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Abstract

Queueing networks are stochastic systems formed by interconnected resources rout-
ing and serving jobs. They induce jump processes with distinctive properties, and find
widespread use in inferential tasks. Here, service rates for jobs and potential bottle-
necks in the routing mechanism must be estimated from a reduced set of observations.
However, this calls for the derivation of complex conditional density representations,
over both the stochastic network trajectories and the rates, which is considered an
intractable problem. Numerical simulation procedures designed for this purpose do not
scale, because of high computational costs; furthermore, variational approaches relying
on approximating measures and full independence assumptions are unsuitable. In this
paper, we offer a probabilistic interpretation of variational methods applied to inference
tasks with queueing networks, and show that approximating measure choices routinely
used with jump processes yield ill-defined optimization problems. Yet we demonstrate
that it is still possible to enable a variational inferential task, by considering a novel
space expansion treatment over an analogous counting process for job transitions. We
present and compare exemplary use cases with practical queueing networks, showing
that our framework offers an efficient and improved alternative where existing variational
or numerically intensive solutions fail.
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1. Introduction

Queueing networks (QNs) are systems of theoretical and practical interest in the design
of computing systems [14], as well as in the optimization of business processes arising in
factories, shops, offices, and hospitals [6, 15, 21]. They are formed by interconnected resources
routing and serving jobs, and their behaviour often gives rise to complex families of stochastic
(jump) processes. In applications, they provide the means to assess modifications, diagnose
performance, and evaluate robustness in multiple service infrastructures.

Formally, a QN is associated with a (Markov) jump process: the piecewise-deterministic
model for job counts stationed at each resource. Here, a resource consists of a service sta-
tion along with a queue, because the processing capabilities of a station are usually limited.
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688 I. PEREZ AND G. CASALE

Whenever a job is serviced, it is routed from its current resource into a new queue, and we say
that the process has jumped. Hence, a jump adds a count unit to one resource by subtracting it
from another, and we say that jumps in QNs are coupled. Finally, the process is parametrized
by the set of intensity rates, which determine the pace of service across job types and the
multiple stations.

Performance evaluation. In applications, the service rates in a QN may be unknown, and
the various bottlenecks in the routing mechanism for jobs (across queues) are hard to antic-
ipate. Consequently, network deployments are periodically monitored to collect performance
measurements, which often include queue lengths, visit counts, or response times. These mea-
surements are a consequence of the stochastic evolution of the underlying Markov model; thus,
they form the quantitative basis for drawing inferences on multiple aspects of the network. This
inferential process is referred to as performance evaluation [8]; it is not limited to estimating
the service rates, but also includes (i) quantifying any uncertainty around estimations and (ii)
identifying queue length distributions under varying networks conditions.

From a probabilistic viewpoint, the primary inferential objectives are to parametrize the
regular conditional probability for stochastic network trajectories or paths, conditioned on the
available performance measurements; and to derive closed-form expressions for the induced
distributions over (i) intensity rates and (ii) queue lengths over time. In this paper, we will
observe that this goal calls for the evaluation of complex intractable integrals, a problem com-
monly encountered within Bayesian statistical settings [1]. In that context, the approach is
generally to deviate from analytical methodology and instead construct numerical represen-
tations of the induced distributions (such as density plots and histograms), using intensive
Markov chain Monte Carlo (MCMC) procedures [22, 27]. However, numerical methods must
sample the trajectories of the underlying stochastic model, conditioned on measurements.
These work well in analogous problems with jump processes observed in mathematical biol-
ogy [12] or genetics [11], but scale poorly to complex multivariate settings common in QNs
[5], which account for coupled jumps, job priorities, service types, and feedback loops. Also,
numerical methods are reliant on sufficient readily available measurements to describe the
likely behaviour of the system. In real-world applications, performance measurements are
scarce [27]; for instance, in large externally managed implementations the monitoring may
only be executed end-to-end [17], i.e., exclusively for the input and output resources where
jobs enter and depart the QN.

Consequently, pragmatic statistical solutions are restricted in scope and often ignore the
temporal component of the Markov process. Instead, they construct varied inferential method-
ologies by relying on the mass representation for the network’s stationary distribution [16],
and the objective is usually only to offer point estimates for the unknown service rates (see
[26] for a review).

1.1. Approximate inferential methods

In order to derive closed-form expressions for the induced conditional distributions over
service rates or network trajectories, we must resort to approximate inferential settings
of significant probabilistic complexity. Here, the idea is to operate under some (suitably
parametrized) approximating measure in the probability space. This approximating mea-
sure should define alternative sample trajectories for the underlying Markov jump model
(for job counts across resources) and should ensure analytical tractability of the various
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integrals that arise in the inferential problem. However, the reader will note that closed-
form formulae derived under some (conveniently defined) approximating measure will not
be necessarily representative of the real induced distributions. An important step under an
approximate inferential set-up is to minimize the dissimilarity (or divergence) between (i) the
proposed approximating measure and (ii) the true regular conditional probability over events,
conditioned on performance metrics (which also defines a measure).

This approximate procedure is a popular technique in Bayesian statistics, and the resulting
closed-form representations are commonly termed variational approximations [4], because
their derivation relies heavily on functional optimization methods from the field of calcu-
lus of variations. The choices made in order to parametrize suitable approximating measures
are key to success; however, the entire process is convoluted, and there exist no guidelines
suited to every kind of stochastic model. The standard choice in the statistical literature
relies on the strongest of all independence assumptions (cf. [7, 18]), describing each marginal
resource (within the multivariate Markov jump model) as a completely independent stochastic
process. The underlying parametrization is commonly referred to as the mean-field approxi-
mating measure, because it draws from the physical mean-field theory, where high-dimensional
stochastic models are studied through approximations of multiple independent models in com-
bination. Overall, the method works well in practice and has been shown to retrieve accurate
conditional density representations in multiple application domains, including predator–prey
models, epidemics, networks, and similar processes [7, 18, 19, 28, 30, 31].

However, an important commonality across all Markov models addressed in prior work is
that jumps in the marginal components take place one at a time. This ensures that the multivari-
ate stochastic process can indeed be approximated by a collection of independent univariate
models. Our intend is to approximate the stochastic dynamics for jobs counts across resources
in a QN, which are subject to coupled jumps; here, the reader may note that it is probabilisti-
cally infeasible to assume full independence, for two independent jump models may not change
state at the same time. Currently, there exists no viable alternative or solution that can facilitate
an approximate inferential set-up tailored to multivariate systems such as QNs.

Key contributions. In this paper, we will formally describe why coupled jumps hinder the
construction of approximating measures as commonly defined in the literature. We will then
prove that it is still possible to efficiently enable the approximate inferential task, by consider-
ing a novel space expansion treatment of the underlying jump process; in a nutshell, we will
do the following:

1. Shift the scope. Traditionally, a QN is formalized as a counting process of jobs queueing
in the resources. We instead address a process of job transition counts across resources.

2. Augment the support space, so that job counts across queues can become negative.

Finally, we present use cases of our proposed procedure for performance evaluation tasks,
applied to example inferential problems where (i) numerical methods do not scale and
(ii) approximate variational procedures are unusable. The results within this paper are rel-
evant for single- or multi-class Markovian systems (with exponential or phase-type service
times), with either finite or infinite processors, and multiple types of service disciplines and
probabilistic routings.

Structure. The rest of the paper is organized as follows. In Section 2 we offer a hierarchical
formulation of a queueing system, along with the problem statement. Section 3 introduces an
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approximating network model and offers a summary of the main results to be presented later in
the paper. Sections 4 and 5 include the main contributions of our work; they discuss the treat-
ment of the network system by means of interactions in network resources, and they further
present the results, proofs, and technical details that contribute to later algorithmic construc-
tions. In Section 6, we guide the reader through applications of our results within inferential
and network evaluation tasks, and in Section 7 we conclude the paper with a discussion.

2. Queueing systems and jump processes

In the following, we employ shorthand notation for densities, base measures, and distribu-
tions whenever these are clear from the context. From here on, let (�,F ) denote a measurable
space with the regular conditional probability property, supporting the various rates, trajecto-
ries, and observations. A general-form QN comprises some M ∈N service stations along with
a set of job classes C. The stations are connected by a network topology that governs the under-
lying routing mechanisms; when a job has been serviced in one station, it can either queue for
service at a different station or depart the network. Such a topology is often defined as a set
of routing probability matrices {Pc}c∈C , with elements pc

i,j, for all 0≤ i, j≤M, that denote the
probability that a job in class c ∈ C will immediately transit to queueing station j after service
completion in station i. In open queueing systems, the index 0 is used as a virtual external
source (and destination) of job arrivals to (and departures from) the network. In closed sys-
tems, this index may either not exist, or instead refer to a delay server that routes departing
jobs back into the network. Also, it holds that

∑M
j=0 pc

i,j = 1, for all 0≤ i≤M, c ∈ C.
We address time-homogeneous Markovian systems that are parametrized by exponential

inter-arrival and service times, with non-negative rates μ= {μc
i ∈R+:0≤ i≤M, c ∈ C}, which

may vary across service stations and job classes. The servers in the network stations may have
finite or infinite processors, and service disciplines can vary across a range of processor shar-
ing (PS) policies, including first-come first-served (FCFS) and variations such as last-come
first-served (LCFS) or service in random order (SIRO). In some cases, FCFS processors may
require shared processing times across the various job classes (cf. [3]). For simplicity and
ease of notation, class switching, service priorities, and queue-length-dependent service rates
are not discussed in detail; however, these follow naturally, and we later present some exam-
ples involving them. Under standard exponential service assumptions, the underlying system
behaviour is described by a Markov jump process X= (Xt)t≥0 with values defined in a measur-
able space (S,P(S)). Here, S denotes a countable set of feasible states in the network, usually
infinite in open or mixed systems and finite in closed ones; P(S) denotes the power set of
S. We allow for S to support vectors of integers that represent job counts across the various
class types and service stations, and denote by Xi,c

t the number of class-c jobs in station i > 0
at time t≥ 0. Note that here we ignore the queue lengths in the external delay (i= 0) within
closed systems, since these are uniquely determined given the number of jobs in the remaining
stations. The infinitesimal generator matrix Q of X is such that

P(Xt+dt = x′|Xt = x)= I(x= x′)+Qx,x′dt+ o(dt)

for all x, x′ ∈ S. This can be an infinite matrix; it is generally sparse, and its entries describe
rates for transitions across states in S. Rows in Q must sum to 0 so that Qx,x′ ≥ 0 for all x �= x′,
and Qx :=Qx,x =−∑x′∈S :x�=x′ Qx,x′ .

Hence, jumps in the process X are caused by jobs being routed through stations in the
underlying network model. We often say that a state x′ ∈ S is accessible from x ∈ S, and write
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FIGURE 1: Left: open bottleneck network with three service stations. Shaded circles indicate servers;
empty rectangles indicate queueing areas. The box is a probabilistic junction for the routing of arrivals.
Right: job transition intensities across network stations.

x
i,j,c−−→ x′ for its corresponding jump, if x′ may be reached from x by means of a class-c job

transition between the stations i and j, in the direction i→ j. We further denote by

T = {(i, j, c)∈ {0, . . . , M}2 × C:pc
i,j > 0} (1)

the finite set of all feasible job transitions in the system, and we remark that the generator
Q of X is populated by some positive real-valued rates λ= {λη ∈R+ : η ∈ T } that define the
intensities for these job routings, with λi,j,c=μc

i · pc
i,j for all (i, j, c) ∈ T .

Example 1. In Figure 1 we observe diagrams that illustrate this notation in an open single-
class network. On the left, we see three stations with different rates, disciplines, and server
counts. The topology P is such that |T | = 5 and p0,1= 1− p0,2 ∈ (0, 1), p1,3 = p2,3 = p3,0= 1
(pi,j = 0 otherwise). On the right, we find the corresponding job transition rates across the four
pairs of connected stations. Now, let ∨ and ∧ constitute short-hand notation for maxima and
minima, respectively. In this single-class example, X monitors counts across the stations, so
that Xt = (X1

t , X2
t , X3

t ) ∈ S for all t≥ 0; also, the generator Q is an infinite matrix with Qx,x′ =
λi,j · (Ki ∧ xi) for all pairs x, x′ ∈ S with associated transition x

i,j−→ x′, where Ki, xi ∈N0 denote
the number of processors and the queue length within station i≥ 0. We finally have K1 =
1, K2 =∞, and K3 = 2; at the virtual source, we always have K0 ∧ x0 = 1. Thus, note that
transition rates in X further depend on the queue lengths and resemble kinetic laws within
chemical reaction models [11].

2.1. A hierarchical formulation of queueing systems

Within a hierarchical multilevel formulation, rates in λ have a distribution (or image)
Pλ ≡ λ∗P under a reference measure P on (�,F ). We assume this to admit a density fλ with
respect to a base measure that will further induce (by properties of exponential transitions)
distributions over the service rates μ and routing topology. Next, note that a network trajectory
over a finite interval is a piecewise deterministic jump process, such that X ≡ (t, x) is repre-
sented by a sequence of transition times t along with states x. Each pair (t, x) is furthermore a
random variable on a measurable space (X , �X ) supporting finite S-valued trajectories, and a
conditional density fX|λ may be defined with respect to a dominating base measure μX , such
that the regular conditional probability P(A|λ), A ∈F , satisfies

P(X−1(B)|λ)=
∫

B
fX|λ(t, x) μX (dt, dx)
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FIGURE 2: Closed QN with a single FCFS service station and a delay.

for all B ∈�X (see Appendix A for details). In this case,

fX|λ(t, x)= π(x0) eQxI (T−tI )
I∏

i=1

Qxi−1,xi eQxi−1 (ti−ti−1) (2)

for every pair of ordered times t= {0, t1, . . . , tI} in [0, T] and states x= {x0, . . . , xI}. Here,
π( · ) denotes an arbitrary distribution over initial states, and Q≡Q(λ) is the matrix of infinites-
imal rates associated with fixed values in λ. The QN model is thus fully parametrized by
a collection of hyperparameters. Analogous modelling choices for continuous-time Markov
chains or Markov jump processes can be found in [2, 13] or [32], to name a few.

2.2. Network evaluation and problem statement

Let T > 0 denote some arbitrary terminal time and x0 ∈ S an initial state in X. For simplicity,
this is assumed to be a 0-valued vector, where no jobs populate the system. Now, let 0≤ t1 <

· · ·< tK ≤ T denote some fixed network monitoring times along with observation variables
{Ok ∈O, k= 1, . . . , K}, for some arbitrary support set O, such that

P

(
K⋂

k=1

O−1
k (ok)

∣∣X
)
=

K∏
k=1

P(O−1
k (ok)|X)=

K∏
k=1

fO|Xtk
(ok) (3)

for any sequence of elements o1, . . . , oK , where ok denotes the time-tk network observation
across all stations. Hence, observations are conditionally mutually independent given the net-
work states. The term fO|Xtk

stands for a conditional mass function assigned to measurements
across the M stations, defined with respect to a counting measure μO. In this paper it is
assumed that fO|x > 0 (everywhere) for all x ∈ S; however, deterministic observations such
as queue lengths can be easily approximated by means of regularized indicator functions.
Extensions to continuous settings are straightforward.

Example 2. Consider a vanilla closed network as pictured in Figure 2. It includes a single
FCFS service station, K = 1 processing unit, and a delay routing a population of N jobs in a
closed loop. The evolution of X= (Xt)t≥0 monitors the total number of jobs within the ser-
vice station, with X0 = 0. Variables Ok = (O0,k, O1,k) at times tk approximate a system with
deterministic observations of queue lengths (in both station and delay) and are supported on
O= {0, . . . , N}2. The observation model may thus factor across the network components, so
that, for example, fO|x(o)= f̃O|N−x(o0) · f̃O|x(o1) with f̃O|x(o)= ε

N + I(o= x) · (1− N+1
N ε), and
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P(O−1
k (o)|X)=

⎧⎪⎪⎨
⎪⎪⎩

(1− ε)2, o0 =N − Xtk, o1 = Xtk ,

(ε/N)2, o0 �= N − Xtk , o1 �= Xtk ,

(1− ε) · ε/N otherwise,

(4)

for a slack regularizing parameter ε > 0 and all k= 1, . . . , K. This will account for some
ε · 100% faulty measurements. Finally, note that the framework can be generalized to accom-
modate different observation types. For simplicity of presentation, in this paper we focus on
queue lengths.

Now, let P(A|o1, . . . , oK), A ∈F , (o1, . . . , oK)∈OK , denote the regular conditional proba-
bility across global events, conditioned on observations. Our primary interest lies in its induced
distribution over the intensity rates (which we denote by Pλ|o1,...,oK ) and trajectories. Within
(Bayesian) inferential settings, these induced distributions are referred to as posteriors. For
simplicity, we will restrict the problem statement to intensity rate posteriors; however, the
reader will note that an analogous presentation is easily deduced for network trajectories. The
posterior distribution exists and admits a density carried by its corresponding prior Pλ (see
Appendix A); moreover, the transformation is proportional to a weighted product of network
paths, and is defined by the Radon–Nikodym derivative

dPλ|o1,...,oK

dPλ
=
∫
X
[∏K

k=1 P(O−1
k (ok)|t, x)

]
fX|λ(t, x) μX (dt, dx)

P(O−1
1 (o1)∩ · · · ∩O−1

K (oK))
, (5)

which corresponds to Bayes’ equation. There, the denominator denotes a normalizing constant
that integrates over trajectories and rates. This transformation will often induce a density rep-
resentation fλ|o1,...,oK for the posterior distribution with respect to a suitable (Lebesgue) base.
In these cases, we may think of the above derivative as a likelihood ratio. However, this ratio
poses a tractability problem; that is, the integral over trajectories cannot be computed analyt-
ically and must be approximated. This is a common problem in inferential tasks with jump
processes (cf. [12, 24, 23]), and proposed solutions often rely on intensive MCMC procedures
that iterate between trajectories and parameters, including direct sampling, rejection sampling,
and uniformization-based methods. Yet algorithms may be hard to implement, computationally
demanding, or applicable only to reduced classes of problems. In the case of QNs, strong tem-
poral dependencies in the stochastic trajectories X impose hard coupling properties amongst
rates and paths [27], which limits the applicability of state-of-the-art numerical solutions to the
simplest types of network evaluation problems [22].

Alternatively, the complex integrals in (5) may be approximated through a variational
approach, where we suitably parametrize an alternative approximating measure to P that will
decompose the integrand into multiple independent and analytically tractable parts. However,
as yet there exists no approximating measure design to achieve this goal, in light of the
complexity of jump processes induced by networks of queues. In the following, we present
theoretical results leading to a new variational inferential design for use with jump pro-
cesses, which significantly deviates from and overcomes multiple limitations found in standard
methods that resort to full-independence assumptions [18, 19, 7, 28, 30, 31].

3. Overview of results

Note that under the natural measure P tied to the infinitesimal generator Q, an underlying
Markov jump process X as introduced in Section 2 is supported in a set S of feasible vectors
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of integers, which is often just S =N
|C|×M
0 . Further recall that T in (1) corresponds to possible

transition routes in the queueing system, that is, triplets (i, j, c) ∈ {0, . . . , M} such that a class-
c job currently in station i has a non-negative probability pc

i,j > 0 of transitioning to station j,
under the measure P.

Space expansion. Assume the existence of an approximating measure P̃ on an augmented
space of network paths X̃ , such that we further assign a mass to states with negative queue
lengths. Under P̃, rates for transitions across states are induced by a generator Q̃= Q̃(δ, λ)
with

Q̃x,x′ = δ+Qx,x′ , δ > 0, (6)

whenever x
i,j,c−−→ x′ and (i, j, c) ∈ T ; that is, whenever a transition from state x to state x′ is such

that

• a class-c job is serviced at station i and routed to j, and

• pc
i,j > 0 within the original probabilistic routing topology under P.

In any other case, it holds that Q̃x,x′ =Qx,x′ = 0. Note that the original connectivity structure

of the QN is preserved under P̃; however, as described below, jobs may be serviced within
queueing stations even if they do not exist:

• Following (6), intensities for job transitions between stations i and j are strictly positive
whenever pc

i,j > 0. If no class-c job exists within station i, then this intensity corresponds
to δ > 0.

• In the event of a time-t class-c job departure from station i when lims→t Xi,c
s ≤ 0 (the job

does not exist), we assume this job to be virtually generated, and

Xi,c
t = lim

s→t
Xi,c

s − 1,

i.e., a unit is subtracted from the state vector at the corresponding index.

• This preserves the global job population count and forces network states to accommodate
negative queue lengths.

For values of δ small enough, the P̃-density assigned to trajectories outside of X is negligible.
Note that a density f̃ in (2) with generator Q̃ in (6) is such that, for any network path (t, x) ∈
X̃ \X ,

f̃X|λ(t, x)≤
I∏

i=1

Q̃xi−1,xi =O(δr) as δ→ 0

for some r ∈ {1, . . . , I}. Thus, X∗P̃(X )= 1− ∫X̃\X f̃X|λdμ̃X
δ→0−−→ 1, where μ̃ denotes an

appropriately augmented base measure, and the limiting system dynamics under P̃ will offer
a perfect approximation to the original network model. The rest of the paper proceeds as
follows:

• In Section 4, we present a counting process Y over job transitions in the augmented
network with generator Q̃ in (6), and parametrize an alternative absolutely continuous
approximating measure Q. In Lemma 1, we derive a lower bound to the equivalent log-
likelihood for the network measurements.
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• Propositions 1 and 2 within Section 5 inspect the structure of Q that best approximates
the target regular conditional probability. Corollaries 1 and 2 focus on the rate density
dPλ|o1,...,oK by looking at conjugacy properties and limiting behaviour as δ→ 0.

• Finally, Section 6 describes applications of our results within inferential tasks, allowing
the approximation of (image) measures across the various service rates μ, routing prob-
abilities in P , and trajectories X, conditioned on network measurements. This includes
comparisons with existing alternative methods.

4. A counting process over job transitions

A network system as introduced in Section 2 gives rise to a multivariate Markov counting
process Y = (Yt)t≥0 on (�,F ), where each indexed Yt = (Yη

t )η∈T ∈ SY accounts for job transi-
tions across all classes in T , up to a time t≥ 0. That is, each Yη

t denotes the cumulative count in

Y of transitions x
η−→ x′ in X, with x, x′ ∈ S, and Yη

0 = 0 for all η ∈ T . At a basic level, these are
simply non-decreasing counting processes for job transitions in the directions defined within
T . We further note that |T | is often small, as underlying network topologies impose strict rout-
ing mechanisms. The support set SY for the counting process is determined by the connectivity
structure amongst the stations. Under the approximating measure P̃, it holds that SY =N

|T |
0 ,

since job transitions may occur even if origin stations have no jobs queueing. Now, let

T ←i,c = {η ∈ T :η2 = i, η3 = c} and T →i,c = {η ∈ T :η1 = i, η3 = c}
respectively denote the subsets of T that include transitions of jobs in class c ∈ C to and from
the network station i ∈ {0, . . . , M}. Also, recall that Xi,c

t denotes the number of class-c jobs in
station i > 0 at time t≥ 0; then

Xi,c
t =

∑
η∈T ←i,c

Yη
t −

∑
η∈T →i,c

Yη
t (7)

for all t≥ 0, assuming initially empty networked systems. We note that for all η= (i, j, c)∈ T ,
it holds that η ∈ T ←j and η ∈ T →i . Thus, paths in X and Y differ in that the former is coupled,
i.e., a job transition in the direction η= (i, j, c) is relevant to (and thus is synchronized across)
a pair of marginal processes (Xi,c

t )t≥0, (Xj,c
t )t≥0; in the latter, this is only relevant to the indexed

process (Yη
t )t≥0.

In view of (7), we further define xi,c =∑η∈T ←i,c yη −∑η∈T →i,c yη as the class-c queue length

in station i > 0 for any y ∈ SY . Then the P̃-associated infinitesimal generator matrix 	 of Y is
such that 	y,y′ ≡	y,η = δ+ λη ·

[
ϒ(y, η1, η3)∨ 0

]
with a station load

ϒ(y, i, c)= xi,c ·
(

Ki∑
c′∈C xi,c′

∧ 1

)
(8)

for all jumps y
η−→ y′, η= (i, j, c), where the origin station i > 0 has PS discipline (here we have

set 0/0= 0), and

ϒ(y, i, c)=Ki ∧ xi,c (9)

in stations i > 0 with an FCFS policy within single-class networks. The station load ϒ(y, i, c)
differs from the queue length xi,c in that it accounts for the weighting derived from the service
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discipline. We further have 	y,y′ = δ+ λ0,j,c for arrivals from virtual stations (in open net-

works) and 	y,y′ = δ+ λ0,j,c · (N +∑η∈T←0,c
yη −∑η∈T →0,c

yη) for arrivals from delays, where

N denotes the job population in a closed system. Finally, 	y :=	y,y =−∑y′∈SY :y�=y′ 	y,y′ .

4.1. A variational decomposition

The likelihood for observation events in (3) readily transfers to counts Y by means of (7);
we thus may write fO|Ytk

(ok)≡ fO|Xtk
(ok). Under the measure P̃, network states can have nega-

tive values; the likelihood is undefined in such instances. Now, note that piecewise SY -valued
trajectories also represent elements (t, y) in a space (Y, �Y ), similar to network paths in X.
Let fY|λ,o1,...,oK be a density function, with respect to some base measure μY , where for all
B ∈�Y ,

P(Y−1(B)|λ, o1, . . . , oK)=
∫

B
fY|λ,o1,...,oK dμY .

It may be shown by properties of conditional distributions that, conditioned on observations, Y
is a non-homogeneous semi-Markov process with hazard functions

�y,y′(t)=	y,y′ ·
P(
⋂

k:tk>t O−1
k (ok)|Yt = y′)

P(
⋂

k:tk>t O−1
k (ok)|Yt = y)

(10)

for y′ �= y, and �y(t)=−∑y′ �=y �y,y′(t), so that

fY|λ,o1,...,oK (t, y)= π(y0) e
∫ T

tI
�yI (u)du

I∏
i=1

�yi−1,yi(ti) e
∫ ti

ti−1
�yi−1 (u)du

.

Here, 	≡	(δ, λ) denotes the generator matrix associated with fixed values in λ. For a deeper
look at conditional jump processes we refer the reader to [25, 9]. This conditional counting
process is of key importance; however, the structure of rates in (10) poses a trivial analytical
impediment. In our approximating effort, we assume the existence of an alternative measure Q
on (�,F ). Under this measure, count trajectories in Y are subject to a full decomposition; that
is, the Q-law of Y is that of a family of |T | independent non-homogeneous Poisson counting
processes with state-dependent intensity functions νη = (νη

t ( · ))t≥0, for all η ∈ T . Here, the
following hold:

• Intensity rates for jumps y
t,η−→ y′, t≥ 0, are independent of λ, change over time, and are

given by ν
η
t (yη).

• Holding rates in Y evolve according to |νt(Yt)|, with νt(Yt)=−∑η∈T ν
η
t (Yη

t ).

• The state probability of the multivariate process Y factors across the job transition
directions, so that

Q(Yt = y)=
∏
η∈T

Q(Yη
t = yη)

for every y ∈ SY .

Similar full-independence decompositions are often referred to as a variational mean-field
approximations within Bayesian inferential settings [7]. In order to ensure computational
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FIGURE 3: Overview of the approximating variational framework presented in this paper, summarizing
the various measures used and the primary goals that each step will accomplish.

tractability within forthcoming procedures, the intensity functions ν must be bounded from
above by some arbitrary constant, so that ν

η
t (yη)≤ ν̄ for all t > 0, η ∈ T , and y ∈ SY . We

finally note that Q and P̃ are equivalent on F , as both assign a positive measure to every
marginally-increasing sequence of N|T |0 -valued counts.

4.2. Recapitulation and the variational lower bound

It is important to observe that the intensity functions νη completely define our alternative
measure. In the rest of the paper, we inspect how to fine-tune these functions to ensure that Q
offers a good approximation to the measure P, conditioned on observations in O. First, within
the diagram in Figure 3 we offer an outline of the various measures, stochastic processes,
probabilistic dependencies, and infinitesimal generators introduced up to this point. There, we
also summarize the primary steps that help construct a variational framework to enable the
inferential task. In short, these are as follows:

• The reference measure P, along with the generator Q=Q(λ), describes the real unknown
stochastic network trajectories in X.

• P̃ is a minor departure from P and expands the support of X so that queue lengths can
become negative. It is associated with the generators Q̃= Q̃(δ, λ) and 	=	(δ, λ), for
trajectories in X and job transition counts in Y, respectively.

• Q is an alternative measure under which Y is a set of independent non-homogeneous
counting processes. It is associated with intensity functions νη = (νη

t ( · ))t≥0 for each
count process in the directions η ∈ T .

In our next result, a variational lower bound will interrelate the transition rates λ for
jumps under P and P̃ with the intensity functions νη, in light of the available observa-
tions/measurements in O. From now on, transition rates λ are assumed mutually independent
under Q and admit undetermined densities dQλ = {dQλ,η, η ∈ T } that must integrate to 1 on
(R+, B(R+)).
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Lemma 1. (Variational lower bound.) Define O=⋂K
k=1 O−1

k (ok), and let P̃ and Q be the prob-

ability measures on (�,F ) as defined above. Recall the notation 	y,y′ ≡	y,η for jumps y
η−→ y′

with direction η. Then

log P̃(O)≥
K∑

k=1

E
Q
Ytk

[
log fO|Ytk

(ok)
]−E

Q
λ

[
log

dQλ

dPλ

]

−
∫ T

0
E
Q
Yt,λ

[∑
η∈T

ν
η
t (Yη

t ) log
ν

η
t (Yη

t )

	Yt,η
−	Yt + νt(Yt)

]
dt (11)

offers a lower bound on the P̃-probability of retrieved observation events.

Proof. Note that

log P̃(O)= log
∫
Y×R|T |+

P(O|Y) d(Y, λ)∗P̃= logEQ
Y,λ

[
P(O|Y)

d(Y, λ)∗P̃
d(Y, λ)∗Q

]

≥E
Q
Y

[
log P(O|Y)

]−E
Q
Y,λ

[
log

d(Y, λ)∗Q
d(Y, λ)∗P̃

]
, (12)

where we use Jensen’s inequality for finite measures. This is known as a variational lower
bound on the log-likelihood, and

E
Q
Y

[
log P(O|Y)

]=E
Q
Y

[
log

K∏
k=1

fO|Ytk
(ok)

]= K∑
k=1

E
Q
Ytk

[
log fO|Ytk

(ok)
]

follows directly from (3). The negative part in (12) is the Kullback–Leibler (KL) divergence
between image measures of Q and P̃. By noting that these share base measures, and Y, λ are
independent under Q, we have

E
Q
Y,λ

[
log

d(Y, λ)∗Q
d(Y, λ)∗P̃

]
=E

Q
λ

[
log

dQλ

dPλ

]
+ E

Q
λ

[
E
Q
Y

[
log

gY

fY|λ

]]
, (13)

where gY and fY|λ denote the Y-trajectory densities associated with rates νη and 	(λ), respec-
tively. The last term in (13) is a Q-average of the KL divergence on Y, where the mean is taken
across the infinitesimal transition rates. For a fixed starting Y0 ∈ SY , the inner expectation is
shown in [18] to take the equivalent form

E
Q
Y

[
log

gY

fY|λ

]
= lim

R→∞

R−1∑
r=0

E
Q
Y Tr

R

[ ∑
y∈SY

Q(Y T(r+1)
R
= y|Y Tr

R
) log

Q(Y T(r+1)
R
= y|Y Tr

R
)

P̃(Y T(r+1)
R
= y|Y Tr

R
, λ)

]
.

Note that within an infinitesimal time interval a jump in Y may only happen in one direc-
tion within T . With this in mind, we retrieve the limit of a Riemann sum in the interval
[0, T], i.e.

E
Q
Y

[
log

gY

fY|λ

]
= lim

R→∞
T

R

R−1∑
r=0

E
Q
Y Tr

R

[∑
η∈T

ν
η
Tr
R

(Yη
Tr
R

) log
ν

η
Tr
R

(Yη
Tr
R

)

	Y Tr
R

,η
+ R

T
log

1+ T
Rν Tr

R
(Y Tr

R
)

1+ T
R	Y Tr

R

]

=
∫ T

0
E
Q
Yt

[∑
η∈T

ν
η
t (Yη

t ) log
ν

η
t (Yη

t )

	Yt,η
−	Yt + νt(Yt)

]
dt,
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and

E
Q
Y,λ

[
log

d(Y, λ)∗Q
d(Y, λ)∗P̃

]
= E

Q
λ

[
log

dQλ

dPλ

]

+
∫ T

0
E
Q
Yt,λ

[∑
η∈T

ν
η
t (Yη

t ) log
ν

η
t (Yη

t )

	̃Yt,η

− 	̃Yt + νt(Yt)

]
dt

completes the proof. �
Thus, the lower bound in (11) depends on both the latent variables Y and λ, accounting

for the various counts and rates. On a basic level, this is built from three distinct compo-
nents: the expected log-observations, the KL divergence across service rate densities, and a
Q-weighted divergence across hazard functions and rates, further integrated along the entire
network trajectory.

5. A functional representation

The above bound includes the prior rates density dPλ along with the P̃-generator 	 for the
network with negative queues. In addition, we find the unknown Q-distribution for the count
random variables Yt, along with the hazard functions ν. Hence, by maximizing this bound with
respect to ν, we may derive properties on Q that allow for the construction of approximating
distributions to dPX|o1,...,oK and dPλ|o1,...,oK . In this section, we begin by generalizing work
in [18] and present results that (i) accommodate parameter uncertainty in transition rates and
(ii) impose computational restrictions in the resulting iterative system of equations. Later, we
move on to inspect posterior rate densities and conjugacy properties as δ→ 0.

Proposition 1. Let dQλ be some valid joint density assigned to the instantaneous rates λ

under the approximating variational measure Q. Also, define Y\ηt = {Yη
′

t : η′ ∈ T \{η}}. Then
the Q-dynamics of Y that optimize the lower bound (11) may be parametrized by a system of
equations, so that the intensity functions ν

η
t (y)≤ ν̄ are given by

ν
η
t (y)= rη

t (y+ 1)

rη
t (y)

e
E
Q

Y
\η
t ,λ

[
log 	Yt,η |Yη

t =y
]
−kη

t (y)/Q(Yη
t =y)

(14)

for all t ∈ [0, T], η ∈ T , and y ∈N0, with κ
η
t (y)≥ 0 and

drη
t (y)

dt
= rη

t (y)EQ

Y\ηt ,λ

[
	Yt,η|Yη

t = y
]

−
(

1+ kη
t (y)

Q(Yη
t = y)

)
rη

t (y+ 1)
e
E
Q

Y
\η
t ,λ

[
log 	Yt ,η |Yη

t =y
]

ekη
t (y)/Q(Yη

t =y)
(15)

whenever t �= tk, k= 1, . . . , K, and

lim
t→t−k

rη
t (y)= rη

tk (y) exp

(
E
Q

Y\ηtk

[
log fO|Ytk

(ok)|Yη
tk = y

])
(16)

at network observation times. In addition, κ
η
t (y)(νη

t (y)− ν̄)= 0.
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Proof. We identify a stationary point to the Lagrangian associated with this constrained
optimization problem, where optimization is with respect to the jump rates and the finite-
dimensional distributions of Y, subject to ν

η
t (y)≤ ν̄ and the master equation

dQ(Yη
t = y)

dt
= ν

η
t (y− 1) ·Q(Yη

t = y− 1)− ν
η
t (y) ·Q(Yη

t = y) (17)

for y≥ 1, with dQ(Yη
t = 0)=−ν

η
t (0)Q(Yη

t = 0)dt. Denote by φ
η
t (y)=Q(Yη

t = y) the func-
tional representing the marginalQ-probability of the state Yt in the direction of η, for all y ∈N0.
In view of (11), the object function may be expressed as the functional

�[φ, ν, l]= C+
K∑

k=1

E
Q
Ytk

[
log fO|Ytk

(ok)
]

−
∫ T

0

∑
η∈T

E
Q

Yη
t

[
�[Yη

t , φ
η
t (Yη

t ), ν
η
t (Yη

t ), lηt (Yη
t )]
]
dt

with

�[Yη
t , φ

η
t (Yη

t ), ν
η
t (Yη

t ), lηt (Yη
t )]= ν

η
t (Yη

t )
(

log ν
η
t (Yη

t )−E
Q

Y\ηt ,λ

[
log 	Yt,η|Yη

t
]− 1

)

+E
Q

Y\ηt ,λ

[
	Yt,η|Yη

t
]− lηt (Yη

t )
(
ν

η
t (Yη

t )+ d log φ
η
t (Yη

t )

dt

)

+ lηt (Yη
t + 1)νη

t (Yη
t )− kη

t (Yη
t )

φ
η
t (Yη

t )

(
ν̄ − ν

η
t (Yη

t )
)
,

where lη = (lηt ( · ))t≥0 and kη = (kη
t ( · ))t≥0 are multiplier functions that ensure that (17) and

the complementary inequality on rates are satisfied. Above, the term C includes the remainder
terms in the lower bound in (11) that are independent of the finite-dimensional distributions of
Y under Q. Hence, we obtain the functional derivatives

δ�

δφ
η
t (y)
=

K∑
k=1

δ(t− tk) EQ

Y\ηt

[
log fO|Yt (ok)|Yη

t = y
]−E

Q

Y\ηt ,λ

[
	Yt,η|Yη

t = y
]− dlηt (y)

dt

− ν
η
t (y)

(
log ν

η
t (y)−E

Q

Y\ηt ,λ

[
log 	Yt,η|Yη

t = y
]− 1− lηt (y)+ lηt (y+ 1)

)
and

δ�

δν
η
t (y)
=−φ

η
t (y)

(
log ν

η
t (y)−E

Q

Y\ηt ,λ

[
log 	Yt,η|Yη

t = y
]+ lηt (y+ 1)− lηt (y)

)− kη
t (y) ,

for all t ∈ [0, T], η ∈ T , and y ∈N0, to be complemented by the slackness conditions
κ

η
t (y)(νη

t (y)− ν̄)= 0, κ
η
t (y)≥ 0, and ν

η
t (y)≤ ν̄. By letting lηt (y)=− log rη

t (y) and setting the
above expressions to 0, we obtain

drη
t (y)

dt
= rη

t (y) ·
(
E
Q

Y\ηt ,λ

[
	Yt,η|Yη

t = y
]− K∑

k=1

δ(t− tk) EQ

Y\ηt

[
log fO|Yt (ok)|Yη

t = y
])

−
(

1+ kη
t (y)

φ
η
t (y)

)
· rη

t (y+ 1) · e
E
Q

Y
\η
t ,λ

[
log 	Yt,η |Yη

t =y
]
−kη

t (y)/φη
t (y)
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and

ν
η
t (y)= rη

t (y+ 1)

rη
t (y)

· e
E
Q

Y
\η
t ,λ

[
log 	Yt ,η|Yη

t =y
]
−kη

t (y)/φη
t (y)

.

Observe above that, for fixed values of φ and r, if

rη
t (y+ 1)

rη
t (y)

· e
E
Q

Y
\η
t ,λ

[
log 	Yt ,η |Yη

t =y
]
< ν̄,

then the complementary slackness conditions imply kη
t (y)= 0; otherwise, ν

η
t (y)= ν̄ and

kη
t (y)= φ

η
t (y) · [EQ

Y\ηt ,λ

[
log 	Yt,η|Yη

t = y
]− log

ν̄ · rη
t (y)

rη
t (y+ 1)

]≥ 0,

yielding a valid system of equations, which leads to (14)–(16) and concludes the proof. �
Corollary 1. (Distributed network monitoring.) Assume that network observations are dis-
tributed and independent across the stations, so that

fO|Ytk
(ok)=

M∏
i=1

fO|{Yη
tk

: η∈Ti}(o
i
k)

for some conditional mass function
fO|{Yη

tk
: η∈Ti},

where Ti = (∪c∈C T ←i,c ) ∪ (∪c∈C T →i,c ) is the set of job transitions relevant to network activity

in station i > 0, and oi
k denotes the time-tk observations across classes in the station. Further

assume that ν̄ =∞, so that there exists no bound on intensity rates ν
η
t (y) under Q. Then the

system of equations in Proposition 1 reduces to

ν
η
t (y)= rη

t (y+ 1)

rη
t (y)

e
E
Q

Y
\η
t ,λ

[
log 	Yt ,η|Yη

t =y
]

for all t ∈ [0, T], η ∈ T , and y ∈N0, with

drη
t (y)

dt
= rη

t (y)EQ

Y\ηt ,λ

[
	Yt,η|Yη

t = y
]− rη

t (y+ 1)e
E
Q

Y
\η
t ,λ

[
log 	Yt,η |Yη

t =y
]

whenever t �= tk, k= 1, . . . , K, and

lim
t→t−k

rη
t (y)= rη

tk (y)e
E
Q

Y
\η
t

[
log f

O|{Yη
′

t : η
′∈Tη1 }

(o
η1
k )|Yη

t =y
]

· e
E
Q

Y
\η
t

[
log f

O|{Yη
′

t : η
′∈Tη2 }

(o
η2
k )|Yη

t =y
]

accounting for observations at origin and departure stations in η ∈ T .

In Proposition 1, we derived a system of equations with iterated dependencies, given a
distribution Qλ for the service rates. These equations can reconstruct the hazard rates ν =
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νη = (νη
t ( · ))t≥0 (for each counting process) that best approximate the trajectories of Y under P̃,

given the observations O. Probabilities over the states of Y may ultimately be derived by means
of the master equation (17). In Corollary 1, we further notice that by simplifying the network
observation model and easing restrictions on rates under the approximating measure Q, we
retrieve a result analogous to that previously presented in [18, 7]. However, this is reportedly
problematic and can cause a computational bottleneck when reconstructing the jump rates
ν

η
t (y), as these may approach infinity at observation times. When presenting our experimental

results at the end of the paper, we will rely on the formulae within Proposition 1.
Next, we wish to determine the optimal form for Qλ, given a family of hazard rates ν, such

that we best approximate the conditional densities dPλ|o1,...,oK .

Proposition 2. Let densities for the infinitesimal rates λ be defined with respect to the
(Lebesgue) product base measure μλ, so that dQλ = gλdμλ with gλ =∏η∈T gη

λ and marginal

densities gη
λ = dQλ,η/dμλ. Also, let ν

η
t (y), η ∈ T , be some (independent) intensity functions

assigned to Y under the approximating variational measure Q. Finally, define λ\η = {λη
′ : η′ ∈

T \{η}} and recall the definitions for network station loads ϒ in (8) and (9). Then, as δ→ 0 in
(6), the distribution Qλ that optimizes the lower bound (11) is such that

gη
λ(z)∝ e

E
Q
λ\η [ log fλ(z)]−z·∫ T

0 E
Q
Yt

[ϒ (Yt,η1,η3)∨0]dt · z
∫ T

0 E
Q

Y
η
t

[νη
t (Yη

t )]dt

up to a normalizing constant, for z ∈R+ and every η ∈ T .

Proof. We again identify a stationary point to the Lagrangian associated with a constrained
optimization problem, with respect to arbitrary (positive) densities gη

λ with
∫
R+ gη

λdμλ = 1.
Since Pλ and Qλ share base measures, the object function can be written as

�[g]=C−
∑
η∈T

E
Q
λη

[
�[λη, gη

λ]
]−∑

η∈T
lη
[ ∫

R+
gη
λdμλ − 1

]
,

where {lη}η∈T are non-functional Lagrange multipliers, and

�[λη, gη
λ]= log gη

λ −
1

|T |E
Q
λ\η [ log fλ]+

∫ T

0
E
Q
Yt

[
ν

η
t (Yη

t ) log
ν

η
t (Yη

t )

	Yt,η
+	Yt,η − ν

η
t (Yt)

]
dt.

The term C includes the remainder terms in the lower bound in (11) that are independent of
the rates λ. It follows that

δ�

δgη
λ

= E
Q
λ\η [ log fλ]− log (gη

λ)− 1− lη

−
∫ T

0
E
Q
Yt

[
ν

η
t (Yη

t ) log
ν

η
t (Yη

t )

	Yt,η
+	Yt,η − ν

η
t (Yt)

]
dt

in its support set R+, for all η ∈ T . By equating the above to 0, considering constraints, and
analysing the relevant terms up to proportionality, we find that

gη
λ ∝ exp

(
E
Q
λ\η [ log fλ]+

∫ T

0
E
Q
Yt

[
ν

η
t (Yη

t ) log 	Yt,η −	Yt,η

]
dt

)
,

so that

gη
λ(z)∝ e

E
Q
λ\η [ log fλ(z)]−∫ T

0 z·EQ
Yt

[ϒ (Yt,η1,η3)∨0]dt+∫ T
0 E

Q

Y
η
t

[νη
t (Yη

t ) log (δ+z·ϒ (Yt,η1,η3))]dt
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and

gη
λ(z)∝ e

E
Q
λ\η [ log fλ(z)]−z·∫ T

0 E
Q
Yt

[ϒ (Yt,η1,η3)∨0]dt · z
∫ T

0 E
Q

Y
η
t

[νη
t (Yη

t )]dt

as δ→ 0, for z ∈R+ and every η ∈ T . �
Corollary 2. (Conjugate prior.) Assume that the prior density on λ also factors across the indi-
vidual rates, so that dPλ =∏η∈T f η

λ dμλ, where f η
λ for η ∈ T denote gamma density functions

with shape αη and rate βη. Then, as δ→ 0 in (6), these are conjugate priors, and

λη
Q∼ �

(
αη +

∫ T

0
E
Q

Yη
t
[νη

t (Yη
t )]dt, βη +

∫ T

0
E
Q
Yt

[ϒ(Yt, η1, η3)∨ 0]dt
)

for all η ∈ T .

Hence, as the network model with negative queues under P̃ offers a better approximation
of its original counterpart (δ→ 0), we may numerically approximate posterior distributions
across the infinitesimal rates in λ, under the variational measure Q. In the special case with
independent gamma prior densities, this is an easily interpretable posterior where the shape
and rate parameters depend, respectively, on the integrated expected jump intensities and the
integrated expected station loads in (8) and (9).

6. Applications

The results in this paper suggest an iterative approximation procedure for (5) by means of
coordinate ascent. Here, we iteratively update the values of the various rates, functions, and
Lagrange multipliers while evaluating and assessing convergence in the lower bound (11) to
the log-likelihood. This is a standard approach in variational inference when looking for (local)
maxima [4], and the problem is known to be convex.

Maximizing the bound by calibrating the measure Q will yield an approximation to the
regular conditional probability of events in F under P̃, conditioned on the observations. This
may then be projected over the rates λ or the trajectories in X and Y. These projected densities
are valid for approximating the conditional distributions of the service rates μ and routing
probabilities P in the original QN system, given observations. The final iterative procedure is
described below.

1. Input network observations in (3) and assign a (conjugate) gamma (image) density
dPλ across job transition intensities λ, with shape parameters αη and a (shared) rate
parameter βη = β, η ∈ T .

2. Define a discretization grid of the time interval [0, T], and operate through interpolation
within points in the grid.

3. Set an arbitrary density dQλ. Fix κ
η
t (y)= 0, rη

t (y)= 1, and input (valid) arbitrary starting
values Q(Yη

t = y), for all t ∈ [0, T], η ∈ T , and y ∈N0.

4. Iterate until convergence:

4.1. In each direction η ∈ T , numerically compute rη
t (y) for every t ∈ [0, T] and y ∈N0,

by means of (15)–(16). Then update intensity and slack functions ν
η
t (y), κη

t (y) with
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(14), so that kη
t (y)= 0 if

rη
t (y+ 1)

rη
t (y)

· e
E
Q

Y
\η
t ,λ

[
log 	Yt ,η |Yη

t =y
]
< ν̄,

and

ν
η
t (y)= ν̄, kη

t (y)=Q(Yη
t = y) ·

[
E
Q

Y\ηt ,λ

[
log 	Yt,η|Yη

t = y
]− log

ν̄ · rη
t (y)

rη
t (y+ 1)

]

otherwise. Renew transient state probabilities in Y by means of the master
equation (17), for all t ∈ [0, T].

4.2. Derive expected intensities
E
Q

Yη
t
[νη

t (Yη
t )]

and station loads
E
Q
Yt

[ϒ(Yt, η1, η3)∨ 0],

for all directions η ∈ T and times t ∈ [0, T]. Update Q-densities so that

λη
Q∼ �

(
αη +

∫ T

0
E
Q

Yη
t
[νη

t (Yη
t )]dt, β +

∫ T

0
E
Q
Yt

[ϒ(Yt, η1, η3)∨ 0]dt
)

for all η ∈ T . The likelihood ratio in (5) can be computed at this stage.

4.3. Evaluate the lower bound (11), given the current densities and infinitesimal rates
under the approximating measure Q. Assess variation in the bound across iterations
and establish convergence.

5. Finally, infer the structure of the various service rates and routing probabilities in the
QN system.

5.1. Note that
E
Q
Yt

[ϒ(Yt, η1, η3)∨ 0]

remains the same across directions η ∈ T with shared origin station. Since

μc
i =

∑
η∈T →i,c

λη,

it holds that

μc
i
Q∼ �

(
|T →i,c | · αη +

∑
η∈T →i,c

∫ T

0
E
Q

Yη
t
[νη

t (Yη
t )]dt, β

+
∫ T

0
E
Q
Yt

[ϒ(Yt, η1, η3)∨ 0]dt
)

for all 0≤ i≤M, c ∈ C.

5.2. Retrieve distributions for routing probabilities by noting that pc
i,j = λi,j,c/μ

c
i for all

0≤ i, j≤M, c ∈ C. This suggests a Dirichlet distribution.

The following examples treat open and closed network models; source code can be found
at https://github.com/IkerPerez/variationalQueues.
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6.1. Single-class closed network

We begin by analysing the small closed network example previously shown in Figure 2. We
recall that this includes one FCFS service station, with K1 = 1 processing unit, along with a
delay, together processing a population of N jobs cyclically in a closed loop. All jobs belong
to the same class and have equal service rates; we denote by μ1 the job processing rate within
the service station. On completion, a job proceeds to the delay station where it awaits for an
exponentially distributed time before being routed back to the queue. We use μ0 to denote the
delay rate, and we note that the arrival rate to the queue is directly proportional to the number
of jobs at the delay.

Both stations are independent and μ0 is fixed in order to ensure model identifiability within
the service station. In this instance, the network topology is deterministic and trivial, and the
evolution of X= (Xt)t≥0 monitors the total number of jobs within the service station, with
X0 = 0. The generator Q of X is finite and satisfies

Q=

0

1

...

N − 1

N

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 . . . N − 2 N − 1 N

−Nμ0 Nμ0 0 . . . 0 0 0

μ1 −Nμ0 +μ0 −μ1 (N − 1)μ0 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . μ1 −(μ0 +μ1) μ0

0 0 0 . . . 0 μ1 −μ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where row and column labels denote the number of jobs in the queueing station. Since μ0 is
fixed, our interest lies in λ≡ λ1,0 =μ1 · p1,0 =μ1. We assign to this rate a distribution Pλ ≡
λ�P with (gamma) density fλ such that its hyperparameters fix some reasonably uninformative
prior knowledge on the system. We monitor the delay and FCFS service station at fixed and
equally spaced times t1 < · · ·< tK in an interval [0, T]. Here, variables Ok are supported on
O= {0, . . . , N}2, and the observation model factors across the network components so that
fO|x(o)= f̃O|N−x(o0) · f̃O|x(o1) with f̃O|x(o)= ε

N + I(o= x) · (1− N+1
N ε) and

P(O−1
k (o)|X)=

⎧⎪⎪⎨
⎪⎪⎩

(1− ε)2, o0 =N − Xtk, o1 = Xtk ,

(ε/N)2, o0 �= N − Xtk , o1 �= Xtk ,

(1− ε) · ε/N otherwise

(18)

for ε > 0 and all k= 1, . . . , K. This accounts for some ε · 100% faulty measurements; also,
we note that a system with discrete observations is approximated as ε→ 0. Now, assume there
exist some sample observations o1, . . . , oK from a model realization in this closed network.
These can easily be produced from (18) given a trajectory (Xt)t∈[0,T]. In order to produce the
trajectory from (2), given the service rates, we may employ Gillespie’s algorithm [10] or faster
uniformization-based alternatives [24].

Remark 1. The transformation dPλ|o1,...,oK /dPλ is such that, conditioned on o1, . . . , oK , the
distribution over λ admits a density carried by the Lebesgue measure μλ, so that dPλ|o1,...,oK =
fλ|o1,...,oK dμλ. In this simple example, numerical MCMC procedures [22] or basic generator-
matrix exponentiations combined with a forward–backward algorithm [32] can offer such
density approximations; however, this is reportedly very inefficient when N is large. Moreover,

https://doi.org/10.1017/apr.2020.72 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.72


706 I. PEREZ AND G. CASALE

in involved networks/processes for complex applications (see next example), such alternatives
are simply unusable (i.e. they do not scale).

In the following, we analyse simulated data (N = 50, μ0 = 0.1, ε = 0.2, T = 100, K = 50)
by assigning a conjugate gamma density to λ≡μ1, so that λ∼ �(α, β) with α = 5 and β = 2
under the reference measure P. Recall that μ0 is fixed to ensure model identifiability, and
Xt ∈ {0, . . . , N} denotes the number of jobs in the service station at any time t≥ 0. For later
reference, the stationary distribution of the system is given by

πP(x|λ)= lim
t→∞ P(Xt = x|λ)=

(μ0

λ

)x 1

(N − x)!
/ N∑

x=0

(μ0

λ

)x 1

(N − x)! ,

so that, assuming the observations are sufficiently spaced and the system has reached
stationarity, it holds that

P
( K⋂

k=1

O−1
k (ok)

∣∣λ)≈ K∏
k=1

N∑
x=0

fO|x(ok)πP(x|λ)=
∏K

k=1
∑N

x=0 fO|x(ok)
(μ0

λ

)x 1
(N−x)!(∑N

x=0

(μ0
λ

)x 1
(N−x)!

)K , (19)

where fO|x(ok) is as defined in (18). Note that here |T | = 2, and the process Y = (Y0,1
t , Y1,0

t )t≥0
monitors transitions between the delay and service station, in both the directions 0→ 1 and
1→ 0. The lower bound to the log-likelihood in (11) reduces to

log P̃(O)≥
K∑

k=1

E
Q
Ytk

[
log P(O−1

k (ok)|Y0,1
tk − Y1,0

tk )
]

−E
Q
λ

[
log

g1,0
λ

dPλ

]
+
∫ T

0
E
Q
Yt,λ

[
�[Yt, νt, λ]

]
dt (20)

with

�[Yt, νt, λ]= ν
1,0
t (Y1,0

t )+ ν
0,1
t (Y0,1

t )− 2δ− λ · I(Y0,1
tk − Y1,0

tk > 0)

−μ0 · (N + Y1,0
tk − Y0,1

tk )− ν
1,0
t (Y1,0

t ) log
ν

1,0
t (Y1,0

t )

δ + λ · I(Y0,1
tk − Y1,0

tk > 0)

− ν
0,1
t (Y0,1

t ) log
ν

0,1
t (Y0,1

t )

δ+μ0 · (N + Y1,0
tk − Y0,1

tk )
,

so that it contains only two hazard functions in the approximating measure Q, namely ν0,1

and ν1,0. In (20), we again notice that the lower bound is dominated by three distinguishable
components: (i) the expected log-observations, (ii) the KL divergence across the service rate
density, and (iii) a weighted P-to-Q divergence in the expected path likelihood, further inte-
grated along the entire network trajectory. The differential equations for functionals in (16)
reduce to

dr0,1
t (y)

dt
= r0,1

t (y)
(
δ+μ0 ·EQ

Y1,0
t

[
(Y1,0

t − y)∨ 0)
])

− 1+ k0,1
t (y)/Q(Y0,1

t = y)

ek0,1
t (y)/Q(Y0,1

t =y)
r0,1

t (y+ 1)e
E
Q

Y1,0
t

[
log (δ+μ0·[(Y1,0

t −y)∨0])
]
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FIGURE 4: Left, evolution of lower bound to the log-likelihood during the inferential procedure. Right,
95% credible intervals and point estimates for the service rate λ under Q; the back (grey) corresponds to
the proposed method, while the front (blue) is for an (adapted) traditional variational procedure.

and

dr1,0
t (y)

dt
= r1,0

t (y)
(
δ+E

Q
λ [λ] ·Q(Y0,1

t > y)
)

− 1+ k1,0
t (y)/Q(Y1,0

t = y)

ek1,0
t (y)/Q(Y1,0

t =y)
r1,0

t (y+ 1)e
E
Q

Y0,1
t ,λ

[
log (δ+λ·I(Y0,1

t >y))
]
.

In Figure 4 (left) we observe the evolution of the lower bound (20) during the iterative
inferential procedure, for a sufficiently small and negligible value of δ. There, we notice that
the procedure has converged to a (local) optimum within approximately 13 iterations. On
the right-hand side of the figure, we further observe credible intervals and point estimates
across iterations for λ, under the approximating measure Q. Displayed in the back (in grey)
are the estimates obtained using the proposed method in this paper; in the front (in blue), we
find approximations extracted by adapting variational procedures in [18], to allow for prior
knowledge and conjugacy properties.

Next, in Figure 5 (left) we find the P-prior density for λ (flat density in the back of the figure)
with the final-iteration Q-posterior superimposed (grey density in the front); the additional red
and blue densities represent

• the posterior density obtained through Metropolis–Hastings MCMC, by means of strong
stationarity assumptions leading to the likelihood function shown in (19), and

• the approximate posterior obtained by adapting variational procedures in [18].

On the right-hand side we have the network observations on both the service station and the
delay. Delay observations are displayed by subtracting their value from the job population N
(which represents a second measurement on the service station). Whenever both observations
match, these are displayed with a large dot. Along with it, we find the following:

• in grey, a mean-average network trajectory and 95% credible interval for job counts on
the service station Xt = (Y0,1

t − Y1,0
t )t≥0, under the approximating measure Q and with

methods introduced in this paper;

• in blue, a similar confidence interval and mean-average path obtained using benchmark
methods in [18].
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FIGURE 5: Left, prior density (light grey flat density in the back) and posterior density (dark grey density
in the front) for λ, along with MCMC (red) and traditional variational (blue) density estimates. The
black dot on the horizontal axis represents the original value in the network simulation. Right, network
observations along with mean-average network trajectory and 95% credible interval for job counts in the
service station; in grey, our proposed method, in blue, existing variational alernative method.

Noticeably, the average trajectory under our proposed variational technique flows through the
most informative observations (thick dots), and the credible interval widens up to account for
some faulty measurements within either network station. On the other hand, traditional vari-
ational approaches quickly converge to a local optimum and restrict mean-average dynamics,
further compressing confidence intervals in regions with noisy data. In the next example, we
notice how this poses a problem for traditional methods; that is, within complex and synchro-
nized stochastic processes, we will fail to obtain sensible estimates for network parameters.
Moreover, in our next example, inference by MCMC/forward–backward methods is virtually
intractable (cf. [22]).

6.2. Multi-class parallel tandems with bottleneck and service priorities

We analyse an open multi-class QN as pictured in Figure 6. In this network, there exists
two classes (c= 1, 2) of jobs that simultaneously transit the system. The first class consists of
high-priority jobs with low arrival and service intensity rates. The second class consists of low-
priority jobs with high arrival and service rates. Once a job enters the system, a probabilistic
routing junction (pictured as a square within the figure) sends this job through either a PS or
a priority-FCFS tandem; later, it will be serviced within an infinite station before leaving the
network. In the top processor-sharing tandem, each station has five processing units. These
will fraction their working capacity as seen in (8), in order to simultaneously service all jobs
regardless of their class and priority level; however, service rates will differ depending on the
job class. By contrast, the bottom tandem includes two FCFS stations with a single processing
unit and priority scheduling. Here, low-priority jobs are serviced only if each station is entirely
empty of any high-priority jobs. Consequently, the station loads in (9) are rewritten so that

ϒ(y, i, 1)= 1∧ xi,1 and ϒ(y, i, 2)= (1∧ xi,2) · I(xi,1 < 1)

at stations i ∈ {2, 4} and for any y ∈ SY , where we recall that

xi,c=
∑

η∈T←i,c
yη −

∑
η∈T →i,c

yη
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FIGURE 6: Open QN with one routing junction (pictured as a square) and five service stations with varied
disciplines and processing rates.

and thus x2,c= y0,2,c− y2,4,c, x4,c= y2,4,c− y4,5,c, for c= 1, 2. Due to the presence of service
priorities, the ordering of jobs within the queue is irrelevant (this is also the case with random
order disciplines); hence, our inferential framework allows for different service rates assigned
to jobs in each class. Finally, the last service station includes an infinite number of processing
units, and processing rates also differ depending on the job class.

We analyse synthetic data created during a time interval [0, T] (T = 100), with arrival inten-
sities μ1

0 = 0.5, μ2
0 = 3, routing probabilities pc

0,i = 0.5, i, c ∈ {1, 2}, and service rates as shown
in Table 1. We collect a reduced set of noiseless and equally spaced observations with K = 50;
these are essentially snapshots of the full system state across its service stations and job classes,
so that O=N10, and the observation density in (3) is defined with

fO|x(o)=
5∏

i=1

2∏
c=1

I(xi,c= oi,c)

for x ∈ S, where oi,c is an indexed observation in the element o denoting the class-c queue
length at station i > 0. (Source code for the data simulation process may be found at
https://github.com/IkerPerez/variationalQueues.) Within the inferential procedure, this obser-
vation likelihood must be approximated with some regularized variant similar to (18), while
taking ε→ 0. Next, we assign conjugate gamma priors to the various service intensities;
in order to ensure identifiability in the problem, arrival rates and routing probabilities are
fixed, and we focus this inferential task on the various service stations. Hence λ≡ {μc

i : c=
1, 2 and i= 1, · · · , 5}, and we set λη ∼ �(1, 0.3) under the reference measure P, for all η ∈ T .

In the following, we omit the cumbersome mathematical details related to this complex
model formulation, and we focus on discussing prior choices, calibration of the algorithm,
results, and method comparisons following the inferential procedure.

Remarks on using MCMC data-augmentation for inference. Transient inference in a
stochastic system with priorities is especially challenging, because of the strong dependencies
this generates on the queue lengths across the stations and classes. Specifically,

• data-augmentation methods relying on MCMC techniques do not scale (cf. [27; 22]), as
dependences yield very autocorrelated output chains;

• there exist no analytic product-form distributions to enable approximate inferen-
tial methods under assumptions of system stationarity, as discussed in the previous
example; and

• generator-matrix exponentiations with a forward–backward algorithm [32] are simply
unscalable to such large multivariate systems.
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TABLE 1: Summary statistics for posterior service rates in the QN in Figure 6.

Real O/S Summary Quantiles

Mean StDev 2.5% 25% 50% 75% 97.5%

μ1
1 0.25 0.364 0.307 0.043 0.228 0.276 0.304 0.335 0.397

μ1
2 1.5 1.242 1.387 0.188 1.043 1.256 1.378 1.508 1.778

μ1
3 0.25 0.421 0.339 0.049 0.250 0.305 0.337 0.371 0.442

μ1
4 1.5 1.482 1.635 0.219 1.233 1.482 1.625 1.777 2.093

μ1
5 0.5 0.837 0.761 0.075 0.622 0.709 0.758 0.810 0.915

μ2
1 0.5 0.551 0.501 0.041 0.424 0.473 0.499 0.528 0.584

μ2
2 4.0 3.496 3.740 0.298 3.177 3.534 3.731 3.935 4.346

μ2
3 0.5 0.568 0.504 0.041 0.425 0.475 0.502 0.531 0.588

μ2
4 4.0 3.265 3.670 0.296 3.112 3.465 3.661 3.863 4.270

μ2
5 1.0 0.976 0.984 0.056 0.877 0.946 0.983 1.021 1.097

Remarks on using benchmark variational methods for inference. Note that traditional vari-
ational methods (cf. [18, 7]) are centred around populations or lengths in the individual queues.
In this example, populations may not be factorized under an approximating measure Q, since
system jumps are synchronized; i.e., a jump down in one queue corresponds to a jump up in
another. As a consequence, pairs of approximating rates under Q will be interlinked with the
same real transition rate under P, and derivations such as the lower bound in (11) or Equations
(14)–(16) are unattainable. For the sake of completeness and comparisons, we adapt existing
variational algorithms to the current task; however, we must make the following changes:

• We allow a factorization Q(Xt = x)=∏i Q(Xi,t = xi), so that jobs may be virtually cre-
ated and removed in any queue; i.e., jobs do not transit a network, but rather reach and
depart servers individually. The full population of jobs in the network is not preserved.

• We duplicate intensities for transitions in the real model; that is, we have a rate for (i) a
job departing a queue and (ii) the job arriving at another. Technically, a job could arrive
at a new server before it departs the previous one; synchronization is lost; point estimates
for parameters are averaged across pairs and weighted for network load.

As we will see, this leads to drastic performance issues that render the method unusable.

6.2.1 Algorithm calibration. Within our method, prior choices in the system state Y must ini-
tially accommodate a strictly positive, albeit not necessarily large, likelihood for low-priority
jobs to be serviced at any point in time. Here, we achieve this by assigning Poisson process
priors to task transition counts in Y; that is, we first run the master equation (17) with some
user-specified constant intensity rates. This creates monotone mean-average queue lengths in
the service stations, and we ensure that they flow aligned to the network observations in every
instance.

Also, the presence of strong temporal dependencies will often trigger the approximating
rates ν in (14) to become unreasonably large, ultimately rendering the algorithm computation-
ally infeasible. This is a phenomenon also observed in [7, 18], within the context of simpler
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FIGURE 7: 95% credible intervals for queue lengths across the service stations. Dark (light) grey corre-
sponds to high-priority (low-priority) jobs. Bottom right panel shows expected jump intensity and station
load in the direction η= (0, 1, 1).

stochastic dynamics. To ensure computational tractability, we exploit the capping functionals
k as in introduced in Proposition 1 and set a global rate cap of ν̄ = 50. Furthermore, we run
the differential equations for r in (16) in log-form. Specific details can be found within the
aforementioned source code.

6.2.2 Results. In the plots in Figure 7, with the exception of the bottom right one, we observe
95% credible intervals for the queue length processes Xi,c

t over time, across the various service
stations and job classes. In the figure, intervals in dark grey relate to high-priority jobs, and their
corresponding queue length observations are represented by black circles. This information is
superimposed over its analogue for low-priority jobs, where intervals are coloured in light
grey and observations represented by small diamonds. These interval approximations ignore
small positive densities that are sometimes assigned to negative queue lengths. Note that this
is a consequence of employing counts across job transitions in Y as a basis for inference on
X; however, we recall that this is necessary to overcome the coupling challenges described in
Sections 2 and 4. Overall, we note that the variational flow captures the collected observations
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well, with some few exceptions in the stations with priority scheduling; hence, it offers a good
basis for building approximate estimates for parameters and the likelihood ratio (5).

The bottom right plot in Figure 7 shows an overview of the expected jump intensity

E
Q

Yη
t
[νη

t (Yη
t )]

and station load
E
Q
Yt

[ϒ(Yt, η1, η3)∨ 0]

in the direction η= (0, 1, 1) at times t ∈ [0, T]. The sharp peaks in the intensities come at
observation times, ensuring that the process density transits through the observations. Finally,
we notice that the expected station load differs from the estimate of the high-priority queue
length in station 1, as this process combines and weights the queue length across the two
priorities according to (8).

Next, we find in Table 1 summary statistics for the posterior service rates under the approx-
imating variational measure Q, along with point estimates obtained by adapting benchmark
variational techniques in [18]. We observe that the proposed framework allows us to gain a
good overview of the system properties and variability in the processing speed across the var-
ious stations; by contrast, existing methods are far from offering reasonable approximations
to system behaviour (they instead seem to construct an averaged estimate of network flow).
Noticeably, there exist a few significant deviations from real values, within the posterior esti-
mates for high-priority service rates in PS stations. This is likely due to a combination of
sampling variance, high model complexity, and the limitations of such approximate variational
procedures for transient analyses of stochastic processes.

7. Discussion

In this paper, we have enabled the variational evaluation of approximating measures for
partially-observed coupled systems of jump stochastic processes, with a focus on mixed sys-
tems of QNs. Furthermore, we have presented a flexible approximate Bayesian framework,
capable of overcoming the challenges posed by coupling properties, and applicable in scenar-
ios where existing MCMC or variational solutions are unusable. To achieve this goal, we have
built on existing variational theory (see [18, 7]) and discussed an alternate optimization proce-
dure with slack variables and inequality constraints that can address computational limitations
within existing techniques. Notably, results within this paper contribute to existing Bayesian
statistical literature in [27, 29, 22] and allow for the study of the latent stochastic behaviour
across complex mixed network models, by means of an augmented process for interactions in
the resources.

Even though the proposed framework relies on an approximated network model as a basis
for inference (which ensures the absolute continuity across base measures), and while it fur-
ther analyses queue lengths by means of augmented job transitions in the resources, we have
shown that we can reliably capture the finite-dimensional posterior distributions of the var-
ious marginal stochastic processes and offer a good overview of the network structure and
likely flow of workload. This is important as it can enable evaluation and uncertainty quan-
tification tasks in several networked systems, found in many application domains, where full
data observations may be hard to retrieve. Current state-of-the-art alternatives rely on strong
assumptions leading to stationary analyses of such systems, or use alternate MCMC procedures
that reportedly encounter limitations due to existing computational constraints [27, 22].
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Appendix A. Construction

Let (�,F ) be a measurable space with the regular conditional probability property; also, let
0≤ t1 < · · ·< tK ≤ T be some fixed observation times, with T > 0. In a standard QN with M
stations, � may denote a product set supporting instantaneous rates, trajectories, and observa-
tions, and F the corresponding product σ -algebra. The space of rates and observations will
consist of trivial Borel algebras and power sets, so that λ is an (Rn+, B(Rn+))-valued ran-
dom variable of rates in the infinitesimal generator matrix Q of X, where n ∈N denotes an
arbitrary number determined by the network topology. In addition, {Ok:k= 1, . . . , K} corre-
sponds to random measurement variables for the network monitoring activity, each defined
on (O,P(O)), where O denotes an arbitrary countable support set for observations in every
service station. A network trajectory X = (Xt)0≤t≤T is an (S,P(S))-valued stochastic process
with a countably infinite support set S. Note that this is a piecewise deterministic jump pro-
cess, so that X = (t, x) is formed by a sequence of transition times t along with states x. Every
pair (t, x) can be further defined as a random variable on a measurable space (X , �X ), with
X =∪∞i=0([0, T]× S)i and �X the corresponding union σ -algebra. This space can support all
finite S-valued trajectories and allows the assignment of a dominating base measure μX with
respect to which to define a trajectory density. For details, we refer the reader to [9].

Let P be a reference probability measure on (�,F ). For all A∈ B(Rn+), we write

P(λ−1(A))= Pλ(A)=
∫

A
fλ(a) μRn+(da),

where fλ denotes the joint density function of n independent gamma-distributed variables.
Hence, we assume that the distribution of instantaneous rates under P admits a density car-
ried by the (Lebesgue) measure μRn+ . Next, let κ1:F ×Rn+→ [0, 1] be a regular conditional
probability, i.e., a Markov kernel that defines a probability measure on F for all λ ∈Rn+, with

P(B∩ λ−1(A))=
∫

A
κ1(B, a) fλ(a) μRn+(da)

for A ∈B(Rn+) and B ∈F . By definition, κ1(B, a)= P(B|λ= a), and most importantly,

κ1(X−1(C), a)=
∫

C
fX|λ=a(t, x) μX (dt, dx)

for all C ∈�X (note this often constitutes an intractable integral). The conditional density
fX|λ=a is such that for every I ∈N and pair of ordered times t= {0, t1, . . . , tI} in [0, T] and
states x= {x0, . . . , xI} in S we have

fX|λ=a(t, x)= π(x0) eQxI (T−tI )
I∏

i=1

Qxi−1,xi eQxi−1 (ti−ti−1)
,

where Q≡Q(a) is the matrix of infinitesimal transition rates in X associated to values in a.
Finally, network observations are assumed to be discrete events, independent of transition rates
given a trajectory. Thus, there exists a kernel κ2:F × (X ×Rn+)→ [0, 1] such that

P(Ok ∈D|X = (t, x), λ= a)= κ2(O−1
k (D), (t, x), a)=

∑
d∈D

fOk|(t,x)(d) μO(d)

for all k= 1, . . . , K and D ∈P(O). Here, fOk|(t,x) defines an arbitrary probability mass function
on O carried by a counting measure; in our applications, each observation depends only on the
state of the system at the observation time, so the above expression could be further simplified.
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Under the above model construction, the support over infinitesimal rates is a standard Borel
space, and the existence of a posterior distribution is guaranteed (cf. [20]). Also, measures
induced by the kernel κ2 are σ -finite and such that κ2(·, (t, x), a) << μO for every ((t, x), a) ∈
X ×Rn+. The posterior is thus carried by its corresponding prior and defined by means of the
Radon–Nikodym derivative

dPλ|O1=o1,...,OK=oK

dPλ
(a)=

∫
X
∏K

k=1 fOk|(t,x)(ok) fX|λ=a(t, x) μX (dt, dx)∫
Rn+
∫
X
∏K

k=1 fOk|(t,x)(ok) fX|λ=a(t, x) μX (dt, dx) fλ(a)μRn+(da)
,

where we employ the shorthand notation dPλ|·(a)= Pλ(da| · ).
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