) · P((X1, . . . , Xk) ∈ K).

Since mk and (m)k have the same order for fixed k and large m, and hk(m) = o(mk), the

proposition follows by taking the limit m → ∞.

Although the above proof is very simple, let us demonstrate the heuristic behind

this combinatorial argument. We will see that the assumption (2.1) is not artificial and

it has to be true if inequality (2.2) holds for all distributions. For simplicity, we let

p = P((X1, . . . , Xk) ∈ F). Using the representation (2.4), we have

E

(
Tm(X, F)

(m)k
− p

)2

=
1

(m)2
k

E
(∑

(1{(Xi1
,...,Xik

)∈F} − p)
)2

=
1

(m)2
k

∑
E1{(Xi1

,...,Xik
)∈F} · 1{(Xi′

1
,...,Xi′

k
∈F} − p2).

If the k-tuples (i1, . . . , ik) and (i′1, . . . , i
′
k) share no common index, we have

E(1{(Xi1
,...,Xik

)∈F} · 1{(Xi′
1
,...,Xi′

k
)∈F}) = p2.
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Since there are o(m2k) pairs of ordered k-tuples (i1, . . . , ik) and (i′1, . . . , i
′
k) with common

indices, we have

E

(
Tm(X, F)

(m)k
− P((X1, . . . , Xk) ∈ F)

)2

−→ 0, as m → ∞.

In particular, we have

Tm(X, F)

(m)k

a.s.−→ P((X1, . . . , Xk) ∈ F), as m → ∞.

A similar property holds for Tm(X,K). Combining with inequality (2.2), we have

Tm(X, F) � o(mk) + C(F,K) · Tm(X,K), a.s.

Hence for almost all realizations of X1, . . . , Xm, i.e. deterministic sequences x1, . . . , xm, we

will have

Tm(F) � o(mk) + C(F,K) · Tm(K).

One may notice that the sequences violating the above inequality depend on the

distribution of X and the o(mk) term may depend on the sequences. However, if inequality

(2.2) holds for all distributions, it should be reasonable to expect the validity of (2.1) for

all deterministic sequences.

3. Small ball inequalities in abelian groups

Let G denote an abelian topological group equipped with the Borel σ-algebra (i.e. the

σ-algebra generated by the open sets). Let X and Y be i.i.d. random variables taking

values in G. A subset of G is said to be symmetric if it contains the group inverse of each

element of this set.

For two subsets F,K ⊆ G, their Minkowski sum F + K is defined as

F + K = {x + y : x ∈ F, y ∈ K}.

We define the difference set F − K in a similar manner. The generalized entropy number

N(F,K) is defined to be the maximal number of elements we can select from F such that

the difference of any two distinct elements does not belong to K . More precisely, we have

N(F,K) = sup{|S | : S ⊆ F, (S − S) ∩ K ⊆ {0}}. (3.1)

Let T = {x1, x2, . . . , xm} be a multiset (or sequence) of G, that is, the elements of T are

selected from G and are not necessarily distinct. For any s ∈ R, the quantities T+(F, s)

and T−(K, s) are defined as

T+(F, s) = ms + |{(i, j) : i �= j, xi + xj ∈ F}| (3.2)

and

T−(K, s) = ms + |{(i, j) : i �= j, xi − xj ∈ K}|. (3.3)

The relation between these two quantities is given in the following lemma, which is similar

in spirit to Lemma 2.1 and Lemma 3.2 in [2].

https://doi.org/10.1017/S0963548318000494 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000494


106 J. Li and M. Madiman

Lemma 3.1. Suppose that K is a symmetric set with 0 ∈ K . For s � 2 and any multiset T ,

we have

T+(F, s) � N(F,K) · T−(K, 2s).

Proof. If N(F,K) = ∞, the above statement is obviously true. So we will assume that

N(F,K) is finite and prove the lemma by induction on the cardinality of T . When

counting the cardinality of a multiset, every element counts even if two elements have the

same value. For the base case |T | = 1, we have T+(F, s) = s and T−(K, 2s) = 2s. Since

N(F,K) � 1, it is clear that the lemma has to be true. We assume that the lemma holds

for any multiset T with cardinality |T | � m − 1. Let t be some non-negative integer such

that

max
x∈T

|(x + K) ∩ T | = t + 1.

Here we let (x + K) ∩ T denote the multiset consisting of elements of T which lie in

x + K . We will use similar notations without further clarification. Let x∗ ∈ T be an

element that achieves the above maximum, and set T ∗ = T\{x∗}, where ‘\’ is the standard

set subtraction notation. (We only throw x∗ away, not other elements with the same

value.) Since K is a symmetric set containing 0, we have

T−(K, 2s) = T ∗
−(K, 2s) + 2s + 2t. (3.4)

We also have

T+(F, s) � T ∗
+(F, s) + s + 2|(−x∗ + F) ∩ T |. (3.5)

The definition in (3.1) implies that we can select at most N(F,K) elements from (−x∗ +

F) ∩ T , say {y1, y2, . . . , yk} with k � N(F,K), such that their mutual differences are not in

K . Therefore we have

(−x∗ + F) ∩ T ⊆ ∪i(yi + K) ∩ T . (3.6)

Combining with (3.5), we have

T+(F, s) � T ∗
+(F, s) + s + 2(t + 1)N(F,K). (3.7)

By the induction assumption, the lemma holds for T ∗. Combining (3.4) and (3.7), it is not

hard to check that the lemma holds when

s � 2N(F,K)

2N(F,K) − 1
,

which is implied by the assumption s � 2.

By combining Proposition 2.1 with Lemma 3.1, we have the following result.

Theorem 3.2. Let F and K be measurable subsets of the abelian topological group G.

Suppose that K is symmetric and contains the identity of G in its interior. For any i.i.d.
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random variables X and Y taking values in G, we have

P(X + Y ∈ F) � N(F,K) · P(X − Y ∈ K).

In the following, we study the comparison of P(X − Y ∈ F) and P(X − Y ∈ K). The

definition of T−(F, s) is given in (3.3) with K replaced by F . Similar to Lemma 3.1, we

have the following result.

Lemma 3.3. Suppose that K is a symmetric set with 0 ∈ K . For s � 2 and any multiset T ,

we have

T−(F, s) � (1 + N(F\K,K)) · T−(K, 2s).

Proof. We only need to make a slight modification of the proof of Lemma 3.1. Let x∗

be selected in the same way as before and we set T ∗ = T\{x∗}. It is clear that equation

(3.4) still holds. Instead of (3.5), we have

T−(F, s) � T ∗
−(F, s) + s + |((x∗ + F) ∩ T )\{x∗}| + |((x∗ − F) ∩ T )\{x∗}|.

Notice the following set-inclusion relations:

(x∗ + F) ⊆ (x∗ + K) ∪ (x∗ + F\K)

and

(x∗ − F) ⊆ (x∗ + K) ∪ (x∗ − F\K).

We use the symmetry assumption of K in the second inclusion relation. Apply the covering

argument (3.6) again to x∗ + F\K and x∗ − F\K . We have

T−(F, s) � T ∗
−(F, s) + s + 2t + 2(t + 1)N(F\K,K). (3.8)

Combining (3.4) and (3.8), for s � 2, we will have

T−(F, s) � (1 + N(F\K,K)) · T−(K, 2s).

Hence we complete the proof of the lemma.

Combining Proposition 2.1 with Lemma 3.3, we have the following result.

Theorem 3.4. Let F and K be measurable subsets of the abelian topological group G.

Suppose that K is symmetric and contains the identity of G in its interior. For any i.i.d.

random variables X and Y taking values in G, we have

P(X − Y ∈ F) � (1 + (F\K,K)) · P(X − Y ∈ K).

We include a result of Katona [38] as another application of this combinatorial

argument, which is related to Turán’s theorem on triangle-free graphs. While we provide

a reformulation of Katona’s proof for completeness, we do not claim any novelty here.
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Theorem 3.5 (Katona [38]). Let X and Y be i.i.d. random variables taking values in a

Hilbert space V with the norm ‖ · ‖. Then we have

(P(‖X‖ � 1))2 � 2P(‖X + Y ‖ � 1).

Proof. Let F,K ⊆ V × V be the subsets defined by

F = {(x, y) : ‖x‖ � 1, ‖y‖ � 1}

and

K = {(x, y) : ‖x + y‖ � 1}.

Given a multiset T = {x1, . . . , xm} of V , we define

Tm(F) = |{(i, j) : i �= j, (xi, xj) ∈ F}|

and

Tm(K) = |{(i, j) : i �= j, (xi, xj) ∈ K}|.

By Proposition 2.1, the statement holds if we can show that

Tm(F) � 2(m + Tm(K)). (3.9)

Suppose that there are n elements of T with norms not less than 1. Then we have

Tm(F) = n2 − n. (3.10)

Let us consider a simple graph G on these n elements; note that we think of any two

elements as different vertices even if they have the same value. Two vertices x and y are

adjacent if and only if ‖x + y‖ � 1. Then we have

Tm(K) � 2e(G), (3.11)

where e(G) is the number of edges of G. For any 3 vertices x, y, z, there exists at least

a pair, say x, y, such that the angle between them is no more than 2π/3, which implies

that ‖x + y‖ � 1. This fact implies that the complementary graph is triangle-free. Using

Turán’s theorem, we have

e(G) �
(
n

2

)
− n2

4
. (3.12)

Then estimate (3.9) follows from (3.10), (3.11) and (3.12).

Remark. Katona [38] proved the result for discrete random variables, and then extended

it for continuous random variables employing continuous versions of Turán-type theorems.

This discretization argument was used in a series of papers [38, 39, 40, 41, 42, 43, 44]

on the optimal estimate of P(‖X + Y ‖ � c) in terms of P(‖X‖ � 1); [45] contains a

comprehensive survey. Similar results were independently obtained by Sidorenko [70].

We do not know whether Katona’s result holds in general Banach spaces. This motivates

us to prove the following symmetrization result.
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Theorem 3.6. Let F and K be measurable subsets of an abelian topological group G.

Suppose that K is symmetric and contains the identity of G in its interior. For any G-valued

i.i.d. random variables X and Y , we have

(P(X ∈ F))2 � N(F,K) · P(X − Y ∈ K).

Proof. The proof is similar to that of Theorem 3.2. We can assume that N(F,K) is finite.

For a multiset T = {x1, . . . , xm} of G, we define

T (F) = |{(i, j) : i �= j, xi ∈ F, xj ∈ F}|

and

T−(K) = (N(F,K))2 + 2m + |{(i, j) : i �= j, xi − xj ∈ K}|.

Then we need to prove the following combinatorial counterpart of the statement:

T (F) � N(F,K) · T−(K). (3.13)

We will prove it by induction on m. It is clear that the statement holds for m � N(F,K).

Without loss of generality, we can assume that xi ∈ F for all xi ∈ T . Let t, x∗, T ∗ be

defined in the same way as in Lemma 3.1. By the definition of N(F,K) in (3.1), we can

select at most N(F,K) elements of T with mutual differences not contained by K . The

pigeonhole principle implies that

t + 1 � m

N(F,K)
.

One can check that

T (F) = m2 − m = T ∗(F) + 2(m − 1) (3.14)

and

T−(K) = T ∗
−(K) + 2t + 2 � T ∗

−(K) +
2m

N(F,K)
. (3.15)

Estimate (3.13) follows from (3.14), (3.15) and the induction assumption on T ∗.

Corollary 3.7. Let a, b > 0. For any i.i.d. real-valued random variables X and Y , we have

(P(|X| � b))2 � �2b/a� · P(|X − Y | � a).

Moreover the estimate cannot be improved.

The result follows from Theorem 3.6 with F = [−b, b] and K = [−a, a]. The estimate is

sharp for the uniform distribution over {−b,−b + (1 + ε)a, . . . ,−b + (�2b/a� − 1)(1 + ε)a}
for some small ε > 0.

To conclude this section, we ask the question of whether there is an analogue of

Proposition 2.1 when the probabilities in comparison are of different magnitudes. For
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example, we do not know a combinatorial counterpart of the distribution-free inequality

P((X1, . . . , Xk) ∈ F) � f(P(X1, . . . , Xl) ∈ K),

where f is a polynomial.

4. Small ball inequalities in non-abelian groups

In this section, we let G denote an arbitrary topological group with the identity e. We

will show that Theorem 3.2 and Theorem 3.4 still hold for certain measurable sets F and

K in this general setting. Similar to the sumset F + K in the abelian case, we define the

product set F · K in this non-abelian setting as

F · K = {xy : x ∈ F, y ∈ K}.

The entropy number N(F,K) is redefined as

N(F,K) = sup{|S | : S ⊆ F, (S · S−1) ∩ K ⊆ {e}}, (4.1)

where S−1 is the set of all inverses of the elements of S . For s ∈ R and a multiset

T = {x1, . . . , xm}, the quantities T+(F, s) and T−(K, s) are redefined as

T+(F, s) = ms + |{(i, j) : i �= j, xixj ∈ F}| (4.2)

and

T−(K, s) = ms + |{(i, j) : i �= j, xix
−1
j ∈ K}|. (4.3)

Similar to Lemma 3.1, we have the following result.

Lemma 4.1. Suppose K is a normal subgroup of G. For s � 2 and any multiset T , we have

T+(F, s) � N(F,K) · T−(K, 2s).

Proof. The lemma can be proved with a slight modification of the proof of Lemma 3.1.

In order to see how the assumption of K is used, we write the proof again. Let t be some

non-negative integer such that

max
x∈T

|(xK) ∩ T | = t + 1,

where xK is the set of the products of x and the elements of K . Let x∗ be an element

such that the maximum can achieved and T ∗ = T\{x∗}. By the definition of T−(K, 2s),

we have

T−(K, 2s) = T ∗
−(K, 2s) + 2s + |((Kx∗) ∩ T )\{x∗}| + |((x∗K−1) ∩ T )\{x∗}|.

Since K is a normal subgroup, the estimate of T−(K, 2s) in (3.4) still holds. Similar to

(3.5), we have

T+(F, s) � T ∗
+(F, s) + s + |((x∗)−1F) ∩ T | + |(F(x∗)−1) ∩ T |.
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Let α1, α2 ∈ F be any two elements, and u1 = (x∗)−1α1, u2 = (x∗)−1α2. Since K is a normal

subgroup, we can see that u1u
−1
2 ∈ K if only if α1α

−1
2 ∈ K . (The assumption that K is a

normal subgroup is important here.) By the definition of N(F,K) in (4.1), we can select

at most N(F,K) elements from ((x∗)−1F)) ∩ T , say {y1, . . . , yk}, such that yiy
−1
j /∈ K for

any yi �= yj . Then we have the covering relation

((x∗)−1F) ∩ T ⊆ ∪i(yiK) ∩ T ,

which implies that

|((x∗)−1F) ∩ T | � (t + 1)N(F,K).

Similarly we have the same estimate for |(F(x∗)−1) ∩ T |. Then the estimate of T+(F, s) is

exactly the same as (3.7). So we have proved the lemma.

Using Proposition 2.1 together with Lemma 4.1, we have the following result.

Theorem 4.2. Suppose that K is a normal subgroup of the topological group G and the

interior of K contains the identity. For any i.i.d. random variables X and Y taking values in

G, and any measurable subset F of G, we have

P(XY ∈ F) � N(F,K) · P(XY −1 ∈ K).

We omit the proof of the following lemma, since it is essentially the same as that of

Lemma 3.3.

Lemma 4.3. Suppose that K ⊆ G is a normal subgroup. For s � 2 and any multiset T , we

have

T−(F, s) � (1 + N(F\K,K)) · T−(K, 2s).

Combining with Proposition 2.1, we have the following result.

Theorem 4.4. Suppose that K is a normal subgroup of the topological group G and the

interior of K contains the identity. For any i.i.d. random variables X and Y taking values in

G, and any measurable subset F of G, we have

P(XY −1 ∈ F) � (1 + N(F\K,K)) · P(XY −1 ∈ K).

5. Small ball inequalities in vector spaces

Let V be a topological vector space over a field F with the Borel σ-algebra generated

by all open sets. Let F,K ⊆ V be measurable subsets and let a, b ∈ F. We consider the

comparison of P(aX + bY ∈ F) and P(X − Y ∈ K) for i.i.d. random variables X and Y

taking values in V .
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Theorem 5.1. Let F and K be measurable subsets of a topological vector space V over a

field F. Suppose that K is symmetric and contains the zero vector in its interior. Let a and

b be non-zero elements of F. For any i.i.d. random variables X and Y taking values in V ,

we have

P(aX + bY ∈ F) � N(a, b, F,K) · P(X − Y ∈ K),

where the constant N(a, b, F,K) is defined as

N(a, b, F,K) =
1

2
(N(a−1F,K) + N(b−1F,K)).

Proof. The proof is essentially the same as that of Theorem 3.2. Let T = {x1, . . . , xm} be

a multiset of V . For s ∈ R, we define

T+(F, s, a, b) = ms + |{(i, j) : i �= j, axi + bxj ∈ F}|.

By Proposition 2.1, it suffices to prove the combinatorial analogue

T+(F, s, a, b) � N(a, b, F,K) · T−(K, 2s) (5.1)

for s � 2, where T−(K, 2s) is defined to be the same as (3.3). We select x∗ in the same

way as in Lemma 3.1 and set T ∗ = T \ {x∗}. The estimate of T−(K, 2s) in (3.4) still holds.

Similar to (3.5), we have

T+(F, s, a, b) � T ∗
+(F, s, a, b) + s + |(−b−1ax∗ + b−1F) ∩ T | + |(−a−1bx∗ + a−1F) ∩ T |.

Applying the covering argument (3.6) to −b−1ax∗ + b−1F and using the definition of

N(b−1F,K), we will have

|(−b−1ax∗ + b−1F) ∩ T | � (t + 1)N(b−1F,K).

Similarly we can see that

|(−a−1bx∗ + a−1F) ∩ T | � (t + 1)N(a−1F,K).

Hence we have

T+(F, s, a, b) � T ∗
+(F, s, a, b) + s + 2(t + 1)N(a, b, F,K). (5.2)

Then estimate (5.1) follows from (3.4) and (5.2). So we complete the proof.

As an easy consequence of Theorem 5.1, we have the following extension of (1.2) and

(1.3).

Corollary 5.2. Let a, b, c, d be non-zero reals and c, d > 0. For any real-valued i.i.d. random

variables X and Y , we have

P(|aX + bY | � c) � 1

2

(⌈
2c

|a|d

⌉
+

⌈
2c

|b|d

⌉)
P(|X − Y | � d).
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Proof. We can take F = [−c, c] and K = [−d, d]. Elementary geometric argument will

yield

N(a−1F,K) =

⌈
2c

|a|d

⌉
, N(b−1F,K) =

⌈
2c

|b|d

⌉
.

Then the statement follows from Theorem 5.1.

Remark. For a = b, Theorem 5.1 and Corollary 5.2 match Theorem 3.2 and (1.3),

respectively. For a = −b, Theorem 5.1 and Corollary 5.2 are weaker than Theorem 3.4

and (1.2), respectively. This is due to the subtle difference between the covering arguments

used in the proofs. The case when a = 0 or b = 0 is covered by Corollary 3.7.

6. Discussion of tightness

In this section, we study the near-extremal distributions for the probabilistic estimates

developed in Section 3. The discussion will mainly focus on Theorem 3.2 and Theorem 3.4

for random variables taking values in the Euclidean space R
d. We will see their close

connections with the sphere packing problem in combinatorial geometry.

In general it is hard to compute the ratios of P(X ± Y ) ∈ F to P(X − Y ) ∈ K . If X

and Y are assumed to be uniform over a finite set T = {x1, x2, . . . , xn}, then we have

P(X ± Y ∈ F) =
1

n2

n∑
i=1

|(∓xi + F) ∩ T |

and

P(X − Y ∈ K) =
1

n2

n∑
i=1

|(xi + K) ∩ T |.

If the set T is K-separated, i.e. xi − xj �∈ K for i �= j, we will have |(xi + K) ∩ T | = 1 for

all xi ∈ T . We can even make a further assumption that, except for o(n) of them, all the

sets ∓xi + F contain the same number of elements of T . This is possible if T is selected

to consist of certain lattice points. (So we need X and Y to be in a topological vector

space V .) Under these assumptions, we have

P(X ± Y ∈ F)

P(X − Y ∈ K)
→ max

x∈T
|(∓x + F) ∩ T |, as n → ∞.

Theorem 3.2 will be tight if there exists a K-separated lattice L and a point x ∈ V (not

necessarily a lattice point) such that x + F contains N(F,K) points of L. The set T can

be taken as the union of a subset of L and the reflection of this subset after a certain

translation. Similarly, Theorem 3.4 is tight if for every lattice point x ∈ L the set x + (F\K)

contains N(F\K,K) points of L. In this case, we only need to take T to be a certain

subset of the lattice L. This idea can be used to produce near-optimal distributions

for estimates (1.3) and (1.2). For estimate (1.3), we can take X to be uniform over

{−(n − 1)δ − r, . . . ,−δ − r, δ, 2δ, . . . , nδ}, where r > 0 and δ > a. For any a, b > 0, we can

always select appropriate r and δ such that the ratio of P(|X + Y | � b) to P(|X − Y | � a)
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approaches �2b/a� as n → ∞. This example is essentially the same as the one given in

[21]. To see the sharpness of (1.2), we can take X to be uniform over {δ, 2δ, . . . , nδ} for a

certain δ > a. This example was given in [2].

In the Euclidean space R
d, let us take F and K to be closed balls centred at the origin

of radius r and 1, respectively. For simplicity, we let N+(r) and N−(r) denote N(F,K)

and N(F\K,K) + 1, respectively. Then N+(r) represents the maximal number of points

in a Euclidean ball of radius r with all mutual distances greater than 1. We have an extra

restriction on N−(r) that one of these points should be at the centre of the ball. These are

the so-called sphere packing problems. The dual problem of N+(r) asks for the smallest

radius r+(n) of the ball to contain n points with mutual distances at least 1. We define

r−(n) in a similar way with the restriction that one of the points should be at the centre

of the ball.

Bateman and Erdős [4] studied the diameters of the extremal configurations of points

on the plane. Their results imply the values of r+(n) and, by the duality, N+(r) in R
2. We

have the following list of N+(r) for r in a certain range:

N+(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 0 < r � 1/2,

2 if 1/2 < r �
√

3/3,

3 if
√

3/3 < r �
√

2/2,

4 if
√

2/2 < r � 1
2

csc(π/5),

5 if 1
2

csc(π/5) < r � 1,

7 if 1 < r � 1 + ε, small ε > 0.

The extremal configurations given by Bateman and Erdős are lattice points. Hence the

values of N+(r) in the list are tight. It is easy to see that r−(2) = · · · = r−(7) = 1 with all

the points on the unit circle except one point at the centre. Bateman and Erdős also gave

the values of r−(n) for n = 8, 9, 10, 11. This yields the following list of N−(r):

N−(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

7 if 1 < r � 1
2

csc(π/7),

8 if 1
2

csc(π/7) < r � 1
2

csc(π/8),

9 if 1
2

csc(π/8) < r � 1
2

csc(π/9),

10 if 1
2

csc(π/9) < r � 1
2

csc(π/10).

For the sphere packing problems in R
d, people are generally interested in the optimal

packing density ρd. When r is large, it is not hard to see the following asymptotic estimate:

N+(r) ≈ N−(r) = (1 + o(1))
vol(B(r))

vol(B(1/2))
ρd = (1 + o(1))(2r)dρd.

In R
2, it is known that hexagonal lattice packing is optimal among all packings (not ne-

cessarily lattice packings) with packing density ρ2 =
√

3π/6 ≈ 0.9069. The sphere packing

problem in three-dimensional Euclidean space has a long history. Kepler conjectured in

1611 that no arrangement of equally sized spheres can fill the space with a greater average

density than that of the face-centred cubic and hexagonal close packing arrangements.
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The density of these arrangements is
√

2π/6 ≈ 0.7404. Gauss proved in 1831 that Kepler’s

conjecture is true if the spheres have to be arranged in a regular lattice. The complete proof

of Kepler’s conjecture was announced only around 20 years ago by Hales (see e.g. [33]),

and a formal verification using automated proof checking was only completed in 2014. In

the very recent breakthrough work [72], Viazovska proved that the E8 lattice packing gives

the optimal packing density in dimension 8, and the density is ρ8 = π4/384 ≈ 0.025367.

Building on Viazovska’s work, it is shown in [16] that Leech lattice packing is optimal in

24 dimensions, and the packing density is ρ24 = π12/12! ≈ 0.00193.

Another interesting problem related to our study is the kissing number problem. In

three dimensions it asks how many billiard balls can be arranged so that they all just

touch another billiard ball of the same size. This question was a subject of a famous

debate between Isaac Newton and David Gregory in the 1690s. Newton believed the

answer was 12, while Gregory thought that 13 might be possible. Generally we can define

the d-dimensional kissing number τd as the maximal number of points on the unit sphere

with Euclidean distances at least 1. For 1 < r < 1 + εd with small εd > 0, we have the

equation

N−(r) = τd + 1. (6.1)

The number τ3 = 12 was studied by various researchers in the nineteenth century. The

best proof now available is due to Leech [50]. The answers τ8 = 240 and τ24 = 196 560

are given by [66] and [51], respectively. It is somewhat surprising that they are technically

easier to establish than τ3. The correct answer τ4 = 24 was obtained much later by Musin

[64]. For all these results, the extremal configurations follows from lattice packings. Using

the relation (6.1), Theorem 3.4 can give explicit tight estimates for r slightly greater than

1 in corresponding dimensions. These are all the known values of the kissing number

so far. In high dimensions, τd grows exponentially with unknown base. We refer to the

monograph [17] for more discussions of sphere packing problems and their relations with

number theory and coding theory.

7. Applications

7.1. Concentration functions

Let G be an abelian topological group and let F ⊆ G be a measurable subset. For a

random variable X taking values in G, the generalized Lévy’s concentration function

Q(X, F) is defined to be

Q(X, F) = sup
x∈G

P(X ∈ x + F). (7.1)

The main study of concentration functions is devoted to the sum of independent random

variables in Banach spaces with F taken to be norm balls (see e.g. [34, 36, 63]). In the

i.i.d. case, Theorem 3.2 provides a symmetrization technique to treat different sets and

also general groups where no norm may exist.

For a random variable X, we let X̃ denote the symmetrized random variable X − Y ,

where Y is an independent copy of X.
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Theorem 7.1. Let G be an abelian topological group, and let K be a symmetric measurable

subset of G such that the interior of K contains the identity of G. For any independent (not

necessarily identical) random variables X1, . . . , Xn taking values in G, and any measurable

subset F of G, we have

(Q(X1 + · · · + Xn, F))2 � N(F + F,K) · Q(X̃1 + · · · + X̃n, K). (7.2)

If X1, . . . , Xn also have identical distribution, then we have

Q(X1 + · · · + Xn, F) � N(F,K) · Q(X̃1 + · · · + X̃�n/2�, K). (7.3)

Proof. By the definition of generalized Lévy’s concentration function (7.1), for any

0 < ε < 1, there exists x ∈ G such that

(Q(X1 + · · · + Xn, F))2 � (P(X1 + · · · + Xn ∈ x + F) + ε)2

� P(X1 + · · · + Xn ∈ x + F) · P(X ′
1 + · · · + X ′

n ∈ x + F) + 3ε

� P(X1 + · · · + Xn + X ′
1 · · · + X ′

n ∈ 2x + F + F) + 3ε

� N(F + F,K) · P(X1 − X ′
1 + · · · + Xn − X ′

n, K) + 3ε

� N(F + F,K) · Q(X̃1 + · · · + X̃n, K) + 3ε,

where (X ′
1, . . . , X

′
n) is an independent copy of (X1, . . . , Xn), and the second-to-last inequality

follows from Theorem 3.2. Then (7.2) follows by letting ε → 0. To prove (7.3), it is not

hard to see that, for independent random variables X and Y ,

Q(X + Y , F) � Q(X, F).

Therefore we have

Q(X1 + · · · + Xn, F) � Q(X1 + · · · + X2�n/2�, F).

Similarly we can select x ∈ G such that

Q(X1 + · · · + X2�n/2�, F) � P(X1 + · · · + X2�n/2� ∈ x + F) + ε

� N(F,K) · P(X1 − X2 + · · · + X2�n/2�−1 − X2�n/2� ∈ K) + ε

� N(F,K) · Q(X̃1 + · · · + X̃�n/2�, K) + ε.

In the second inequality we use Theorem 3.2, and (7.3) follows by letting ε → 0.

If F and K are taken to be balls of vanishing radius in a metrizable, locally compact

abelian group, then Theorem 7.1 yields an inequality relating the essential suprema of the

densities of X + Y and X − Y . This may be interpreted as relating the Rényi entropies

of order ∞ of X + Y and X − Y .

Let X be a random variable taking values in a locally compact abelian group G. Suppose

it has density f with respect to the invariant Haar measure μ. For p ∈ (0, 1) ∪ (1,∞), the

Rényi entropy of order p (i.e. p-Rényi entropy) is defined as

hp(X) =
1

1 − p
log

∫
G

f(x)pμ(dx).
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Defining by continuity, h1(X) corresponds to the classical Shannon entropy. By taking

limits, we have

h0(X) = log μ(supp(f))

and

h∞(X) = − log ‖f‖∞,

where supp(f) is the support of f, and ‖f‖∞ is the essential supremum of f.

We need the following definition before introducing our statement. Let f be a real- or

complex-valued locally integrable function over a metric space with a certain reference

measure μ. We say that x is a Lebesgue point of f if

lim
r→0

1

μ(B(x, r))

∫
B(x,r)

f(y)μ(dy) = f(x),

where B(x, r) is the ball of radius r centred at x.

Theorem 7.2. Let G be a metrizable, locally compact abelian group with the Haar measure

μ. Suppose that the following two conditions hold:

(1) For any locally integrable function, almost every point of G is a Lebesgue point.

(2) We have lim supr→0 N(Br, Br) < ∞, where Br is the ball of radius r centred at the identity

of G.

For any i.i.d. absolute continuous random variables X and Y in G, we have

h∞(X + Y ) − h∞(X − Y ) � − log

(
lim sup

r→0
N(Br, Br)

)
.

Proof. It is clear that X + Y and X − Y are also absolute continuous random variables.

We let fX+Y and fX−Y denote the densities of X + Y and X − Y , respectively, with respect

to the Haar measure μ. We let ‖fX+Y ‖∞ and ‖fX−Y ‖∞ denote the essential suprema of

fX+Y and fX−Y , respectively. We consider the following two possible cases.

Case 1: ‖fX+Y ‖∞ < ∞. For any ε > 0, we can find a Lebesgue point of fX+Y , say z ∈ G,

such that

fX+Y (z) � ‖fX+Y ‖∞ − ε.

The existence of such a point is due to the first assumption. Since z is a Lebesgue point,

when r > 0 is small, we have∫
B(z,r)

fX+Y (w)μ(dw) � (fX+Y (z) − ε)μ(B(z, r))

� (‖fX+Y ‖∞ − 2ε)μ(Br).
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In the second inequality we used the invariant property of Haar measure: μ(B(z, r)) =

μ(Br). Notice that ∫
B(z,r)

fX+Y (w)dμ(w) � Q(X + Y , Br)

� N(Br, Br)Q(X − Y , Br)

� N(Br, Br)‖fX−Y ‖∞μ(Br).

The second inequality follows from Theorem 7.1. So we have

‖fX+Y ‖∞ − 2ε � N(Br, Br)‖fX−Y ‖∞.

As ε → 0, we will have

‖fX+Y ‖∞ � lim sup
r→0

N(Br, Br) · ‖fX−Y ‖∞,

which is equivalent to the desired result.

Case 2: ‖fX+Y ‖∞ = ∞. Similarly, for any M > 0, we can find a Lebesgue point of fX+Y ,

say z ∈ G, such that

fX+Y (z) � M.

For any ε > 0, the same argument implies that for small r > 0 we have

M − ε � N(Br, Br)‖fX−Y ‖∞.

It is clear that N(Br, Br) � 1. Since M can be arbitrarily large, we have

‖fX−Y ‖∞ = ∞.

In this case the statement trivially holds.

Remark. For the Euclidean space R
d, the first assumption follows from Lebesgue’s

differentiation theorem and the second assumption trivially holds since N(Br, Br) is

independent of the radius r. For d = 1 we know that N(Br, Br) = 2. Therefore for real-

valued i.i.d. random variables X and Y we have

h∞(X + Y ) − h∞(X − Y ) � − log 2.

This is somewhat surprising, since such a result does not hold for Rényi entropies of

order 0 and 1. Indeed, the comparison of hp(X + Y ) and hp(X − Y ) for p = 0, 1 is closely

related to the study of more-sums-than-differences sets in additive combinatorics. This is

discussed in [1], where it is also shown that h1(X + Y ) − h1(X − Y ) can be made to take

any real value if X and Y are identically distributed on the real line.

If G is a topological vector space, we can apply Theorem 5.1 to the study of

concentration functions of linear combinations of i.i.d. random variables.

Corollary 7.3. Let F and K be measurable subsets of a topological vector space V over a

field F. Suppose that K is symmetric and contains the zero vector in its interior. Let a and
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b be non-zero elements of F. For any i.i.d. random variables X and Y taking values in V ,

we have

Q(aX + bY , F) � N(a, b, F,K) · Q(X − Y ,K).

Proof. By the definition of generalized Lévy’s concentration function (7.1), for any ε > 0,

there exists x ∈ V such that

Q(aX + bY , F) < P(aX + bY ∈ x + F) + ε

� N(a, b, F,K) · P(X − Y ∈ K) + ε

� N(a, b, F,K) · Q(X − Y ,K) + ε.

In the second inequality we use Theorem 5.1. Since ε > 0 is arbitrary, the statement

follows by letting ε → 0.

Remark. It is natural to consider possible extensions of the result for more than two i.i.d.

random variables. For instance, it is an interesting question to study the variation of (7.3)

with the left-hand side replaced by Q(a1X1 + · · · + anXn, F), when X1, . . . , Xn take values in

a vector space and a1, . . . , an are arbitrary coefficients in a field. Such questions are related

to the Littlewood–Offord phenomenon (see e.g. [59, 65]). The simplest manifestation of

the latter is the fact that when Xi are Bernoulli random variables taking values 0 and 1

with equal probability, and a1, . . . , an are positive integers, then

Q(a1X1 + · · · + anXn, 1/2) � Q(X1 + · · · + Xn, 1/2) = O(n−1/2).

Moreover, when the sequence of coefficients is not allowed to have additive structure,

the asymptotic behaviour of the concentration function changes: for example, if the

coefficients are forced to all be distinct, the maximal probability decays like O(n−3/2).

While there is a long history of work in this direction, as surveyed for example in [29, 65],

it would be very interesting to understand these questions better in general settings,

particularly by identifying extremal coefficients, which are known in only a very few cases.

7.2. Moment inequalities

Unless otherwise specified, we let V denote a topological vector space over the field F,

which may be either the real field R or the complex field C. Let ‖ · ‖ and |||·||| be two

equivalent norms on V . We let I denote the identity operator from (V , ‖ · ‖) to (V , |||·|||).
By convention its norm |||I ||| is defined as

|||I ||| = sup
‖x‖=1

|||x|||.

Let B1(r), B2(r) be the closed balls centred at the origin of radius r under the gauges ‖ · ‖,

|||·|||, respectively. It is clear that |||I ||| has the following geometric interpretation:

|||I ||| = inf{r > 0 : B1(1) ⊆ B2(r)}. (7.4)
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Theorem 7.4. Let a, b ∈ F be non-zero numbers, and let q � p be real numbers such that

pq > 0. For any i.i.d. random variables X and Y taking values in V , we have

(E|||X − Y |||p)1/p � 2|||I ||| max{|a|−1, |b|−1} · (E‖aX + bY ‖q)1/q. (7.5)

Proof. We assume that the right-hand side of (7.5) is finite. Otherwise the theorem

yields a trivial result. For 0 < p < q and p < q < 0 (equivalently p < q and pq > 0), the

following Hölder’s inequality holds:

(E‖aX + bY ‖p)1/p � (E‖aX + bY ‖q)1/q.

Therefore the theorem follows from the case q = p. For p > 0 we have

E‖aX + bY ‖p = p

∫ ∞

0

tp−1
P(‖aX + bY ‖ > t)dt

= p

∫ ∞

0

tp−1(1 − P(‖aX + bY ‖ � t))dt.

By the geometric interpretation (7.4) of ‖I‖ and Theorem 5.1, we have

P(‖aX + bY ‖ � t) � P(|||aX + bY ||| � t|||I |||) � P(|||X − Y ||| � Ct),

where the constant C = 2|||I ||| max{|a|−1, |b|−1}. Hence we have

E‖aX + bY ‖p � p

∫ ∞

0

tp−1(1 − P(|||X − Y ||| � Ct))dt

= p

∫ ∞

0

tp−1
P(|||X − Y ||| > Ct)dt

= C−p · E|||X − Y |||p,

which is equivalent to the desired statement. For p < 0, we have

E‖aX + bY ‖p = −p

∫ ∞

0

t−p−1
P(‖aX + bY ‖ � t−1)dt

� −p

∫ ∞

0

t−p−1
P(|||aX + bY ||| � |||I |||t−1)dt

� −p

∫ ∞

0

t−p−1
P(|||X − Y ||| � Ct−1)dt

= C−p

(
−p

∫ ∞

0

t−p−1
P(|||X − Y ||| � t−1)dt

)
= C−p · E|||X − Y |||p.

The first inequality follows from the geometric interpretation of |||I |||. We apply The-

orem 5.1 in the second inequality. The statement follows by taking the (1/p)th root.

As an immediate consequence of Theorem 7.4, we have the following result.
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Corollary 7.5. Let (E, ‖ · ‖) denote a Banach space. For γ > 0 and any pair of E-valued

i.i.d. random variables X and Y , we have

E‖X − Y ‖γ � 2γE‖X + Y ‖γ (7.6)

and

E‖X + Y ‖−γ � 2γE‖X − Y ‖−γ.

The positive moment case of Corollary 7.5 should be compared with a result of Buja,

Logan, Reeds and Shepp [12], who showed that if p and γ are positive reals with 0 < γ � p

and 1 � p � 2, then

E‖X − Y ‖γp � E‖X + Y ‖γp (7.7)

holds for any i.i.d. random variables X and Y in R
d, where ‖ · ‖p refers to the usual


p-norm on R
d. The negative moment case of Corollary 7.5 should be compared with the

recent result for the Euclidean norm of Gao [28], who showed that for 0 < γ < d,

E‖X + Y ‖−γ
2 � E‖X − Y ‖−γ

2 (7.8)

holds for any i.i.d. random variables X and Y in R
d. Corollary 7.5 has the advantage that

it works for any norm and in infinite dimensions, but the inequalities (7.7) and (7.8) have

the advantage that when valid, they work with better constants.

Related results were also proved by Mattner [62]. For 0 < γ � 2, Mattner [62] proved

that if T is any orthogonal linear transformation on R
d, then

E‖X − Y ‖γ2 � E‖X − TY ‖γ2,

where ‖ · ‖2 is the Euclidean norm.

The question of the sharpness of Corollary 7.5 is interesting and open. For p > 2, Buja,

Logan, Reeds and Shepp [12] constructed i.i.d. random variables X and Y in R
d such

that

E‖X − Y ‖p > E‖X + Y ‖p,

but the ratio their construction gives is just a little bit greater than 1, and so does not

reveal whether estimate (7.6) is tight when γ = 1.

One can also consider a more general class of functions of sums and differences than

norms. A function ϕ : V → R is said to be quasi-concave if the super-level set

{x ∈ V : ϕ(x) > t}

is convex for all t ∈ R. When V = R, this coincides with the notion of a unimodal function.

Proposition 7.6. Let a, b ∈ F be non-zero numbers and let ϕ be a non-negative, symmetric,

quasi-concave function on V . For any i.i.d. random variables X and Y taking values in V ,

we have

Eϕ(aX + bY ) � Eϕ

(
X − Y

2 max{|a|−1, |b|−1}

)
.
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Proof. Since ϕ is non-negative, we have

Eϕ(aX + bY ) =

∫ ∞

0

P(ϕ(aX + bY ) > t)dt

=

∫ ∞

0

P(aX + bY ∈ ϕ−1(t,∞))dt,

where we let ϕ−1(t,∞) denote the set {x ∈ V : ϕ(x) > t}. Since ϕ is symmetric and quasi-

concave, the set ϕ−1(t,∞) is symmetric and convex. Then we can apply Theorem 5.1 to

have

P(aX + bY ∈ ϕ−1(t,∞)) � P(X − Y ∈ 2 max{|a|−1, |b|−1}ϕ−1(t,∞)).

This implies that

Eϕ(aX + bY ) �
∫ ∞

0

P

(
X − Y

2 max{|a|−1, |b|−1} ∈ ϕ−1(t,∞)

)
dt

= Eϕ

(
X − Y

2 max{|a|−1, |b|−1}

)
.

Remark. Taking ϕ(x) = ‖x‖p for p < 0 in Proposition 7.6, we can recover the negative

moment case of Theorem 7.4 when the two norms are identical. It is natural (given

the use of different norms in Theorem 7.4) to consider the comparison of Eϕ(aX + bY )

and Eφ(X − Y ) for distinct non-negative, symmetric, quasi-concave functions ϕ and

φ. When ϕ and φ are homogeneous, one can still apply Theorem 5.1 to prove results

analogous to Proposition 7.6. Without homogeneity we need information on the behaviour

of N(a, b, ϕ−1(t,∞), φ−1(t,∞)), which is a function of t > 0 rather than a constant; we

therefore do not bother to consider this question further.

We now give a moment inequality in the spirit of Theorem 3.6, where the comparison

is to the original distribution.

Theorem 7.7. Let p > 0. For any i.i.d. random variables X and Y taking values in V , we

have

(E|||X − Y |||p)1/p � 21+1/p|||I ||| · (E‖X‖p)1/p. (7.9)

Proof. We can assume that the right-hand side of (7.9) is finite, so that

E‖X‖p = p

∫ ∞

0

tp−1
P(‖X‖ > t)dt

= p

∫ ∞

0

tp−1(1 − P(‖X‖ � t))dt.

Using the geometric interpretation (7.4) of |||I ||| and Theorem 3.6, we have

P(‖X‖ � t) � P(|||X||| � |||I |||t) � (P(|||X − Y ||| � 2|||I |||t))1/2.
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Hence we have

E‖X‖p � p

∫ ∞

0

tp−1(1 − (P(|||X − Y ||| � 2|||I |||t))1/2)dt

� p

2

∫ ∞

0

tp−1(1 − P(|||X − Y ||| � 2|||I |||t))dt

=
p

2

∫ ∞

0

tp−1
P(|||X − Y ||| > 2|||I |||t)dt

= 2−p−1|||I |||−p · E|||X − Y |||p.

The statement follows by taking the (1/p)th root. In the second inequality, we use the

simple fact that 1 − t � 2(1 −
√
t) for 0 � t � 1.

Combining with a result of Guédon [31], Theorems 7.4 and 7.7 imply a reverse Hölder-

type inequality for log-concave random variables. A random variable X taking values in

a Banach space (E, ‖ · ‖) is called log-concave if, for any non-empty Borel sets A,B ⊆ E

and 0 < λ < 1, we have

P(X ∈ λA + (1 − λ)B) � P(X ∈ A)λP(X ∈ B)1−λ,

where λA + (1 − λ)B stands for the Minkowski sum {λa + (1 − λ)b : a ∈ A, b ∈ B}. Log-

concave distributions are a large class, and include all Gaussian distributions, exponential

distributions, and the uniform distribution over any compact convex set.

A reverse Hölder inequality asserts the equivalence of higher and lower moments

of random variables. There are many different varieties of reverse Hölder inequalities,

such as Khinchin inequalities or inequalities relating different Lp-norms of functions; the

survey [7] contains a discussion of several of these classes. In particular, reverse Hölder

inequalities have found considerable use in recent years at the interface of probability

theory and convex geometry (see e.g. [8, 9, 10, 25, 26, 32]), For our purposes, we focus on

situations where there exists a constant C(p, q) depending only on q � p such that

(E‖X‖q)1/q � C(p, q)(E‖X‖p)1/p

holds for random variables X in a normed measurable space. In general such an inequality

does not hold, but it does hold for random variables with log-concave distributions. For

example, Borell [11] showed the equivalence between the pth and qth moments of log-

concave random variables for q � p � 1, while Lata�la [49] demonstrated that the constant

C(p, q) can be independent of p. Guédon [31] established a reverse Hölder inequality

involving negative moments, which we now describe. Defining M0 := limp→0(E‖X‖p)1/p =

exp(E log ‖X‖), Guédon [31] showed that there is an absolute constant Cp such that for

any −1 < p � 0, one has

(E‖X‖p)1/p � CpM0.

In fact, for −1 < p � 0, Guédon [31] proved the explicit form

(E‖X‖p)1/p � 1 + p

4e
E‖X‖.
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For p > 0, a corresponding result is not explicitly stated in the literature, but combining

the estimates A (with q = 0) and B in [31, Theorem 4], one can prove

(E‖X‖p)1/p � CpM0,

with

Cp = min
0�x�1

(1 − x)−2

(
x + Γ(p + 1)(1 − x)1/2

(
2

− log(1 − x)

)p)1/p

.

An important fact implied by Prékopa–Leindler inequality is that the sum and

difference of independent log-concave random variables are still log-concave. Therefore

it is reasonable to expect that one may have reverse Hölder-type inequalities relating

aX + bY and X − Y for i.i.d. log-concave random variables X and Y .

Corollary 7.8. Let V be a real topological vector space associated with two equivalent

norms ‖ · ‖ and |||·|||. Let a, b be reals such that not both of them are zero. Let p, q be reals

such that 0 < p � q or −1 < p < q < 0. There exists an absolute constant C(a, b, p, q) such

that

(E|||X − Y |||q)1/q � C(a, b, p, q) · (E‖aX + bY ‖p)1/p

holds for any i.i.d. log-concave random variables X and Y taking values in V .

Proof. First we assume that a, b are non-zero. For −1 < p < q < 0, Guédon’s result

implies the existence of a constant Cp such that

(E|||X − Y |||p)1/p � Cp(E|||X − Y |||q)1/q.

Then the statement follows from Theorem 7.4. The case 0 < p < q can be proved in the

same manner. When one of a, b is zero, the proof proceeds in the same way with the

application of Theorem 7.7 instead.

Remark. We point out that Hölder or reverse Hölder inequalities of the form

(E‖X + Y ‖q)1/q � c · (E|||X − Y |||p)1/p

do not hold, as can be seen by taking real-valued random variables X and Y to be

independent and uniform on the interval [n, n + 1] with n sufficiently large.

7.3. Positive definite functions

This section is focused on the estimate of Eϕ(aX + bY ), where ϕ is a positive definite

function. The study is independent of the small ball inequalities developed in the previous

sections.

Let G be an abelian group, and ϕ : G → C be a Hermitian function, i.e. a function

satisfying ϕ(x) = ϕ(−x). The function ϕ is said to be positive definite if, for any x1, . . . , xn ∈
G and c1, . . . , cn ∈ C, we have

n∑
i,j=1

ϕ(xi − xj)cicj � 0.
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Similarly the Hermitian function ϕ is said to be negative definite if the reversed inequality

holds under the condition
∑n

i=1 ci = 0. For example, for 0 < p � 2, the function e−‖x‖p is

positive definite over the Euclidean space R
d.

Bochner’s well-known theorem asserts that a continuous positive definite function ϕ on

a locally compact abelian group G can be uniquely represented as the Fourier transform

of a positive finite Radon measure μ on the Pontryagin dual group G∗, that is,

ϕ(x) =

∫
G∗

ξ(x)μ(dξ). (7.10)

The counterpart of Bochner’s theorem is the Lévy–Khinchin representation formula for a

continuous negative definite function ϕ on R
d, that is,

ϕ(x) = c + i〈y0, x〉 + q(x) +

∫
Rd\{0}

(
1 − e−i〈x,y〉 − i〈x, y〉

1 + ‖y‖2

)
μ(dy) (7.11)

where c ∈ R, y0 ∈ R
d, q(x) is some quadratic form on R

d and μ is a Lévy measure. The

close relations between these two types of functions have been well studied. For example,

a function ϕ is negative definite if and only if e−tϕ is positive definite for all t > 0. This

observation goes back to Schoenberg. They are also closely related to another important

type of functions, the so-called completely monotone functions. We refer to [5, 6] for

more details in this direction.

Theorem 7.9. Let G be a locally compact abelian group and let ϕ : G → C be a continuous

positive definite function. For independent random variables X and Y taking values in G and

m, n ∈ Z, we have

|Eϕ(mX + nY )|2 � Eϕ(mX − mX ′)Eϕ(nY − nY ′),

where X ′ and Y ′ are independent copies of X and Y , respectively.

Proof. Using Bochner’s theorem (7.10), we have

|Eϕ(mX + nY )| =

∣∣∣∣E
∫
G∗

ξ(mX + nY )μ(dξ)

∣∣∣∣ =

∣∣∣∣
∫
G∗

Eξ(mX)Eξ(nY )μ(dξ)

∣∣∣∣.
The second equation follows from Fubini’s theorem and the assumption that X,Y are

independent. By the Cauchy–Schwarz inequality, we have∣∣∣∣
∫
G∗

Eξ(mX)Eξ(nY )μ(dξ)

∣∣∣∣
�

(∫
G∗

|Eξ(mX)|2dμ(ξ)

∫
G∗

|Eξ(nY )|2dμ(ξ)

)1/2

=

(∫
G∗

Eξ(mX)Eξ(mX)μ(dξ)

∫
G∗

Eξ(nY )Eξ(nY )μ(dξ)

)1/2

=

(∫
G∗

Eξ(mX)Eξ(mX)μ(dξ)

∫
G∗

Eξ(nY )Eξ(nY )μ(dξ)

)1/2
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=

(∫
G∗

Eξ(mX)Eξ(−mX)μ(dξ)

∫
G∗

Eξ(nY )Eξ(−nY )μ(dξ)

)1/2

=

(∫
G∗

Eξ(mX)Eξ(−mX ′)μ(dξ)

∫
G∗

Eξ(nY )Eξ(−nY ′)μ(dξ)

)1/2

=

(
E

∫
G∗

ξ(mX − mX ′)μ(dξ)E

∫
G∗

ξ(nY − nY ′)μ(dξ)

)1/2

= (Eϕ(mX − mX ′)Eϕ(nY − nY ′))1/2.

We let Eξ(mX) denote the conjugate of Eξ(mX). The equation ξ(mX) = ξ(−mX) follows

from the fact that ξ ∈ G∗.

Let V be a locally compact topological vector space over a field F. Repeating the above

argument we can prove the following result.

Theorem 7.10. Let ϕ : V → C be a continuous positive definite function. For independent

random variables X and Y taking values in V and a, b ∈ F, we have

|Eϕ(aX + bY )|2 � Eϕ(aX − aX ′)Eϕ(bY − bY ′),

where X ′ and Y ′ are independent copies of X and Y , respectively.

Taking m = n = 1 and m = 1, n = 0 in Theorem 7.9, we have the following easy

consequences.

Corollary 7.11. Let G be a locally compact abelian group and let ϕ : G → C be a continu-

ous positive definite function. For i.i.d. random variables X and Y taking values in G, we

have

|Eϕ(X + Y )| � Eϕ(X − Y ).

Corollary 7.12. Let G be a locally compact abelian group and let ϕ : G → C be a continu-

ous positive definite function such that ϕ(0) = 1. For any random variable X taking values

in G, we have

|Eϕ(X)|2 � Eϕ(X − X ′),

where X ′ is an independent copy of X.

Remark. Let ϕ : R
d → R be a continuous negative definite function. Lifshits, Schilling

and Tyurin [54] showed that for any i.i.d. random variables X and Y ,

Eϕ(X − Y ) � Eϕ(X + Y ).

Moreover, they showed that Eϕ(X + Y ) − Eϕ(X − Y ) is the variance of an integrated

centred Gaussian process by employing the Lévy–Khinchin representation (7.11).
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