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AUTOMATED INFERENCE AND THE
FUTURE OF ECONOMETRICS:
A COMMENT

PaoLo PARuOLO
University of Insubria

This note discusses the (dis-)similarities between automated inference and
computer-aided decisions, at the interface of econometrics and economics. It is
argued that computer-aided decisions are best suited for scientific communica-
tion. For the future, the topic of learning is singled out as one of the most prom-
ising areas of integration of econometric techniques and economics.

It is a pleasure to participate in the discussion on Automated Inference and
the Future of Econometrics at the 20th anniversary mark of Econometric Theory.
Many factors appear to be fueling the growth of computer-intensive inferential
rules; some of these lie with theoretical advances and with the current and pre-
dictable increases in computing power and in availability of large data sets.

Among the many possible aspects, I wish to comment on three issues related
to this theme, with a view toward possible developments. These comments are
not intended to highlight some published work of mine, and they are mostly non-
technical; I hope none of these features will be seen as a liability by the reader.

The three issues, listed in increasing degree of importance, concern the dis-
tinction between automation and computer aided decisions (Section 1), model
selection (Section 2), and learning (Section 3). Conclusions are reported in
Section 4.

1. AUTOMATION AND COMPUTER AIDED DECISIONS

The first aspect is wording. I perceive automated inference (AI) as associated
with artificial intelligence and expert systems. Many computing-intensive pro-
cedures are instead of a different nature, which I would classify as tools for
computer aided decisions (CAD), to be defined subsequently. This section argues
that the two concepts are different and that they may be fruitfully applied in
different situations. In particular Al is best suited for industrial applications,
CAD for scientific communication.

The phrase “automated inference” conveys the idea that control over infer-
ence is left to a computer program or, more precisely, that the econometrician
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does not have complete control over inference. This concept is associated with
artificial intelligence and expert systems because whatever inferential rule is
being applied, it is used without the direct control of the econometrician. In the
following I will use the (common) acronym Al for both phrases.

Examples of Al are “black-box” procedures. Many black boxes have been
entertained in econometrics, especially in the past. They include, e.g., auto-
matic univariate autoregressive moving average (ARMA) modeling, i.e., com-
pletely human-unaided computer software that takes in data and that produces
predictions using an ARMA model, selected via a set of inference rules. More
recent references include some applications of Bayesian vector autoregressions
with Minnesota priors, which are close to being black boxes.

Automated procedures of this kind are also in use for fitting and selecting
artificial neural networks. Some selection methods, called “pruning,” are typi-
cally computed before the optimization (estimation) has been completed. These
pruning procedures cannot be restated as (quasi-) likelihood ratios and thus are
not amenable to direct statistical interpretation, at least using standard theory.

By contrast let us define by computer aided decisions (CAD) any computer
intensive inference procedure that is (in principle) completely supervised by a
human. Examples of CAD are abundant, including plug-in bandwidth kernel
density estimation, spectral estimation and testing, indirect inference, Monte
Carlo estimation, model selection through information criteria or statistical tests,
and many more.

The common denominator to any definition of scientific methodology is com-
munication. For experimental sciences, scientific validity is associated with
replicability of experiments. For nonexperimental sciences, replicability of
experiments is replaced by replicability of inference. To communicate, econo-
metricians need to have complete control over inference, and CAD is the elec-
tive method for large data sets in macro- and micro-econometrics. A different
situation exists in financial econometrics; see the discussion that follows.

In fact, there are few reasons why the econometrician should give away con-
trol over inference if the goal of the research project is scientific communica-
tion, despite a possibly heavy computational burden. If the key steps of inference
are unknown to the econometrician, there is little hope she or he can convince
the scientific community that the prompted inference is a sound one.

This reasoning connects with the aspiration of econometrics to help econom-
ics become more scientific; this idea is at the basis of the Constitution of the
Econometric Society. Concerning the relation between science and inference,
Kim, De Marchi, and Morgan (1995) define the following four motivations for
testing in econometrics: (1) theory falsification, (2a) theory consensus build-
ing, (2b) model quality control, (2¢) matching specific model characteristics
with a subset of empirical data (my own wording). Number (1) corresponds to
Popperian theory falsification, number (2) to theory confirmation.

Regardless of which school in philosophy of science one subscribes to, it is
hard to see which of the preceding activities one can recommend to be left
undisclosed, as in Al For instance, in (2a), tests are performed to assess the
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“accuracy and reliability of [theory] performance in order to secure widespread
support for belief in that theory” (Kim et al., 1995, p. 83); obviously this mes-
sage cannot be conveyed if inference (performed automatically) is not fully
known.

On the other hand, one can see many advantages of Al in industrial applica-
tions, where the main goal is on timely decision making. The closest analogues
to industrial quality control problems are found in finance. In applied finance,
timely forecasts on a vast number of phenomena are needed to make buy/sell
decisions, and automation is a must more than an option. For obvious reasons,
financial analysts are also averse to communicating their inferences to compet-
itors, and Al rules prevail. Given that financial decision makers probably use
Al this information could be used in model building; see Section 3.

2. MODEL SELECTION

Model selection has a long history in econometrics, possibly as long as the
history of econometrics itself. Many procedures are currently in use for model
selection, including information criteria (IC) and hypothesis testing (HT). Some-
times model selection is an intermediate step in an inference procedure, e.g., in
a forecasting exercise. Other times model selection is the main goal of infer-
ence; this happens, e.g., when one wishes to compare several economic theo-
ries as alternative explanations for the same set of data. In this case, multiple
comparison (MC) methods can be applied; these methods are not presently as
widespread in econometrics as in other sciences. Sections 2.1-2.3 report some
comments on IC, HT, and MC.

2.1. Information Criteria

There has been substantial progress in the area of IC over the last decades; see
Rao and Wu (2001) for a recent survey. Progress has been made in extending
results to possibly nonstationary time series processes; see Phillips (1996) and
references therein for the extension of Rissanen’s theorem to the case of time-
series prediction. IC, although based on (quasi-)likelihood ratios (see Potscher,
1991), treat models symmetrically, unlike hypothesis testing. This is the key
motivation used by Granger, King, and White (1995) in advocating the use of
IC in comparison of economic theories.

One limitation of IC lies however with their characteristic of estimators of
the best model. No measure of strength of decision is usually available, unless
a Bayesian paradigm is used. Bayesian analysis is however not the best suited
method for communicating inferences when the elicitation of a priori distribu-
tions is subjective. Model averaging is not an option when inference is aimed
at selecting among economic theories.

In general, one would like to complement the choice of a model with a likely
(objective) assessment of whether this model is significantly distant from alter-
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native ones. If one is to choose among different economic theories, this is par-
ticularly relevant.

Asymptotic probability statements on IC can be deduced from their connec-
tion to HT and MC procedures, which are discussed in Sections 2.2 and 2.3.
This is because IC, HT, and MC are all based on the same (quasi-)likelihood
theory. No investigation appears to exist in this direction in the literature, and
any attempt along this line will probably be rewarded.

One other area where more theoretical contributions would be welcome is
comparison of IC procedures. These comparisons should be aimed at selecting
a single or at most a few best criteria. The many IC now in use often generate
conflicting decisions, with no clue on how to resolve them.

At present, procedures are classified as efficient and/or consistent (see Rao
and Wu, 2001). Among consistent criteria, no comparison is usually made on
(higher order) asymptotics, as in the case of parameter estimation.

Here one needs to define (higher order) asymptotics in this context. As one
possibility, consider two criterion functions /;,(i ), j = 1,2, based on a sample
of size n, where i = 1,..., p indicates different models M,,...,M,. Let i, be
the index of the correct model. Consistency of 7, = argmin,_;—; h;,(i) is
usually proved by showing that h;,(iy) = O,(1) as n — oo whereas h,(i) =
O(n%) — oo for i # iy. The order n® could depend also on i, but we assume
for simplicity that it is uniform over incorrect models. Assume that both %,
and h,, are consistent. One could first compare «; and «,, where the criterion
that guarantees the fastest divergence should be favored.

Assume however that the two criteria h,, and h,, are both consistent and
have the same divergence rate a; = a,. One could then study the ratio g, :=
hy,/h>, — 1 to ascertain if g, is asymptotically positive or negative. More gen-
erally one could study the asymptotic distribution of g, and prefer hy, to h,, if
Pr(g, = 0) = 1 > 3. These comparisons could give a handle on how to select
a best criterion, thus reducing the possibility of conflicting results.

2.2. Hypothesis Testing

Some selection procedures are based on HT. HT gives a probabilistic frame-
work within which one can measure strength of decisions. Let @, C ©, C ---
C 0, be nested parameter sets corresponding to models M;,..., M,. Some com-
mon misconceptions on HT in model selection are the following: (i) in nested
models, a general to specific HT strategy is only associated with testing M;
in M; starting with j = p and proceeding to j = 0 (called “testing-down” strat-
egy in the following discussion); (ii) HT may be applied only to nested models
that contain the true data generating process (DGP).

Consider (i). In several instances it has proved useful to consider a general
to specific strategy that tests M; in M, starting with i = 0 and proceeding up to
p — 1. For later reference, call this procedure a “testing-up” sequence. This
strategy is still general to specific, because each submodel is tested against the
full model M,,.
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The testing-up sequence has been applied, e.g., when testing for cointegra-
tion rank (see Johansen, 1992). Here M; indicates a vector autoregressive (VAR)
model with cointegration rank at most equal to j; let LR(i|j) be the likelihood
ratio test comparing M; and M;. For the testing-up procedure, as sample size
diverges, one has Pr(select M,) — 1 — « and Pr(select M;) — 0 for i < r,
where r is the true cointegration rank and « is the size of each test in the
sequence. These properties do not apply to the testing-down procedure, because
the limit distribution of LR(j — 1[/) depends on which submodel M;_, con-
tains the DGP, h = 1,2,3,...,j — 1. Hence one sees that, in a nonstationary
setting, the testing-up procedure is recommended, contrary to the common
belief (i). Obviously, letting « decrease to zero as sample size increases gener-
ates a consistent selection criterion for cointegration rank.

Regarding issue (ii), it is important to note that hypothesis testing can be
defined and used also for comparing misspecified models that do not contain
the DGP, as shown by Vuong (1989) for independent and identically distrib-
uted (i.i.d.) observations. Extension of these results to dependent data and more
than a pair of models appears to be a fruitful line of future research.

A final word of caution concerns the distribution of the estimators of the
selected model, as shown in recent work by Leeb and Potscher (2003).

2.3. Multiple Comparisons

Consider finally the case when model selection is the main goal of inference,
i.e., one wishes to confront several economic theories with the same set of data.
In this context MC procedures may find wider applications in econometrics;
see Hsu (1996) for an introduction to MC.

As a simple example, consider the usual regression setup with two regressors,

2
Vi = E Bjxlj +u;.
j=1

Assume also that several competing theories exist on the explanation of y. Theory
1 predicts that 8; > 0 and B, < 0, and theory 2 predicts that 8; = 3,.

Of course one can compute the univariate 7 tests fg —g, !g,—g, and tg,_g, OF
the corresponding confidence intervals. One can then combine these separate
inferences, using probability inequalities such as Bonferroni’s (this is called
“deduced inference” in Hsu, 1996).

However, in principle, one would like to construct simultaneous confidence
intervals for By, B,, and B; — B, from the start, with overall coverage proba-
bility not inferior to 95%. This is called “direct inference” in Hsu (1996). Note
that the direct method can exploit the fact that we wish to have three confi-
dence intervals for a bivariate distribution of 8 := (3,: 3,)’, where a hat indi-
cates the regression estimator.

One possible simple direct inference method is Scheffé’s procedure, which
states

Pr(c'B=c'BF (s2c'(X'X) "ckF,_,)/2Yc ECC R =1—aq,
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where F|_, is the 1 — « quantile of an F(k,n — k) distribution, and k is the
number of regressors, in the example equal to 2. One can form simultaneous
confidence intervals for any choice of ¢ € R* using (s2¢'(X'X) 'ckF,_,)"? as
standard error. In our example we can choose ¢ equal to ¢; := (1:0), ¢, :=
(0:1), ¢3 := (1:—1)', obtaining three confidence intervals I, I,, I5. If the
lower endpoint of I, is greater than 0 one can assert 8; > 0; similarly if the
upper endpoint of I, is negative, one can assert 8, < 0. If finally /5 contains 0,
then one can assert 8, = 3,. All these statements have a joint error rate bounded
by 5%.

Note that, if some new economic theory comes along—theory 3, say, which
predicts 8; + 23, = 1—one does not have to rework the confidence level of
the confidence intervals I}, I, I3 from the start, but just needs to construct one
more confidence interval I, for B8, + 28, — 1.

This feature is both a strength and a weakness of Scheffé’s procedure. On
one side it gives great flexibility to add any other confidence interval; on the
other hand a price is paid in accommodating all these simultaneous confidence
intervals. The price is that some possibly less comprehensive procedure gives
tighter bounds for each confidence interval; see Hsu (1996).

MCs are widely used in analysis of variance (ANOVA) applications and in
regression models; for the application of Scheffé-like procedures in nonlinear
regression see, e.g., Johansen and Johnstone (1990). It is possible that many of
the procedures within PcGets (see Granger and Hendry, 2005), could be (re)dis-
cussed or reorganized in this MC perspective.

3. LEARNING

There appears to be an increasing decoupling among the fields of economic
theory (A), econometric theory (B), and applications (C); this is how Mirowski
(1995) describes the current age dominated by “critical post-modernism.” Sep-
arately, the three groups (A, B, C) “maintain a life of their own, through their
own journals, their own pedagogy, their forms of tacit knowledge” (Mirowski,
1995, p. 29). Although some degree of autonomy appears constructive (certain
“facts” survive changes in economic-theory regimes), a complete separation
appears to be contrary to the foundations of all three fields and especially of
econometrics (see Frisch, 1933).

One direction that may foster closer cooperation among the three areas is
given by the literature on learning, which challenges the notion of rational expec-
tations. Several papers have recently appeared in this line; see, e.g., Guidolin
and Timmermann (2003) and references therein.

In these economic models, agents form expectations as an econometrician
observing data. Advances in Al could thus help produce better models, e.g., of
investors’ behavior in financial markets. This may hopefully lead to a better
understanding of the actual mechanics of observed economic behavior (C)
through the explicit incorporation of the econometric model uncertainty (B)
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into the economic model (A). It is not hard to foresee a high reward for team-
work in this area in the future.

4. CONCLUSIONS

In this note I have tried to distinguish between Al and CAD. Both are valuable:
Al is better employed in industrial applications and finance, whereas CAD is
needed if one wishes to communicate inference, which is at the basis of build-
ing economic science.

Information criteria in model selection give many interesting lines of future
research. At present there are many IC, and it is difficult to select any single
one. Moreover, for non-Bayesians, IC do not provide measures of strength of
inference.

Hypothesis testing is still a resource for econometricians, which should
be more fully exploited also in the selection of (possibly misspecified)
models. Multiple comparisons methods should also be more fully explored in
econometrics.

As always, the future of econometrics lies in working more closely with econ-
omists; embedding Al rules for investors in economic models of financial mar-
kets appears a promising area of development for the economics of learning.
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