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SUMMARY
A disturbance rejection controller is proposed based on the general dynamic model of 3D biped
robots. For the first time, with this proposed approach, not only the Zero Moment Point (ZMP)
location remains unchanged in presence of disturbances but also the longitudinal and lateral ground
reaction forces and the vertical twist moment remain unchanged. This way, slipping as well as tipping
is prevented by the controller. The swing phase of the robot’s walking gait is considered. An integral
sliding mode architecture is chosen for the disturbance rejection. The support forces and moments
of the stance foot are the control outputs. The acceleration of the arm/body joints are chosen as the
inputs. During the disturbance rejection, the leg joints remain at their desired trajectory. Since the
leg joint trajectories are unaffected, the robot is still able to complete its step as planned, even when
bounded disturbances are experienced. For simulations, the general method is applied to an 18-degree
of freedom biped humanoid robot. Simulations show that the controller successfully mitigates
bounded disturbances and maintains all of the support reactions extremely close to their desired
values. Consequently, the shift in the position of the ZMP is negligible, and the robot foot does not slip.
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1. Introduction
Humanoid robots have been a topic of fascination for many researchers for decades. The characteristic
bipedal gait of humanoids has, in particular, been the focus of much research. This research can be
divided into two broad, yet distinct, groups: passive bipeds and active bipeds.

Passive bipeds are those that take advantage of the natural dynamics of the system and require
little to no actuation to perform a walking motion.1 Fully passive bipeds have limited practical use,
as they usually rely on potential energy to walk down an incline. Many Passive Dynamic Walkers
have relatively simple mechanisms. They are sensitive to initial conditions and are usually not robust
enough to handle external disturbances, and are normally the focus of studies in the energy efficiency
of bipedal walking gaits.2 The research into passive bipeds has led to developments in active bipeds
where the natural dynamics of the walking gait are used to reduce the consumption of energy normally
required to actuate motors.3 The focus of this paper however falls into the category of active bipeds,
or those that require significant actuation to perform their gait.

The most popular methods of control for bipedal robots use the concept of Zero Moment Point
(ZMP). All the external forces acting on the robot and all the inertial forces due to the motion of
robot’s limbs have a resultant force. The point of intersection of this resultant force and the ground
surface is the ZMP. The support polygon is the area on the ground that is covered by the feet during
locomotion.

It is a necessary and sufficient condition for the stable dynamic locomotion of the biped for the
ZMP to remain inside the support polygon.4 If the ZMP moves outside the support polygon, then
the robot becomes unstable and begins to fall over. The first ZMP-based approach for biped walking
control has the ZMP remaining inside the support polygon at all times, as defined by the desired
trajectory of the biped joints. This approach has been successfully used for Manus-I,5 and the famous
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Honda Asimo Robot.6 In this approach, the ZMP location is not directly controlled by a feedback
controller. Essentially, the humanoid is given a desired set of joint trajectories to accomplish a specific
task. The humanoid then performs the task following the prescribed joint trajectories. Problems occur
if the robot encounters an external disturbance. Due to a lack of feedback of the ZMP location, the
robot is not able to react to the external disturbance. So the ZMP could move outside the support
polygon. When this happens, the robot becomes unstable and falls.

The second approach is the incorporation of feedback for ZMP disturbance compensation. In these
approaches, the “joint torques” or “joint trajectories” are modified in real-time to keep the ZMP
within the support polygon.

One example of modifying joint “torques” is injecting a compensating torque into the ankle joint
of the foot of a robot. This modification enhances ZMP control.7 A different method is to control the
angular momentum of the robot and adjust it by modifying the joint torques.8, 9

There have been numerous methods proposed for the modification of joint trajectories for ZMP
control, mostly involving modifying the position of joints. A few methods involve varying the
step time, stride, or speed of the walk,10, 11 however this method can prove problematic for certain
situations, such as the stepping stone problem where the biped must step on certain locations.
Modification of the humanoid’s trunk or waist motion has been studied,12–14 and even exploiting the
upper body’s natural dynamics in its control15 has been considered. Modification of the motion of the
robot’s base link of the stance leg16 has been introduced as well.

A full dynamic model of a humanoid robot includes many complex, coupled, nonlinear equations.
As a result of this, it is normal for simplified models of the robot to be used to ease the modeling
burden. A common method is to model the biped as an inverted pendulum. This model has been used
for a 30-degree-of-freedom (DOF) biped to manipulate the ZMP indirectly by controlling the center
of gravity.17 In order to provide a more natural walk for bipeds, a Linear Inverted Pendulum Model
(LIMP) has been used to simulate a 12-DOF robot with a moving support ZMP references.18 The
moving ZMP reference results in a motion that looks more natural than a ZMP that is kept at the center
of the support polygon. The robot had separate Proportional-Integral-Derivative (PID) controllers for
each leg. The three-dimensional LIMP (3D-LIPM) developed by Kajita et al.19 is implemented in
Lee et al.20 on a 27-DOF HanSaRam-VII robot. In that work, the legs of the robot are modeled as
weightless, telescopic limbs, with the mass concentrated at a single point, and the ZMP is controlled
via the control of the center of gravity.

Methods that modify the acceleration of joints have been the focus of study in recent years.
Maintaining the upper-body task specifications by controlling the ZMP via modifying the torso’s
acceleration was proposed in Hammam et al.21 This was tested on the Honda Asimo platform.
The acceleration of the non-contact limbs as a stabilization strategy has been used.22 In that work,
the 18-DOF robot is described using morphological data gathered from motion capture, and direct
measurements of human subjects. The gait is controlled using a sliding mode control framework to
increase robustness and to take into account modeling errors.

The use of the arms to assist stabilization and control has been considered. Park23 has studied the
implicit relationship of the arm swing and its effect on the ground reaction force of the stance foot. A
more active role is given to both the trunk and the arms of the robot in stabilization against external
forces in Zaoui et al.24 In that work, a Proportional-Derivative (PD) controller takes information from
a force/torque sensor, located between the waist and the trunk as the input for the controller. The use
of the arms to interact with the environment in the event of disturbances is demonstrated.25

It is evident that the majority of the research in the dynamic stability of humanoid robots focuses
on using the ZMP as the stabilization criteria. However, if a 3D model is used, the ZMP position
only represents at most three support reaction components: one vertical force, one lateral moment
component, and one longitudinal moment component. The lateral and longitudinal support forces and
the vertical support moment are not represented by the ZMP position. These support force/moment
components are also affected when a disturbance exists, or when the motion of a limb is modified in
an effort to compensate for an existing disturbance. These support reaction forces and moments are
normally provided by the limited frictional force/moment between the robot’s foot and the ground.
Foot sliding can occur if the lateral and longitudinal support force and the vertical support moment
exceed the limit of the static friction force/moment between the robot’s foot and the ground. Foot
sliding can also lead to instabilities that can cause a fall. So, in some cases, controlling only the ZMP
position is not sufficient to maintain the dynamic stability of the robot.
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Fig. 1. (a) Free body diagram (FBD), (b) kinetic diagram (KD).

In this paper, all of the force and moment components of the support foot reaction are controlled,
rather than just the position of the ZMP. By addressing all the support foot forces, not only is the
tipping of the robot addressed but also the sliding of the support foot is prevented under bounded
disturbances. Since up to a total of six components of the support reaction are controlled, up to
6 DOFs of the arms/body of the robot must be used for control. Here, the control inputs are the
acceleration of joints, unlike more common approaches in which the positions of joints are used. In
addition, an integral sliding mode controller is used in the control architecture to increase robustness
of the controller. The outputs are taken from an integrated 6-DOF force/torque sensor that can be
installed in the ankle of the robot’s legs as discussed in Erbatur et al.26

2. Approach
In this paper, a method of control for the swing phase of a humanoid robot’s walk is considered. The
joint variables of the robot’s limbs are denoted as q(t). Similarly, the desired joint trajectories that
constitute a stable walking gait for the humanoid are denoted as qd (t). A stable walking gait is one that
does not cause the humanoid to tip over, or to enter into an irrecoverable state. A coordinate system
is considered at the support foot. The x, y, and z-axes represent the vertical, lateral, and longitudinal
directions respectively (Fig. 1a).

There are two conditions that must be met in order for the walking gait to be considered stable. The
first condition states that the position of the ZMP must always be kept within the support polygon.
The second condition states that the longitudinal and lateral forces (Fz, Fy), in addition to the vertical
twist moment (Mx) of the support foot, cannot exceed the static friction limitation between the foot
and the ground to prevent slipping. The ZMP equations are

ZMPz = My

Fx

, (1)

ZMPy = Mz

Fx

. (2)

The two conditions for a stable walk can be considered equivalent to maintaining a desired support
force vector (Fd

R(t)) and moment vector (Md
R(t)), where

FR = [Fx, Fy, Fz]
T , MR = [Mx, My, Mz]

T . (3)

When these support reactions are controlled, the ZMP location as well as the support reactions
provided by friction are controlled.

A desired value must be defined for the support reactions for control. The desired support force
and moment vectors are those that exist in idealistic conditions, that is, when the robot is walking
across perfectly level ground with no disturbances throughout the gait. They are calculated based on
the joint trajectories of a stable walking gait.
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However, a humanoid robot that can walk only in idealistic conditions is not useful outside a perfect
environment. Therefore, it is assumed that disturbances will exist during its walk, such as external
forces/moments that act directly on the robot’s body. These disturbances will affect the support force
and moment vectors, causing them to deviate from their desired values.

In order to handle these disturbances, it is proposed to design a feedback controller to control the
force and moment vectors in real-time to keep them at their desired values, regardless of the existence
of disturbances. Specifically, an integral sliding mode architecture is chosen because of its robust
nature in handling disturbances. The control output is defined as

y =
[

FR

MR

]
, (4)

with the desired value

yd (t) =
[

Fd
R(t)

Md
R(t)

]
. (5)

The following section focuses on the interaction of the forces and moments on the robot, and
deriving the appropriate angular accelerations of the joints. The disturbance rejection control law is
discussed in the next chapter. Finally, the simulation of the robot following the Conclusion ends the
paper.

3. Input–Output Model
The input–output (I/O) model describes the interaction of the forces and moments on the robot. It
serves as the basis on which the control is implemented. The equations are solved for the output
variables in terms of the input variables. In the case of the robot, the reaction force and moment the
robot’s foot exerts on the ground, FR and MR , are the output variables. The accelerations of the arm
joints, q̈a , are the input variables. The force and moments are represented on the robot as a system
of rigid bodies that are in a state of dynamic balance at time t . The free body diagram (FBD) and
the kinetic diagram (KD) are shown in Fig. 1. Fs and Ms are the support force and moment the
ground imparts to the robot’s foot respectively. The variables mi and IB

i are the mass and centroidal
moment of inertia matrices defined in local frame B for link i of the robot respectively. ωB

i is the
angular velocity of link i in its local frame. ri is the global position vector of the centroid of link
i. R0i is the rotation matrix that converts vector descriptions from the local frame of link i to the
base inertial frame 0, specifically the base of the robot’s left foot. It is important to note that R0i is a
function of θ1, θ2,..., θi . By equating the external forces and moments as shown in Fig. 1(a) with the
inertial forces and moments shown in Fig. 1(b), Newton’s second law, as applied to the robot shown,
is

Fs + ∑
mig = ∑

mi r̈i , (6)

Ms + ∑
ri × mig = ∑

(R0i
d
dt

(IB
i ωB

i ) + ri × mi r̈i). (7)

The support force and moment are equal and opposite to the reaction force and moment, FR and
MR , that the robot exerts on the ground. That is, FR = −Fs , and MR = −Ms . From this, the reaction
force and moment from the robot to the ground can replace the support force and moment in Eqs. (6)
and (7). Isolating FR and MR gives

FR = ∑
(mig − mi r̈i), (8)

MR = ∑
(ri × mig − R0i(IB

i ω̇B
i + ωB

i × IB
i ωB

i ) − ri × mi r̈i). (9)
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The linear velocity of the center of mass of link i as expressed in the inertial frame (ṙi) is derived
in terms of the joint rate vector using Jacobian matrices,

ṙi = [
Jai Jbi

] [
q̇a

q̇b

]
i = 1, ..., n. (10)

Here, q̇a is a column vector containing the rates of the joints whose desired accelerations will be
modified in real-time to control support reactions. The number of joints used is equal to the number
of support reaction components that are going to be controlled. For a spatial robot, with six support
reaction components, q̇a is 6 × 1. Jai is the Jacobian matrix corresponding to q̇a . For a spatial robot,
this matrix is 3 × 6. This Jacobian matrix is defined as

Jai = ∂ ṙi

∂q̇T
a

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ṙi1

∂q̇a1

∂ṙi1

∂q̇a2
· · · ∂ṙi1

∂q̇aN

∂ṙi2

∂q̇a1

∂ṙi2

∂q̇a2
· · · ∂ṙi2

∂q̇aN

∂ṙi3

∂q̇a1

∂ṙi3

∂q̇a2
· · · ∂ṙi3

∂q̇aN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

where N is the number of support forces to be controlled.
Here, q̇b is a column vector containing the joint rates of the remaining joints of the robot, whose

desired trajectory remains unmodified during the motion. Jbi is the respective Jacobian matrix, and
is defined in a similar manner as described for Jai . The relation for the angular velocity of the robot’s
links as expressed in the inertial frame ωi can be written as

ωi = [
Gai Gbi

] [
q̇a

q̇b

]
i = 1, ..., n, (12)

where Gai and Gbi are of the same size as Jai and Jbi respectively. These are also defined in a similar
manner:

Gai = ∂ωi

∂q̇a
T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ωi1

∂q̇a1

∂ωi1

∂q̇a2
· · · ∂ωi1

∂q̇aN

∂ωi2

∂q̇a1

∂ωi2

∂q̇a2
· · · ∂ωi2

∂q̇aN

∂ωi3

∂q̇a1

∂ωi3

∂q̇a2
· · · ∂ωi3

∂q̇aN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

By taking the derivatives of the linear and angular velocities in Eqs. (10) and (12), the respective
accelerations are found,

r̈i = Jai q̈a + (J̇ai q̇a + Jbi q̈b + J̇bi q̇b)

= Jai q̈a + ft i , (14)

ω̇i = Gai q̈a + (Ġai q̇a + Gbi q̈b + Ġbi q̇b)

= Gai q̈a + fri . (15)
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By substituting the accelerations into the force and moment equations from Eqs. (8) and (9), and
rearranging the terms to isolate the joint accelerations q̈a , it can be shown

FR =
(
−

∑
miJai

)
q̈a +

(∑
mi(g − ft i)

)
= bf q̈a + ff , (16)

MR =
[
−

∑
(R0iIB

i Gai + miri × Jai)
]

q̈a

+
[∑

(miri × g − R0i(ω
B
i × IB

i ωB
i + IB

i fri) − miri × ft i
]

= bmq̈a + fm. (17)

These force and moment equations can now be combined as a system of equations,[
FR

MR

]
=

[
bf

bm

]
q̈a +

[
ff

fm

]
,

y = bq̈a + f. (18)

The above model is valid when no disturbances act on the robot. Any external disturbance directly
changes the support reactions, so an external disturbance can be viewed as a variation dext. in support
reactions,

y = bq̈a + f + dext. (19)

The desired reactions are derived by designing a stable gait for the robot in the absence of disturbances
(dext. = 0). The corresponding joint motions for the stable gait are described by qd

a (t) and qd
b (t). So

the desired support reaction can be expressed as

yd = bd q̈d
a + fd, (20)

where bd and fd are calculated using joint trajectories that cause a stable walk, that is, qd
a (t) and qd

b (t).
At any given time, the difference between the current state of the robot with its desired state is

y − yd = bq̈a − bd q̈d
a + f − fd + dext. (21)

The joint acceleration q̈a is manipulated to compensate for the external disturbance. This causes the
divergence of qa from qd

a (t). However, after the disturbance is eliminated, it is desirable that the joint
positions qa approach their originally planned trajectory for the stable walk. So, ideally, after the
disturbance vanishes, the joint accelerations should be

q̈a (ideal) = q̈d
a − (2γ ˙̃qa + γ 2q̃a), (22)

where

q̃a = qa − qd
a, (23)

and γ > 0. The form of Eq. (22) is selected such that the behavior of the error q̃a = qa − qd
a is a

critically damped second-order stable behavior. Choosing the coefficients of ˙̃qa and q̃a as 2γ and γ 2,
respectively, generates that desired error behavior.

During the time that the disturbance is present, a different joint acceleration q̈a is necessary. For
the simplicity of the mathematical formulation, the difference between the ideal joint accelerations,
Eq. (22), and the necessary joint accelerations during disturbance is selected as a control input,

u = q̈a − q̈a (ideal). (24)
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So the following policy is proposed for the way the acceleration of the arm is manipulated,

q̈a = u + q̈d
a − (2γ ˙̃qa + γ 2q̃a). (25)

The justification for this choice of system control input becomes more clear in Section 4.2, where the
steady-state response of the control system is discussed.

Equation (25) is substituted in Eq. (21),

y = bu + (b − bd )q̈d
a + f − fd + yd − b(2γ ˙̃qa + γ 2q̃a) + dext.. (26)

Equation (26) is rearranged,

y = bu + g + din. + dext., (27)

where

g = (b − bd )q̈d
a + f − fd + yd, (28)

and

din. = −b(2γ ˙̃qa + γ 2q̃a). (29)

Note that din. is not part of the dynamics of the real system. It is a disturbance on support reaction
caused by trying to bring back the trajectories qa onto qd

a (t) after an external disturbance vanishes.
The controller must be able to reject this “artificial” disturbance as well. Note that this disturbance
is not know a priori, since the amount of deviation of the trajectories qa from their desired value
is a function of the amount and the duration of the external disturbance. However, the “artificial”
disturbance is measurable in real-time.

Equation (27) constitutes the input–output model. In this model, the input is the deviation of the
joint accelerations q̈a from ideal joint accelerations q̈a(ideal), i.e., u in Eq. (25), and the output is the
reaction force and moment, FR and MR , collectively denoted by y. Using this input–output model,
one can design a controller to keep the support reaction components at their desired values. In the
next section, the derivation of such a controller is presented.

4. Controller
In order for the humanoid robot to handle disturbances during its walking gait, it is crucial for the
robot to implement a robust controller that can quickly and accurately carry out this duty. Without a
controller, the robot could only perform in an ideal environment where it could execute its desired task
without concern for any disturbances. In a real world environment, this is not useful, as a humanoid
robot will need to compensate for external disturbances. Compensating for a disturbance consists of
two parts: the robot must react to the disturbance, and then recover its motion by returning to the
desired gait. In the following, first, a controller that can reject the disturbance is derived. Then the
steady-state response of the system after the disturbance vanishes is investigated, and it is shown that
the trajectories qa asymptotically approach their desired values after the disturbance vanishes.

4.1. Control law derivations
For the robot in question, an algebraic input–output relation is determined between the input and
output variables (Eq. 27) so that a control scheme can be utilized. The controller used in this paper is
the integral sliding mode control. Any other robust control method can be used. For integral sliding
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mode control, a new state variable, z(t), is defined as the output variable,

z̈(t) = y(t), (30)

ż(t) =
∫ t

0
y(τ )dτ where ż(0) =

∫ 0

0
y(τ )dτ = 0, (31)

z(t) =
∫ t

0
ż(τ )dτ where z(0) =

∫ 0

0
ż(τ )dτ = 0. (32)

Output errors are defined as the difference between the measured and the desired value,

z̃ = z − zd , ˙̃z = ż − żd , ¨̃z = z̈ − z̈d , (33)

where

z̈d (t) = yd (t), (34)

żd (t) =
∫ t

0
yd (τ )dτ, where żd (0) =

∫ 0

0
yd (τ )dτ = 0, (35)

zd (t) =
∫ t

0
żd (τ )dτ, where zd (0) =

∫ 0

0
żd (τ )dτ = 0. (36)

The nominal input–output model becomes

z̈ = bu + g, (37)

where b and g are defined in Eqs. (18) and (28). A first-order sliding surface is considered below,

s = (ż − żd ) + �(z − zd ). (38)

Note that, for integral sliding mode control, the states must start on the sliding surface at time zero,
i.e., s(0) must be zero.27, 28 This condition is met with the way the new state variable, z(t), and its
desired value, zd (t), are defined in Eqs. (31), (32), (35), and (36).

The sliding surface is manipulated,

s = (ż − żd ) + �z̃, (39)

= ż − (żd − �z̃),

= ż − sr ,

where � is a positive-definite diagonal square matrix. The following stable desired closed-loop system
behavior is assumed,

ṡ = z̈ − ṡr = −K sign(s), (40)

where the gain, K, is a diagonal positive definite matrix. The vector function sign(s) returns 1 or −1
for individual elements of s if the element is greater than zero or less than zero respectively. That is,

sign(s) = [sign(s1), ..., sign(sn)]T .

This gain will cause s to vanish, and when s is zero, Eq. (39) guarantees that z̃ and ˙̃z will tend to zero.
To derive the control law that generates the desired closed-loop system behavior (Eqs. 39 and 40),

the nominal input–output model (Eq. 37) is substituted into Eq. (40). After solving for the input u it
can be shown that

u = b−1(−g + ṡr − K sign(s)). (41)
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It must be shown that the control law (Eq. 41) can stabilize the actual system when a disturbance
exists. It is assumed that the disturbance, d = din. + dext. exists. dext. is a bounded, unknown
force/moment vector acting on the robot’s body or limbs. The actual model of the system is

z̈ = bu + g + d. (42)

One of the goals of the integral sliding mode controller is to ensure that the sliding surface
parameters will tend toward zero despite the existence of disturbances. A positive-definite Lyapunov
function, V , is defined. That is,

V > 0. (43)

Since a first-order stable sliding surface is considered (Eq. 39), the Lyapunov function must contain
s. A function using the norm of s is used,

V = 1

2
‖s‖2 = 1

2
sT s. (44)

As long as the time rate of the Lyapunov function is negative at all times, as defined in Eq. (43), s
will vanish. Here, the condition on controller gain K is found to guarantee a negative rate for the
Lyapunov function. The rate is calculated,

V̇ = sT ṡ. (45)

ṡ is replaced using Eq. (39):

V̇ = sT (z̈ − ṡr ). (46)

Here, Eq. (42) is substituted for z̈,

V̇ = sT (bu + g + d − ṡr ). (47)

Then u is replaced by Eq. (41),

V̇ = sT (bb−1(−g + ṡr − K sign(s)) + d + g − ṡr ). (48)

After simplification, it is shown that

V̇ = sT (−K sign(s) + d)

= −sT K sign(s) + sT d

= −sT K sign(s) + dT s

= −sT K sign(s) + dT
ext.s + dT

in.s. (49)

A bound is assumed for the elements of the disturbance vector,

|di ext.| ≤ Di ext.. (50)

Note that, normally, the bound (Di ext.) is found by trial and error via simulations. A high value is
selected, and disturbances close to the chosen bound are applied to the robot in simulation. If the
required control action to reject the disturbance is not affordable by the robot, the selected upper limit
is too high and needs to be reduced.
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The terms in Eq. (49) are manipulated as explained in Appendix. After the manipulation, Eq. (49)
becomes

V̇ ≤ −Kv |s| + DT
ext.|s| + |dT

in.||s|,
≤ −(Kv − DT

ext. − |dT
in.|)|s|. (51)

where Kv = [K11, . . . , Knn] is a row vector containing the diagonal elements of the diagonal matrix
K, and |s| = [|s1|, . . . , |sn|]T .

Equation (51) implies that if the elements of Kv are selected such that they are larger than the
corresponding elements of DT

ext. + |dT
in.|, then the rate of the Lyapunov function is negative, and s

vanishes despite the existence of any bounded external disturbance that satisfies Eq. (50). In the form
of an equation,

Kv ≥ DT
ext. + |dT

in.| + ηT , (52)

where η is a column vector with positive elements.
It is important to note that in practical situations, sliding mode control signal chattering must be

eliminated by replacing the sign function (sign(s)) in Eq. (41) with a saturation function. For example,

sat(s) = [sat(s1), ..., sat(sn)]T ,

where

sat(si) =
{

sign(si) if |si | ≥ φ

si/φ if |si | < φ
,

in which φ > 0 is known as the sliding surface boundary layer.

4.2. Steady-state response after the external disturbance vanishes
When a disturbance is present, the controller modifies the trajectory of the joints qa to reject the
disturbance. This causes the deviation of the trajectory of joints qa from the desired trajectory such
that the output (i.e. the force and moment reactions under the support foot) remain equal to the desired
output. After the disturbance is eliminated, it is desirable that the joints qa approach their originally
planned trajectories. The choice of the control input (Eq. 25) guarantees asymptotic convergence of
the joint trajectories qa to their planned trajectory. In the following, the steady-state response of the
system in absence of the disturbance is derived, which shows a stable trajectory for qa .

The response of the actual plant is represented by Eq. (19), which is repeated here for convenience,

y = bq̈a + f + dext. (53)

It is assumed that the external disturbance vanishes at some time, that is, dext. = 0. At the steady-state,
the output y has already converged to its desired value, so

y = yd ⇒ s = 0, ṡr = z̈d = yd . (54)

These conditions are substituted in the control law (Eq. 41). The control input at the steady-state
becomes

uss = b−1(−(b − bd )q̈d
a − f + fd − yd + yd ). (55)

The arm joint accelerations at steady-state are determined by Eq. (25),

q̈a(ss) = uss + q̈d
a − (2γ ˙̃qa + γ 2q̃a). (56)
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Fig. 2. Block diagram.

Equations (55) and (56), in addition to Eq. (20), are substituted in Eq. (19), with dext. = 0 and y = yd .
The result is

b(2γ ˙̃qa + γ 2q̃a) = 0. (57)

It must be noted that b is, in fact, the robot’s mass matrix, i.e., the multiplier of the joint accelerations
q̈a , in its equations of motion (Eqs. 16–18). The mass matrix is positive definite for all values of qa

as long as singularities are avoided. So Eq. (57) is rewritten as

˙̃qa +
(γ

2

)
q̃a = 0. (58)

Since γ > 0, Eq. (58) indicates that the arm trajectories will asymptotically approach their desired
value at the steady-state when the external disturbance vanishes.

4.3. Controller block diagram
The entire control scheme consists of three subsystems: desired output, disturbance rejection, and the
robust joint control. These are shown together in Fig. 2.

In the subsystem that generates the desired outputs yd (the support force and moment components),
the nominal trajectories are defined for the joints of the robot, qd

a (t) and qd
b (t). These trajectories are

designed in such a way that the requirements of a stable walk are met, as described in Section 2. To
reiterate, these requirements are confining the ZMP within the support polygon during the walking
cycle, and keeping the longitudinal and lateral support forces and the support twist moment lower
than the maximum static friction between the support foot and the ground. With these requirements
met, yd yields a desirable, stable walking gait.

The subsystem that modifies the trajectory of robot’s joints qa to maintain the desired output
(yd ) contains the disturbance rejection controller. This subsystem receives the desired output and its
associated integrals, as well as the measured output, ym. The measured output is provided by a 6-DOF
force/torque sensor installed in the robot’s ankle, similar to that of Erbatur et al.,26 where a 6-DOF
force/torque sensor transmits force and moment data. The output of the disturbance rejection control
system is the modified joint motion for qa , which is found in real-time by integrating Eq. (25).

Lastly, the subsystem that controls the motion of the robot’s joints is considered. This subsystem
receives the desired motion of the body and legs (qd

b (t)), and the modified arm motion (qa). The
torques of the joints (τ ) are calculated from the measured joint positions (qam, qbm) by a robust joint
controller, however this particular controller is beyond the focus of this paper and has no bearing on
the outcome of the simulations. A user of the proposed method can freely use their own existing joint
controller, or derive their own joint controller using their favorite control method. This controller
must be able to perfectly perform the desired joint motion despite the existence of potential bounded
disturbances. Low-level sliding mode robust controllers can easily meet this requirement.29, 30
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Fig. 3. The 18-DOF humanoid robot whose model is used for simulations.

Table I. Link parameters for the 18-DOF humanoid.

Joint i ai−1 αi−1 θi Mass PX PY PZ

(mm) (deg) (deg) (gm) (mm) (mm) (mm)
1 (R ankle) 0.0 0 q1 125 12.7 0.4 −16.0
2 (R ankle) 0.0 −90 q2 76 65.0 −11.4 0.6
3 (R knee) 77.5 0 q3 22 33.2 −7.2 0.0
4 (R hip) 78.0 0 q4 125 −12.7 16.1 0.4
5 (R hip) 0.0 90 q5 − 90 11 0.0 19.0 −16.5
6 (R hip) 0.0 −90 q6 + 180 321 39.4 −11.4 84.7
7 (L hip) 77.0 0 q7 11 0.0 −16.5 19.0
8 (L hip) 0.0 −90 q8 − 90 125 −12.7 0.36 16.0
9 (L hip) 0.0 −90 q9 − 180 22 43.2 7.3 0.0

10 (L knee) 78.0 0 q10 76 11.4 11.3 −0.6
11 (L ankle) 77.5 0 q11 + 180 125 −12.7 −16.0 0.4
12 (L ankle) 0.0 90 q12 32 25.8 0.0 4.8
13 (R shoulder) 0.0 0 q13 9 3.8 0.0 −12.2
14 (R shoulder) 14.5 90 q14 69 18.6 0.0 0.7
15 (R elbow) 67.5 0 q15 74 22.4 0.9 0.6
16 (L shoulder) 0.0 0 q16 9 3.8 0.0 −12.2
17 (L shoulder) 14.5 −90 q17 69 18.5 0.0 0.7
18 (L elbow) 67.5 0 q18 74 22.4 −0.8 0.6

5. Simulation
As an example, a spatial 18-DOF biped robot is considered (Fig. 3). The joints are shown by circular
markers. The degrees of freedom of the robot, its Denavit–Hartenberg parameters, and its link mass
information are listed in Table I.

Here, the left arm (q13, q14, q15) and the right arm (q16, q17, q18) are used for manipulating
the vertical, lateral, and longitudinal support forces (Fx, Fy, Fz) and moments (Mx, My, Mz).
So qa = [q13, q14, q15, q16, q17, q18]T and y = [Fx, Fy, Fz, Mx, My, Mz]T . The Denavit–Hartenberg
parameters and the mass distribution information in Table I are used to derive the Jacobian matrices
in Eqs. (11) and (13). The Jacobian matrices are then substituted in Eqs. (16) and (17) to give the
general form (18). This general form simulates a real 18-DOF robot, and is used to calculate the
support forces y that a real 18-DOF robot would experience under disturbances in real-time.

Any gait planning method can be used to plan a stable gait for the robot.31, 32 Here, for simplicity,
7o polynomials in time are used to plan the trajectory of the joints from start to the end of the step.
Jerk, acceleration, and speed of the joints are zero at both the start and the end of the step. The joint
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Table II. Robot’s joint angles at the start and end of a step in degrees.

q1 q2 q3 q4 q5 q6 q7 q8 q9

Start 0 0 −24 24 0 0 0 0 18
End 0 17 −17 0 0 0 0 −25

q10 q11 q12 q13 q14 q15 q16 q17 q18

Start 0 73 0 0 0 0 0 0 0
End −336 73 0 0 0 0 0 0 0

−100
0

100

150
50

−50
0

100

200

300

x
(m

m
)

y (mm) z (mm)

Fig. 4. Schematic view of the 3D 18-DOF biped robot’s gait. The joints are shown by circular markers.

angles at the beginning and the end of the step are listed in Table II. One step takes 1.0 s and is 90-cm
long. Snapshots of motion are shown in Fig. 4.

The controller modifies the acceleration of q13, q14, q15, q16, q17, q18 to control the support forces
at the desired level equivalent to the case where no disturbance is present. That is, the motion of
the arms and body are modified by the controller in real-time such that the support force/moment
components are not affected.

The controller gains are as follows:

γ = 10,

� =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ ,

DT
ext. = [

2.7 2.7 2.7 0.41 0.41 0.41
]
,

ηT = [
1 1 1 1 1 1

]
,

φ = 0.01, (59)

where the units of the elements of Dext. are Newton, Newton, Newton, Newton-meter, Newton-meter,
and Newton-meter, respectively.

In this example, the ZMP location and the support forces corresponding to the defined desired
trajectory are desirable. The feet of the robot are large enough to cover the variation of the ZMP
position for the whole desired walking cycle of this robot. First, the desired joint trajectories are used to
calculate the desired vertical, lateral, and longitudinal force (Fd

x , F d
y , F d

z ) and moment (Md
x , Md

y , Md
z )

that the robot exerts on the ground during a step. These forces and moments are valid when the robot
walks in the absence of any external disturbances. Here, these values are referred to as “desired”
values.

A disturbance is assumed to act on the robot from time 0.45 s to 0.55 s, in the middle of the
1.0-s step. The disturbance is a smooth varying horizontal force, with two equal y (lateral) and z

(longitudinal) components. Each component has a peak of 2.7 N (20% of the robot’s weight) on the
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Fig. 5. The effect of the disturbance on the support reaction. 	Fx = Fx − Fd
z , 	Fy = Fy − Fd

y , and 	Fz =
Fz − Fd

z . Controlled (solid curve): change in support reaction with disturbance when the proposed controller is
used. Uncontrolled (dashed curve): change in support reaction with disturbance when no controller is used.

robot’s body at a height of 0.15 m. This force also generates moment about the foot that is on the
ground. So the disturbance vector has the following form,

dext. =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−2.7

(
1 − cos

(
2π(t − 0.45)

0.1

))
/2

−2.7

(
1 − cos

(
2π(t − 0.45)

0.1

))
/2

0

2.7(0.15)

(
1 − cos

(
2π(t − 0.45)

0.1

))
/2

2.7(0.15)

(
1 − cos

(
2π(t − 0.45)

0.1

))
/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0.45 ≤ t ≤ 0.55. (60)

Note that the controller plans joint accelerations to reject the disturbance. Under constant-active
disturbances, the controller keeps accelerating the joints, which may cause the joints to move close to
their physical limits. So, practically, constant-active disturbances cannot be supported. That is why a
part-time disturbance is used.

Figure 5 shows the change in the support force due to the application of the disturbance for the
cases where the controller is used (solid curves), and where the controller is not used (dashed curves).
It can be seen that for both the cases, the changes in the vertical component (Fx) is negligible, because
the disturbance force does not act in this direction. The change in the longitudinal and lateral force
components is significant when the controller is not used, whereas that change is negligible with the
use of the controller.

Figure 6 shows the change in the support moment due to the application of the disturbance for the
cases where the controller is used (solid curves), and where the controller is not used (dashed curves). It
can be seen that for both the cases, the changes in the vertical component (Fx) is negligible, because
the disturbance moment does not act in that direction. The change in the lateral and longitudinal
moment components is significant when the controller is not used, whereas that change is negligible
with the use of the controller.

The longitudinal and the lateral shifts in the ZMP position is compared in Fig. 7. The longitudinal
and lateral positions of the ZMP are calculated by dividing My by Fx , and by dividing Mz by Fx .
Shifts in the longitudinal and lateral ZMP positions are calculated by subtracting the longitudinal and
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Fig. 6. The effect of the disturbance on the support reaction. 	Mx = Mx − Md
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y , and
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z . Controlled (solid curve): change in support reaction with disturbance when the proposed
controller is used. Uncontrolled (dashed curve): change in support reaction with disturbance when no controller
is used.
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Fig. 7. Longitudinal and lateral ZMP shifts. Uncontrolled (dashed curves): ZMP shift with disturbance when no
controller is used. Controlled (solid curves): ZMP shift with disturbance when the proposed controller is used.

lateral ZMP positions of the disturbed (uncontrolled and controlled) cases with that of the “desired”
case (where there is no disturbance). The curves labeled as “uncontrolled” represent how the ZMP
shifts when no controller is used.

It can be seen that the longitudinal and lateral ZMP positions have shifted more than 3 cm due
to the large disturbance. This can easily cause the robot to lose its balance during the walk if the
desired longitudinal ZMP is closer than 3 cm to the edge of the foot. For example, if the size of
the sole is 5 cm and the longitudinal ZMP is originally at the center of the foot (2.5 cm from the
edge of the foot), the robot will loose its balance with the applied disturbance. The curves labeled as
“controlled” represent how the ZMP positions shift when the proposed controller is used. The shift
of the longitudinal ZMP position is less than 1 cm when the disturbance rejection controller is used.
This means that if the original gait planned for the robot has a stable ZMP position, that ZMP position
will be held very closely by the disturbance rejection controller despite the presence of a disturbance.
So the robot’s walk will remain stable even when the disturbance is present. Simulations showed that
using very high controller gains eliminates the small shift shown in Fig. 7 for the controlled case.
However, moderate gains have been used to depict a more realistic scenario, which prevents chatter
in the control input.

Figure 8 shows the change in the required coefficient of static friction to prevent slip. The required
coefficient of friction to prevent slip in the lateral and longitudinal directions are μy = Fy

Fx
and

μz = Fz

Fx
respectively. These values are different when the controller is on or off. The difference of

these coefficients of static friction are plotted in Fig. 8. The second plot in this figure indicates that the
required coefficient of static friction to prevent slip is approximately 0.25 smaller when the controller
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Fig. 9. The trajectory of the arms. (des = desired): desired trajectories of the arms. (ctrl = controlled): trajectories
of the arms with disturbance when the proposed controller is used.

is used. This means that the robot is less likely to slip in the longitudinal and lateral directions when
the controller is on.

The modified trajectory of the arms and the body are compared with the original ones in Fig. 9.
A slight motion of the arms has been used by the controller to reject the disturbance. After the
disturbance is eliminated, the arms return to their desired trajectory.

6. Conclusions
A disturbance rejection controller is proposed in general form based on the 3D dynamics of biped
robots, and applied to an 18-DOF biped humanoid robot. The swing phase of the robot’s walking gait
is considered. An integral sliding mode architecture is chosen for the disturbance rejection, where
the support forces and moments of the support foot are chosen as the outputs and the acceleration
of the arm/body joints is chosen as the inputs. It is assumed that the support reactions are gathered
from force sensors mounted on a “shoe” on the bottom of the robot’s feet. The position, velocity, and
acceleration of the joints are gathered from the servo motors of the robot.

During the disturbance rejection, the arm/body joints deviate slightly from their desired trajectory,
while the leg joints remain at their desired trajectory. This has important implications during tasks
where foot placement or specific leg positions are critical, i.e., the stepping stone problem. Since
the leg joint trajectories are unaffected, the robot will still be able to complete the task, even when
bounded disturbances are experienced. The controller utilizes the full dynamic model of the robot.
This provides an accurate representation of the robot’s gait and its reactions to forces.

The proposed controller can successfully mitigate bounded disturbances to maintain the desired
value of all support reactions. Even the support reactions that are not represented by the ZMP position,
i.e., the longitudinal and lateral support forces and the vertical twist moment, are unchanged during
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the application of the disturbance. This ensures that the robot’s foot does not slip under disturbance,
a feature that is lacking on other disturbance rejection approaches.

In addition, the controller can eliminate the shift in the position of the ZMP. By eliminating the
shift in the ZMP position, the robot does not tip under the disturbance. This paper shows that using a
sliding mode architecture to reject bounded disturbances by only modifying the accelerations of the
selected joints is a successful approach to biped humanoid stable walking.
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Appendix
In Eq. (49), the following has been used.

sT K sign(s) = [
s1 . . . sn

] ⎡
⎢⎣

K11 . . . 0
...

...
...

0 . . . Knn

⎤
⎥⎦

⎡
⎢⎣

sign(s1)
...

sign(sn)

⎤
⎥⎦ ,

= [
s1 . . . sn

] ⎡
⎢⎣

K11 sign(s1)
...

Knn sign(sn)

⎤
⎥⎦ ,

=s1K11 sign(s1) + · · · + snKnn sign(sn),

=K11|s1| + · · · + Knn|sn|,

= [
K11 . . . Knn

] ⎡
⎢⎣

|s1|
...

|sn|

⎤
⎥⎦ ,

=Kv|s|.

Also,

dT
ext.s =dext.1s1 + · · · + dext.nsn,

≤|dext.1 ||s1| + · · · + |dext.n ||sn|,
≤|dT

ext.||s|,
≤DT

ext.|s|,

and

dT
in.s =din.1s1 + · · · + din.nsn,

≤|din.1 ||s1| + · · · + |din.n ||sn|,
≤|dT

in.||s|.
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