
 

On interacting with physics-based models of graphical objects
Shahram Payandeh, John Dill and Zhu Liang Cai
Experimental Robotics and Graphics Laboratory, School of Engineering Science, Simon Fraser University, 8888
University Drive, Burnaby, British Columbia (CANADA), V5A 1S6. E-mail: aharam@cs.sfu.ca, dill@cs.sfu.ca

(Received in Final Form: September 12, 2003)

SUMMARY
Enhancing graphical objects whose behaviors are governed
by the laws of physics is an important requirement in
modeling virtual physical environments. In such environ-
ments, the user can interact with graphical objects and is
able to either feel the simulated reaction forces through a
physical computer interface such as a force feedback mouse
or through such interactions, objects behave in a natural
way. One of the key requirements for such interaction is
determination of the type of contact between the user
controlled object and the objects representing the environ-
ment. This paper presents an approach for reconstructing
the contact configuration between two objects. This is
accomplished through usage of the time history of the
motion of the approaching objects for inverse trajectory
mapping of polygonal representation. In the case of
deformable objects and through usage of mass-spring-
damper system this paper also presents a special global filter
that can map the local deformation of an object to the
adjacent vertices of polygonal mesh. In addition to offering
a fast computational framework, the proposed method also
offers more realistic representation of the deformation. The
results of this paper are shown through detailed examples
and comparison analysis using different computational
platforms.

KEYWORDS: Contact reconstruction; Physics based modeling;
Deformable objects; Mass-spring-damper system; Global filter;
Realistic deformation.

1. INTRODUCTION
Simulating and interacting with objects possessing phys-
ical–dynamical–attributes in addition to geometrical
attributes is an important area of research in modeling
virtual reality. Applications include robotics, path planning,
animation, computer games and training systems. It is
particularly important in training systems for the user/
trainee to be able to feel the forces created during
interaction with a system, in addition to experiencing the
usual visual feedback and interaction. Such feedback can be
provided with a special-purpose mechanical user interface,
commonly referred to as a haptic interface. Interaction with
such a system consists of integration and synchronization of
several components. Two important aspects of such inter-
actions are the notion of contact/impact event reconstruction
and augmentation of the graphical object (visual rendering)
with physical attributes (haptic rendering).

Detection of contact between geometric objects has been
investigated extensively in the literature. The basic method-
ology for detecting collisions between objects is based on
utilizing a polygonal mesh representation of their surfaces.
For example, Minkowski difference and convex optimiza-
tion are used to compute the distance between convex
polyhedra by finding the closest points.1–3 More recent work
is based on tighter-fitting bounding volumes. For example,
references [4, 5] has developed an approach for interference
detection based on oriented bounding boxes, which more
closely approximate object geometry. This approach was
later extended to deal with the case where objects can have
multiple contacts with each other. Other approaches for
detecting contact between objects are based on Constructive
Solid Geometry (CSG). For example, references [6, 7]
introduced an efficient approach based on CSG for deter-
mining whether the intersection is empty by utilizing space
partitioning and bounding boxes. Still other approaches
based on the voxel-based objects have been proposed. One
of the key benefits of voxel-based approaches is that they
are conceptually simple to implement. For example, colli-
sions are detected automatically when a voxel address from
one object tries to write into an occupancy map cell that is
already occupied by the voxel address of another object.8

There are other methods which address the speed and
robustness of the algorithm for example presented in
references [9] and [10]. For further reference, a very good
survey of collision detection can be found in reference
[11].

The next step in utilization of the contact detection is the
reconstruction of the contact configuration between the
possible objects, which is one of the themes of this paper.
Here, the basic outputs from any collision detection
algorithm are the probability of the possible polygons of the
two objects that might be in the interference mode. In this
paper, an approach for reconstructing contact configuration
is presented. The approach is based utilization the inverse
trajectory mapping of the two contacting objects and usage
of the data structure associated with the interfering poly-
gons, i.e. half-edge data structure.

In addition to representing an object’s geometrical and
appearance attributes, it is important to be able to represent
their physical attributes such as mechanical, thermal and
fluid properties, which can in general be modeled using the
notion of continuum mechanics.12 However, the practical
implementation of such models requires discretization of

Robotica (2004) volume 22, pp. 223–230. © 2004 Cambridge University Press
DOI: 10.1017/S0263574703005617 Printed in the United Kingdom

https://doi.org/10.1017/S0263574703005617 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574703005617


such continuum models. The most general approach for
representing such discretization is based on the notion of the
finite element13–16 or boundary element method.17 In general,
this approach for modeling objects produces very good
results but the high computational cost can hinder its
practical application. Here, each element of the body is
represented by the constitutive equations describing the
physical phenomenon associated with the behavior of the
object. There have been some efforts to reduce the real-time
requirements of the modeling approaches using finite-
element method, for example see reference [18]. The other
main draw-back of modeling using the finite element
approach is that, in general, definition of non-linear strain
energy functions need to be used for proper modeling of
organs and tissues. These models require material property
constants that are very difficult to obtain (either live or
otherwise).

Another approach, which can be viewed as a subclass of
the general finite element method, is the notion of mass-
spring-damper systems.19,20 Here, similar to the finite
element method, the object is represented by a number of
discrete elements composed of vertices and edges. Each
vertex has a mass element and each edge consists of a spring
and damper element. The behavior of the object in response
to an external force is the behavior of this mass-spring-
damper system. One main reason for its popularity is the
simplicity of modeling. Other reasons are the relative ease
of parallelizing of the model for improved computational
performance. In addition, through proper modeling and fine-
tuning the stiffness representation with the finite element
representation, it is possible to accomplish realistic behavior
of the organs and tissues. Various numerical integration
schemes have also been proposed for efficient and stable
response of such systems. For example, Miller21 proposed a
model for animating legless figures, such as snakes and
worms, using mass-spring systems. Animating spring ten-
sions simulates muscle contractions. Directional friction
forces are introduced in the model for resulting locomotion.
Provot22 proposed a model for animating cloth objects using
a network of springs and masses. Based on the model for the
global mesh of deformable object based on the mass-spring-
damper model, this paper presents a novel approach for
determining the deformation response of the object which
takes into account the global stiffness model of the object
and hence filter and distribute the local deformation in
resulting in a more realistic behavior. In addition, the data
structure of the proposed model allows deformation solution
of the object when there are multiple objects interacting
with the deformable object.

The paper is organized as follows: Section 2 presents a
method for reconstructing the contact configuration between
objects having determined the designated interfering poly-
gons using any available collision detection algorithm;
Section 3 presents an approach for modeling and solving
deformation of an object using the novel global filtering
algorithm for more realistic representation of the deforma-
tion and Section 4 presents concluding remarks. Each
section also presents relevant simulation results.

2. RECONSTRUCTION OF CONTACT
CONFIGURATION
Most contact detection algorithms assume planar polygonal
objects (i.e. objects whose surfaces are collections of planar
polygons, usually triangles) and handle collision queries by
producing an array of indices of colliding triangles.11 To
properly model both the mechanics of interaction between
the bodies and the behavior of the objects after deformation,
knowledge of the exact contact configuration, i.e. first point,
line or surface contacts and pre- and post- velocity
trajectories of the moving object is required.

Typically a collision detection routine is queried in a loop
to test for collision after each incremental change in position
of the moving object. In general, one of three possible
results is returned (Figure 1):

(a) The objects inter-penetrate.
(b) The objects’ boundaries touch.
(c) The objects perforate (one object passes completely

through another object).

Cases (a) and (c) are not what the system expects to obtain.
Rather, the system expects the pure touch collision case (b).
We must find a way to avoid cases (a) and (c), and to
generate an exact collision as in case (b). For case (c), the
solution is to reduce the step length to be less than the
bounding box’s minimum edge length among all objects.
We describe a method for case (a).

2.1. Reconstruction method
The steps for an algorithm to deal with case (a) are:

• Find whether the objects penetrate or touch.
• Find the vector which repositions the moving object to the

point where it first touches, if they penetrate (reversing
vector).

• Find the first contact points, lines (edges) or polygons
(surfaces) as a contact localization sub-algorithm, Figure
2.

Definitions:
Vf[i] and Vm[i] represent the ith vertex on the fixed and moving
objects, respectively;
Em[j] and Ef[j] represent the jth line segment on the moving
and fixed objects, respectively;
lm[i] and lf[i] represent the ith (jth) line through vertex Vm[i]

(Vf[i]), parallel to the object’s velocity vector D.
Pij is the intersection of line lm[i] and edge Ef[j].

First we consider the relationships between vertices Vm[i] and
line segments Ef[i]. We define Pij as the intersection point

Fig. 1. Possible object configurations after a positive collision
query.

Graphical objects224

https://doi.org/10.1017/S0263574703005617 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574703005617


between line lm[i] and the extended line corresponding to line
segment Ef[j], and test to see if Pij is on the segment Ef[j]

itself. If not, Pij can be ignored. The penetrating vectors Vij

can then be obtained using:

Vij =(Pij �Vm[i]) (1)

Then we find the maximum penetrating distance and then
the resulting reversing vector. Penetrating distance values dij

are given by:

dij =Vij · (�Du) (2)

where Du is a unit vector in the direction of D. If dij ≥0, the
corresponding vertex Vm[i] penetrates the fixed polyhedron.
From the set of dij’s, a maximum value can be found. Note
that at least one vertex will have this maximum value. The
set of vertices Vm[i] (with this maximum d) is regarded as the
set of contact points. To determine the type of contact
(vertex, line or polygon touch) we examine neighboring
contact points, where neighboring means in order as we
travel around the polygon boundary. If neighboring contact
points do not share an edge or polygon, they are touch
vertices; if they share a line segment, an edge touches; and
if neighboring contact points form a polygon, a face
(polygon) contact is said to occur. Any Vij corresponding to
the maximum distance is the reversing vector.

(i) Solution to special situation. The complete contact
configuration problem is fully addressed, except for certain
singular situations, shown in Figure 3 where the moving

object’s colliding vertex/vertices is/are not inside the fixed
object.

The procedure to handle this case is similar to the above,
except instead of considering the fixed object’s Vm[i], we
consider the moving object’s Vm[i], the line segments are
changed from the fixed object’s Ef[j] to the moving object’s
Em[j], and the lines corresponding to the moving object lm[i]

are also changed to the fixed object’s lf[j]. Finally, the
direction vector D must be reversed and Equation 2 is
replaced by:

dij =Vij · (Du) (3)

In terms of performance, note that equations 2 and 3 avoid
a length computation (length=�x2 +y2 +z2) by using a
scalar product approach. A straightforward step-by-step 3D-
direction determination would need six sign determining
steps; the scalar product method only needs a single sign
determination.

The contact detection algorithm and contact reconstruc-
tion algorithm have been successfully  implemented in
C++ . The system uses a publicly available collision
detection module (RAPID3) and our reconstruction algo-
rithm.23 Rendering uses OpenInventor™, a commercial
graphics toolkit. Users can build and edit objects using
AutoCAD™ or any other method for generating DXF files,
and third-party freeware converts AutoCAD™ DXF files to
VRML/IV files, which the system inputs.

(ii) Experiment and Results. A test environment contain-
ing user-defined virtual fixed (static) and moving objects
was built and tested. During the experiment, the user can
manipulate (move/rotate) the objects using the mouse and
keyboard, and see virtual collisions on the screen.

Figure 4 shows four test cases of varying difficulty
ranging from a line collision to a multiple point collision of
non-convex objects. The contact points edges and faces are
highlighted in the figure (and on the screen). Detailed
contact coordinate information is displayed to the user on
the screen, along with the reversing vector. The algorithm’s
performance is shown in Table I. The experiment was run on

Fig. 2. Collision projection in 2D.

Fig. 3. Special situation for collision in 2D plane. Fig. 4. Experimental test cases.

Graphical objects 225

https://doi.org/10.1017/S0263574703005617 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574703005617


an NT workstation with a Pentium II-333 CPU and 128MB
of memory. Figure 5 shows the contact reconstruction
algorithm. Table I shows that for a specific case, how many
lines and vertices are interfered and the time it takes for
RAPID to determine these outcomes. Table 1 also shows the
time it takes for reconstructing the contact configurations
shown in the Figure 4.

3. INTERACTION WITH COMPLIANT OBJECT
This section presents an approach for enhancing graphical
objects with physical behavior, specifically modeling
objects that have compliant behavior. An example of this
type of environment is the surgical environment where most
objects in the surgical site have deformed under application
of forces, for example from a surgical instrument.

The approach presented in this section is to represent the
surface of the object with a massspringdamper system. To
accomplish this, the surface of the model of the undeformed
object is discretized into a triangular mesh via Delaunay
triangulation.24,25 Vertices of each triangle are then con-

sidered as lumped mass points; edges represent connecting
springs and dampers in parallel. Depending on the local
curvature of the surface the mesh can be finer or coarser.
The nominal undeformed spatial position of each mass is
considered the rest (or home position). Any displacement of
a vertex is considered from this home configuration. When
a vertex is displaced due to the action of applied contact
forces, the restoring spring forces on connecting springs can
be obtained. A haptic interface device for creating the
sensation of reaction forces (for e.g. to the hand of a
surgeon) can then produce this calculated force.

Assuming the position of each mass element is described
with respect to a local frame of reference and using
Newton’s equation, the linear dynamic model of each of the
mass-spring-damper system can be written as:

M
d2x
dt2 +C

dx
dt

+K(x)x=Fext (3)

where M, C, K(x) are the mass, damping and associated
stiffness matrices of the system. Fext is the external force
vector acting on the mass elements. An interpretation of
Equation (3) is when a mass point is displaced from its
equilibrium configuration due to some external force, the
internal forces Fint due to the connected spring and dampers
will force the mass point toward an equilibrium configura-
tion through the acceleration of the point mass. Combining
the external force vector Fext with the internal force vector,

i.e. Fint =C
dx
dt

+K(x)x, the following simplified form results:

Table I. Performance of the collision detection and contact
reconstruction algorithms.

Example 1 2 3 4

No. colliding lines 32 54 409 1062
No. colliding vertices 22 31 205 502
RAPID time (msec) 0.15 0.31 991 5000
Reconstruction time (msec) 0.0 0.15 1.05 2.15

Fig. 5. Contact reconstruction algorithm.

Graphical objects226

https://doi.org/10.1017/S0263574703005617 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574703005617


M
d2x
dt2 =F=Fext �Fint

Equation (3) must be evaluated numerically. A standard
method uses an explicit Euler integration scheme. For
example, the integration at a vertex location i can be written
as:

vn+1
i =vn

i +Fn
i

�t
m

(4)

xn+1
i =xn

i +vn+1
i �t

where Fn
i is the net force acting on vertex i with mass m at

time step n, and vn
i and xn

i are the velocity and position of
vertex i at time step n. Higher-order schemes such as
Runge-Kutta can also be used for better numerical accuracy
and for smooth solutions. The explicit method has been very
popular because of its simplicity and ease of implementa-
tion. However, implementation of this scheme requires the
size of the time step �t be inversely proportional to the
square root of the stiffness, i.e. the Courant condition.26,27

The reason is that explicit integration, which many
approaches use, cannot avoid large errors/offsets if the time
step is large. The errors/offsets accumulate from step to
step. Through n steps, small errors/offsets can grow large.
This can be due to the assumption that the internal forces
remain constant over a very large time-step which in turn
may induce large changes in position. In general, stable
behavior of the system can be achieved only over a very
small time step. This is often referred to as problems with
sets of stiff equations.

Another approach, which has been proposed to be better
than the explicit method, is implicit Euler integration.18,19

Here equation (4) is modified to become:

vn+1
i =vn

i +Fn+1
i

�t
m

(5)

xn+1
i =xn

i +vn+1
i �t

where Fn+1
i is the net force acting on vertex i at time n+1.

In this scheme, the position of vertex i at time step n+1 is
reached through applying the force at that time step. The
main task is now to compute an expression for the net force
at time step n+1 as a function of the net force at time step
n. One approach is based on the expansion of the net forcing
function using a Taylor series approximation:

Fn+1 =Fn +
∂F
∂x

�n+1x+
∂F
∂v

�n+1v (6)

where �n+1(.)=(.)n+1 � (.)n represents the backward differ-
ence operator, and x � R3i is a vector of nodal displace-

ments. Matrices 
∂F
∂x

and 
∂F
∂v

have the form of the stiffness

and damping matrix representation. As such, they can be
represented in a special form of matrix namely, sparse and
banded. For example, for a one-dimensional grid with a

constant spring between the vertices, the general form of the
matrix can be written as:28

∂F
∂x

=k

For the two and three-dimensional case, the form of the
above matrix can be compounded in a block diagonal
structure. Here, the size of the diagonal band increases.

Now, using Equation (6) in Equation (5), we have:

vn+1 =vn +(Fn +K�n+1x+C�n+1v)
�t
m

Using the equivalent expression for �n+1x=(vn +�n+1v)�t,
we can rewrite the above equation as:

vn+1 =vn +(Fn +Kvn�t+K�n+1v�t+C�n+1v)
�t
m

or:

�vn+1 m
�t

(I�K
�t2

m
�C

�t
m

)=Fn +Kvn�t (7)

Then the implicit formulation for calculating the velocity
vector is:

�vn+1 =W(Fn +Kvn�t)
�t
m

(8)

where:

W=�I�K
�t2

m
�C

�t
m��1

It can be seen that the differences between the explicit
formulation for the velocity and Equation (8) is the added
weighting term W (global filter) and the term Kvn�t. If W=I
and the term KvnA�t=0, the update Equation (8) reduces to
the explicit formulation. As mentioned before, the force
vector Fn includes the expression for the nodal external
force vector, the internal force due to the spring and the
internai damping forces. The term Kvn�t can be thought of

�1 1 0 0 · 0 0 0 0
1 �2 1 0 · 0 0 0 0
0 1 �2 1 · 0 0 0 0
· · · · · · · · ·
0 0 0 0 · 1 �2 1 0
0 0 0 0 · 0 1 �2 1
0 0 0 0 · 0 0 1 �1

Graphical objects 227

https://doi.org/10.1017/S0263574703005617 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574703005617


as an artificial viscosity to further dampout nodal displace-
ment.

Equation (8) can be rewritten in the following form to
show the nature of the proposed integration method.

Multiplying both sides by 
m
�t

, we get:

Fn+1 =WFn
new (9)

where Fn
new =Fn +Kvn�t is the new nodal force vector. The

above equation suggests that the new nodal forces at step
n+1 are obtained as weighted values of all the nodal forces
at time step n. Reference [28] showed the complexity of
calculating Fn+1 was O(N2). The following proposed algo-
rithm reduces the computational time considerably.29

From Equation (9), a force vector at a vertex i can be
written as:

Fn+1
i =�N

j=1

wijF
n
j (10)

where the wij are the elements of the W matrix. Thus, the net
force at a vertex is the sum of N multiplications.

The matrix W=I�K
�t2

m
�C

�t
m

has the following prop-

erties:

(i) If K�t2 +C�t�I, then the N�N matrix is equivalent to
an identity matrix, i.e. wii �1. This implies that for low
stiffness or small time steps, for example, the updated
force at the ith node at time step n+1 is a function of its
own applied force at time step n.

(ii) If K�t2 +C�t�I a constant matrix results which
implies that forces before and after are the same, in
other words, rigid body translation of the collection of
nodes.

In general, for the condition of the second case to apply, one
requires either a large magnitude for the spring/damping
parameters or a large time step. Neither case is practical for
implementation. In a simplified implementation, we
assumed a more realistic modification of the first case,
namely K�t2 +C�t<I where in this case the relationship of
equation (10) still applies but the update force at a given
node is only a function of its immediate neighbors. To show
this we would like to show that the inverse of a sparse band
matrix is a sparse band matrix.

Let W=A�1 where A=�I�K
�t2

m
�C

�t
m�. We would

like to show that if A is sparse and banded matrix, its inverse
W has the same property. One approach is to use the first
order Neumann polynomial as:30,31

W=2D�1 �D�1AD�1

where D is a diagonal matrix. As can be seen from the
above, the inverse of A can be approximated as a sparse
band matrix. Hence, one proposed simplification to the
general update equation given in equation (9) is based on
using only the links to the immediate neighbors.

A numerical study was undertaken to verify the validity
of the immediate neighbors simplification of the paper.
Table II shows the comparison between using the full matrix
representation of the weighting parameters (global filter) as
compared to the immediate neighbors’ method. The inves-
tigation was carried for meshes of 8, 112, 512 and 738
nodes. As Table II indicates, the sum of the contributions
from non-neighbor nodes has a very small contribution
compared with the weight of immediate neighbor nodes. In
all of these examples, the matrix W is constructed once
when the models were built and then used throughout the
on-line update computation.

4. EXPERIMENTAL RESULTS
The proposed approach for modeling deformable objects
was evaluated using a 2-dimensional planar model, though
the method was implemented in 3D. Initial object geometry
was constructed using a widely available Computer-Aided-
Design system (AutoCAD). Mesh generation was via a
Delaunay triangulation algorithm.24 The software was run
on a Pentium II-333 MHz CPU with 128MB of memory.

Figure 6 shows snapshots of a 517 node object with a
single step function external force applied to it. Figure 7
shows an example of a 790 node object with a constrained
boundary. For this object, the combined time for the
simulation and graphics resulted in a frame rate of 1 f/sec.
This figure also shows the example where multiple external
inputs can be included into the global deformation solu-
tion.

5. CONCLUSIONS
Inclusion of physics in the graphical representation of
objects is becoming one of the key requirements in the
development of virtual environments and real-time simula-
tions. A particularly important aspect of the evolving field of
the design of user environments is the notion of haptic
feedback where through special-purpose mechanical
devices; the user can interact with graphical objects and
directly feel reaction forces. In addition, in simulating
physical object forces, for example in the development of
animated characters or a game environment, graphical
objects should be constructed such that they behave based
on the laws of physics.

Table II. Comparison of neighboring nodes’ weighted sum and
non-neighboring nodes’ weighted sum.

Example 1 2 3 4

No. nodes 8 112 512 738
Sum of neighbor 0.0 0.994 0.99/8 0.9983

nodes weights
Sum of non-neighbor 0.0 0.006 0.002 0.0017

nodes weights

Graphical objects228

https://doi.org/10.1017/S0263574703005617 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574703005617


This paper presents some preliminary investigations into
the design and implementation of such environments. Two
aspects of such development were considered, namely (a)
determinations of exact contact locations between two
colliding objects and (b) an approach for modeling com-
pliant objects and numerically solving such models.
Determination of the exact contact location and configura-
tion is one of the main requirements for further analysis of
the behavior of objects. Having a point, line or surface
contact between two objects can further allow proper
dynamic model construction based on the initial conditions

of the input forces. For example, in planning the motions for
assembling two objects, such contact inforrnation can help
the designer to predict possible motions that need to be
made in order to assemble the parts. Modeling compliant
objects is an important requirement for developing virtual
environments in which most objects are soft, e.g. a surgical
environment. An efficient framework needs to be identified
which can result in an approach both realistic and
computationally feasible. The proposed approach is based
on representing the surface of the object with a 2-dimen-
sional mesh with a system of mass-spring-damper. An
efficient implicit numerical scheme was proposed for
solving the deformation of such a mesh under the action of
external forces. The proposed method utilizes a global filter
where the local deformation can be mapped to the
neighboring ones for more distributed and realistic model of
the deformation.

References
1. E. G. Gilbert, D. W. Johnson and S. S. Keerthi, “A fast

procedure for computing the distance between objects in
three-dimensional space”, IEEE J. Robotics and Automation
4, 193–203 (1985).

2. D. Bara, “Curved surfaces and coherence for non-penetrating
rigid body simulation”, Proc. Siggraph ’90, Computer
Graphics 24, No. 4, 19–28 (1990).

3. M. C. Lin and F. C. Johy, “Efficient algorithms for
incremental distance computation”, IEEE Conference on
Robotics and Automation (1991), pp. 1008–1014.

4. S. Gottschalk, M. Lin and D. Manoch, “Obb-tree: A
hierarchical structure for rapid interference detection”, Proc
Siggraph ’96 (1996), pp. 171–180.

5. G. Barequet, B. Chazelle, L. Guibas, J. Mitchell and A. Tal,
“Box-tree: A hierarchical representation of surfaces in 3D”,
Proceedings of Eurographics 15, No. 3, 335–342 (1996).

6. S. Cameron, “Approximation hierarchies and s-bounds”,
Proceedings Symposium on Solid Modeling Foundations and
CAD/CAM Applications (Austin, TX (1991), pp. 129–137).

7. M. A. Ganter and B. P. Isarankura, “Dynamic collision
detection using space partitioning”, Proceedings of ASME
Design Automation Conference (1990), pp. 175–181.

8. S. F. Frisken Gibson, “Beyond volume rendering: Visual-
ization, haptic exploration, and physical modeling of
voxel-based objects”, Technical Report (Mitsubishi Electric
Research Laboratories, Cambridge Research Center, number
95-04, 1995).

9. M. Lin and J. Canny, “A fast algorithm for incremental
distance calculation”, IEEE International Conference on
Robotics and Automation (1991), pp. 2670–2675.

10. B. Mirtich, “V-clip: Fast and robust polyhedral collision
detection”, ACM Transaction on Graphics 13, No. 3, 177–208
(1998).

11. M. Lin and S. Gottschalk, “Collision detection between
geometric models: A survey”, Technical Report (Department
of Computer Science, North Carolina University, 2000).

12. L. E. Malvern, Introduction to the Mechamcs of a Continuous
Medium (Prentice Hall, 1969).

13. O. C. Zienkiewicz, The Finite Element Method (McGraw-
Hill, 1977).

14. S. Cotin and H. Delingette, “Real-time surgery simulation
with haptic feedback using finite elements,” Proceedings of
1998 IEE, International Conference on Robotic & Automation
(May, 1998), pp. 3739–3744.

15. H. Qin and D. Terzopoulos, “D-NURBS: A physics-based
framework for geometric design,” IEEE Transactions on
Visualization and Computer Graphics, No. 1, 85–96 (March,
1996).

Fig. 6. Thin polygonal plate deformed by single step function
force. Object has 517 nodes. Frames shown at t=0, 5s and 10s.

Fig. 7. Simulation of a deformable object with 790 nodes, 6
external forces and a constrained internal boundary.

Graphical objects 229

https://doi.org/10.1017/S0263574703005617 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574703005617


16. Y. Zhuang and J. Canny, “Haptic interaction with global
deformation”, Proceedings of IEEE Robotics and Automation
(2000), pp. 2428–2433.

17. D. L. James and D. K. Pai, “ArtDefo, accurate real time
deformable objects”, Proceedings of IEEE Robotics and
Automation (1999), pp. 65–72.

18. G. Debunne, M. Desbrun, M. Cani and A. Barr, “Dynamic
real-time deformation using space and time adaptive sam-
pling”, Proceedings of SIGGRAPH (2001), pp. 31–36.

19. S. Payandeh and N. Azouz, “Finite elements, mass-spring-
damper systems and haptic rendering”, Proceedings of IEEE
International Symposium on Computational Intelligence in
Robotics and Automation (2001), pp. 224–230.

20. O. Astley and V. Hayward, “Multirate haptic simulation
achieved by coupling finite element meshes through norton
equivalents”, Proceedings of IEEE Robotics and Automation
(1998), pp. 989–994.

21. G. S. P. Miller, “The motion dynamics of snakes and worms”,
Proc. Siggraph ’88, ACM Computer Graphics 22, No. 4,
169–173 (1988).

22. X. Provot, “Deformation constraints in a mass-spring model
to describe rigid cloth behavior”, Proc. Graphics Interface
’95 (1995), pp. 147–154.

23. Z. L. Cai, J. Dill and S. Payandeh, “Haptic rendering:
Practical modeling and collision detection”, IMECE99/

DSCD, Proceedings e ASME Virtual Environment and
Teleoperator System Symposium (1999), pp. 81–86.

24. R. S. Jonathan, “Triangle: Engineering a 2D quality mesh
generator and delaunay triangulator”, First Workshop on
Applied Computational Geometry (Philadelphia, PA), Assoc.
for Computing Machinery (1996), pp. 124–133.

25. C. M. Hofmann, Geometric and Solid Modeling (Morgan
Kaufmann, San Mateo, California, 1989).

26. R. Courant and D. Hilbert, Methods of Mathematical Physics,
Vol. I (Interscience, London, 1953).

27. L. Lapidus and G. F. Pinder, Numerical Solution of Partial
Differential Equations in Science and Science (Wiley, New
York, NY, 1982).

28. U. Gudukbay, B. Ozguc and Y. Tokad, “A spring force
formulation for elastically deformable models”, Computers
and Graphics 21, No. 3, 335–346 (1997).

29. M. Desbrun, P. Schrode and A. Barr, “Interactive animation of
structure deformable objects”, Proceedings of Computer
Graphics Interface 1999 (June, 1999), pp. 1–8.

30. Z. L. Cai, J. Dill and S. Payandeh, “Haptic rendering: Toward
deformation modelling with haptic feedback”, IMECEOO/
DSCD, Proceedings ASME Virtual Environment and
Teleoperator System Symposium (2000), pp. 1133–1138.

31. G. Meurant, Computer Solution of Large Linear Systems
(Elsevier Science, 1999).

Graphical objects230

https://doi.org/10.1017/S0263574703005617 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574703005617

