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Abstract. Previous computations concerning the allowed magnetohydrodynamic
steady states of a visco-resistive magnetofluid in a toroid are extended. The current
is supported by an externally imposed toroidal electric field, and a scalar resistivity
and viscosity are assumed. Emphasis is on the character of the necessary velocity
fields (mass flows) that toroidal geometry demands. Non-ideal boundary conditions
are imposed at the toroidal boundary. One of the more interesting results to emerge
is the sensitive dependence of the flow pattern on the shape of the toroidal cross-
section boundary: the dipolar poloidal flow that had appeared for cross sections
that were symmetric about the midplane is seen to deform continuously into a
monopolar pattern for a ‘D-shaped’ cross section as the viscous Lundquist number
M is increased. A net toroidal mass flow also develops. A boundary layer whose
properties scale with fractional powers of M is also studied. The interior of the
magnetofluid is approximately force-free, with current densities and magnetic fields
that are nearly parallel for JET-like parameters. Steep velocity derivatives and
a steep pressure drop in this boundary layer become steeper with increasing M
(decreasing viscosity). The magnetic quantities do not reflect the rapid velocity and
vorticity variations in the boundary layer. The maximum velocities, in the region
where the viscosity is large enough for the numerics to work, are of the order of a few
hundreds of centimetres per second. Measurements of velocity fields confined to the
boundary layer would misrepresent the interior plasma conditions. Uncertainties
in the magnetized plasma viscosity remain as an obstacle to unambiguous tests of
the results in the case of real plasmas.

1. Introduction
Few practices in the theory of magnetic plasma confinement are more widespread
or less critically scrutinized than the one of using ideal magnetohydrodynamics
(MHD) as the mathematical framework for deciding what the possible steady states,
or ‘equilibria’, of the plasma can be (see for example Bateman 1978; Wesson and
Campbell 1997). Yet the corresponding procedure in hydrodynamics has long been
known to fail. The presence of even small values of the transport coefficients,
combined with the changes in boundary conditions that are mandated by non-
zero viscosity, mean that the best-known hydrodynamic steady flows (pipe flow,
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Poiseuille flow, Couette flow, for example) cannot be well approximated in an ideal
framework. The similarity of the MHD equations and the neutral-fluid Navier–
Stokes description (a special case of MHD, in fact) suggests that there may be
significant parallels for electrically conducting fluids.
The intent of this article is to note some features of MHD steady states in current-

carrying plasmas that result from the inclusion of finite transport coefficients
and non-ideal boundary conditions, pursuing the hydrodynamic analogy. These
investigations have been in progress intermittently since 1994 and the results have
been presented piecemeal as they have emerged (Montgomery and Shan 1994;
Bates and Lewis 1996; Montgomery et al. 1997a; Montgomery et al. 1997b; Kamp
et al. 1998; Bates and Montgomery 1998; Montgomery et al. 1999; Kamp and
Montgomery 2003). The present paper intends to present in a unified framework an
article that can be read in a self-contained way, and to present some new additional
results that have not appeared in any of the above references.
The idea that finite transport coefficients (resistivity in particular) must affect

confined MHD steady states is an old one, and goes back at least to the unpublished
but influential manuscript of Pfirsch and Schlüter (1962). A variety of subsequent
papers have appeared over the years which have addressed the matter (see for
example Grad 1967; Grad and Hogan 1970; Grad et al. 1977; Rosen and Greene
1977; Ponno et al. 2002; Throumoulopoulos and Tasso 2003). One important feature
is that a resistive steady state can only be maintained against Ohmic decay by the
presence of some externally-applied driving mechanism that achieves energy bal-
ance and does work on the plasma. In practice, this could be, for example, through
the application of either particle beams or externally-supported electric fields. Our
earlier work has assumed the latter as being the simplest to handle theoretically, and
the present calculation will also rely on imposed time-independent electric fields.
We have assumed that three features of the full MHD description needed to

be enforced on an equal footing. First, mechanical force balance, by means of the
equation of motion, needed to be achieved pointwise. Second, Ohm’s law (irrelevant
for an ideal MHD steady state of the Grad–Shafranov variety) needed to be satisfied
by whatever current density and electric field were present, with some basis for the
choice of profile for the transport coefficients beyond simple algebraic convenience.
(We cannot defend energetically the practice of choosing a resistivity profile spatial
dependence, for example, solely to make the arithmetic ‘come out right’ (see for
example Ponno et al. 2002; Throumoulopoulos and Tasso 2003).) Third, Faraday’s
law, which demands curl-free electric fields in the steady state, needed to be taken
seriously. With a simplified but non-ideal set of boundary conditions, it turned
out that the force-balance requirement could not be achieved in toroidal geometry
without velocity fields, though it can easily be achieved in the straight cylinder
without flow. Moreover, it turned out that the specific velocity fields that arose
depended sensitively on viscosity, so that viscous effects needed to be included in
the equation of motion as well as modifying the boundary conditions. A crucial role
emerged for the Hartmann number, which involves a geometric mean of magnetic
diffusivity and kinematic viscosity.
Such a connected sequence of requirements, not surprisingly, leads to a com-

plicated problem—sufficiently complicated that some other desirable features that
one should include for realism have so far lain out of reach. In particular, it has
been necessary to assume uniform mass density and incompressible flow in order to
avoid having to deal with equations of state or solve an energy equation. A second
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unfortunate feature has to do with the viscosity of a magnetized plasma, the
(tensor) expression for which is prohibitively complicated to use, as well as highly
uncertain in magnitude (Braginskii 1965; Balescu 1988). Moreover, the geometric-
ally complex and chemically active boundary of a typical confinement device is
far too unsymmetric and complicated to be included without oversimplifications.
Nonetheless, it seems desirable to take the development as far as it can go at anymo-
ment. Any future considerations for ‘non-violent’ controlled fusion will need to start
from as accurate a version as we can muster for the state of the confined plasma.
The above-mentioned velocity fields were first identified using perturbation the-

ory based on the assumed smallness of the velocities involved, that is for low mech-
anical Reynolds number (see Montgomery et al. 1997b; Kamp et al. 1998). A low
Reynolds number, in turn, was justifiable by the assumption that the magnetofluid
was highly viscous. The benefit of this assumption is to be able to neglect the
inertial term (v · ∇)v in the equation of motion, and to satisfy mechanical force
balance by means of the viscous force alone. Thus a characteristic flow pattern
emerged, seemingly somewhat independently of the shape of the toroidal boundary
cross section (since it appeared both for rectangular and circular boundaries) and
independently of the viscous and resistive boundary conditions imposed: a pair
of counter-rotating poloidal vortices or convection cells involving mostly toroidal
vorticity.
Recently, we demonstrated an ability to relax the assumption of a high viscosity

using commercially available software (see the FEMLAB Reference Manual 2001;
Kamp and Montgomery 2003). The primary effect of lowering the viscosity of the
plasma is the appearance of a strong toroidal velocity component that appears in
the flow. Eventually this toroidal flow becomes larger than the poloidal flow if the
Hartmann number becomes sufficiently large, thus formally trying to approach the
ideal limit that has so often been used in treatments of steady-state magnetic fusion
confinement. Moreover, near the wall of the torus, lowering the viscosity leads to a
narrowing layer of increasing flow speeds, i.e. a boundary layer develops.
Although large toroidal speeds develop for low viscosity values, in the geometries

considered up to now, there is no net mass flow in the toroidal direction implied.
In fact due to the symmetry present in the toroidal cross section, solutions are
either symmetric (even parity) or anti-symmetric (odd parity) with respect to the
midplane of the torus. For both the poloidal and toroidal flow fields this implies
that the velocities in the upper half of the torus are necessarily opposite to those
in the lower half, thus giving rise to a zero net mass flow in the toroidal direction.
One of the main purposes of the present paper is to demonstrate that as soon

as the geometrical up–down symmetry across the midplane of the torus is broken
(as it is in most realistic magnetic confinement vessels), the above-mentioned pair
of voltage-driven counter-rotating poloidal vortices that is so typical for the high-
viscosity limit can give place to just one poloidal convection cell, which for suffi-
ciently low viscosity and fixed resistivity fills the whole cross section of the torus.
Also, the toroidal velocity is not anti-symmetrical any more, resulting in a net flow
of mass in the toroidal direction around the torus. Depending upon the degree of
up–down asymmetry in the torus’s cross section, it may require a very small value
of the viscosity to enter this previously unidentified regime where the symmetry in
the flow pattern becomes broken. This also means that the previously-mentioned
boundary-layer behaviour for low values of the viscosity is inextricably associated
with the emergence of the flow asymmetries. One main reason to explore the
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consequences of varying the viscosity of the plasma keeping the resistivity fixed is
the already-mentioned uncertainties with respect to its proper (tensor) expression.
Lack of a sufficiently inclusive theoretical or experimental grasp of magnetized
plasma viscosity may be thought of as perhaps the most severe theoretical limita-
tion in fusion MHD at the present time.
In Sec. 2 we present the problem to be solved. In the Appendix, the relevant

equations are re-expressed, for the case of axisymmetric steady states, in terms
of scalar functions which are what are actually computed. Choosing values for the
various parameters that correspond as closely as possible to a data set from the first
tritium shot at the Joint European Torus (JET) (The JET Team 1992) in Sec. 3 we
explore in detail the boundary-layer behaviour in the various mechanical variables
near the wall of the torus. In Sec. 4 we demonstrate that for a toroidal cross section
that has no up–down symmetry, the dipolar nature of the flow field found for high
values of the viscosity will turn into a monopolar one in the low-viscosity regime.
Section 5, finally, presents a discussion and conclusions.
In order to keep the numerical development manageable, we assume boundary

conditions that are as simple as are compatible with the effects under consider-
ation. The interior bounding surface of the torus we consider is idealized as a
rigid, perfectly conducting wall coated with a thin layer of insulating dielectric (to
permit finite, parallel electric fields at the conductor), which is, however, perfectly
slippery, resulting in stress-free mechanical boundary conditions (the vanishing of
the tangential viscous stress). For a couple of cases we also present results of nu-
merical computations using no-slip (rather than stress-free) mechanical boundary
conditions, and note significant differences between the consequences of the two
boundary conditions.

2. Statement of the problem
2.1. Equations and geometry

The starting point for all our computations are the dimensionless MHD equations
of motion (in the familiar ‘Alfvénic’ units) for a uniform-density, incompressible,
conducting, steady-state fluid (Cowling 1958; Shercliff 1965), Ohm’s law, Ampère’s
law, and Faraday’s law, as already presented in for example Montgomery et al.
(1997):

(v · ∇)v = J× B− ∇p + ν∇2v, (1)

E+ v× B = ηJ, (2)

∇ × B = J, (3)

∇ × E = 0, (4)

∇ · v = 0, (5)

∇ · B = 0. (6)

Here v, p, J, B, and E are the velocity field, the scalar pressure, the electric current
density, the magnetic field, and the electric field, respectively. In the dimensionless
units used, where velocities are measured in units of the Alfvén speed, ν is the
reciprocal of the viscous Lundquist number, M . In terms of laboratory (cgs) units,
M is given by our ν−1 = M = CaL/ν̃, where Ca is the Alfvén speed based on a
typical magnetic field, L is a characteristic length scale (for which we will take the
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Figure 1. Geometry of the computational model. The toroid is assumed to either have a
circular cross section (a) or an asymmetric, ‘D’-like cross section (b).

minor radius of the torus), and ν̃ is the laboratory kinematic viscosity, expressed in
cm2 s−1. η is the reciprocal of the resistive Lundquist number, S, which in laboratory
units is defined by η−1 = S = 4πσ̃CaL/c2, where σ̃ is the cgs electrical conductivity,
expressed in s−1, and c the speed of light. The Hartmann number H is related to
M and S through the relation H =

√
MS.

The geometry of the model for which the above equations are solved numerically
consists of an axisymmetric toroid, the axis of symmetry of which coincides with the
z-axis in a set of cylindrical polar coordinates (r, φ, z). The boundary of the toroidal
cross section is taken either to be circular (see Fig. 1(a)) or a kind of asymmetric
‘D’-shape as illustrated in Fig. 1(b). The circular cross section is described by the
equation (dimensionless units, again)

(r − r0)2 + z2 = 1, (7)

where r0 is the ratio of the major radius of the torus and the characteristic length
scale L. Since the latter is taken to be the minor radius of the torus with the circular
cross section, r0 is also identical to the aspect ratio of the torus. The asymmetric
cross section depicted in Fig. 1(b) consists of a straight-line element that extends
from (r, z) = (r0 −1, 0) to (r, z) = (r0 −1, −2), the upper half of a circle with centre
in (r, z) = (r0, 0) and radius 1, and yet another segment of a circle the centre of
which is in (r, z) = (r0 − 1, 0) and with radius 2. This specific asymmetric cross
section is believed not to be a uniquely important one, and is chosen mainly for
calculational convenience. The results derived in Sec. 4 are somewhat independent
of the shape of the toroidal boundary cross section provided it is asymmetric, as
has been verified by experimentation with other shapes.
The boundary conditions that are imposed upon the solutions of the set of

equations (1)–(6) are that any tangential viscous stress, and the normal components
of v, J, and B, should vanish at the walls. Occasionally, instead of the stress-free
boundary condition, we will also employ the no-slip condition by requiring that the
tangential component of v also vanishes at the walls.
The steady states described in this paper are maintained against dissipation by a

curl-free, toroidal electric field the source of which is assumed to be an axisymmetric,
infinitely-long, iron core that goes through the hole of the torus and through which
a z-directed magnetic flux is increasing proportionally to the time. This implies
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that the imposed electric field is given by

Eext(r, z) = E0
r0

r
îϕ, (8)

where E0 is a reference value of the electric field at radius r = r0 and îϕ is a
unit vector in the toroidal (azimuthal) direction. Additionally, a purely toroidal dc
magnetic field supported by external poloidal windings around the toroid is also
assumed to be present. This magnetic field is curl-free too and is described by

Bext(r, z) = B0
r0

r
îϕ, (9)

where B0 is a reference value of the magnetic field at radius r = r0.
We will ignore the violation of electrodynamics that is implied by the presence

of these finite axially symmetric electric and magnetic fields inside the perfectly
conducting toroidal wall. In real life, the driving electric and magnetic fields require
slits and slots cut into the perfect conductor in order that they might penetrate.
That, however, would destroy the rotational symmetry desired, and make even the
problem of finding steady states to perturb prohibitively difficult.

2.2. Parameter values

In order to come as close as possible to the operating regimes of current toroidal
magnetic confinement devices, we choose our geometrical parameters close to those
of the JET and our plasma parameters close to those of the first tritium shot in
the JET (The JET Team 1992).
For the major and minor radii we take 300 cm and 150 cm respectively. The latter

value is somewhere in between the horizontal minor radius (125 cm) and the vertical
minor radius (200 cm) of the JET. Taking the characteristic scale length L equal
to the minor radius, that is 150 cm, r0 = 2 is found. The root mean square value of
toroidal magnetic field is taken to be 28 kG. For the circular cross section this can
be achieved by the dimensionless B0 = 0.94 and for the asymmetric cross section
by B0 = 0.87. The value of the toroidal loop voltage is chosen somewhat arbitrarily
to be 1 V, resulting in an externally applied electric field E0 = 2.5 × 10−9 for the
dimensionless units used. The value of the resistive Lundquist number S is chosen
to give a plausible toroidal current of 3.1 MA. For the circular cross section we are
led to S = 1.11 × 108 and for the asymmetric cross section to S = 6.92 × 107.
The plasma is assumed to be deuterium, with an electron and ion density both

of 3.6 × 1013 cm−3 and an electron temperature of 10 keV. The ion temperature
is assumed to be 18 keV. Following the tabulated formulas in the NRL Plasma
Formulary (Book 1987) for collision times and transport coefficients, this gives too
large a value of S (1.4 × 1010), and we are led instead to the above-mentioned values,
in order to achieve the 3.1 MA toroidal current. These lower values of S may be
attributed to an anomalous resistivity, outside the MHD framework. The typical
strength of the magnetic field (28 kG) and the assumed ion number density result
in an Alfvén speed Ca of 7.2 × 108 cm s−1.
The viscosity of a hot plasma such as those used in tokamak confinement devices

is highly uncertain within orders of magnitude, experimentally and theoretically.
Convincing theoretical Chapman–Enskog calculations exist, but only in the short
mean free path limit, not strictly applicable to tokamak plasmas (Braginskii 1965;
Balescu 1988). These calculations have been carried out with and without includ-
ing the effects of a strong magnetic field on the particle collisions. Only in the
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unmagnetized case does a scalar Newtonian viscosity term of the type appearing
in (1) result. For the strong magnetic field case, a complicated viscous stress tensor
results, with different viscosity coefficients that span about twelve orders of mag-
nitude. If one takes the largest viscosity coefficient (the ‘ion parallel’ viscosity)
from this set, or chooses the unmagnetized result, the kinematic viscosity can
be estimated as an ion mean free path times an ion thermal speed. This leads
to a laboratory kinematic viscosity ν̃ of 1.25 × 1015 cm2 s−1. The resulting viscous
Lundquist number is thenM = 8.64 × 10−5. Obviously wemust regard the situation
as an unsatisfactory one of considerable uncertainty, which can be resolved only
when much more reliable and detailed measurements of viscous effects in tokamaks
have been made. In the next two sections we will take M = 8.64 × 10−5 as a lower
bound on the viscous Lundquist number and explore what happens to the flow fields
if M is increased above this lower bound keeping all other parameters fixed to the
above-mentioned values.

3. Boundary layer behaviour
Starting from the set of non-ideal MHD equations (1)–(6) and using the fact that
we consider axisymmetric steady states, in the Appendix we derive a set of coupled,
nonlinear, Poisson-like equations for the following scalar variables (see (A 7), (A 9),
(A 10), (A 12), (A 13), and (A 14)): the stream function ψ, the toroidal vorticity ωϕ,
the (self-consistent) toroidal magnetic field Bϕ, the toroidal velocity vϕ, and the
magnetic flux function χ. As is explained in the Appendix, solutions for v, B, and
J can be calculated without a priori knowledge of the pressure p and the self-
consistent electric fields (that are described by an electric potential Φ). This set of
equations is solved numerically using a commercially available software package
called FEMLAB (see the FEMLAB Reference Manual 2001). FEMLAB applies
the finite-element method to our system of partial differential equations in two
dimensions in conjunction with adaptive meshing and error control. A numerical
solver that is specialized in solving stationary nonlinear equations is used.
Since in the present section the cross section of the torus is taken to be circular

and symmetric with respect to the midplane of the torus (see (7)), all solutions
have to be either symmetric (even parity) or anti-symmetric (odd parity) with
respect to the z = 0 plane. Bϕ, χ, and Jϕ are even functions of z whereas ψ, ωϕ,
and vϕ are odd functions of z. Therefore by considering only, say, the upper half
of the toroid we can reduce the amount of numerical calculation by a factor of
two. In a typical run the upper half of the toroidal cross section is divided into
approximately 10 000 triangles with 5000 nodes to acquire the desired accuracy.
In the Appendix we formulate the boundary conditions based on the symmetry
properties of the various variables to be imposed for z = 0 (see (A 28)) and for
the remaining (semicircular) boundary in case of stress-free (see (A 29)) or no-slip
boundary conditions (see (A 30)).
In the present section we will assume stress-free mechanical boundary conditions

as prescribed by (A 29) unless otherwise indicated. In Figs. 2 and 3 we show typical
examples of a run of FEMLAB with M taken to be 8.64 × 10−5. We reiterate that
because of the symmetries about the midplane z = 0, we are showing only the
upper half of the toroidal cross section in these and similar figures of the present
section; the variables in the lower half can be inferred from obvious symmetries.
Contour plots of the magnetic flux function χ (Fig. 2) and the poloidal electric
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Figure 2. A plot of the poloidal magnetic field lines M = 8.64 × 10−5 ≡ Mlow. Stress-free
boundary conditions are assumed.

Figure 3. Streamlines of the poloidal electric current density for M = 8.64 × 10−5 ≡ Mlow.
Stress-free boundary conditions are assumed.

current density stream function rBϕ (Fig. 3) appear in these two figures. Note
the slight outward shift of the magnetic surfaces with respect to the centre of the
toroidal cross section. This is not too different from the ‘Shafranov shift’ found in
ideal MHD equilibria.
Figure 4 contains a vector plot of ∇p calculated from (A15). At the toroidal

boundary, ∇p has a finite (be it small) tangential component, indicating that the
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Figure 4. Vector plot of ∇p for M = 8.64 × 10−5 ≡ Mlow. Stress-free boundary conditions
are assumed.

Figure 5. Surface plot of the (dimensional) toroidal vorticity ωϕ combined with contours of
the poloidal velocity stream function ψ with M = 8.64 × 10−5. The grey-scale bar indicates
the dimensional value of the toroidal vorticity in s−1. Stress-free boundary conditions are
assumed.

bounding wall is not an isobaric surface. However, note that the tangential viscous
stress at the boundary is absent since we require stress-free boundary conditions.
The next set of figures is devoted to the behaviour of the mechanical variables

for increasing values of the viscous Lundquist number M . We show combinations
of contour and surface plots of the poloidal velocity stream function ψ, the toroidal
vorticity ωϕ, and the toroidal velocity vϕ forM = 8.64 × 10−5 ≡ Mlow (Figs. 5 and 6),
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Figure 6. Surface plot of the (dimensional) toroidal velocity vϕ with M = 8.64 × 10−5. The
grey-scale bar indicates the dimensional value of the toroidal velocity in cm s−1. Stress-free
boundary conditions are assumed.

Figure 7. Same as Fig. 5 but with M = 8.64 × 10−2.

M = 103 × Mlow (Figs. 7 and 8), M = 105 × Mlow (Figs. 9 and 10), and M = 107 ×
Mlow (Figs. 11 and 12).
In all these plots the various shades of grey are measures for the value of the

relevant toroidal quantity as is indicated by the bars that appear in these figures.
The most remarkable overall feature that these plots demonstrate is the develop-
ment of what essentially is a boundary layer near the interior wall of the torus
when viscosity is lowered. Although the speeds (toroidal as well as poloidal) in the
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Figure 8. Same as Fig. 6 but with M = 8.64 × 10−2.

Figure 9. Same as Fig. 5 but with M = 8.64. Only an enlarged cut-out of the cross section
is shown in order to resolve the structure of the boundary layer.

interior of the torus do not change much for increasing viscous Lundquist number
(of the order of a few centimetres per second), near the wall a narrowing layer
with increasing flow speeds develops. In this boundary layer large gradients in the
mechanical variables ψ, ωϕ, and vϕ occur. In order to keep this narrowing boundary
layer visible for M = 8.64 and M = 864, we show in Figs. 9–12 only a fraction of
the total upper half of the circular cross section. This cut-out is centred around
r = 0.6r0 and z = 0.3r0. The overall flow pattern in the torus may be inferred from
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Figure 10. Same as Fig. 6 but with M = 8.64. Only an enlarged cut-out of the cross section
is shown in order to resolve the structure of the boundary layer.

Figure 11. Same as Fig. 9 but with M = 864.

the fact that the topology of the flow field for these values of the viscous Lundquist
numbers do not differ from those depicted in the Figs. 5–8 for the lower values of
the Lundquist number. Resolving the ever-increasing fine structure of the flow field
near the wall of the torus when the viscosity is lowered is what essentially limits our
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Figure 12. Same as Fig. 10 but with M = 864.

numerical capability to perform computations for even larger values of the viscous
Lundquist number.
In order to determine the scaling of the mechanical variables and the width of

the boundary layer with the viscosity of the plasma, we numerically evaluate the
following cross-section line integrals:

Vp(d) ≡ IbCa
r0

(
1

2πρ

∮
C(ρ)

‖∇ψ × ∇φ‖2 ds

)1/2

, (10)

Vt(d) ≡ IbCa
r0

(
1

2πρ

∮
C(ρ)

vϕ
2 ds

)1/2

, (11)

Ωt(d) ≡ Ca
r0

2L

(
1

2πρ

∮
C(ρ)

ωϕ
2 ds

)1/2

. (12)

Here, C(ρ) is the circle (r − r0)2 + z2 = ρ2, where 0< ρ0 < ρ� 1 and d is the
dimensional radial distance from the wall of the torus, i.e. d = L(1 − ρ). In fact,
the line integrals (10), (11) and (12) denote root mean (averaged over C(ρ)) square
values of respectively the dimensional poloidal velocity (in cm s−1), the toroidal
velocities (in cm s−1) and the toroidal vorticity (in s−1). Figures 13, 14, and 15
show plots of Vp, Vt, and Ωt respectively as functions of d for different values of the
viscous Lundquist numberM . Since we choose C(ρ) close to the circular boundary
of the cross section, the development of the boundary layer as the viscosity of
the plasma becomes smaller and smaller is clearly exhibited. Whereas typical flow
speeds in the interior of the torus are of the order of a few centimetres per second,
Figs. 12 and 13 show toroidal and poloidal speeds in excess of 100 cm s−1 close to
the wall for the lowest value of the viscosity considered.
The scaling of the boundary-layer thickness with the viscous Lundquist number

M is investigated by determining the radial distances d = δ1, d = δ2, and d = δ3

https://doi.org/10.1017/S0022377803002629 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377803002629


126 L. P. J. Kamp and D. C. Montgomery

Figure 13. Root mean square value of the poloidal velocity close to the wall of the torus,
i.e. inside the boundary layer, for different values of M . Stress-free boundary conditions are
assumed.

Figure 14. Root mean square value of the toroidal velocity close to the wall of the torus,
i.e. inside the boundary layer, for different values of M . Stress-free boundary conditions are
assumed.
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Figure 15. Root mean square value of the toroidal vorticity close to the wall of the torus,
i.e. inside the boundary layer, for different values of M . Stress-free boundary conditions are
assumed.

Table 1. Scaling of the width of the boundary layer and the root mean square values of
the poloidal and toroidal velocities as well as the toroidal vorticity for decreasing viscosity.
Ω̇t(δ3) denotes the derivative of Ωt(d) with respect to d for d = δ3.

Vp(0)

Vp(δ1)
= 2

Vt(0)

Vt(δ2)
= 2 Ω̇t(δ3) = 0

δ1 δ2 δ3 Vp(0) Vt(0) Ωt(δ3)
M (cm) (cm) (cm) (cm s−1) (cm s−1) (s−1)

8.64 × 10−5 20.3 92.5 13.5 3.61 1.20 7.19 × 10−2

8.64 × 10−4 11.8 64.2 7.8 6.70 2.45 2.15 × 10−1

8.64 × 10−3 6.7 29.4 4.5 12.06 3.99 6.58 × 10−1

8.64 × 10−2 3.8 13.1 2.6 21.49 6.47 2.05 × 100

8.64 × 10−1 2.2 6.5 1.5 38.10 10.79 6.43 × 100

8.64 × 100 1.2 3.4 0.9 67.67 18.47 2.03 × 101

8.64 × 101 0.7 1.9 0.5 118.22 32.15 6.21 × 101

8.64 × 102 0.4 1.0 0.3 202.57 56.12 1.96 × 102

where respectively the root mean square poloidal velocity (Vp(d)) has dropped to
half of its value at the wall (see Fig. 13), the root mean square toroidal velocity
(Vt(d)) has dropped to half of its value at the wall (see Fig. 14), and the root mean
square toroidal vorticity (Ωt(d)) attains its extremum (see Fig. 15). The distances
thus obtained are listed for the various values of the viscous Lundquist number in
Table 1. Also in Table 1 we have listed the values of the root mean square values
of the poloidal and toroidal velocities right at the wall, i.e. for d = 0, as well as the
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Figure 16. Scaling of the width of the boundary layer with the viscous Lundquist number
M . The straight lines are fits to the data points assuming that the δ’s are proportional to
M−1/4. Stress-free boundary conditions are assumed.

extreme values of Ωt inside the boundary layer for d = δ3 where Ω̇t(δ3) = 0. Here
the dot on top of the Ωt denotes differentiation with respect to Ωt’s argument.
What already might be inferred from the data given in Table 1 becomes even

more conspicuous from Fig. 16 where the boundary-layer thicknesses δ1, δ2, and δ3

are plotted double logarithmically against the viscous Lundquist number M . It is
unmistakable that the various data points, at least for sufficiently large M -values,
are on a straight line the slope of which is −1/4. In fact the solid, straight lines in
Fig. 16 are fits through the data points presuming that the δ’s are proportional to
M−1/4. Obviously the width, say δ, of the viscous boundary layer that is developing
along the wall of the torus when viscosity is lowered scales as

δ = O(ν1/4), ν → 0. (13)

Along the same lines we show in Fig. 17 the data points for the root mean square
values of the poloidal and toroidal velocities at the wall and of the extreme toroidal
vorticity inside the boundary layer. The solid, straight lines are once again fits
through the data points assuming that both velocity components are proportional
to M1/4 and that the toroidal vorticity is proportional to the square root of M .
Evidently Vp and Vt both scale as O(ν−1/4) whereas Ωt scales as O(ν−1/2) as ν → 0
and inside the boundary layer. Right on the wall of the torus, i.e. for d = 0, the
toroidal vorticity can be shown to be O(ν−1/4) for ν → 0.
In summary, the overall picture of the viscous boundary layer that develops

when viscosity of the plasma becomes smaller and smaller is one in which increas-
ingly large flow speeds (scaling as O(ν−1/4)) develop and where a mono-layer of
increasingly strong toroidal vorticity (scaling as O(ν−1/2)) is covering the wall of
the torus. The poloidal velocity stream function ψ on the other hand remains finite
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Figure 17. Scaling of the mechanical variables inside the boundary layer with the viscous
Lundquist number M . The straight lines are fits to the data points assuming that both
velocity components are proportional to M1/4 and the toroidal vorticity is proportional to
M1/2. Stress-free boundary conditions are assumed.

for decreasing viscosity. The latter is in agreement with the Poisson-like equation
(A 7) that relates this stream function to the toroidal vorticity. From (13) we learn
that the left-hand side of (A 7) scales as O(ν−1/2), which is identical to the scaling
of the right-hand side.
Replacing the gradient operator ∇ by ν−1/4∇̃ and the modified Laplace operator

∆∗ by ν−1/2∆̃∗ in equations (A 9), (A 10), (A 12), and (A 14) and as far as they act
upon the mechanical variables ψ, ωϕ, and vϕ (there is no boundary-layer behaviour
in the electromagnetic variables), using the above scaling of these variables and
taking the limit of ν → 0 leaves us to lowest order with the following set of reduced
equations valid inside the boundary layer:

∇ωϕ × ∇ψ = 0,

∇vϕ × ∇χ = 0,

∇ψ × ∇vϕ = 0,

∇χ × ∇ψ = 0.

(14)

Hence, inside the viscous boundary layer, lines of constant toroidal vorticity, pol-
oidal velocity stream lines, and lines of constant toroidal velocity all tend to line up
with the poloidal magnetic field as viscosity is lowered. It has in fact been verified
numerically that although ψ, ωϕ, and vϕ develop sharp changes close to the wall
of the torus when viscosity is lowered, the Jacobians (as defined by (A 27)) that
follow from (14), i.e. [u1, u2], [u4, u5], [u1, u4], and [u1, u5], do not. Also, probably
as to be expected, the electromagnetic variables Bϕ, χ, and Φ do not exhibit any
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Figure 18. Ratio of mean kinetic pressure p at a certain distance from the wall of the torus
and the cross-section averaged magnetic pressure 〈‖B‖2/2〉, i.e. the plasma β. Stress-free
boundary conditions are assumed.

of the boundary-layer behaviour that becomes so prominent in the mechanical
variables as the viscosity is scaled down. There is a subtle distinction to be added
to the latter remark. Although the total electric current density J and the total
magnetic field B do not exhibit the above-described boundary-layer behaviour,
the angle between these two vectors, that is to say ‖J × B‖/(‖J‖ ‖B‖), does. The
steady states we describe here are primarily force-free in the interior of the torus
(‖J × B‖�(‖J‖ ‖B‖)). However, in the boundary layer the angle between J and B
shows a rapid increase meaning that there these vectors are no longer quasi-parallel
any more. The boundary layer is not approximately force-free and steep pressure
drops develop inside it. The wall itself is almost an isobar in the sense that the
component of ∇p parallel to the wall is much smaller than the normal component of
∇p. Figure 18 shows a plot of the ratio of the pressure p averaged over the circle
(r − r0)2 + z2 = (1 − d/L)2 and the cross-section averaged magnetic pressure
〈‖B‖2/2〉, that is the plasma β as a function of the distance d from the wall of
the torus. Note the steep pressure gradient near the wall inside the boundary layer.
The resulting pressure gradient force is balanced mainly by the J × B force. The
force balance between ∇p and J × B is effective, of course, only in the poloidal
directions r and z. There is no toroidal pressure gradient component, and the tiny
toroidal component of J× B is balanced by the velocity-dependent terms. Indeed,
it is the need to balance the toroidal component of the J×B force that is the most
important source of the velocity fields; they are not needed in straight-cylinder
geometry.
For the values of the viscous Lundquist number considered in this paper the

pressure gradient force is balanced mainly by the J×B force. Throughout the whole
torus (including the boundary layer) the other terms in the equation of motion (1)
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that involve the velocity of the plasma are much smaller than ‖J × B‖. From the
scaling within the boundary layer one may expect that for sufficiently low viscosity
∇p eventually is going to be balanced by the term (v · ∇)v and/or the term ν∇2v.
However, MHD itself will break down over the thin boundary layers that result
for those extremely low viscosities. Moreover, there is no reason not to expect that
like fluid-mechanical states, our MHD states also tend to go unstable and turbulent
when the Reynolds-like number M gets large.
We conclude this section with some remarks concerning the no-slip boundary

condition. Along the same line as above for the stress-free case we have analysed
the behaviour of the boundary layer if all velocities are required to become zero
at the wall. It turns out that the width of the boundary layer and the magnitude
of the mechanical variables inside it are still governed by the same scaling laws
that are found for the stress-free boundary condition (see (13)). As in the case of
the stress-free boundary conditions the characteristic flow pattern that emerges
for no-slip boundary conditions is once again a pair of counter-rotating poloidal
vortices or convection cells and associated with that a toroidal flow that is anti-
symmetric with respect to the midplane of the torus, resulting in a net toroidal
flow that is nil. For the stress-free boundary case the latter seems to be a probably
unstable balance between the toroidal component of J×B and the viscous drag of
the magnetofluid (note that there is no component of the pressure gradient in the
toroidal direction since this would result in a multi-valued pressure). There is no
viscous drag on the wall and therefore it must be that the top half of the plasma is
just dragging against the bottom half, and vice versa. It therefore might be expected
that departures from up–down symmetry of the toroidal geometry could result in
a net flow of plasma in one toroidal direction or the other. This possibility will be
confirmed in the considerations of Sec. 4, involving asymmetrical cross sections.

4. An asymmetric cross section
In the present section we demonstrate that the dipolar flow pattern in a poloidal
plane that is so characteristic for a cross section that is symmetric about the major
axis of the torus (see Montgomery and Shan 1994; Montgomery et al. 1997b; Kamp
et al. 1998; Bates and Montgomery 1998; Montgomery et al. 1999; Kamp and
Montgomery 2003) goes to a monopolar flow pattern when the cross section becomes
‘D’-shaped (see Fig. 1(b)) and stress-free boundary conditions are imposed.
Figures 19–24 show the evolution of the poloidal and toroidal flow patterns when

the stress-free boundary conditions are assumed and the viscous Lundquist number
M is increased in two steps from its lower-bound valueM = Mlow = 8.64 × 10−5 to
M = 106 × Mlow keeping all other parameters constant. What becomes apparent
immediately from these plots is that as the viscosity is lowered, the character of the
poloidal flow pattern more and more tends to become monopolar. One convection
cell becomes dominant over the other one by pushing the latter towards the wall
of the torus (see Figs. 21 and 23). Although there still is flow in the positive as well
as negative toroidal directions, there is a net mass flow in the toroidal direction
that is not zero as for the symmetrical cross section. In most parts of the present
‘D’-shaped cross section the toroidal flow is in the negative ϕ-direction with speeds
in excess of 300 cm s−1 for M = 86.4. A better indication for the net toroidal mass
flow is obtained by considering values of vϕ that are averaged over the cross section
of the torus. In Table 2 we show these mean (dimensional) values of the toroidal
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Figure 19. Surface plot of the (dimensional) toroidal vorticity ωϕ combined with contours of
the poloidal velocity stream function ψ with M = 8.64 × 10−5. The grey-scale bar indicates
the dimensional value of the toroidal vorticity in s−1. Stress-free boundary conditions are
assumed.

Table 2. Toroidal velocity averaged over the cross section of the torus.

〈vϕ〉 (〈‖vpoloidal‖2〉)1/2

M (cm s−1) (cm s−1)

8.64 × 10−9 1 × 10−6 0.003
8.64 × 10−7 6 × 10−4 0.2
8.64 × 10−5 3 0.7
8.64 × 10−4 −8 1.0
8.64 × 10−3 −11 1.3
8.64 × 10−2 −17 1.7
8.64 × 10−1 −28 2.2
8.64 × 100 −48 3.0
8.64 × 101 −83 4.1
8.64 × 102 −144 5.5

speed for various values of the viscous Lundquist number. For the highest M -
value considered here, it would take approximately 15 s for a plasma element to
encircle the torus. In Fig. 25 we show stream lines of the combined poloidal and
toroidal flow fields forM = 8.64 and stress-free boundary conditions. The net mass
flow that is so apparent in this plot is lost whenever no-slip rather than stress-free
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Figure 20. Surface plot of the (dimensional) toroidal velocity vϕ with M = 8.64 × 10−5. The
grey-scale bar indicates the dimensional value of the toroidal velocity in cm s−1. Stress-free
boundary conditions are assumed.

boundary conditions are imposed. In Fig. 26 we also show the stream lines of the
combined poloidal and toroidal flow fields inside the torus but now for no-slip
boundary conditions (the viscous Lundquist number is again 8.64). The net flow in
the toroidal direction is in the latter case practically zero and stays more or less
zero even if the viscosity is lowered further, as has been verified numerically.

5. Discussion and conclusions
The flows reported here have something in common with Hartmann flow (e.g.
Davidson 2001), though the work being done here is done Ohmically rather than
mechanically, and the velocity field remains energetically quite small compared to
the energy in the magnetic fields. Hartmann flow is also characterized by steep
boundary layers at low viscosity. The geometry is intrinsically more complicated
and the scaling is quite different than in Hartmann flow, however, and so far we have
not seen how to extract analytical expressions for the behaviour of the boundary
layer discovered numerically as is possible for the Hartmann flow case. A systematic
asymptotic analysis of the boundary-layer behaviour seems a valid goal for the
future.
The other new interesting feature to have emerged is the sensitivity of the flow

pattern to the poloidal boundary shape and boundary conditions imposed there. In
light of fluid dynamic precedents, this is perhaps not surprising, but it has not been
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Figure 21. Same as Fig. 19 but with M = 8.64 × 10−2.

typically a feature of earlier discussions of MHD equilibria, almost all of which
have been in the ideal MHD framework. Our previous investigations involved cross
sections (rectangular or circular) that were symmetric about the midplane z = 0,
and we had endowed the dipolar ‘double smoke ring’ pattern that characterizes
that situation with more universality than it deserves, as seen in Figs. 19–24. We
should remark that some discussions of ‘zonal flow’, electrostatic in character, have
appeared in the tokamak literature, but usually without an attempt to draw a
global weather map of the flow pattern. Indeed, all confined steady-state flows
must be ‘zonal’ in some sense, and it seems to us most important to characterize
the entire, global character of the flow, in light of the fact that it differs so much from
one point to another inside the toroid. Experimentally, the ability to characterize
the flow in a tokamak at all spatial points seems far in the future, though no
fundamental obstacles would appear to exist if such measurements came to seem
desirable enough. The reason for desiring them seems to us to be that the stability
properties of the MHD steady states, on which so much of the fusion literature is
based, are likely to be affected by the presence of flows of the kind encountered
here.
Several features of the calculation remain troublesome, most notably the absence

of information, experimental and theoretical, as just how to represent the viscous
effects in a tractable way and what numerical values to assign the viscosity coef-
ficients. It is also a serious restriction to be committed to incompressible flows.
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Figure 22. Same as Fig. 20 but with M = 8.64 × 10−2.

Finally, the assumption of axisymmetry itself is an uneasy one, because of the slots
and slits in the conducting boundary that are necessary to admit all the imaginable
driving mechanisms such as the toroidal electric field assumed here. It is to be
hoped that ways will be seen to move beyond these three limitations. Even then,
the inevitable gaps between fusion plasma dynamics and the MHD approximation
will remain, but they should be far smaller than those between ideal MHD and real
fusion plasmas.

Appendix. Equations to be solved
In this appendix we rewrite the set of non-ideal MHD equations (1) through (6) into
a set of coupled partial differential equations and formulate boundary conditions
to be imposed on the solutions of these equations for a torus the wall of which
can either not sustain any tangential viscous stress or is no-slip. Since the steady
states to be found are assumed to be axisymmetric, we introduce scalar variables
according to

v(r, z) = ∇ψ × ∇ϕ + vϕ îϕ, (A 1)

B(r, z) = ∇χ × ∇ϕ +
(
B0

r0

r
+ Bϕ

)
îϕ, (A 2)

where ψ is the stream function and χ is the flux function. Since there is no time
dependence, the gradient of a scalar field may be added to the externally applied
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Figure 23. Same as Fig. 19 but with M = 86.4.

electric field,

E(r, z) = E0
r0

r
îϕ − ∇Φ. (A 3)

With these new variables the electric current density J and the vorticity ω = ∇ × v
may be expressed as

J(r, z) = ∇(rBϕ) × ∇ϕ − ∇2(χ∇ϕ) = ∇(rBϕ) × ∇ϕ − 1
r
(∆∗χ)̂iϕ, (A 4)

ω(r, z) = ∇(rvϕ) × ∇ϕ − ∇2(ψ∇ϕ) = ∇(rvϕ) × ∇ϕ − 1
r
(∆∗ψ)̂iϕ, (A 5)

where the modified Laplace operator ∆∗ is defined by

∆∗A = ∇2A − 2
r

∂A

∂r
=

∂2A

∂r2
− 1

r

∂A

∂r
+

∂2A

∂z2
. (A 6)

Taking the toroidal part of (A 5) results in

∆∗ψ = −rωϕ. (A 7)

Next consider the vorticity equation that is obtained from taking the curl of the
force-balance equation (1):

ν∇2ω = ∇ × (ω × v+ J× B). (A 8)
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Figure 24. Same as Fig. 20 but with M = 86.4.

Taking the toroidal part of this equation yields

ν∆∗(rωϕ)∇ϕ = ∇(rvϕ) × ∇
(vϕ

r

)
+ ∇

(ωϕ

r

)
× ∇(ψ)

+ ∇
(

Bϕ

r
+

B0r0

r2

)
× ∇(rBϕ) + ∇χ × ∇

(
Jϕ

r

)
. (A 9)

The curl of the poloidal part of Ohm’s law (2) leads to the following equation for
Bϕ:

η∆∗(rBϕ)∇ϕ = ∇
(

Bϕ

r
+

B0r0

r2

)
× ∇ψ − ∇

(vϕ

r

)
× ∇χ. (A 10)

An equation for vϕ is obtained by rewriting the force-balance equation (1) as follows:

ν∇2v = ∇
(
p + 1

2v2
)

+ ω × v− J× B. (A 11)

The toroidal part of this equation gives

ν∆∗(rvϕ) = [∇χ × ∇(rBϕ) − ∇ψ × ∇(rvϕ)] · ∇ϕ. (A 12)

The toroidal part of (A 4) results in

∆∗χ = −rJϕ, (A 13)

where the toroidal current density follows from the toroidal part of Ohm’s law,

ηrJϕ = E0
r0

r
− ∇χ × ∇ψ

r
· ∇ϕ. (A 14)
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Figure 25. Three stream lines of the total, i.e. the combined poloidal and toroidal flow
fields, when stress-free boundary conditions are imposed and M = 8.64.

Figure 26. Same as Fig. 25 but with no-slip boundary conditions imposed.
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The equations (A 7), (A 9), (A 10), (A 12), and (A 13) form a set of coupled, non-
linear Poisson-like equations for the scalar variables ψ, rωϕ, rBϕ, rvϕ, and χ to
be supplemented with expression (A 14) for Jϕ. Note that these equations can be
solved without a priori knowing the pressure p and the scalar potential Φ. Once
this is done ∇p follows from the force-balance equation (1) rewritten as follows,

∇p = ν∇2v− ∇
(

v2

2

)
− ω × v+ J× B. (A 15)

This determines the pressure up to an additive constant. In a similar fashion Φ
follows from the poloidal part of Ohm’s law, i.e.

∇Φ = v× B− η∇(rBϕ) × ∇ϕ, (A 16)

in which we have used Ampère’s law (3) to replace the poloidal current density in
terms of the toroidal magnetic field.
The final step is to introduce new variables according to

u1 =
ψ

r0
, u2 = r0rωϕ, u3 =

rBϕ

Ib
+ 1,

u4 =
rvϕ

Ib
, u5 =

χ

r0
, u6 = r0rJϕ − Ie,

(A 17)

where

Ie = Sr2
0E0 and Ib = r0B0, (A 18)

and

x =
r

r0
, y =

z

r0
. (A 19)

In terms of these new variables the partial differential equations (A 7), (A 9),
(A 10), (A 12), (A 13), and (A 14) become respectively

∆∗u1 = −u2, (A 20)

1
M

∆∗u2 =
I2
b

x2

∂

∂y
(u2

3 − u2
4) +

2
x2

{
u2

∂u1

∂y
− (u6 + Ie)

∂u5

∂y

}
+

1
x

([u1, u2]−[u5, u6]),

(A 21)

1
S

∆∗u3 =
2
x2

(
u3

∂u1

∂y
− u4

∂u5

∂y

)
+

1
x

([u1, u3] + [u4, u5]), (A 22)

1
M

∆∗u4 =
1
x

([u3, u5] + [u1, u4]), (A 23)

∆∗u5 = −(u6 + Ie), (A 24)

1
S

u6 =
1
x

[u5, u1], (A 25)

where now the operator ∆∗ is to be read as

∆∗A = ∇2A − 2
x

∂A

∂x
=

∂2A

∂x2
− 1

x

∂A

∂x
+

∂2A

∂y2
. (A 26)
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In the above equations [u, v] denotes the Jacobian bracket of two functions u and
v with respect to the variables x and y that is defined as

[u, v] =
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
. (A 27)

For the circular cross section as is considered in Sec. 3, the computational demand
for solving (A 20)–(A 25) can be halved using obvious symmetries in the variables
with respect to the midplane of the torus. If the numerics is restricted to the upper
half of the torus, we need boundary conditions for z = 0 and for the upper semicircle
of the cross section. Based on the oddness or evenness of the variables in that case,
we can formulate the following boundary conditions for z = 0:

∂Bϕ

∂z

∣∣∣∣
z=0

= 0,
∂Jϕ

∂z

∣∣∣∣
z=0

= 0,
∂χ

∂z

∣∣∣∣
z=0

= 0,

ψ|z=0 = 0, ωϕ|z=0 = 0, vϕ|z=0 = 0.

(A 28)

For the remaining part of the boundary of the circular cross section as used in
Sec. 3, we either choose stress-free mechanical boundary conditions, that is

ψ|semicircle = 0,
∂ψ

∂n

∣∣∣∣
semicircle

= −r0r

4
ωϕ|semicircle,

∂vϕ

∂n

∣∣∣∣
semicircle

= 2
r − r0

r0r
vϕ|semicircle,

(A 29)

or no-slip mechanical boundary conditions, that is

ψ|semicircle = 0 =
∂ψ

∂n

∣∣∣∣
semicircle

,

vϕ|semicircle = 0,

(A 30)

where ∂/∂n denotes the outward normal derivative. In both cases the electromag-
netic variables need to satisfy at the semicircle:

Bϕ|semicircle = 0 = χ|semicircle,

Jϕ|semicircle = SE0
r0

r

∣∣∣∣
semicircle

.
(A 31)

The latter condition is implied by the fact that the toroidal component of the v×B
term in Ohm’s law should vanish at the wall of the torus.
Obviously the above-described reduction in the computational effort is not an

option any more when considering an asymmetric cross section as is done in Sec. 4.
For the torus that is depicted in Fig. 1(b) the numerical computations have to
be performed in the whole ‘D’-shaped cross section. When considering stress-free
boundary conditions, we need to satisfy:

• for the straight-line element denoted by I in Fig. 1(b)

ψ|I = 0 = ωϕ|I,
∂

∂r

(vϕ

r

) ∣∣∣∣
I
= 0, (A 32)
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• for the semicircle denoted by II in Fig. 1(b), the stress-free boundary conditions
are in fact given by (A 29) and last for the quarter-circle denoted by III in Fig. 1(b)

ψ|III = 0,

∂ψ

∂n

∣∣∣∣
III

= −r0r

2
ωϕ|III,

∂vϕ

∂n

∣∣∣∣
III

=
2r − r0

2r0r
vϕ|III.

(A 33)

When imposing no-slip boundary conditions, we need to satisfy at the ‘D’-shaped
wall

ψ|wall = 0 =
∂ψ

∂n

∣∣∣∣
wall

,

vϕ|wall = 0.

(A 34)

As for the circular cross section the electromagnetic variables need to satisfy for
the asymmetric, ‘D’-shaped cross section in both cases

Bϕ|wall = 0 = χ|wall,

Jϕ|wall = SE0
r0

r

∣∣∣∣
wall

.
(A 35)

We finally note that the above boundary conditions can be reformulated straightfor-
wardly in terms of either Dirichlet or Neumann boundary conditions to be imposed
upon the numerical variables u1, u2, u3, u4, u5 and u6.
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