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SUMMARY
This paper presents a robust adaptive output feedback tracking controller for the flexible-joint
robot manipulators to deal with the unknown upper bounds of parameter uncertainties and external
disturbances. With applying the singular perturbation theory and integral manifold concept, the
complex nonlinear coupled system of the flexible-joint robot manipulators is divided into a slow
subsystem and a fast subsystem. A robust adaptive control scheme based on an improved linear
parameterization expression is designed for the slow subsystem, and a saturation function is applied in
the robust control term to make the torque output smooth. In the meantime, different from the previous
approaches, the second-order derivative term of elastic torque is avoided by using the proposed
computed torque method, which simplifies the implementation of the fast control law. Moreover, to
carry out the whole control system with only position measurements, an approximate differential
filter is involved to generate pseudo velocity signals for links and joint motors. In addition, an explicit
but strict stability proof of the control system based on the theory of singularly perturbed systems
is presented. Finally, simulation results verify the superior dynamic performance of the proposed
controller.

KEYWORDS: Flexible-joint robot, Robust adaptive control, Output feedback control, Singular
perturbation, Approximate differentiation.

1. Introduction
Joint flexibility in robot manipulators with joints driven by harmonic reducers or cables (hereafter
called flexible-joint robot manipulators) is unavoidable in the dynamics modeling, and severely affects
the control performance. Tracking control for such flexible-joint robot manipulators has been receiving
increasing attention in the past decades.1−4

With respect to adaptive techniques in the area of robot control, taking parametric uncertainties
into consideration, Slotine and Li proposed one of the first adaptive tracking controllers for rigid
robot manipulators,5 where the control law consists of a proportional-derivative (PD) control part and
a full dynamics feed-forward compensation part, with unknown parameters of the manipulator and
its payload being estimated online. However, the presence of flexibility at the joint of most robots,
which is characterized by damped oscillations, may lead to poor performance or instability when
rigid control strategies are applied directly to the flexible-joint robot manipulators.5 Taking joint
flexibility into account, Spong proposed a rigid-link flexible-joint robot model, which is globally
feedback linearizable and reduces to the standard rigid robot model as the joint stiffness tends to
infinity.6,7 As a benchmark, this model has been widely used since then.8−10 An adaptive controller
for flexible-joint robots was developed based on singular perturbation theory and using only position
and velocity feedback.8 Ulrich developed a composite control scheme that consists of a direct model
reference adaptive system designed to stabilize the rigid dynamics and a linear correction term to
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improve damping of vibrations at the joints, in the presence of parametric uncertainties and modeling
errors.9

Robust adaptive control strategy combines the advantages of the adaptive control and the robust
control, and is commonly used to solve the robot control problems considering parametric uncertainties
and external disturbances.11 Fateh proposed a novel robust decentralized controller by the adaptive
fuzzy estimation and the compensation of uncertainty for electrically driven robot manipulators, which
was proved to be superior in the face of smooth uncertainties.12 Kolhe et al. designed a robust tracking
controller based on the uncertainty and disturbance estimation,13 in which the system nonlinearities,
external disturbances, and parametric uncertainties are considered, and a robust observer was proposed
to achieve the joint velocity measurements.

It is well known that velocity signals measurements are liable to be contaminated with external
noise, moreover, in tracking control situations for robot manipulators, the motor or link velocity
sensors are always absent due to hardware cost reduction. Output feedback control, as a technique to
make the whole closed-loop system with only measurements of outputs, has aroused some interests
in tracking control for flexible-joint robot manipulators.14−18 Loría and Avila-Becerril developed
an output feedback tracking (OFT) controller using back-stepping strategy,14 in which approximate
differentiation was applied to eliminate the link velocity, acceleration and jerk measurements. As
presented, the position output feedback was only achieved for the links but not available for the joint
motors. In order to estimate the velocities of both links and motors for flexible-joint electronically
driven robot manipulators, Yoo et al. presented an adaptive observer based OFT controller using the
self-recurrent wavelet neural networks (SRWNNs),15 where the SRWNNs are used to approximate
the model uncertainties in dynamics of both slow and fast subsystems. Yoo et al. also designed an OFT
controller for flexible-joint robot manipulators via the observer dynamic surface design technique,
importantly, all the signals in the closed-loop system are guaranteed to be uniformly ultimately
bounded.16 Wang proposed a trajectory tracking controller with only feedback of link angle variables
for flexible-joint robot manipulators, where the joint flexibility was regarded as a disturbance to the
rigid joint robot manipulators.18 However, the aforementioned works lay little emphasis on the flexible
part of the robot dynamics during the design of the composite controller.14−16 The OFT methods
from the aspect of the rigid part are always considered to achieve the tracking aim, but paying little
attention on the dynamic performance of the flexible part of the robot. Actually, for flexible-joint robot
manipulators with unknown upper bounds of parametric uncertainties and external disturbances, the
flexible part of the robot plays a vital role to influence the oscillation of the joint torque input, and
affects the final tracking performance of the robot manipulators.

The main contribution of this work is that a robust adaptive OFT controller is developed by
singularly perturbed decoupling, for flexible-joint robot manipulators with unknown upper bounds
of parameter uncertainties and external disturbances. First, a robust adaptive control law based on
an improved linear parameterization expression, instead of the frequently used parameter linearity
method,5 is proposed for the slow subsystem, to make the parametric estimation more accurate,
in terms of linearity model with smaller distortion. Importantly, different from the commonly
used sign function,22 a continuous saturation function is used in the robust control term to make
the torque output smooth. On the other side, by deforming the commonly used expression of
the fast subsystem,6,7,17 the control objective becomes a typical tracking issue, which makes the
controller design for fast subsystem more flexible. As a second contribution, an approximate
differential filter is applied in both slow and fast subsystems to eliminate the velocity measurements
completely for both the links and joint motors, so as to achieve an OFT control approach with
only position measurements. In addition, the stability analysis for the whole OFT control system is
discussed.

The layout of this paper is organized as follows: The dynamics of the flexible-joint manipulators and
some useful properties are given in Section 2. In Section 3, by using the singular perturbation theory
and integral manifold concept, the full-order nonlinear system is decoupled into a slow subsystem
and a fast subsystem. A robust adaptive composite controller with an approximate differential filter
is presented in Section 4. Section 5 gives a stability proof of the proposed controller from the
perspective of singularly perturbed systems. In Section 6, the simulation comparisons are carried out
to evaluate the dynamic performance of the proposed scheme. Finally, some conclusions are given in
Section 7.
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2. Dynamics of Flexible-Joint Robot Manipulators
The dynamics of n degree-of-freedom flexible-joint robot manipulators are given as7

M(q)q̈ + C(q, q̇)q̇ + G(q) = K(θ − q) (1)

Jθ̈ + K(θ − q) = u (2)

Z = K(θ − q) (3)

where q ∈ Rn and θ ∈ Rn denote the angular displacements of the link and the motor shafts,
respectively, M(q) ∈ Rn×n is the symmetric positive definite inertia matrix, C(q, q̇) ∈ Rn×n is the
centripetal-Coriolis matrix, G(q) ∈ Rn is the gravity vector, K ∈ Rn×n is a diagonal positive definite
matrix representing the joint stiffness, J ∈ Rn×n is the inertia matrix of the motors, and u ∈ Rn is the
control input vector of motor torque, and Z ∈ Rn is the elastic torque vector at joint.

Assuming that all the stiffness coefficients ki are of the same order of magnitude, and they are
written as multiples of a single large parameter k, namely,7

K = kK̃ (4)

where K = diag{k1, . . . , kn}, K̃ = diag{k̃1, . . . , k̃n}. Without loss of generality, K̃ = I is set to
simplify the expressions.

The following three properties will be used in the controller design and the stability analysis of
system.5

Property 1: M(q) is a symmetric and positive definite matrix.

Property 2: For an arbitrary vector x ∈ Rn, there exists

xT[Ṁ(q) − 2C(q, q̇)]x = 0 (5)

Property 3: Equation (1) can be expressed in a linear parameterization form

M(q)q̈ + C(q, q̇)q̇ + G(q) = Y (q, q̇, q̈)P (6)

where P ∈ Rr is the vector of robot parameters, and Y (q, q̇, q̈) is the corresponding matrix of the
known functions.

To facilitate the expressions, M, C and G are used to replace M(q), C(q, q̇) and, G(q), respectively.

3. The Singular Perturbation System Model
In this section, the full-order nonlinear system described by (1), (2) and (3) is decoupled into a
slow subsystem and a fast subsystem in the form of singularly perturbed systems, which makes the
controller design for the complex full-order system change into relative simple sub-controllers design
of two subsystems.

With multiplying both sides of (1) by M−1 and substituting (3) into it, we get

q̈ = a1q̇ + a2G + A1Z (7)

where a1 = −M−1C, a2 = −M−1, A1 = M−1.
Defining the perturbation parameter μ=1/k, and substituting (2) and (7) into (3), we obtain

μZ̈ = −a1q̇ − a2G + B2u + A2Z (8)

where A2 = −(J−1 + M−1), B2 = J−1.

Remark 1. Equations (7) and (8) compose the singularly perturbed model of the standard form,
which is a coupled nonlinear system, it is not likely to prove tractable for analysis or for control-system

https://doi.org/10.1017/S0263574718000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718000061


Robust adaptive OFT control for flexible-joint robot manipulators 825

design without simplification.7 By utilizing the concept of integral manifold, a more usable expression
derived from (7) and (8), which has the same dimension as the rigid system and incorporates the effects
of the joint flexibility, will be obtained in the following part.

3.1. Slow subsystem
Note that, when μ → 0, i.e., k → ∞, it results in θ → q, and the control torque u becomes the slow
control law us. We get the slow subsystem from (1), (2) and (3).

(M + J)q̈ + Cq̇ + G = us (9)

Equation (9) indicates the rigid part of the flexible-joint robot manipulators, and is essentially
equivalent to the model of rigid robots. Thus, the controller design for the slow subsystem can refer
to the methods for the rigid robots.

3.2. Fast subsystem
Since the flexible effect at the joint is non-negligible, the presence of flexibility at joints may produce
increasing oscillations, and even leads to system instability. Next, the fast subsystem will be introduced.

Firstly, the form of integral manifold for the system (7) and (8) is defined as

Z = h(q, q̇, u, μ) (10)

For convenience, h is used to replace h(q, q̇, u, μ).
Expanding u and Z in power series, respectively13,14

Z = h0 + μh1 + μ2h2 + · · · + μnhn + · · · (11)

u = u0 + μu1 + μ2u2 + · · · + μnun + · · · (12)

where h0 represents the desired elastic torque, and u0 indicates the slow control law, namely us.
Setting μ = 0 in (11) and (12), and substituting them and (10) into (8), we get

μḧ0 = −a1q̇ − a2G + B2u0 + A2h0 (13)

Defining the elastic torque error as

η = h0 − Z (14)

From (13) and (8), the fast subsystem is obtained as

μη̈ = −(J−1 + M−1)η − J−1uf (15)

where the fast control law uf can be expanded as

uf = μu1 + μ2u2 + · · · + μnun + · · · (16)

It is a typical method for almost all of the previous literatures6,7,17 to focus on (15) to design the fast
control law. Differently, in this paper, we will change the form of the fast system (15) by substituting
(14) into it:

μZ̈ = −(J−1 + M−1)Z − J−1u∗
f (17)

where u∗
f represents the new fast control law based on the reshaped fast system (17) from (15), and

the relationship between uf and u∗
f is given as

u∗
f = −uf − μJḧ0 − J(J−1 + M−1)h0 (18)
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Remarkably, without considering the error term η, (17) is actually a fast subsystem to enable Z to
track h0, which makes the design of the control law more feasible than (15).

Remark 2. As presented in refs. [14–16], the velocity signal of the motor is not necessary in
the output feedback control, but the corresponding controllers for the flexible part are all designed
with only the torque-feedback based proportional terms, which always fails to restrain the oscillation
efficiently at the joints.

By deforming the frequently used fast system (15) in the previous literatures,6,7,17 the design
of the fast control law becomes into a typical tracking issue described by (17) and (18). Hence,
mature tracking methods (classic PID control, computed torque control, sliding mode control, neural
networked control, etc.) adopted in the area of rigid robot manipulators can be used for the purpose
of solving such issue, facilitating the design of the fast control law.

4. Design of Robust Adaptive Controller
By using a combination of singular perturbation theory and integral manifold concept, we get the
slow and fast subsystems as presented above. Specifically, the slow subsystem is used to represent the
dynamics of the rigid part of the flexible-joint robot manipulators (its expression is same to that of
rigid robot manipulators), and the fast subsystem indicates the flexible dynamics caused by the joints.
After deformation of the original fast subsystem (15), the system control can be regarded as to solve
two typical tracking issues, where the slow subsystem settles the tracking of link angle (almost the
same with the tracking problem exists in the pure rigid robot manipulators), and the fast subsystem
handles the tracking of the elastic torque at the joints. This decoupling treatment on the original
complex dynamics of the flexible-joint robot manipulator facilitates the controller design, i.e., the
sub-controllers for each subsystem can be designed and implemented separately.

4.1. Control goal
The controller design is based on the reshaped singularly perturbed system (9) and (17). Assuming
the stiffness at the joint is large enough, to handle the issue of uncertainty of model error with
unknown bound and external disturbances, a robust adaptive controller to guarantee the joint angular
displacements converge to the desired is designed. Given desired trajectory in joint space qd ∈ Rn,
qd is assumed to be twice differentiable, qd and its first two derivatives are bounded for all t > 0.
Defining the position tracking error as e = qd − q, in brief, the control goal can be expressed as
follows: ∀e(0) ∈ Rn, lim

t→∞ e = 0.

4.2. Approximate differential filter
Velocity measurements of both links and joint motors for flexible-joint robot manipulators are essential
in most of the existing control schemes, i.e., full-state feedback controllers, and noises are often
inevitably included in the measurements, degrading the accuracy of the feedback signals and even
making the controller unstable, especially at low-speed running situations. Beyond that, the velocity
sensors increase the cost of the hardware of the physical system. In this section, an approximate
differential filter is applied to generate pseudo velocity feedback from the position signals of links
and motors, and guarantees the closed-loop control with only position measurements.

The filter is given as19

v̇ = −Ay + B ˙̄q (19)

which is made up of two implementable parts:

ẏ = −Ay − ABq̄ (20)

v = y + Bq̄ (21)

where v ∈ Rn is the approximate velocity signal, q̄ is the position signal, y is an auxiliary variable
introduced to permit the implementation of the filter without utilizing velocity measurements. A =
diag{a1, a2, . . . , an} ∈ Rn×n, B = diag{b1, b2, . . . , bn} ∈ Rn×n are positive definite diagonal constant
matrices, ai and bi (i = 1, 2, . . . , n) are positive constants.
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Remark 3. With comparisons to the literature,14−16 the major difference is that the proposed
approximate differential filter is used to estimate the velocity signal of the links in the slow subsystem
and the velocity signal of the motors in the fast subsystem, respectively, to eliminate the velocity
measurements completely and generate pseudo velocity signals as approximations to the actual for
both links and motors. This turns the proposed full-state feedback tracking controller into an OFT
controller with only position measurements for both links and joint motors. More importantly, the
proposed filter helps restrain the initial torque output of the joint motors, especially when there is a
non-zero initial position tracking error of the joint, enabling the robot to run more stably. This will be
proved in Section 6. In addition, the proposed filter with all positive filtering gains in matrices A and
B also makes it easier to guarantee the global asymptotically stability of the system without imposing
any restrictions on its bandwidth.

4.3. Slow control law
The slow subsystem can be regarded as the rigid part of the full-order rigid-flexible coupled system.
Since the design of the slow sub-controller is based on the slow subsystem, the control strategies for
rigid robot manipulators can be used to design the slow sub-controller.

The uncertain model errors and external disturbances are defined as w ∈ Rn, and then (1) in the
dynamic model of the flexible-joint robots can be rewritten as

Mq̈ + Cq̇ + G + w = K(θ − q) (22)

The norm of w satisfies ‖w‖ ≤ d1 + d2‖e‖ + d3‖ė‖, where d1, d2, d3 are all positive constants.20

We get

‖w‖ ≤ dT f (23)

where d = ( d1 d2 d3 )T, f = ( 1 ‖e‖ ‖ė‖ )T.
The corresponding standard singularly perturbed model can also be rewritten as

q̈ = a1q̇ + a2G + a2w + A1Z (24)

μZ̈ = −a1q̇ − a2G − a2w + B2u + A2Z (25)

Combining (2), (3) and (22), the new slow subsystem is presented as

(M + J)q̈ + Cq̇ + G + w = us (26)

Define the virtual desired trajectory

qr = qd + �

∫ t

0
edt (27)

where � ∈ Rn×n is a constant matrix with its eigenvalues strictly located in the right half of the
complex plane.

Accordingly, we have

q̇r = q̇d + �e (28)

q̈r = q̈d + �ė (29)

s = q̇r − q̇ = ė + �e (30)

Usually, the slow subsystem cannot be linearized directly, and it is a general method as (6) to
utilize the parameter linearity of the rigid robots to replace it approximately.5 But this method leads to
modeling error and deteriorates estimation accuracy of the system parameters.21 Motivated by ref. [8],
we use an improved linear parameterization expression in the adaptive control to make the estimation

https://doi.org/10.1017/S0263574718000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718000061


828 Robust adaptive OFT control for flexible-joint robot manipulators

more accurate to the practical situations:

M(q̈r + λcs) + Cq̇r + G = Y (q, q̇, q̇r, q̈r + λcs)P (31)

M̂(q̈r + λcs) + Ĉq̇r + Ĝ = Y (q, q̇, q̇r, q̈r + λcs)P̂ (32)

where Y (q, q̇, q̇r, q̈r + λcs) (written as Y for short), is the corresponding matrix function of knows, P̂
is the time-varying estimation of robot parameter P, M̂, Ĉ and Ĝ indicate the estimation of M, C, G
and λc is a positive constant.

We propose a robust adaptive controller as

us = (M̂ + Ĵ)(q̈r + λcs) + Ĉq̇r + Ĝ − Ks + � (33)

where K = λc(M + J) − Ks, Ks is a positive definite matrix, and � is the robust control term defined
as

� =

⎧⎪⎨
⎪⎩

1

m1
d̂T f · sat(s), ∀ ‖s‖ > l1

1

M1
d̂T f · sat(s), ∀ ‖s‖ ≤ l1

(34)

where sat(·) represents a class of saturation functions, and m1, l1 are positive constants with m1 = M1l1.
Here, the saturation function proposed in ref. [22] is applied.

sat(·) =
{

m1 · sign(·), ∀ ‖·‖ > l1

M1 · (·) , ∀ ‖·‖ ≤ l1
(35)

where sign(·) =
{

1, · > 0
0, · = 0
−1, · < 0

.

Define (·̃) = (·) − (·̂), (·) is the true value, (·̂) indicates the estimated value and (·̃) represents the
estimated error of the true value.

The adaptive control laws are given as

˙̂P = �−1(Y s + �P̃) (36)

˙̂d =
{

�d
−1( f ‖s‖ − ad̂ ), ∀ ‖s‖ > l1

�d
−1( f‖s‖2 − ad̂ ), ∀ ‖s‖ ≤ l1

(37)

where � ∈ R5×5, �d ∈ R3×3 and a ∈ R3×3 are all positive definite diagonal constant matrices.
Equations (36) and (37) are used to estimate the coefficients for each error items.

To generate the pseudo velocity error of link in the slow subsystem, the aforementioned approximate
differential filter is applied as

v̇1 = −A1v1 + B1ė (38)

where v1 represents the pseudo velocity error of links, and both A1 and B1 are positive definite diagonal
constant matrices.

Remark 4. With regard to the unknown uncertainty bound, for the slow subsystem, a robust
adaptive slow sub-controller (33) is designed. It consists of a feed-forward control term, a PD control
term and a robust control term. The robust control term makes the errors resulted from the model and
external disturbances always limited in a certain range by using the saturation function, and enables
the control error of the slow subsystem globally uniformly ultimately bounded (this will be proved in
the stability analysis part).
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4.4. Fast control law
The existing solutions to fast control law often adopt torque-feedback based classic pure proportional
or PD control, which is limited to suppress the overshoot. This results in oscillations at the joints
and negative effect to the tracking performance, especially when there is a non-zero initial tracking
error. Aiming at solving this problem, we redesigned the fast control law with considering the output
feedback strategy.

In this paper, the fast control law is proposed as

u∗
f = −Jμ(ḧ0 + kpη + kvη̇) − J(J−1 + M−1)Z (39)

where both kp ∈ Rn×n and kv ∈ Rn×n are constant diagonal matrices.
Substitute (39) into (18)

uf = KPη + KDη̇ (40)

where KP = Jμkp − J(J−1 + M−1), KD = Jμkv.
In respect of the output feedback problem for the fast subsystem, the pseudo differential of the

elastic torque error is created by the approximate differential filter that

v̇2 = −A2v2 + B2η̇ (41)

where v2 is the pseudo differential of the elastic torque error, and both A2 and B2 are positive definite
diagonal constant matrices.

Remark 5. The exact robot dynamics model based computed torque control approaches can be
taken as in a composite form of feed-forward controller and PD controller. −J(J−1 + M−1)Z − Jμḧ0

is the feed-forward term and −Jμ(kpη + kvη̇) is the PD term in (39), where the feed-forward part is
to track the target elastic torque and the PD part is used to provide the torque to eliminate tracking
error. Moreover, compared to the previous controller design for the flexible part in output feedback
control,14−16 the proposed controller (40) is more flexible in the design of the control law and can
adopt various control methods including computed torque approach according to different control
goals.

Note that, KP in (40) is a time-varying matrix, and it seems like to make the control scheme more
complex, but considering that the changing of J(J−1 + M−1) is slow and its corresponding value
is much smaller in comparison to Jμkp, then a proper constant matrix can be chosen in practical
application such that the asymptotically stability of the fast subsystem is guaranteed.

The block diagram of the proposed controller is shown in Fig. 1.

5. Stability Analysis
In this section, we will analyze the stability of the slow subsystem, the fast subsystem and the whole
composite system in sequence with considering the approximate differential filter.18

5.1. Stability analysis of the slow system
For slow subsystem, the Lyapunov function candidate V1 is defined as

V1 = 1

2
sT(M + J)s + 1

2
P̃ T�P̃ + 1

2
vT

1 v1 + 1

2
d̃ T�d d̃ (42)

It can be rewritten in matrix form as V1 = 1
2 X T�X , where X =

(
s
v1

P̃
d̃

)
, � =

(
M + J 0 0 0

0 1 0 0
0 0 � 0
0 0 0 �d

)
.

Obviously, V1 is positive definite.
In order to facilitate the proof, V1 is partitioned as V1 = V0 + 1

2 d̃ T�d d̃, where V0 = 1
2 sT(M + J)s +

1
2 P̃ T�P̃ + 1

2vT
1 v1.
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Fig. 1. Block diagram of the proposed controller.

Taking the derivative of V1 with respect to time, and substitute (26), (33) and (36) into V0, we get

V̇0 = sT(M + J)ṡ+1

2
sTṀs + P̃T� ˙̃P + vT

1 v̇1

= sT(M + J)(q̈r − q̈)+1

2
sTṀs + P̃T� ˙̃P + v1

Tv̇1

= sT
[
(M + J)q̈r − (us − Cq̇ − G − w)

] +1

2
sTṀs + P̃T� ˙̃P + vT

1 v̇1

= sT
[
(M + J)q̈r − (M̂ + Ĵ)(q̈r + λcs) − Ĉq̇r − Ĝ + Ks − � + Cq̇ + G + w)

]

+1

2
sTṀs + P̃T� ˙̃P + v1

Tv̇1

= sT[(M + J)q̈r − (M̂ + Ĵ)(q̈r + λcs) − Ĉq̇r − Ĝ + λc(M + J)s

−Kss − � + C(q̇r − s) + G + w)]+1

2
sTṀs + P̃T� ˙̃P + vT

1 v̇1

= sT[Y P̃ − � − Kss + w] + P̃T� ˙̃P + vT
1 v̇1

= P̃T(Y Ts + � ˙̃P) − sT� − sTKss+sTw + vT
1 v̇1

= P̃T(Y Ts − �
˙̂P) − sT� − sTKss+sTw + vT

1 v̇1

= −P̃T�P̃ − sT� − sTKss + sTw + vT
1 v̇1 (43)

When ‖s‖ > l1, substituting (23), (34) and (35) and into (43)

V̇0 = −P̃T�P̃ − sTd̂T f · sign(s) − sTKss + sTw + vT
1 v̇1

≤ −P̃T�P̃ − ‖s‖ d̂T f − sTKss + ‖s‖ dT f + vT
1 v̇1 (44)
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Substituting (37) and (44) into V̇1

V̇1 = V̇0 + d̃T�d
˙̃d

= V̇0 − d̃T�d�
−1d ( f ‖s‖ − ad̂ )

= V̇0 − d̃T f ‖s‖ + d̃Tad̂ (45)

It is not difficult to see from (44) and (45) that V̇1 can be yielded as follow

V̇1 ≤ −P̃ T�P̃ − sTKss + d̃ Tad̂ + vT
1 v̇1 (46)

In a similar way, when ‖s‖ ≤ l1, the expression of V̇1 can also obtain the same inequality based on
(34), (35) and (37)

Since

1

2
(d − d̃ )Ta(d − d̃ ) ≥ 0 (47)

then it is easy to get

d̃ Tad ≤ 1

2
dTad + 1

2
d̃ Tad̃ (48)

Considering d̃ = d − d̂, from (48), we have

d̃ Tad̂ ≤ 1

2
dTad − 1

2
d̃ Tad̃ (49)

From (38), (46) and (49), the following inequality is obtained.

V̇1 ≤ −P̃T�P̃ − sTKss + 1

2
dTad − 1

2
d̃Tad̃ − vT

1 (A1 + B1�
−1)v1 + vT

1 B1�
−1v1

= −X T�X + ε

≤ −λmin(�)‖X‖2 + ε (50)

where X =
(

s
v1

P̃
d̃

)
, � =

⎛
⎝ Ks

−B1�−1

2 0 0
−B1�−1

2 A1 + B1�
−1 0 0

0 0 � 0
0 0 0 1

2 a

⎞
⎠, ε = 1

2λmin(a)‖d‖2 and λmin(·) represents the

minimum eigenvalue values of the matrix.
Now, the sufficient conditions for � to be positive definite in (50) is that the following inequality

is satisfied

4Ks(A1 + B1�
−1) > (B1�

−1)2 (51)

Recalling the matrix form of (42), we can get

1

2
λmin(�)‖X‖2 ≤ 1

2
X T�X ≤ 1

2
λmax(�)‖X‖2 (52)

where λmax(·) is the maximum eigenvalue values of the matrix
From (50) and (52), we obtain

V̇1 ≤ − 2λmin(�)
λmax(�) V1 + ε

≤ −ρV1 + ε
(53)

where ρ = 2λmin(�)
λmax(�) .
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According to the Lyapunov stability theory,20 the slow subsystem is achieved to be stable. Moreover,
for arbitrary X (0), as long as t > t0, there exits

‖X‖ ≤
{

λmax(�)

λmin(�)
‖X (0)‖2e−ρt + 2

λmin(�)ρ

(
1 − e−ρt

)}1/2

(54)

Therefore, all signals of tracking error are global uniformly ultimately bounded by using the
proposed robust adaptive controller.

5.2. Stability analysis of the fast system
For the fast subsystem, consider the following Laypunov function candidate

V2 = μ

(
1

2
η̇Tη̇ + 1

2
ηTkpη + 1

2
vT

2 kvB−1
2 v2 + χηTη̇ − χvT

2 η̇

)
(55)

where χ is a sufficiently small positive constant, which is not used in the controller but only for
stability proof purposes.

Notice that (55) can be rewritten in the form of matrix as V2 = μY TP1Y , where Y =
(

η
η̇

v2

)
,

P1 =
(

KP
2 I χ

2 0
I χ

2 I 1
2 −I χ

2

0 −I χ

2

kvB−1
2

2

)
. It can be found that V2 will be positive definite if P1 is a positive definite

matrix, i.e., the following two inequalities (56) and (57) are satisfied:

√
λmin(kp) > χ (56)√

λmin(kpkvB−1
2 )

λmax(kp + kp)
> χ (57)

Substituting the fast control law in (40), the relationship between uf and u∗
f in (18), and the

velocity error estimation signals in (41) into the reshaped fast system (17), the elastic torque error can
be obtained as

η̈+kpη + kvv2 = 0 (58)

Differentiating V2 with respect to the fast scale time δ = t
μ

and substituting (58)

V̇2 = η̇Tη̈ + ηTkpη̇ + vT
2 kvB−1

2 v̇2 + χηTη̈ + χ η̇Tη̇ − χ v̇T
2 η̇ − χvT

2 η̈

= −vT
2 kvB−1

2 v2 − χηTkpη − χηTkvv2 + χ η̇Tη̇ + χvT
2 AT

2 η̇ − χ η̇TBT
2 η̇ + χvT

2 kpη + χvT
2 kvv2

(59)
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According to Rayleigh–Ritz inequality,17 the following inequalities can be established:

−vT
2 kvB−1

2 A1v2 ≤ −λmin(kvB−1
2 A1)‖v2‖2

−χηTkpη ≤ −χλmin(kp)‖η‖2

−χηTkvv2 ≤ −χσmin(kv) ‖η‖ ‖v2‖
χ η̇Tη̇ ≤ χ‖η̇‖2

χvT
2 AT

2 η̇ ≤ χσmax(AT
2 ) ‖v2‖ ‖η̇‖

−χ η̇TBT
2 η̇ ≤ −χλmin(BT

2 )‖η̇‖2

χvT
2 kpη ≤ χσmax(kp) ‖v2‖ ‖η‖

χvT
2 kvv2 ≤ χλmax(kv)‖v2‖2

where σmax(·), σmin(·) denote the largest and smallest singular value of the corresponding matrices,
respectively.

By using the inequalities above in sequence, V̇2 in (59) can be written as

V̇2 ≤ −CTP2C (60)

where

C =

⎛
⎜⎝

‖η‖
‖η̇‖
‖v‖

⎞
⎟⎠ , P2 =

⎛
⎜⎜⎝

χλmin(kp) 0 χ (σmin (kv )−σmax(kp ))
2

0 χλmin(B2) − χ
χσmax(A2 )

2
χ (σmin (kv )−σmax(kp ))

2
χσmax(A2 )

2 λmin(kvB−1
2 A2) − χλmax(kv)

⎞
⎟⎟⎠ .

To ensure V̇2 is negative definite, P2 should be positive definite, i.e.

λmin(B2) > 1 (61)

4λmin(kp)(λmin(B2) − 1)λmin(kvB−1
2 A2)

σ 2
max(A2)λmin(kp) + (σmin(kv) − σmax(kp))2(λmin(B2) − 1 + 4λmin(Kp)λmax(kv)(λmin(B2) − 1)

> χ (62)

Therefore, if the above conditions (56), (57), (61) and (62) hold, the asymptotic stability of the fast
subsystem is guaranteed.

5.3. Stability analysis of the composite system
The stability of the slow subsystem and the fast subsystem has been discussed in the previous
subsections. However, the stability of the individual subsystems does not guarantee the stability
of the total control system. This subsection will focus on the stability analysis of the whole composite
system in detail.

Consider the following composite Lyapunov function candidate17

V = b1V1 + b2V2 (63)

whereV1 denotes the Lyapunov function candidate for the slow subsystem given in (28) andV2 denotes
that for the fast subsystem given in (17), and both b1 and b2 are positive constants. As presented in
ref. [17], it can be selected that b1 = b2 = 1. Obviously, V = b1V1 + b2V2 is positive definite based
on the previous proof.

Then, take the derivative of V with respect to time, it is obtained that

V̇ = b1V̇1 + b2V̇2 (64)
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Importantly, the similar method in Section 5.1 can be used here to prove the stability of the first
part V̇1 in (63). Note that there is an important difference that (26) should be replaced by (24) and
then be substituted into V̇1, due to that the total system is represented by (24) and (25). The stability
analysis of the fast subsystem is exactly same as the stability analysis in the Section 5.2. Consequently,
it is easy to obtain that V̇ is negative definite, so as to conclude that the whole composite system is
asymptotically stable.

6. Simulations
In this section, to verify the proposed robust adaptive OFT controller (named as RA-OFTC), simulation
comparisons with the robust adaptive controller (named as RAC) are presented on a two-link flexible-
joint robot manipulators in ref. [23] see Fig. 2.

The functions of M(q), C(q, q̇),G(q) are expressed in terms of the elements of the parameter vector
P = ( p1 p2 p3 p4 p5 )T as follows:

M(q) =
[

p1 + p2 + 2p3 cos q2 p2 + p3 cos q2

p2 + p3 cos q2 p2

]
,

C(q, q̇) =
[−p3q̇2 sin q2 −p3(q̇1 + q̇2) sin q2

p3q̇1 sin q2 0

]
,

G(q) =
[

[p4 cos q1 + p5(p1 + p2)]g
p5 cos(p1 + p2)g

]
,

J = diag {0.1, 0.1} , g = 9.81.

Without loss of generality, the general expressions for the desired position trajectories are given as

qd1 = 1/(10π ) sin(10πt + π/6) rad,

qd2 = 1/(10π ) sin(10πt + π/6) rad.

The saturation function sat(s) is chosen as

sat(s) =
⎧⎨
⎩

π

2
sign(s), ‖s‖ > 2

π

4
s, ‖s‖ ≤ 2

(65)

The control law of RAC is given by (66)–(68):

u′′
s = M̂q̈r + Ĉq̇r + Ĝ+Kss + � (66)

� = d̂T f · sign(s) (67)

˙̂P = �−1Y s, ˙̂d = �d
−1( f‖s‖2 − ad̂ ) (68)

u′′
f = KPη + KDη̇ (69)

where u′′
s and u′′

f are the slow and fast control law of RAC, respectively.
To make fair comparisons, same value for the same parameters in two controllers is selected:

� = diag {1000, 1000, 1000, 1000, 1000} , Ks = diag {80, 80} , � = diag {20, 20}
�d = diag {20, 20, 20} , KP = diag {1, 1} , KD = diag {0.01, 0.01}
λc = 1, m1 = π

2
, A1 = A2 = B1 = B2 = diag {1000, 1000} .

Furthermore, to test the anti-disturbance capability of the controllers, man-made square-wave
pulse torques are applied as external disturbances during the time of 1 second to 2 second, with the
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Fig. 2. A two-link flexible-joint robot manipulator.

amplitudes of 3 Nm to the first joint and 2 Nm to the second one. To make comprehensive performance
assessment of the controllers, the following criteria24,25 are adopted:

Adjusting time—a period from the start to the moment tracking error e falls into the area of
±5% of the final value.

Overshoot—the maximum value of |ei| during the adjusting procedure.

Recovery time—a period since the end of disturbances to the moment tracking error |ei| falls
into the area of±5%of the final value.

Maximum deviation—the maximum value of |ei| from the start of disturbances to the end
of the recovery procedure.

Maximum torque—the maximum value of torque input |τi| during the whole procedure.

RMS—root mean square, it indicates the average performance in respect of tracking errors,
which is defined as

RMS(ei) =
√∫ T

0
|ei|2dt/T , i = 1, 2. (70)

RMS(e) =
√∫ T

0
‖e‖2dt/T . (71)

From the position tracking error curves in Figs. 3 and 4, it can be found that the proposed controller
(RA-OFTC) has smaller oscillation amplitude compared to the controller (RAC) in ref. [23], due
to that an improved linear parameterization expression by (31) is adopted in the control law, which
makes the adaptive parameters estimation more accurate. As shown in Table I, the RMS(e) in ours
(RA-OFTC) decreases by 9.87% at the first joint, 9.38% at the second joint and 9.55% on the whole
in comparison with those of the controller (RAC) in ref. [23], respectively.

When there comes out a sudden external torque disturbance at the joints, the tracking errors expand
a bit and soon fall into the normal range in our controller (RA-OFTC). As shown in Table I, RA-OFTC
has a shorter adjusting time and recovery time, the smaller overshoot, the smaller maximum deviation
compared with RAC, representing superior capacity of dynamic response and anti-disturbance.

Specially, as shown in Figs. 5 and 6, our controller (RA-OFTC) has the much smaller initial torque,
and is only 26.82% at the first joint and 41.66% at the second joint of those of the controller in ref. [23].
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Table I. Comparisons of controller.

Parameter RA-OFTC RAC

Adjusting time (s) Link 1 0.39 0.42
Link 2 0.35 0.38

Overshoot (10−3rad) Link 1 0.85 1.49
Link 2 0.26 1.03

Recovery time (s) Link 1 0.53 0.74
Link 2 0.50 0.69

Maximum deviation (10−3rad) Link 1 2.50 2.93
Link 2 1.44 1.97

Maximum torque (Nm) Joint 1 93.55 348.82
Joint 2 60.42 145.04

RMS (rad) e1 0.0475 0.0527
e2 0.0406 0.0448
e 0.0625 0.0691

Fig. 3. Tracking error of link 1.

Fig. 4. Tracking error of link 2.
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Fig. 5. Torque input of joint 1.

Fig. 6. Torque input of joint 2.

Moreover, there appears some sharp torque pulses in the controller (RAC) in ref. [23], due to that the
saturation function sat(s) is adopted in its control law, while a continuous saturation function that can
avoid the sharp-pulse phenomenon of the torque output is applied in ours (RA-OFTC).

More importantly, approximate differential filtering technique is applied to achieve OFT control
in RA-OFTC, which avoids the velocity measurements for both links and joint motors. What’s more,
the approximate differential filter is applied in the controllers, which can alleviate the initial input
torque too large in some extend by choosing the appropriate filter parameters.

7. Conclusions
This work clearly states a detailed design of a robust adaptive OFT control method for flexible-joint
robot manipulators with parameter uncertainties and external disturbances. It is highlighted by an
improved linear parameterization expression and a class of continuous saturation function invoked in
the robust adaptive control law, as well as an approximate differential filter adopted to eliminate the
velocity measurements for both links and joint motors in slow and fast subsystems that decoupled
by singular perturbation theory. In addition, comprehensive stability analysis of both subsystems and
whole composite system is also made.

The simulation results demonstrate that, considering the problems of parameter uncertainties and
external disturbances, by the proposed controller, resistance ability to external disturbance is enhanced,
tracking errors of links are decreased and the sharp-pulse phenomenon of the torque output is avoided
effectively, which guarantees a superior dynamic performance and makes the proposed scheme as a
valuable reference for other similar robotic systems.
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