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Abstract

Rapoport–Zink spaces are deformation spaces for p-divisible groups with additional
structure. At infinite level, they become preperfectoid spaces. Let M∞ be an infinite-
level Rapoport–Zink space of EL type, and let M ◦∞ be one connected component of its
geometric fiber. We show that M ◦∞ contains a dense open subset which is cohomolog-
ically smooth in the sense of Scholze. This is the locus of p-divisible groups which do
not have any extra endomorphisms. As a corollary, we find that the cohomologically
smooth locus in the infinite-level modular curve X(p∞)◦ is exactly the locus of elliptic
curves E with supersingular reduction, such that the formal group of E has no extra
endomorphisms.

1. Main theorem

Let p be a prime number. Rapoport–Zink spaces [RZ96] are deformation spaces of p-divisible
groups equipped with some extra structure. This article concerns the geometry of Rapoport–Zink
spaces of EL type (endomorphisms + level structure). In particular we consider the infinite-
level spaces MD,∞, which are preperfectoid spaces [SW13]. An example is the space MH,∞,
where H/Fp is a p-divisible group of height n. The points of MH,∞ over a nonarchimedean
field K containing W (Fp) are in correspondence with isogeny classes of p-divisible groups G/OK

equipped with a quasi-isogeny G⊗OK
OK/p→ H ⊗Fp

OK/p and an isomorphism Qn
p
∼= V G

(where V G is the rational Tate module).
The infinite-level space MD,∞ appears as the limit of finite-level spaces, each of which is

a smooth rigid-analytic space. We would like to investigate the question of smoothness for
the space MD,∞ itself, which is quite a different matter. We need the notion of cohomologi-
cal smoothness [Sch17], which makes sense for general morphisms of analytic adic spaces, and
which is reviewed in § 4. Roughly speaking, an adic space is cohomologically smooth over C

(where C/Qp is complete and algebraically closed) if it satisfies local Verdier duality. In partic-
ular, if U is a quasi-compact adic space which is cohomologically smooth over Spa(C,OC), then
the cohomology group H i(U,F�) is finite for all i and all primes � �= p.

Our main theorem shows that each connected component of the geometric fiber of MD,∞
has a dense open subset which is cohomologically smooth.
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The smooth locus in infinite-level Rapoport–Zink spaces

Theorem 1.0.1. Let D be a basic EL datum (cf. § 2). Let C be a complete algebraically closed

extension of the field of scalars of MD,∞, and let M ◦
D,∞ be a connected component of the

base change MD,∞,C . Let M ◦,non-sp
D,∞ ⊂M ◦

D,∞ be the nonspecial locus (cf. § 3.5), corresponding

to p-divisible groups without extra endomorphisms. Then M ◦,non-sp
D,∞ is cohomologically smooth

over C.

We remark that outside of trivial cases, π0(MD,∞,C) has no isolated points, which implies that
no open subset of MD,∞,C can be cohomologically smooth. (Indeed, the H0 of any quasi-compact
open fails to be finitely generated.) Therefore it really is necessary to work with individual
connected components of the geometric fiber of MD,∞.

Theorem 1.0.1 is an application of the perfectoid version of the Jacobian criterion for smooth-
ness, due to Fargues and Scholze [FS]; cf. Theorem 4.2.1. The latter theorem involves the
Fargues–Fontaine curve XC (reviewed in § 3). It asserts that a functor M on perfectoid spaces
over Spa(C,OC) is cohomologically smooth, when M can be interpreted as global sections of a
smooth morphism Z → XC , subject to a certain condition on the tangent bundle TanZ/XC

.
In our application to Rapoport–Zink spaces, we construct a smooth morphism Z → XC ,

whose moduli space of global sections is isomorphic to M ◦
D,∞ (Lemma 5.2.1). Next, we show

that a geometric point x ∈M ◦
D,∞(C) lies in M ◦,non-sp

D,∞ (C) if and only if the corresponding section
s : XC → Z satisfies the condition that all slopes of the vector bundle s∗ TanZ/XC

on XC are
positive (Theorem 5.5.1). This is exactly the condition on TanZ/XC

required by Theorem 4.2.1,
so we can conclude that M ◦

D,∞ is cohomologically smooth.
The geometry of Rapoport–Zink spaces is related to the geometry of Shimura varieties. As

an example, consider the tower of classical modular curves X(p∞), considered as rigid spaces
over C. There is a perfectoid space X(p∞) over C for which X(p∞) ∼ lim←−n

X(pn), and
a Hodge–Tate period map πHT : X(p∞)→ P1

C [Sch15], which is GL2(Qp)-equivariant. Let
X(p∞)◦ ⊂ X(p∞) be a connected component.

Corollary 1.0.2. The following are equivalent for a C-point x of X(p∞)◦.

(i) The point x corresponds to an elliptic curve E, such that the p-divisible group E[p∞] has

EndE[p∞] = Zp.

(ii) The stabilizer of πHT (x) in PGL2(Qp) is trivial.

(iii) There is a neighborhood of x in X(p∞)◦ which is cohomologically smooth over C.

2. Review of Rapoport–Zink spaces at infinite level

2.1 The infinite-level Rapoport–Zink space MH,∞
Let k be a perfect field of characteristic p, and let H be a p-divisible group of height n and
dimension d over k. We review here the definition of the infinite-level Rapoport–Zink space
associated with H.

First there is the formal scheme MH over Spf W (k) parametrizing deformations of H up
to isogeny, as in [RZ96]. For a W (k)-algebra R in which p is nilpotent, MH(R) is the set
of isomorphism classes of pairs (G, ρ), where G/R is a p-divisible group and ρ : H ⊗k R/p→
G⊗R R/p is a quasi-isogeny.

The formal scheme MH locally admits a finitely generated ideal of definition. Therefore
it makes sense to pass to its adic space M ad

H , which has generic fiber (M ad
H )η, a rigid-analytic

space over Spa(W (k)[1/p], W (k)). Then (M ad
H )η has the following moduli interpretation: it is the

1847

https://doi.org/10.1112/S0010437X20007332 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007332


A. B. Ivanov and J. Weinstein

sheafification of the functor assigning to a complete affinoid (W (k)[1/p], W (k))-algebra (R, R+)
the set of pairs (G, ρ), where G is a p-divisible group defined over an open and bounded subring
R0 ⊂ R+, and ρ : H ⊗k R0/p→ G⊗R0 R0/p is a quasi-isogeny. There is an action of Aut H on
M ad

H obtained by composition with ρ.
Given such a pair (G, ρ), Grothendieck–Messing theory produces a surjection M(H)⊗W (k)

R→ LieG[1/p] of locally free R-modules, where M(H) is the covariant Dieudonné module. There
is a Grothendieck–Messing period map πGM : (M ad

H )η → F�, where F� is the rigid-analytic space
parametrizing rank d locally free quotients of M(H)[1/p]. The morphism πGM is equivariant for
the action of AutH. It has open image F�a (the admissible locus).

We obtain a tower of rigid-analytic spaces over (M ad
H )η by adding level structures. For a com-

plete affinoid (W (k)[1/p], W (k))-algebra (R, R+), and an element of (M ad
H )η(R, R+) represented

locally on Spa(R, R+) by a pair (G, ρ) as above, we have the Tate module TG = lim←−m
G[pm],

considered as an adic space over Spa(R, R+) with the structure of a Zp-module [SW13, (3.3)].
Finite-level spaces MH,m are obtained by trivializing the G[pm]; these are finite étale covers of
(M ad

H )η. The infinite-level space is obtained by trivializing all of TG at once, as in the following
definition.

Definition 2.1.1 [SW13, Definition 6.3.3]. Let MH,∞ be the functor which sends a complete
affinoid (W (k)[1/p], W (k))-algebra (R, R+) to the set of triples (G, ρ, α), where (G, ρ) is an ele-
ment of (MH)adη (R, R+), and α : Zn

p → TG is a Zp-linear map which is an isomorphism pointwise
on Spa(R, R+).

There is an equivalent definition in terms of isogeny classes of triples (G, ρ, α), where this time
α : Qn

p → V G is a trivialization of the rational Tate module. Using this definition, it becomes
clear that MH,∞ admits an action of the product GLn(Qp)×Aut0 H, where Aut0 means auto-
morphisms in the isogeny category. Then the period map πGM : MH,∞ → F� is equivariant for
GLn(Qp)×Aut0 H, where GLn(Qp) acts trivially on F�.

We remark that MH,∞ ∼ lim←−m
MH,m in the sense of [SW13, Definition 2.4.1].

One of the main theorems of [SW13] is the following.

Theorem 2.1.2. The adic space MH,∞ is a preperfectoid space.

This means that for any perfectoid field K containing W (k), the base change
MH,∞ ×Spa(W (k)[1/p],W (k)) Spa(K,OK) becomes perfectoid after p-adically completing.

We sketch here the proof of Theorem 2.1.2. Consider the ‘universal cover’ H̃ = lim←−p
H as a

sheaf of Qp-vector spaces on the category of k-algebras. This has a canonical lift to the category of
W (k)-algebras [SW13, Proposition 3.1.3(ii)], which we continue to call H̃. The adic generic fiber
H̃ad

η is a preperfectoid space, as can be checked ‘by hand’: it is a product of the d-dimensional

preperfectoid open ball (SpaW (k)[[T 1/p∞
1 , . . . , T

1/p∞
d ]])η by the constant adic space V H ét, where

H ét is the étale part of H. Given a triple (G, ρ, α) representing an element of MH,∞(R, R+),
the quasi-isogeny ρ induces an isomorphism H̃ad

η ×Spa(W (k)[1/p],W (k)) Spa(R, R+)→ G̃ad
η ; compos-

ing this with α gives a morphism Qn
p → H̃ad

η (R, R+). We have therefore described a morphism
MH,∞ → (H̃ad

η )n.
Theorem 2.1.2 follows from the fact that the morphism MH,∞ → (H̃ad)n

η presents MH,∞ as
an open subset of a Zariski closed subset of (H̃ad)n

η . We conclude this subsection by spelling
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out how this is done. We have a quasi-logarithm map qlogH : H̃ad
η →M(H)[1/p]⊗W (k)[1/p] Ga

[SW13, Definition 3.2.3], a Qp-linear morphism of adic spaces over Spa(W (k)[1/p], W (k)).
Now suppose (G, ρ) is a deformation of H to (R, R+). The logarithm map on G fits into an

exact sequence of Zp-modules:

0→ Gad
η [p∞](R, R+)→ Gad

η (R, R+)→ LieG[1/p].

After taking projective limits along multiplication-by-p, this turns into an exact sequence of
Qp-vector spaces,

0→ V G(R, R+)→ G̃ad
η (R, R+)→ LieG[1/p].

On the other hand, we have a commutative diagram.

H̃η(R, R+)
∼= ��

qlogH

��

G̃η(R, R+)

logG

��
M(H)⊗W (k) R �� LieG[1/p]

The lower horizontal map M(H)⊗W (k) R→ LieG[1/p] is the quotient by the R-submodule
of M(H)⊗W (k) R generated by the image of V G(R, R+)→ G̃ad

η (R, R+) ∼= H̃ad
η (R, R+)→

M(H)⊗W (k) R.
Now suppose we have a point of MH,∞(R, R+) represented by a triple (G, ρ, α). Then we

have a Qp-linear map Qn
p → H̃ad

η (R, R+)→M(H)⊗W (k) R. The cokernel of its R-extension
Rn →M(H)⊗W (k) R is a projective R-module of rank d, namely LieG[1/p]. This condition on
the cokernel allows us to formulate an alternate description of MH,∞ which is independent of
deformations.

Proposition 2.1.3. The adic space MH,∞ is isomorphic to the functor which assigns to a com-

plete affinoid (W (k)[1/p], W (k))-algebra (R, R+) the set of n-tuples (s1, . . . , sn) ∈ H̃ad
η (R, R+)n

such that the following conditions are satisfied.

(i) The quotient of M(H)⊗W (k) R by the R-span of the qlog(si) is a projective R-module W

of rank d.

(ii) For all geometric points Spa(C,OC)→ Spa(R, R+), the sequence

0→ Qn
p

(s1,...,sn)→ H̃ad
η (C,OC)→W ⊗R C → 0

is exact.

2.2 Infinite-level Rapoport–Zink spaces of EL type
This article treats the more general class of Rapoport–Zink spaces of EL type. We review these
here.

Definition 2.2.1. Let k be an algebraically closed field of characteristic p. A rational EL datum
is a quadruple D = (B, V, H, μ), where:

– B is a semisimple Qp-algebra;
– V is a finite B-module;
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– H is an object of the isogeny category of p-divisible groups over k, equipped with an action
B → EndH;

– μ is a conjugacy class of Qp-rational cocharacters Gm → G, where G/Qp is the algebraic
group GLB(V ).

These are subject to the following conditions.

– If M(H) is the (rational) Dieudonné module of H, then there exists an isomorphism M(H) ∼=
V ⊗Qp W (k)[1/p] of B ⊗Qp W (k)[1/p]-modules. In particular dimV = ht H.

– In the weight decomposition of V ⊗Qp Qp
∼= ⊕

i∈Z Vi determined by μ, only weights 0 and
1 appear, and dimV0 = dimH.

The reflex field E of D is the field of definition of the conjugacy class μ. We remark that the
weight filtration (but not necessarily the weight decomposition) of V ⊗Qp Qp may be descended
to E, and so we will be viewing V0 and V1 as B ⊗Qp E-modules.

The infinite-level Rapoport–Zink space MD,∞ is defined in [SW13] in terms of moduli of
deformations of the p-divisible group H along with its B-action. It admits an alternate description
along the lines of Proposition 2.1.3.

Proposition 2.2.2 [SW13, Theorem 6.5.4]. Let D = (B, V, H, μ) be a rational EL datum. Let

Ĕ = E ·W (k). Then MD,∞ is isomorphic to the functor which inputs a complete affinoid

(Ĕ,OĔ)-algebra (R, R+) and outputs the set of B-linear maps

s : V → H̃ad
η (R, R+),

subject to the following conditions.

– Let W be the quotient

V ⊗Qp R
qlogH ◦s−→ M(H)⊗W (k) R→W → 0.

Then W is a finite projective R-module, which locally on R is isomorphic to V0 ⊗E R as a

B ⊗Qp R-module.

– For any geometric point x = Spa(C,OC)→ Spa(R, R+), the sequence of B-modules

0→ V → H̃(OC)→W ⊗R C → 0

is exact.

If D = (Qp,Qn
p , H, μ), where H has height n and dimension d and μ(t) = (t⊕d, 1⊕(n−d)), then

E = Qp and MD,∞ = MH,∞.
In general, we call Ĕ the field of scalars of MD,∞, and for a complete algebraically closed

extension C of Ĕ, we write MD,∞,C = MD,∞ ×Spa(Ĕ,OĔ) Spa(C,OC) for the corresponding
geometric fiber of MD,∞.

The space MD,∞ admits an action by the product group G(Qp)× J(Qp), where J/Qp is the
algebraic group Aut◦B(H). A pair (α, α′) ∈ G(Qp)× J(Qp) sends s to α′ ◦ s ◦ α−1.

There is once again a Grothendieck–Messing period map πGM : MD,∞ → F�μ onto the rigid-
analytic variety whose (R, R+)-points parametrize B ⊗Qp R-module quotients of M(H)⊗W (k) R

which are projective over R, and which are of type μ in the sense that they are (locally on R)
isomorphic to V0 ⊗E R. The morphism πGM sends an (R, R+)-point of MD,∞ to the quotient
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W of M(H)⊗W (k) R as above. It is equivariant for the action of G(Qp)× J(Qp), where G(Qp)
acts trivially on F�μ. In terms of deformations of the p-divisible group H, the period map πGM

sends a deformation G to Lie G.
There is also a Hodge–Tate period map πHT : MD,∞ → F�′μ, where F�′μ(R, R+) parametrizes

B ⊗Qp R-module quotients of V ⊗Qp R which are projective over R, and which are (locally on
R) isomorphic to V1 ⊗E R. The morphism πHT sends an (R, R+)-point of MD,∞ to the image of
V ⊗Qp R→M(H)⊗W (k) R. It is equivariant for the action of G(Qp)× J(Qp), where this time
J(Qp) acts trivially on F�′μ(R, R+). In terms of deformations of the p-divisible group H, the
period map πHT sends a deformation G to (LieG∨)∨.

3. The Fargues–Fontaine curve

3.1 Review of the curve
We briefly review here some constructions and results from [FF18]. First we review the absolute
curve, and then we cover the version of the curve which works in families.

Fix a perfectoid field F of characteristic p, with F ◦ ⊂ F its ring of integral elements.
Let � ∈ F ◦ be a pseudo-uniformizer for F , and let k be the residue field of F . Let W (F ◦)
be the ring of Witt vectors, which we equip with the (p, [�])-adic topology. Let YF =
Spa(W (F ◦), W (F ◦))\{|p[�]| = 0}. Then YF is an analytic adic space over Qp. The Frobenius
automorphism of F induces an automorphism φ of YF . Let BF = H0(YF ,OYF

), a Qp-algebra
endowed with an action of φ. Let PF be the graded ring PF =

⊕
n≥0 Bφ=pn

F . Finally, the Far-
gues–Fontaine curve is XF = ProjPF . It is shown in [FF18] that XF is the union of spectra of
Dedekind rings, which justifies the use of the word ‘curve’ to describe XF . Note however that
there is no ‘structure morphism’ XF → Spec F .

If x ∈ XF is a closed point, then the residue field of x is a perfectoid field Fx containing Qp

which comes equipped with an inclusion i : F ↪→ F �
x, which presents F �

x as a finite extension of
F . Such a pair (Fx, i) is called an untilt of F . Then x 
→ (Fx, i) is a bijection between closed
points of XF and isomorphism classes of untilts of F , modulo the action of Frobenius on i. Thus
if F = E� is the tilt of a given perfectoid field E/Qp, then XE� has a canonical closed point ∞,
corresponding to the untilt E of E�.

An important result in [FF18] is the classification of vector bundles on XF . (By a vector
bundle on XF we are referring to a locally free OXF

-module E of finite rank. We will use the
notation V (E) to mean the corresponding geometric vector bundle over XF , whose sections
correspond to sections of E .) Recall that an isocrystal over k is a finite-dimensional vector space
N over W (k)[1/p] together with a Frobenius semilinear automorphism φ of N . Given N , we
have the graded PF -module

⊕
n≥0(N ⊗W (k)[1/p] BF )φ=pn

, which corresponds to a vector bundle
EF (N) on XF . Then the Harder–Narasimhan slopes of EF (N) are negative to those of N . If F

is algebraically closed, then every vector bundle on XF is isomorphic to EF (N) for some N .
It is straightforward to ‘relativize’ the above constructions. If S = Spa(R, R+) is an affinoid

perfectoid space over k, one can construct the adic space YS , the ring BS , the scheme XS , and
the vector bundles ES(N) as above. Frobenius-equivalences classes of untilts of S correspond to
effective Cartier divisors of XS of degree 1.

In our applications, we will start with an affinoid perfectoid space S over Qp. We will write
XS = XS� , and we will use ∞ to refer to the canonical Cartier divisor of XS corresponding to
the untilt S of S�. Thus if N is an isocrystal over k, and S = Spa(R, R+) is an affinoid perfectoid
space over W (k)[1/p], then the fiber of ES(N) over ∞ is N ⊗W (k)[1/p] R.

1851

https://doi.org/10.1112/S0010437X20007332 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007332


A. B. Ivanov and J. Weinstein

Let S = Spa(R, R+) be as above and let ∞ be the corresponding Cartier divisor. We denote
the completion of the ring of functions on YS along ∞ by B+

dR(R). It comes equipped with a
surjective homomorphism θ : B+

dR(R)→ R, whose kernel is a principal ideal ker(θ) = (ξ).

3.2 Relation to p-divisible groups
Here we recall the relationships between p-divisible groups and global sections of vector bun-
dles on the Fargues–Fontaine curve. Let us fix a perfect field k of characteristic p, and write
PerfW (k)[1/p] for the category of perfectoid spaces over W (k)[1/p]. Given a p-divisible group
H over k with covariant isocrystal N , if H has slopes s1, . . . , sk ∈ Q, then N has the slopes
1− s1, . . . , 1− sk. For an object S in PerfW (k)[1/p] we define the vector bundle ES(H) on XS by

ES(H) = ES(N)⊗OXS
OXS

(1).

Under this normalization, the Harder–Narasimhan slopes of ES(H) are (pointwise on S) the same
as the slopes of H.

Let us write H0(E(H)) for the sheafification of the functor on PerfW (k)[1/p], which sends S

to H0(XS , ES(H)).

Proposition 3.2.1. Let H be a p-divisible group over a perfect field k of characteristic p, with

isocrystal N . There is an isomorphism H̃ad
η
∼= H0(E(H)) of sheaves on PerfW (k)[1/p] making the

following diagram commute,

where the morphism H0(E(H))→ N ⊗W (k)[1/p] Ga sends a global section of E(H) to its

fiber at ∞.

Proof. Let S = Spa(R, R+) be an affinoid perfectoid space over W (k)[1/p]. Then H̃ad
η (R, R+) ∼=

H̃(R◦) ∼= H̃(R◦/p). Observe that H̃(R◦/p) = HomR◦/p(Qp/Zp, H)[1/p], where the Hom is taken
in the category of p-divisible groups over R◦/p. Recall the crystalline Dieudonné functor
G 
→M(G) from p-divisible groups to Dieudonné crystals [Mes72]. Since the base ring R◦/p

is semiperfect, the latter category is equivalent to the category of finite projective modules over
Fontaine’s period ring Acris(R◦/p) = Acris(R◦), equipped with Frobenius and Verschiebung.

Now we apply [SW13, Theorem A]: since R◦/p is f-semiperfect, the crystalline Dieudonné
functor is fully faithful up to isogeny. Thus

HomR◦/p(Qp/Zp, H)[1/p] ∼= HomAcris(R◦),φ(M(Qp/Zp), M(H))[1/p],

where the latter Hom is in the category of modules over Acris(R◦) equipped with Frobenius. Recall
that B+

cris(R
◦) = Acris(R◦)[1/p]. Since H arises via base change from k, we have M(H)[1/p] =

B+
cris(R

◦)⊗W (k)[1/p] N . For its part, M(Qp/Zp)[1/p] = B+
cris(R

◦)e, for a basis element e on which
Frobenius acts as p. Therefore

H̃(R◦) ∼= (B+
cris(R

◦)⊗W (k)[1/p] N)φ=p.

1852

https://doi.org/10.1112/S0010437X20007332 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007332


The smooth locus in infinite-level Rapoport–Zink spaces

On the Fargues–Fontaine curve side, we have by definition H0(XS , ES(H)) = (BS ⊗W (k)[1/p]

N)φ=p. The isomorphism between (BS ⊗W (k)[1/p] N)φ=p and (B+
cris(R

◦)⊗W (k)[1/p] N)φ=p is
discussed in [LB18, Remarque 6.6].

The commutativity of the diagram in the proposition is [SW13, Proposition 5.1.6(ii)], at least
in the case that S is a geometric point, but this suffices to prove the general case. �

With Proposition 3.2.1 we can reinterpret the infinite-level Rapoport Zink spaces as moduli
spaces of modifications of vector bundles on the Fargues–Fontaine curve. First we do this for
MH,∞. In the following, we consider MH,∞ as a sheaf on the category of perfectoid spaces over
W (k)[1/p].

Proposition 3.2.2. Let H be a p-divisible group of height n and dimension d over a perfect

field k. Let N be the associated isocrystal over k. Then MH,∞ is isomorphic to the functor which

inputs an affinoid perfectoid space S = Spa(R, R+) over W (k)[1/p] and outputs the set of exact

sequences

0→ On
XS

s→ ES(H)→ i∞∗W → 0, (3.2.1)

where i∞ : Spec R→ XS is the inclusion, and W is a projective OS-module quotient of

N ⊗W (k)[1/p] OS of rank d.

Proof. We briefly describe this isomorphism on the level of points over S = Spa(R, R+). Suppose
that we are given a point of MH,∞(S), corresponding to a p-divisible group G over R◦, together
with a quasi-isogeny ι : H ⊗k R◦/p→ G⊗R◦ R◦/p and an isomorphism α : Qn

p → V G of sheaves
of Qp-vector spaces on S. The logarithm map on G fits into an exact sequence of sheaves of
Zp-modules on S,

0→ Gad
η [p∞]→ Gad

η → LieG[1/p]→ 0.

After taking projective limits along multiplication-by-p, this turns into an exact sequence of
sheaves of Qp-vector spaces on S,

0→ V G→ G̃ad
η → LieG[1/p]→ 0.

The quasi-isogeny induces an isomorphism H̃ad
η ×Spa W (k)[1/p] S ∼= G̃ad

η ; composing this with the
level structure gives an injective map Qn

p → H̃ad
η (S), whose cokernel W is isomorphic to the pro-

jective R-module Lie G of rank d. In light of Theorem 3.2.1, the map Qn
p → H̃ad

η (S) corresponds
to an OXS

-linear map s : On
XS
→ ES(H), which fits into the exact sequence in (3.2.1). �

Similarly, we have a description of MD,∞ in terms of modifications.

Proposition 3.2.3. Let D = (B, V, H, μ) be a rational EL datum. Then MD,∞ is isomorphic

to the functor which inputs an affinoid perfectoid space S over Ĕ and outputs the set of exact

sequences of B ⊗Qp OXS
-modules

0→ V ⊗Qp OXS

s→ ES(H)→ i∞∗W → 0,

where W is a finite projective OS-module, which is locally isomorphic to V0 ⊗Qp OS as a B ⊗Qp

OS-module (using notation from Definition 2.2.1).
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3.3 The determinant morphism, and connected components
If we are given a rational EL datum D, there is a determinant morphism det : MD,∞ →MdetD,∞,
which we review below. For an algebraically closed perfectoid field C containing W (k)[1/p], the
base change MdetD,∞,C is a locally profinite set of copies of SpaC. For a point τ ∈MdetD,∞(C),
let M τ

D,∞ be the fiber of MD,∞ →MdetD,∞ over τ . We will prove in § 5 that each M τ,non-sp
D,∞

is cohomologically smooth if D is basic. This implies that π0(M
τ,non-sp
D,∞ ) is discrete, so that

cohomogical smoothness of M τ,non-sp
D,∞ is inherited by each of its connected components. This is

Theorem 1.0.1. In certain cases (for example Lubin–Tate space) it is known that M τ
D,∞ is already

connected [Che14].
We first review the determinant morphism for the space MH,∞, where H is a p-divisible group

of height n and dimension d over a perfect field k of characteristic p. Let Ĕ = W (k)[1/p]. For a
perfectoid space S = Spa(R, R+) over Ĕ, we have the vector bundle ES(H) and its determinant
det ES(H), a line bundle of degree d. (This does not correspond to a p-divisible group ‘detH’
unless d ≤ 1.) We define Mdet H,∞(S) to be the set of morphisms s : OXS

→ det ES(H), such
that the cokernel of s is a projective B+

dR(R)/(ξ)d-module of rank 1, where (ξ) is the kernel of
B+

dR(R)→ R. The morphism det : MH,∞ →Mdet H,∞ is simply s 
→ det s.
Regarding the structure of Mdet H,∞: we claim that for an algebraically closed perfectoid field

C/Ĕ, the set Mdet H,∞(C) is a Q×
p -torsor. Indeed, since the vector bundle EC(H) has degree d, so

does the line bundle det EC(H), so that det EC(H) ∼= OXC
(d). A C-point of Mdet H,∞ is therefore

a global section of OXC
(d) with a zero of order d at ∞. In other words, it is a nonzero element

of Fil0 Bφ=pd

C
∼= Qp(d).

For the general case, let D = (B, V, H, μ) be a rational EL datum. Let F = Z(B) be the center
of B. Then F is a semisimple commutative Qp-algebra; i.e., it is a product of fields. The idea is
now to construct the determinant datum detD = (F, detF V, detF H, detF ◦μ), noting once again
that there may not be a p-divisible group ‘detF H’. The determinant detF V is a free F -module
of rank 1. For a perfectoid space S = Spa(R, R+) over Ĕ, we have the F ⊗Qp OXS

-module ES(H)
and its determinant detF ES(H); the latter is a locally free F ⊗Qp OXS

-module of rank 1. Let d

be the degree of detF ES(H), considered as a function on SpecF . We define MdetD,∞(S) to be
the set of F -linear morphisms s : detF V ⊗Qp OXS

→ detF ES(H), such that the cokernel of s is
(locally on SpecF ) a projective B+

dR(R)/(ξ)d-module of rank 1. (We remark here that the detF

in detF ◦μ means the morphism from G = AutB(V ) to Gab = AutF (detF V ) = ResF/Qp
Gm.

If detF μ is a minuscule cocharacter, meaning that it is a vector of only 0s and 1s in the character
group X∗(Gab) ∼= Z[F :Qp]), then detD is an honest rational EL datum.) The morphism MD,∞ →
MdetD,∞ sends a B ⊗Qp OXS

-linear map s : V ⊗Qp OXS
→ ES(H) to the F ⊗Qp OXS

-linear map
det s : detF V ⊗Qp OXS

→ detF ES(H).
An argument similar to the above shows that for an algebraically closed perfectoid field C/Ĕ,

the set MdetD,∞(C) is an F×-torsor, equal to the set of F -bases for F (d). Here the Tate twist
is interpreted (locally on SpecF ) as the dth tensor power of the rational Tate module of the
Lubin–Tate module for F .

3.4 Basic Rapoport–Zink spaces
The main theorem of this article concerns basic Rapoport–Zink spaces, so we recall some facts
about these here.

Let H be a p-divisible group over a perfect field k of characteristic p. The spaceMH,∞ is said
to be basic when the p-divisible group H (or rather, its Dieudonné module M(H)) is isoclinic.
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This is equivalent to saying that the natural map

End◦ H ⊗Qp W (k)[1/p]→ EndW (k)[1/p] M(H)[1/p]

is an isomorphism, where on the right the endomorphisms are not required to commute with
Frobenius.

More generally we have a notion of basicness for a rational EL datum (B, H, V, μ), referring
to the following equivalent conditions.

– The G-isocrystal (G = AutB V ) associated to H is basic in the sense of Kottwitz [Kot85].
– The natural map

End◦
B(H)⊗Qp W (k)[1/p]→ EndB⊗QpW (k)[1/p] M(H)[1/p]

is an isomorphism.
– Considered as an algebraic group over Qp, the automorphism group J = Aut◦B H is an inner

form of G.
– Let D′ = End◦

B H. For any algebraically closed perfectoid field C containing W (k), the map

D′ ⊗Qp OXC
→ End (B⊗QpOXC

) EC(H)

is an isomorphism.

In brief, the duality theorem from [SW13] says the following. Given a basic EL datum D,
there is a dual datum Ď, for which the roles of the groups G and J are reversed. There is
a G(Qp)× J(Qp)-equivariant isomorphism MD,∞ ∼= MĎ,∞ which exchanges the roles of πGM

and πHT .

3.5 The special locus
Let D = (B, V, H, μ) be a basic rational EL datum relative to a perfect field k of characteristic
p, with reflex field E. Let F be the center of B. Define F -algebras D and D′ by

D = EndB V,

D′ = EndB H.

Finally, let G = AutB V and J = AutB H, considered as algebraic groups over Qp. Then G and
J both contain ResF/Qp

Gm.
Let C be an algebraically closed perfectoid field containing Ĕ, and let x ∈MD,∞(C). Then

x corresponds to a p-divisible group G over OC with endomorphisms by B, and also it cor-
responds to a B ⊗Qp OXC

-linear map s : V ⊗Qp OX → EC(N) as in Proposition 3.2.3. Define
Ax = EndB G (endomorphisms in the isogeny category). Then Ax is a semisimple F -algebra. In
light of Proposition 3.2.3, an element of Ax is a pair (α, α′), where α ∈ EndB⊗QpOXC

V ⊗OXC
=

EndB V = D and α′ ∈ EndB⊗QpOXC
EC(H) = D′ (the last equality is due to basicness), such that

s ◦ α = α′ ◦ s. Thus we have

Ax
∼= {(α, α′) ∈ D ×D′ | s ◦ α = α′ ◦ s}.

Lemma 3.5.1. The following are equivalent.

(i) The F -algebra Ax strictly contains F .

(ii) The stabilizer of πGM (x) ∈ F�μ(C) in J(Qp) strictly contains F×.

(iii) The stabilizer of πHT (x) ∈ F�′μ(C) in G(Qp) strictly contains F×.
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Proof. As in Proposition 3.2.3, let s : V ⊗Qp OXS

s→ ES(H) be the modification corresponding
to x.

Note that the condition (1) is equivalent to the existence of an invertible element (α, α′) ∈ Ax

not contained in (the diagonally embedded) F . Also note that if one of α, α′ lies in F , then so
does the other, in which case they are equal.

Suppose (α, α′) ∈ Ax is invertible. The point πGM (x) ∈ F�μ corresponds to the cokernel
of the fiber of s at ∞. Since α′ ◦ s = s ◦ α, the cokernels of α′ ◦ s and s are the same, which
means exactly that α′ ∈ J(Qp) stabilizes πGM (x). Thus (1) implies (2). Conversely, if there
exists α′ ∈ J(Qp)\F× which stabilizes πGM (x), it means that the B ⊗Qp OXC

-linear maps s and
α′ ◦ s have the same cokernel, and therefore there exists α ∈ EndB⊗QpOXC

V ⊗Qp OXC
= D such

that s ◦ α = α′ ◦ s, and then (α, α′) ∈ Ax\F×. This shows that (2) implies (1).
The equivalence between (1) and (3) is proved similarly. �

Definition 3.5.2. The special locus in MD,∞ is the subset M sp
D,∞ defined by the condition

Ax �= F . The nonspecial locus M non-sp
D,∞ is the complement of the special locus.

The special locus is built out of ‘smaller’ Rapoport–Zink spaces, in the following sense. Let
A be a semisimple F -algebra, equipped with two F -embeddings A→ D and A→ D′, so that
A⊗F B acts on V and H. Also assume that a cocharacter in the conjugacy class μ factors
through a cocharacter μ0 : Gm → AutA⊗F B V . Let D0 = (A⊗F B, V, H, μ0). Then there is an
evident morphism MD0,∞ →MD,∞. The special locus M sp

D,∞ is the union of the images of all
the MD0,∞, as A ranges through all semisimple F -subalgebras of D ×D′ strictly containing F .

4. Cohomological smoothness

Let Perf be the category of perfectoid spaces in characteristic p, with its pro-étale topology
[Sch17, Definition 8.1]. For a prime � �= p, there is a notion of �-cohomological smooth-
ness [Sch17, Definition 23.8]. We only need the notion for morphisms f : Y ′ → Y between
sheaves on Perf which are separated and representable in locally spatial diamonds. If such an
f is �-cohomologically smooth, and Λ is an �-power torsion ring, then the relative dualizing com-
plex Rf !Λ is an invertible object in Dét(Y ′, Λ) (thus, it is v-locally isomorphic to Λ[n] for some
n ∈ Z), and the natural transformation Rf !Λ⊗ f∗ → Rf ! of functors Dét(Y, Λ)→ Dét(Y ′, Λ)
is an equivalence [Sch17, Proposition 23.12]. In particular, if f is projection onto a point, and
Rf !Λ ∼= Λ[n], one derives a statement of Poincaré duality for Y ′:

R Hom(RΓc(Y ′, Λ), Λ) ∼= RΓ(Y ′, Λ)[n].

We will say that f is cohomologically smooth if it is �-cohomologically smooth for all � �= p.
As an example, if f : Y ′ → Y is a separated smooth morphism of rigid-analytic spaces over Qp,
then the associated morphism of diamonds f� : (Y ′)� → Y � is cohomologically smooth [Sch17,
Proposition 24.3]. There are other examples where f does not arise from a finite-type map of
adic spaces. For instance, if B̃C = Spa C〈T 1/p∞〉 is the perfectoid closed ball over an algebraically
closed perfectoid field C, then B̃C is cohomologically smooth over C.

If Y is a perfectoid space over an algebraically closed perfectoid field C, it seems quite difficult
to detect whether Y is cohomologically smooth over C. We will review in § 4.2 a ‘Jacobian
criterion’ from [FS] which applies to certain kinds of Y . But first we give a classical analogue of
this criterion in the context of schemes.
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4.1 The Jacobian criterion: classical setting
Proposition 4.1.1. Let X be a smooth projective curve over an algebraically closed field k.

Let Z → X be a smooth morphism. Define MZ to be the functor which inputs a k-scheme T

and outputs the set of sections of Z → X over XT , that is, the set of morphisms s making

Z

��
X ×k T

s
�����������
�� X

commute, subject to the condition that, fiberwise on T , the vector bundle s∗ TanZ/X has

vanishing H1. Then MZ → Spec k is formally smooth.

Here TanZ/X is the tangent bundle, equal to the OZ-linear dual of the sheaf of differentials
ΩZ/X , which is locally free of finite rank. Let π : X ×k T → T be the projection. For t ∈ T , let Xt

be the fiber of π over t, and let st : Xt → Z be the restriction of s to Xt. By proper base change,
the fiber of R1π∗s∗ TanZ/X at t ∈ T is H1(Xt, s

∗
t TanZ/X). The condition about the vanishing

of H1 in the proposition is equivalent to H1(Xt, s
∗
t TanZ/X) = 0 for each t ∈ T . By Nakayama’s

lemma, this condition is equivalent to R1π∗s∗ TanZ/X = 0.

Proof. Suppose we are given a commutative diagram,

T0
��

��

MZ

��

T �� Spec k

(4.1.1)

where T0 → T is a first-order thickening of affine schemes; thus T0 is the vanishing locus of a
square-zero ideal sheaf I ⊂ OT . Note that I becomes an OT0-module.

The morphism T0 →MZ in (4.1.1) corresponds to a section of Z → X over T0. Thus there
is a solid diagram.

X ×k T0

s0 ��

��

Z

��
X ×k T ��

s
��

�� X

(4.1.2)

We claim that there exists a dotted arrow making the diagram commute. Since Z → X is smooth,
it is formally smooth, and therefore this arrow exists Zariski-locally on X. Let π : X ×k T → T

and π0 : X ×k T0 → T0 be the projections. Then X ×k T0 is the vanishing locus of the ideal sheaf
π∗I ⊂ OX×kT . Note that sheaves of sets on X ×k T are equivalent to sheaves of sets on X ×k T0;
under this equivalence, π∗I and π∗

0I correspond. By [Sta14, Remark 36.9.6], the set of such
morphisms form a (Zariski) sheaf of sets on X ×k T , which when viewed as a sheaf on X ×k T0

is a torsor for

HomOX×kT0
(s∗0ΩZ/X , π∗

0I) ∼= s∗0 TanZ/X ⊗ π∗
0I.
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This torsor corresponds to class in

H1(X ×k T0, s
∗
0 TanZ/X ⊗ π∗

0I).

This H1 is the limit of a spectral sequence with terms

Hp(T0, R
qπ0∗(s∗0 TanZ/X ⊗ π∗

0I)).

But since T0 is affine and Rqπ0∗(s∗0 TanZ/X ⊗ π∗
0I) is quasi-coherent, the above terms vanish for

all p > 0, and therefore

H1(X ×k T0, s
∗
0 TanZ/X ⊗ π∗

0I) ∼= H0(T0, R
1π0∗(s∗0 TanZ/X ⊗ π∗

0I)).

Since s∗0 TanZ/X is locally free, we have s∗0 TanZ/X ⊗ π∗
0I
∼= s∗0 TanZ/X ⊗L π0∗I, and we may

apply the projection formula [Sta14, Lemma 35.21.1] to obtain

Rπ0∗(s∗0 TanZ/X ⊗ π∗
0I) ∼= Rπ0∗s∗0 TanZ/X ⊗L I.

Now we apply the hypothesis about vanishing of H1, which implies that Rπ0∗s∗0 TanZ/X is quasi-
isomorphic to the locally free sheaf π0∗s∗0 TanZ/X in degree 0. Therefore the complex displayed
above has H1 = 0.

Thus our torsor is trivial, and so a morphism s : X ×k T → Z exists filling in (4.1.2). The final
thing to check is that s corresponds to a morphism T →MZ , i.e., that it satisfies the fiberwise
H1 = 0 condition. But this is automatic, since T0 and T have the same schematic points. �

In the setup of Proposition 4.1.1, let s : X ×k MZ → Z be the universal section. That is, the
pull-back of s along a morphism T →MZ is the section X ×k T → Z to which this morphism
corresponds. Let π : X ×k MZ →MZ be the projection. By Proposition 4.1.1 MZ → Spec k is
formally smooth. There is an isomorphism

π∗s∗ TanZ/X
∼= TanMZ/ Spec k .

Indeed, the proof of Proposition 4.1.1 shows that π∗s∗ TanZ/X has the same universal property
with respect to first order deformations as TanMZ/ Spec k.

The following example is of similar spirit as our main application of the perfectoid Jacobian
criterion below.

Example 4.1.2. Let X = P1 over the algebraically closed field k. For d ∈ Z, let

Vd = SpecXSymOX
(O(−d))

be the geometric vector bundle over X whose global sections are Γ(X,O(d)). Fix integers n, d,

δ > 0 and let P be a homogeneous polynomial over k of degree δ in n variables. Then P defines
a morphism P :

∏n
i=1 Vd → Vdδ, by sending sections (si)n

i=1 of Vd to the section P (s1, . . . , sn) of
Vdδ. Fix a global section f : X → Vdδ to the projection morphism and consider the pull-back of
P along f .

Z
� � �� P−1(f) ��

��

X

f

��

idX

���
��

��
��

��

∏n
i=1 Vd

P �� Vdδ
�� X
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Moreover, let Z be the smooth locus of P−1(f) over X. It is an open subset. The derivatives
∂P/∂xi of P are homogeneous polynomials of degree δ − 1 in n variables, hence can be regarded
as functions

∏n
i=1 Vd → Vd(δ−1). A point y ∈ P−1(f) lies in Z if and only if (∂P/∂xi)(y), i =

1, . . . , n are not all zero. We wish to apply Proposition 4.1.1 to Z/X. Let M ′
Z denote the space of

global sections of Z over X, that is for a k-scheme T , M ′
Z(T ) is the set of morphisms s : X ×k T →

Z as in the proposition (without any further conditions). A k-point g ∈M ′
Z(k) corresponds to a

section g : X →∏n
i=1 Vd, satisfying P ◦ g = f . In general, for a (geometric) vector bundle V on X

with corresponding locally free OX -module E , the pull-back of the tangent space TanV/X along a
section s : X → V is canonically isomorphic to E . Hence in our situation (using that Z ⊆ P−1(f)
is open) the tangent space g∗TanZ/X can be computed from the short exact sequence,

0→ g∗TanZ/X →
n⊕

i=1

O(d)
DgP−→ O(dδ)→ 0,

where DgP is the derivative of P at g. It is the OX -linear map given by (ti)n
i=1 
→∑n

i=1(∂P/∂xi)(g)ti (note that (∂P/∂xi)(g) are global sections of O(d(δ − 1))). Note that DgP

is surjective: by Nakayama, it suffices to check this fiberwise, where it is true by the condition
defining Z.

The space MZ is the subfunctor of M ′
Z consisting of all g such that (fiberwise) g∗TanZ/X =

ker(DgP ) has vanishing H1. Writing ker(DgP ) =
⊕r

i=1O(mi) (mi ∈ Z), this is equivalent to
mi ≥ −1. By the Proposition 4.1.1 we conclude that MZ is formally smooth over k.

Consider now a numerical example. Let n = 3, d = 1 and δ = 4 and let g ∈M ′
Z(k). Then

DgP ∈ HomOX
(O(1)⊕3,O(4)) = Γ(X,O(3)⊕3), a 12-dimensional k-vector space, and moreover,

DgP lies in the open subspace of surjective maps. We have the short exact sequence of OX -
modules

0→ g∗TanZ/X → O(1)⊕3 DgP−→ O(4)→ 0. (4.1.3)

This shows that g∗TanZ/X has rank 2 and degree −1. Moreover, being a subbundle of O(1)⊕3 it
only can have slopes less than or equal to 1. There are only two options, either g∗TanZ/X

∼=
O(−1)⊕O or g∗TanZ/X

∼= O(−2)⊕O(1). The point g lies in MZ if and only if the first
option occurs for g. Which option occurs can be seen from the long exact cohomology sequence
associated to (4.1.3):

0→ Γ(X, g∗TanZ/X)→ Γ(X,O(1))⊕3︸ ︷︷ ︸
6-dim’l

Γ(DgP )−→ Γ(X,O(4))︸ ︷︷ ︸
5-dim’l

→ H1(X, g∗TanZ/X)→ 0.

It is clear that Γ(X, g∗TanZ/X) is 1-dimensional if and only if g∗TanZ/X
∼= O(−1)⊕O and

2-dimensional otherwise. The first option is generic, i.e., MZ is an open subscheme of M ′
Z .

4.2 The Jacobian criterion: perfectoid setting
We present here the perfectoid version of Proposition 4.1.1

Theorem 4.2.1 (Fargues and Scholze [FS]). Let S = Spa(R, R+) be an affinoid perfectoid

space in characteristic p. Let Z → XS be a smooth morphism of schemes. Let M >0
Z be the func-

tor which inputs a perfectoid space T → S and outputs the set of sections of Z → XS over T ,
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that is, the set of morphisms s making

Z

��
XT

s
����������

�� XS

commute, subject to the condition that, fiberwise on T , all Harder–Narasimhan slopes of the

vector bundle s∗ TanZ/XS
are positive. Then M >0

Z → S is a cohomologically smooth morphism

of locally spatial diamonds.

Example 4.2.2. Let S = η = Spa(C,OC), where C is an algebraically closed perfectoid field of
characteristic 0, and let Z = V(ES(H))→ XS be the geometric vector bundle attached to ES(H),
where H is a p-divisible group over the residue field of C. Then MZ = H0(ES(H)) is isomorphic
to H̃ad

η by Proposition 3.2.1. Let s : XMZ
→ Z be the universal morphism; then s∗ TanZ/XS

is the
constant Banach–Colmez space associated to H (i.e., the pull-back of ES(H) along XMZ

→ XS).
This has vanishing H1 if and only if H has no étale part. This is true if and only if M >0

Z

is isomorphic to a perfectoid open ball. The perfectoid open ball is cohomologically smooth,
in accord with Theorem 4.2.1. In contrast, if the étale quotient H ét has height d > 0, then
π0(H̃ad

η ) ∼= Qd
p implies that H̃ad

η is not cohomologically smooth.

In the setup of Theorem 4.2.1, suppose that x = Spa(C,OC)→ S is a geometric point, and
that x→M >0

Z is an S-morphism, corresponding to a section s : XC → Z. Then s∗ TanZ/XS

is a vector bundle on XC . In light of the discussion in the previous section, we are tempted
to interpret H0(XC , s∗ TanZ/XS

) as the ‘tangent space of M >0
Z → S at x’. At points x where

s∗ TanZ/XS
has only positive Harder–Narasimhan slopes, this tangent space is a perfectoid open

ball.

5. Proof of the main theorem

5.1 Dilatations and modifications
As preparation for the proof of Theorem 1.0.1, we review the notion of a dilatation of a scheme
at a locally closed subscheme [BLR90, § 3.2].

Throughout this subsection, we fix some data. Let X be a curve, meaning that X is a scheme
which is locally the spectrum of a Dedekind ring. Let∞ ∈ X be a closed point with residue field
C. Let i∞ : Spec C → X be the embedding, and let ξ ∈ OX,∞ be a local uniformizer at ∞.

Proposition 5.1.1. Let V → X be a morphism of finite type, and let Y ⊂ V∞ be a locally

closed subscheme of the fiber of V at ∞.

There exists a morphism of X-schemes V ′ → V which is universal for the following property:

V ′ → X is flat at ∞, and V ′∞ → V∞ factors through Y ⊂ V∞.

The X-scheme V ′ is the dilatation of V at Y . We review here its construction.
First suppose that Y ⊂ V∞ is closed. Let I ⊂ OV be the ideal sheaf which cuts out Y .

Let B → V be the blow-up of V along Y . Then I · OB is a locally principal ideal sheaf. The
dilatation V ′ of V at Y is the open subscheme of B obtained by imposing the condition that the
ideal (I · OB)x ⊂ OB,x is generated by ξ at all x ∈ B lying over ∞.
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We give here an explicit local description of the dilatation V ′. Let Spec A be an affine
neighborhood of ∞, such that ξ ∈ A, and let SpecR ⊂ V be an open subset lying over SpecA.
Let I = (f1, . . . , fn) be the restriction of I to Spec R, so that I cuts out Y ∩ SpecA. Then the
restriction of V ′ → V to Spec R is Spec R′, where

R′ = R

[
f1

ξ
, . . . ,

fn

ξ

]/
(ξ-torsion).

Now suppose Y ⊂ V∞ is only locally closed, so that Y is open in its closure Y . Then the dilatation
of V at Y is the dilatation of V \(Y \Y ) at Y .

Note that a dilatation V ′ → V is an isomorphism away from ∞, and that it is affine.

Example 5.1.2. Let

0→ E ′ → E → i∞∗W → 0

be an exact sequence of OX -modules, where E (and thus E ′) is locally free, and W is a C-vector
space. (This is an elementary modification of the vector bundle E .) Let K = ker(E∞ →W ).

Let V(E)→ X be the geometric vector bundle corresponding to E . Similarly, we have
V(E ′)→ X, and an X-morphism V(E ′)→ V(E). Let V(K) ⊂ V(E)∞ be the affine space asso-
ciated to K ⊂ E∞. We claim that V(E ′) is isomorphic to the dilatation V(E)′ of V(E) at V(K).
Indeed, by the universal property of dilatations, there is a morphism V(E ′)→ V(E)′, which is
an isomorphism away from ∞.

To see that V(E ′)→ V(E)′ is an isomorphism, it suffices to work over OX,∞. Over this base,
we may give a basis f1, . . . , fn of global sections of E , with f1, . . . , fk lifting a basis for K ⊂ E∞.
Then the localization of V(E)′ → V(E) at ∞ is isomorphic to

SpecOX,∞
[
f1

ξ
, . . . ,

fk

ξ
, fk+1, . . . , fn

]
→ SpecOX,∞[f1, . . . , fn].

This agrees with the localization of V(E ′)→ V(E) at ∞.

Lemma 5.1.3. Let V → X be a smooth morphism, let Y ⊂ V∞ be a smooth locally closed

subscheme, and let π : V ′ → V be the dilatation of V at Y . Then V ′ → X is smooth, and TanV ′/X

lies in an exact sequence of OV ′-modules

0→ TanV ′/X → π∗ TanV/X → π∗j∗NY/V∞ → 0, (5.1.1)

where NY/V∞ is the normal bundle of Y ⊂ V∞, and j : Y → V is the inclusion.

Finally, let T → X be a morphism which is flat at ∞, and let s : T → V be a morphism of

X-schemes, such that s∞ factors through Y . By the universal property of dilatations, s factors

through a morphism s′ : T → V ′. Then we have an exact sequence of OV -modules

0→ (s′)∗ TanV ′/X → s∗ TanV/X → iT∞∗s∗∞NY/V∞ → 0. (5.1.2)

Proof. One reduces to the case that Y is closed in V∞. The smoothness of V ′ → X is [BLR90,
§ 3.2, Proposition 3]. We turn to the exact sequence (5.1.1). The morphism TanV ′/X → π∗ TanV/X

comes from functoriality of the tangent bundle. To construct the morphism π∗ TanV/X →
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π∗j∗NY/V∞ , we consider the diagram

V ′∞

iV ′

��

π′∞ ��

π∞ ���
��

��
��

�
Y

iY
��

j

��

V∞

iV
��

V ′
π

�� V

in which the outer rectangle is cartesian. For its part, the normal bundle NY/V∞ sits in an exact
sequence of OY -modules

0→ TanY/C → i∗Y TanV∞/C → NY/V∞ → 0.

The composite

i∗V ′π∗ TanV/X = π∗
∞i∗V TanV/X

∼= π∗
∞ TanV∞/C

= (π′
∞)∗i∗Y TanV/C

→ (π′
∞)∗NY/V∞

induces by adjunction a morphism

π∗ TanV/X → iV ′∗(π′
∞)∗NY/V∞

∼= π∗j∗NY/V∞ ,

where the last step is justified because j is a closed immersion.
We check that (5.1.1) is exact using our explicit description of V ′. The sequence is clearly

exact away from the preimage of Y in V ′, since on the complement of this locus, the morphism π

is an isomorphism, and π∗j∗ = 0. Therefore we let y ∈ Y and check exactness after localization
at y. Let I ⊂ OV be the ideal sheaf which cuts out Y , and let I ⊂ OV,y be the localization of I
at y. Then OV∞,y = OV,y/ξ. Since Y ⊂ V∞ are both smooth at y, we can find a system of local
coordinates f1, . . . , fn ∈ OV∞,y (meaning that the differentials df i form a basis for Ω1

V∞/C,y),
such that fk+1, . . . , fn generate I/ξ. If ∂/∂f i are the dual basis, then the stalk of NY/V∞ at y is
the free OY,y-module with basis ∂/∂fk+1, . . . , ∂/∂fn.

Choose lifts fi ∈ OV,y of the f i. Then I is generated by ξ, fk, . . . , fn. The localization
of V ′ → V over y is SpecOV ′,y, where OV ′,y = OV,y[gk+1, . . . , gn]/(ξ-torsion), where ξgi = fi

for i = k + 1, . . . , n. Then the stalk of TanV ′/X at y is the free OV ′,y-module with basis
∂/∂f1, . . . , ∂/∂fk, ∂/∂gk+1, . . . , ∂/∂gn, whereas the stalk of π∗ TanV/X at y is the free OV ′,y-
module with basis ∂/∂f1, . . . , ∂/∂fn. The quotient between these stalks is evidently the free
module over OV ′,y/ξ with basis ∂/∂fk+1, . . . , ∂/∂fn, and this agrees with the stalk of π∗j∗NY/V∞ .

Given a morphism of X-schemes s : T → V as in the lemma, we apply (s′)∗ to (5.1.1); this is
exact because s′ is flat. The term on the right is s∗j∗NY/V∞

∼= iT∞∗s∗∞NY/V∞ (once again, this
is valid because j is a closed immersion). �
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5.2 The space MH,∞ as global sections of a scheme over XC

We will prove Theorem 1.0.1 for the Rapoport–Zink spaces of the form MH,∞ before proceeding
to the general case. Let H be a p-divisible group of height n and dimension d over a perfect field
k. In this context, Ĕ = W (k)[1/p]. Let E = EC(H). Throughout, we will be interpreting MH,∞
as a functor on PerfĔ as in Proposition 3.2.2.

We have a determinant morphism det : MH,∞ →Mdet H,∞. Let τ ∈Mdet H,∞(C) be a geo-
metric point of Mdet H,∞. This point corresponds to a section τ of V(det E)→ XC , which we
also call τ . Let M τ

H,∞ be the fiber of det over τ .
Our first order of business is to express M τ

H,∞ as the space of global sections of a smooth
morphism Z → XC , defined as follows. We have the geometric vector bundle V(En)→ X,
whose global sections parametrize morphisms s : On

XC
→ E . Let Un−d be the locally closed sub-

scheme of the fiber of V(En) over ∞, which parametrizes all morphisms of rank n− d. We
consider the dilatation V(En)rk∞=n−d → V(En) of V(En) along Un−d. For any flat XC-scheme T ,
V(En)rk∞=n−d(T ) is the set of all s : On

T → ET such that cok(s)⊗ C is projective OT ⊗ C-module
of rank d. Define Z as the following cartesian product.

Z

��

�� V(En)rk∞=n−d

det
��

XC τ
�� V(det E)

(5.2.1)

Lemma 5.2.1. Let MZ be the functor which inputs a perfectoid space T/C and outputs the set

of sections of Z → XC over XT . Then MZ is isomorphic to M τ
H,∞.

Proof. Let T = Spa(R, R+) be an affinoid perfectoid space over C. The morphism XT → XC is
flat. (This can be checked locally: B+

dR(R) is torsion-free over the discrete valuation ring B+
dR(C),

and so it is flat.) By the description in (5.2.1), an XT -point of MZ corresponds to a morphism
σ : On

XT
→ ET (H) which has the following properties.

(1) The cokernel of σ∞ is a projective R-module quotient of ET (H)∞ of rank d.
(2) The determinant of σ equals τ .

On the other hand, by Proposition 3.2.2, MH,∞(T ) is the set of morphisms σ : On
XT
→ ET (H)

satisfying the following.

(1′) The cokernel of σ is i∞∗W , for a projective R-module quotient W of ET (H)∞ of rank d.
(2) The determinant of σ equals τ .

We claim the two sets of conditions are equivalent for a morphism σ : On
XT
→ ET (H). Clearly

(1′) implies (1), so that (1′) and (2) together imply (1) and (2) together. Conversely, suppose
(1) and (2) hold. Since τ represents a point of Mdet H,∞, it is an isomorphism outside of ∞, and
therefore so is σ. This means that cok σ is supported at ∞. Thus cokσ is a B+

dR(R)-module.
For degree reasons, the length of (cokσ)⊗B+

dR(R) B+
dR(C ′) has length d for every geometric

point Spa(C ′, (C ′)+)→ T . Whereas condition (1) says that (cokσ)⊗B+
dR(R) R is a projective

R-module of rank d. This shows that (cok σ) is already a projective R-module of rank d, which is
condition (1′). �

Lemma 5.2.2. The morphism Z → XC is smooth.

1863

https://doi.org/10.1112/S0010437X20007332 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007332


A. B. Ivanov and J. Weinstein

Proof. Let ∞′ ∈ XC be a closed point, with residue field C ′. It suffices to show that the stalk of
Z at ∞′ is smooth over Spec B+

dR(C ′).
If∞′ �=∞, then this stalk is isomorphic to the variety (An2

)det=τ consisting of n× n matrices
with fixed determinant τ . Since τ is invertible in B+

dR(C ′), this variety is smooth.
Now suppose∞′ =∞. Let ξ be a generator for the kernel of B+

dR(C)→ C. Then the stalk of
Z at ∞ is isomorphic to the flat B+

dR(C)-scheme Y , whose T -points for a flat B+
dR(C)-scheme T

are n× n matrices with coefficients in Γ(T,OT ), which are rank n− d modulo ξ, and which have
fixed determinant τ (which must equal uξd for a unit u ∈ B+

dR(C)). Consider the open subset
Y0 ⊂ Y consisting of matrices M where the first (n− d) columns have rank (n− d). Then the
final d columns of M are congruent modulo ξ to a linear combination of the first (n− d) columns.
After row reduction operations only depending on those first (n− d) columns, M becomes

(
In−d P

0 ξQ

)
,

with det Q = w for a unit w ∈ B+
dR(C) which only depends on the first (n− d) columns of M .

We therefore have a fibration Y0 → An(n−d), namely projection onto the first (n− d) columns,
whose fibers are Ad(n−d) × (Ad2

)det=w, which is smooth. Therefore Y0 is smooth. The variety Y

is covered by opens isomorphic to Y0, and so it is smooth. �

We intend to apply Theorem 4.2.1 to the morphism Z → X, and so we need some
preparations regarding the relative tangent space of V(En)rk∞=n−d → XC .

5.3 A linear algebra lemma
Let f : V ′ → V be a rank r linear map between n-dimensional vector spaces over a field C. Thus
there is an exact sequence

0→W ′ → V ′ f→ V
q→W → 0,

with dimW = dimW ′ = n− r.
Consider the minor map Λ: Hom(V ′, V )→ Hom(

∧r+1 V ′,
∧r+1 V ) given by σ 
→ ∧r+1 σ.

This is a polynomial map, whose derivative at f is a linear map

DfΛ: Hom(V ′, V )→ Hom
(r+1∧

V ′,
r+1∧

V

)
.

Explicitly, this map is

DfΛ(σ)(v1 ∧ · · · ∧ vr+1) =
r+1∑
i=1

f(v1) ∧ f(v2) ∧ · · · ∧ σ(vi) ∧ · · · ∧ f(vr+1). (5.3.1)

Lemma 5.3.1. Let

K = ker(Hom(V ′, V )→ Hom(W ′, W ))

be the kernel of the map σ 
→ q ◦ (σ|W ′). Then ker DfΛ = K.

Proof. Suppose σ ∈ K. Since f has rank r, the exterior power
∧r+1 V ′ is spanned over C by

elements of the form v1 ∧ · · · ∧ vr+1, where vr+1 ∈ ker f = W ′. Since f(vr+1) = 0, the sum in

1864

https://doi.org/10.1112/S0010437X20007332 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007332


The smooth locus in infinite-level Rapoport–Zink spaces

(5.3.1) reduces to

DfΛ(σ)(v1 ∧ · · · ∧ vr+1) = f(v1) ∧ · · · ∧ f(vr) ∧ σ(vr+1).

Since σ ∈ K and vr+1 ∈W ′ we have σ(vr+1) ∈ ker q = f(V ′), which means that

DfΛ(σ)(v1, . . . , vr+1) ∈
r+1∧

f(V ′) = 0.

Thus σ ∈ kerDfΛ.
Now suppose σ ∈ ker DfΛ. Let w ∈W ′. We wish to show that σ(w) ∈ f(V ′). Let v1, . . . , vr ∈

V ′ be vectors for which f(v1), . . . , f(vr) is a basis for f(V ′). Since σ ∈ ker DfΛ, we have
DfΛ(σ)(v1 ∧ · · · ∧ vr ∧ w) = 0. On the other hand,

DfΛ(σ)(v1 ∧ · · · ∧ vr ∧ w) = f(v1) ∧ · · · ∧ f(vr) ∧ σ(w),

because all other terms in the sum in (5.3.1) are 0, owing to f(w) = 0. Since the wedge product
above is 0, and the f(vi) are a basis for f(V ′), we must have σ(w) ∈ f(V ′). Thus σ ∈ K. �

We interpret Lemma 5.3.1 as the calculation of a certain normal bundle. Let Y =
V(Hom(V ′, V )) be the affine space over C representing morphisms V ′ → V over a C-scheme, and
let j : Y rk=r → Y be the locally closed subscheme representing morphisms which are everywhere
of rank r. Thus, Y rk=r is an open subset of the fiber over 0 of (the geometric version of) the
minor map Λ. It is well known that Y rk=r/C is smooth of codimension (n− r)2 in Y/C, and so
the normal bundle NY rk=r/Y is locally free of this rank.

We have a universal morphism of OY rk=r -modules σ : OY rk=r ⊗C V ′ → OY rk=r ⊗C V . Let
W ′ = ker σ and W = cok σ, so that W ′ and W are locally free OY rk=r -modules of rank
n− r. We also have the OY rk=r -linear morphism DΛ: OY rk=r ⊗C Hom(V ′, V )→ OY rk=r ⊗C

Hom(Λr+1V ′, Λr+1V ), whose kernel is precisely TanY rk=r/C . The geometric interpretation of
Lemma 5.3.1 is a commutative diagram with short exact rows.

ker DΛ ��

∼=
��

OY rk=r ⊗C Hom(V ′, V ) ��

∼=
��

Hom (W ′,W)

∼=
��

TanY rk=r/C
�� j∗ TanY/C �� NY rk=r/Y

(5.3.2)

5.4 Moduli of morphisms of vector bundles with fixed rank at ∞
We return to the setup of § 5.1. We have a curve X and a closed point ∞ ∈ X, with inclusion
map i∞ and residue field C.

Let E and E ′ be rank n vector bundles over X, with fibers V = E∞ and V ′ = E ′∞. We have
the geometric vector bundle V(Hom (E ′, E))→ X. If f : T → X is a morphism, then T -points of
V(Hom (E ′, E)) classify OT -linear maps f∗E ′ → f∗E .

Let V(Hom (E ′, E))rk∞=r be the dilatation of V(Hom (E ′, E)) at the locally closed subscheme
V(Hom(V ′, V ))rk=r of the fiber V(Hom (E ′, E))∞ = V(Hom(V ′, V )). This has the following prop-
erty, for a flat morphism f : T → X: the X-morphisms s : T → V(Hom (E ′, E))rk∞=r parametrize
those OT -linear maps σ : f∗E ′ → f∗E , for which the fiber σ∞ : f∗∞V ′ → f∗∞V has rank r

everywhere on T∞.
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Given a morphism s as above, corresponding to a morphism σ : f∗E ′ → f∗E , we let W ′ and
W denote the kernel and cokernel of σ∞. Then W ′ and W are locally free OT∞-modules of rank
r. Let iT∞ : T∞ → T denote the pull-back of i∞ through f .

We intend to use Lemma 5.1.3 to compute s∗ TanV(Hom (E ′,E))rk∞=r/X . The tangent bundle
TanV(Hom (E ′,E))/X is isomorphic to the pull-back f∗ Hom (E ′, E). Also, we have identified the
normal bundle NV(Hom(V ′,V ))rk=r/V(Hom(V ′,V ) in (5.3.2). So when we apply the lemma to this
situation, we obtain an exact sequence of OT -modules

0→ s∗TanV(Hom (E ′,E))rk∞=r/X → f∗ Hom (E ′, E)→ iT∞∗ Hom (W ′,W)→ 0, (5.4.1)

where the third arrow is adjoint to the map

i∗T∞f∗ Hom (E ′, E) = Hom(f∗
∞V ′, f∗

∞V )→Hom (W ′,W),

which sends σ ∈Hom (f∗∞V ′, f∗∞V ) to the composite

W ′ → f∗
∞V ′ σ∞→ f∗

∞V →W.

The short exact sequence in (5.4.1) identifies the OT -module s∗TanV(Hom (E ′,E))rk∞=r/X as a
modification of f∗ Hom (E ′, E) at the divisor T∞. We can say a little more in the case that σ

itself is a modification. Let us assume that σ fits into an exact sequence

0→ f∗E ′ σ→ f∗E α→ iT∞∗W → 0.

Dualizing gives another exact sequence

0→ f∗(E∨) σ∨→ f∗(E ′)∨ α′→ iT∞∗(W ′)∨ → 0.

Then

s∗TanV(Hom (E ′,E))rk∞=r/X = ker[f∗ Hom (E ′, E)→ iT∞∗ Hom (W ′,W)]

∼= ker(α⊗ α′).

The kernel of α⊗ α′ can be computed in terms of kerα = f∗E ′ and kerα′ = f∗(E∨), see Lemma
5.4.1 below. It sits in a diagram.

(5.4.2)
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Lemma 5.4.1. Let A be an abelian ⊗-category. Let

0→ K
i→ A

f→ B → 0,

0→ K ′ i′→ A′ f ′
→ B′ → 0

be two exact sequences in A, with A, A′, K, K ′ projective. The homology of the complex

K ⊗K ′
(i⊗1K′ ,1K⊗i′)

�� (A⊗K ′)⊕ (K ⊗A)
1A⊗i′−i⊗1A′

�� A⊗A′

is given by H2 = 0, H1
∼= Tor1(B, B′), and H0

∼= B ⊗B′. Thus, K ′′ = ker(f ⊗ f ′ : A⊗A′ →
B ⊗B′) appears in a diagram

0

��
K ⊗K ′

��
0 �� L ��

��

(A⊗K ′)⊕ (K ⊗A) �� K ′ �� 0

Tor1(B, B′)

��
0

where both sequences are exact.

Proof. Let C• be the complex K → A, and let C ′• be the complex K ′ → A′. Since C ′• is a
projective resolution of B′, we have a Tor spectral sequence [Sta14, Tag 061Z]

E2
i,j : Torj(Hi(C•), B′) =⇒ Hi+j(C• ⊗ C ′

•).

We have E2
0,0 = B ⊗B′ and E2

0,1 = Tor1(B, B′), and E2
i,j = 0 for all other (i, j). Therefore

H0(C• ⊗ C ′•) ∼= B ⊗B′ and H1(C• ⊗ C ′•) ∼= Tor1(B, B′), which is the lemma. �

5.5 A tangent space calculation
We return to the setup of § 5.2. Thus we have fixed a p-divisible group H over a perfect field
k, and an algebraically closed perfectoid field C containing W (k)[1/p]. But now we specialize to
the case that H is isoclinic. Therefore D = EndH (up to isogeny) is a central simple Qp-algebra.
Let E = EC(H); we have Hom (E , E) ∼= D ⊗Qp OXC

.
Recall the scheme Z → XC , defined as a fiber product in (5.2.1). Let s : XC → Z be a section.

This corresponds to a morphism σ : On
XC
→ E . Let W ′ and W be the cokernel of σ∞; these are

C-vector spaces.
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We are interested in the vector bundle s∗TanZ/XC
. This is the kernel of the derivative of the

determinant map:

s∗TanZ/XC
= ker(Ds det : s∗TanV(En)rk∞=n−d/XC

→ det E).

We apply (5.4.2) to give a description of s∗TanV(En)rk∞=n−d/XC
. We get a diagram of OXC

-
modules.

(5.5.1)

On the other hand, the horizontal exact sequence fits into a diagram.

(5.5.2)

The arrow labeled tr is induced from the Qp-linear map Mn(Qp)×D → Qp carrying (α′, α)
to tr(α′)− tr(α) (reduced trace on D). The commutativity of the lower right square boils down
to the identity, valid for sections s1, . . . , sn ∈ H0(XC , E) and α ∈ D:

((αs1) ∧ s2 ∧ · · · ∧ sn) + · · ·+ (s1 ∧ · · · ∧ (αsn)) = (tr α)(s1 ∧ · · · ∧ sn).

(There is a similar identity for α′ ∈Mn(Qp).) Because the arrow labeled τ is injective, we can
combine (5.5.1) and (5.5.2) to arrive at a description of s∗ TanZ/XC

.

(5.5.3)
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We pass to duals to obtain the following.

(5.5.4)

The dotted arrow is induced from the map (Mn(Qp)×D)⊗Qp OXC
→ En sending (α′, α)⊗ 1 to

α ◦ σ − σ ◦ α′.

Theorem 5.5.1. If s is a section to Z → XC corresponding, under the isomorphism of Lemma

5.2.1, to a point x ∈Mτ
H,∞(C), then the following are equivalent.

(i) The vector bundle s∗TanZ/XC
has a Harder–Narasimhan slope which is less than or equal

to 0.

(ii) The point x lies in the special locus M τ,sp
H,∞.

Proof. Let σ : On
XC
→ E denote the homomorphism corresponding to x. Condition (1) is true

if and only if H0(XC , s∗Tan∨
Z/XC

) �= 0. We now take H0 of (5.5.4), noting that H0(XC ,F∨)→
H0(XC , En) is injective. We find that

H0(XC , s∗Tan∨
Z/XC

) ∼= {(α′, α) ∈Mn(Qp)×D | α ◦ σ = σ ◦ α′}/Qp

= Ax/Qp.

This is nonzero exactly when x lies in the special locus. �

Combining Theorem 5.5.1 with the criterion for cohomological smoothness in Theorem 4.2.1
proves Theorem 1.0.1 for the space MH,∞.

Naturally we wonder whether it is possible to give a complete description of s∗ TanZ/XC
,

as this is the ‘tangent space’ of M τ
H,∞ at the point x. Note that s∗ TanZ/XC

can only have
nonnegative slopes, since it is a quotient of a trivial bundle. Therefore Theorem 5.5.1 says that
0 appears as a slope of s∗ TanZ/XC

if and only if s corresponds to a special point of M τ
H,∞.

Example 5.5.2. Consider the case that H has dimension 1 and height n, so that MH,∞ is an
infinite-level Lubin–Tate space. Suppose that x ∈MH,∞(C) corresponds to a section s : XC → Z.
Then s∗ TanZ/XC

is a vector bundle of rank n2 − 1 and degree n− 1, with slopes lying in [0, 1/n];
this already limits the possibilities for the slopes to a finite list.

If n = 2 there are only two possibilities for the slopes appearing in s∗ TanZ/XC
: {1/3} and

{0, 1/2}. These correspond exactly to the nonspecial and special loci, respectively.
If n = 3, there are a priori five possibilities for the slopes appearing in s∗ TanZ/XC

: {1/4, 1/4},
{1/3, 1/5}, {1/3, 1/3, 0, 0}, {2/7, 0}, and {1/3, 1/4, 0}. But in fact the final two cases cannot
occur: if 0 appears as a slope, then x lies in the special locus, so that Ax �= Qp. But as Ax is
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isomorphic to a subalgebra of End◦ H, the division algebra of invariant 1/3, it must be the case
that dimQp Ax = 3, which forces 0 to appear as a slope with multiplicity dimQp Ax/Qp = 2. On
the nonspecial locus, we suspect that the generic (semistable) case {1/4, 1/4} always occurs, as
otherwise there would be some unexpected stratification of M ◦,non-sp

H,∞ . But currently we do not
know how to rule out the case {1/3, 1/5}.

5.6 The general case
Let D = (B, V, H, μ) be a rational EL datum over k, with reflex field E. Let F be the center of
B. As in § 3.5, let D = EndB V and D′ = EndB H, so that D and D′ are both F -algebras.

Let C be a perfectoid field containing Ĕ, and let τ ∈MdetD,∞(C). Let M τ
D,∞ be the fiber of

the determinant map over τ . We will sketch the proof that M τ
D,∞ → Spa C is cohomologically

smooth. It is along the same lines as the proof for MH,∞, but with some extra linear algebra
added.

The space M τ
D,∞ may be expressed as the space of global sections of a smooth morphism Z →

XC , defined as follows. We have the geometric vector bundle V(HomB(V ⊗Qp OX , EC(H))).
In its fiber over ∞, we have the locally closed subscheme whose R-points for a C-algebra R

are morphisms, whose cokernel is as a B ⊗Qp R-module isomorphic to V0 ⊗Ĕ R, where V0 is the
weight 0 subspace of V ⊗Qp Ĕ determined by μ. We then have the dilatation V(HomB(V ⊗Qp

OXC
, EC(H)))μ of V(HomB(V ⊗Qp OX , EC(H))) at this locally closed subscheme. Its points over

S = Spa(R, R+) parametrize B-linear morphisms s : V ⊗Qp OXS
→ ES(H), such that (locally on

S) the cokernel of the fiber s∞ is isomorphic as a (B ⊗Qp R)-module to V0 ⊗Ĕ R. Finally, the
morphism Z → XC is defined by the following cartesian diagram.

Z ��

��

V(HomB(V ⊗Qp OXC
, EC(H)))μ

det
��

XC τ
�� V(Hom F (detF V ⊗Qp OXC

, detF EC(H)))

Let x ∈MD,∞(C) correspond to a B-linear morphism s : V ⊗Qp OXC
→ EC(H) and a section of

Z → XC which we also call s. Define B ⊗Qp C-modules W ′ and W by

0→W ′ → V ⊗Qp C
s∞→ EC(H)∞ →W → 0.

The analogue of (5.5.4) is a diagram which computes the dual of s∗ TanZ/XC
.

(5.6.1)
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This time, the dotted arrow is induced from the map (D′ ×D)⊗Qp OXC
→Hom (V ⊗Qp

OXC
, EC(H)) sending (α′, α)⊗ 1 to α ◦ s− s ◦ α′. Taking H0 in (5.6.1) shows that

H0(XC , s∗ Tan∨
Z/XC

) = Ax/F , and this is nonzero exactly when x lies in the special
locus.

5.7 Proof of Corollary 1.0.2
We conclude with a discussion of the infinite-level modular curve X(p∞). Recall from [Sch15]
the following facts about the Hodge–Tate period map πHT : X(p∞)→ P1. The ordinary locus
in X(p∞) is sent to P1(Qp). The supersingular locus is isomorphic to finitely many copies of
MH,∞,C , where H is a connected p-divisible group of height 2 and dimension 1 over the residue
field of C; the restriction of πHT to this locus agrees with the πHT we had already defined on
each MH,∞,C .

We claim that the following are equivalent for a C-point x of X(p∞)◦.

(i) The point x corresponds to an elliptic curve E/OC , such that the p-divisible group E[p∞]
has EndE[p∞] = Zp.

(ii) The stabilizer of πHT (x) in PGL2(Qp) is trivial.
(iii) There is a neighborhood of x in X(p∞)◦ which is cohomologically smooth over C.

First we discuss the equivalence of (1) and (2). If E is ordinary, then E[p∞] ∼= Qp/Zp × μp∞

certainly has endomorphism ring larger than Zp, so that (1) is false. Meanwhile, the stabilizer of
πHT (x) in PGL2(Qp) is a Borel subgroup, so that (2) is false as well. The equivalence between
(1) and (2) in the supersingular case is a special case of the equivalence discussed in § 3.5.

Theorem 1.0.1 tells us that M ◦,non-sp
H,∞ is cohomologically smooth, which implies that shows

that (2) implies (3). We therefore are left with showing that if (2) is false for a point x ∈ X(p∞)◦,
then no neighborhood of x is cohomologically smooth.

First suppose that x lies in the ordinary locus. This locus is fibered over P1(Qp). Suppose
U is a sufficiently small neighborhood of x. Then U is contained in the ordinary locus, and so
π0(U) is nondiscrete. This implies that H0(U,F�) is infinite, and so U cannot be cohomologically
smooth.

Now suppose that x lies in the supersingular locus, and that πHT (x) has nontrivial stabilizer
in PGL2(Qp). We can identify x with a point in M ◦,sp

H,∞(C). We intend to show that every
neighborhood of x in M ◦

H,∞ fails to be cohomologically smooth.
Not knowing a direct method, we appeal to the calculations in [Wei16], which constructed

semistable formal models for each M ◦
H,m. The main result we need is Theorem 5.1.2, which

uses the term ‘CM points’ for what we have called special points. There exists a decreasing
basis of neighborhoods Zx,0 ⊃ Zx,1 ⊃ · · · of x in M ◦

H,∞. For each affinoid Z = Spa(R, R+), let
Z = Spec R+ ⊗OC

κ, where κ is the residue field of C. For each m ≥ 0, there exists a nonconstant
morphism Zx,m → Cx,m, where Cx,m is an explicit nonsingular affine curve over κ. This morphism
is equivariant for the action of the stabilizer of Zx,m in SL2(Qp). For infinitely many m, the
completion Ccl

x,m of Cx,m is a projective curve with positive genus.
Let U ⊂M ◦

H,∞ be an affinoid neighborhood of x. Then there exists N ≥ 0 such that Zx,m ⊂ U

for all m ≥ N . Let K ⊂ SL2(Qp) be a compact open subgroup which stabilizes U , so that U/K

is an affinoid subset of the rigid-analytic curve M ◦
H,∞/K. For each m ≥ N , let Km ⊂ K be the

stabilizer of Zx,m, so that Km acts on Cx,m.
There exists an integral model of U/K whose special fiber contains as a component the

completion of each Zx,m/Km which has positive genus. Since there is a nonconstant morphism
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Zx,m/Km → Cx,m/Km, we must have

dimF�
H1(U/K,F�) ≥

∑
m≥N

dimF�
H1(Ccl

x,m/Km,F�).

Now we take a limit as K shrinks. Since U ∼ lim←−U/K, we have H1(U,F�) ∼= lim−→H1(U/K,F�).
Also, for each m, the action of Km on Cx,m is trivial for all sufficiently small K. Therefore

dimF�
H1(U,F�) ≥

∑
m≥N

dimF�
H1(Ccl

x,m,F�) =∞.

This shows that U is not cohomologically smooth.
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