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1. Introduction. The work of which this paper is an account began as a study of
differential equations for functions whose values are random variables of finite
variance. It was intended that all questions of convergence should be treated from the
standpoint of strong convergence in Hilbert space—familiar to probabilists from the
writings of Karhunen(ii) and Loeve(i3) as mean-square convergence. The more
general Banach-space approach now adopted was made possible by the discovery
of a theorem (Theorem 1 of this paper) which Mr D. G. Kendall, its apparent author,
kindly communicated to us.

Our results are stated as abstract Banach-space theorems, but the reader who
prefers a probabilistic interpretation may think of the Banach space in the following
way. If Q is a space for which 88 (a Borel field of subsets) has been defined, and if /i is
a probability measure on 88, then each Baire function x( •) on D. to the set of real (or
complex) numbers is a random variable. We shall denote by Kp (p^ 1) the set of
random variables x( •) such that »

\x\pd/i<oo.

Kp can be partitioned into equivalence classes in the usual way by 'identifying'
random variables which are almost certainly equal, i.e. equal almost everywhere (fi)
in Q.. The set Lp of these equivalence classes is a Banach space when normed by

where [a;] denotes the equivalence class of which x (€ Kp) is a member. In the dis-
cussion of particular integrals we prove our theorems only for weakly complete Banach
spaces. We remark here that when p > 1 the space Lp is reflexive and therefore
weakly complete, by a theorem of Pettis(i7). For a discussion of weak completeness
in the case^> = 1 the paper of Kakutani(io) may be consulted.

Equations of the type we consider have been used in the study of certain stochastic
processes in physics. Reviews of their applications in this field have been given by
Chandrasekhar(i) and Moyal(i4). One of the simplest important examples is the
Langevin equation m ) + ai{t)dt = dz(t) (1)

for the linear Brownian motion of a particle of unit mass. This equation describes the
linear motion of a particle subjected to a series of random molecular impulses. The
term ax(t) dt, in which a > 0 is constant, represents the viscous drag of the fluid, i.e. the
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664 D. A. EDWAEDS AND J. E. MOYAL

mean effect of the impulses. z( •) is a given function of the time t whose values are
random variables, and is called the impulse process. Together with the term ocx(t) dt,
it describes the bombardment of the particle by molecules of the surrounding fluid.
The inclusion of the term ocx(t) dt therefore allows us to assume that the expectation
of z(t) is zero for all t. We shall show that when the function z satisfies certain con-
ditions it is possible to give a precise meaning to, and a rigorous solution of, equation (1).
I t is convenient at this point to explain why this equation is written in differential form.

In the usual model of Brownian motion, based on the classical kinetic theory of
fluids, the impulse process z is a function whose values are Gaussian random variables
with zero mean. If we identify random variables which are almost certainly equal,
then the range of z spans a subspace of a Hilbert space L2 and, moreover, 2 is a function
with orthogonal increments, and is such that

for all real t and h, where a is a real constant. It follows (Moyal (14)) that 2 is nowhere
strongly differentiable. Hence if one writes down, as most of the early authors did,
the 'natural ' equation of motion

x{t)+ax(t) = z(t), (2)

one is embarrassed by the fact that the derivatives x and 2 do not exist. In order to
avoid this difficulty Doob(2) has suggested that, instead of (2), equation (1) (with
a special convention about its differential notation) should be considered. A precise
definition of its meaning will be given in §4. Our use differs slightly from that of
Doob (2,3), because his discussion is from the standpoint of almost certain convergence.

Apart from the generalization, already mentioned, to Banach space, it is also possible
to consider, instead of (1), an wth-order linear equation, with coefficients which are
given real or complex-valued continuous functions of t. For convenience we discuss only
the second-order case, but our results may be extended to the case where n =j= 2 without
difficulty. Simultaneous sets of linear equations could also be considered. There is no
possibility of a further generalization, from the present standpoint, to non-linear
equations unless X is a Banach algebra. We do not consider this situation.

In § 2 we discuss the definition of bounded variation adopted in this paper. § 3 is
a brief account of the theory of the complementary function. The main theorems of
the paper are to be found in § 4. Two examples to illustrate the theory are given in the
final section.

2. Bounded variation in Banach space. Before we consider differential equations,
it is convenient to give a short account of some properties of vector-valued functions
which are of bounded variation in the sense introduced by Dunford (4). The results of
this section will be used later in our discussion of particular integrals.

Let X be a real or complex Banach space, and let X* be its first adjoint. A function
z( •) from the real line R1 to X is said to be of Dunford bounded variation on the interval
[a, b] when there exists a finite real constant K[a, 6] such that, if k ^ 1 and

a < £2 < t2 < •. • < t2k =% b,

k
then

r = l
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The least such K will be denoted by V[a, b] and will be called the variation of z( •)
on [a, b].

By an application of the uniform boundedness principle Dunford has shown that
z( •) is of Dunford bounded variation on [a, b] if and only if x*z( •) is of bounded
variation on [a, 6], in the ordinary sense, for each x*eX*. By using a theorem of
Gelfand (6) we have shown that, in the special case where X is a Hilbert space, z( •) is
of Dunford bounded variation on [a, b] if and only if the covariance function

p(t,s) = (z(t),z(s))

is of bounded variation on [a, 6]2 in the sense of Frechet (5). An account of this and some
related theorems will be given in a forthcoming paper by one of us.

When X is a weakly complete Banach space the function V[a, b] has an important
property, which we shall now prove with the help of the theory of unconditional con-

00

vergence. We recall that a series 2 xr of elements of X is said to be unconditionally

convergent whenever all its subseries, with the order of terms undisturbed, converge
strongly. If{rar} is any sequence of integers such that nr+1>nr>n0 = Oforr = 1,2,3,...,

fir oo 00

andif yT = 2 %%, then the series 2 yryriU.beca31ed a, bracketing of 2 xr. Pettis(i6)
i=n,_, + l r=l r=l

00 00

has shown that if 2 V̂ is unconditionally convergent, and if 2 yr is any bracketing of
r=l r= l

00

2 xr, then || yr || -> 0 as r -> oo. It is also known from the work of Orlicz (15) that, when
r=l
X is weakly complete, a sufficient condition for the unconditional convergence of

00 00

2 a> is t n a t 2 | x*{xr) I < oo for each x* e X*.
r=l r=X

We need a lemma, first proved by Dunford (4) for real Banach spaces.

LEMMA 1. If xreXforr = 1, 2, ...,N, then
N
2 | x*(xr) \^4JK\\ x* || for each x* e X*,

r=l
where K = sup || 2 x

r II> the supremum being taken over all subsets o~ of the set of integers

1,2,...,N.
For each x* € X* N

2 SRx*{xr) = £<+>9te*(zr) + £<->9ta;*(av)}

where the terms under S(+) are positive and those under S(- ) non-positive. Then

2 | mx*(xr) | = 2<+>9la;*(zr)-:E<->9fa*(a;r)

= 9la;*(2<+>a;r - SH&r) *S 2 # || x* ||.

This, together with the corresponding result for the imaginary part, completes the
proof.
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666 D. A. EDWARDS AND J. E. MOYAL

THEOREM 1. / / z( •) assumes its values in a weakly complete Banach space X and is of
Dunford bounded variation on [t0, t j , where t6 < tx, and is strongly continuous-to-the-right
att = t0, then V[t0, t0 + K] tends to zero as A ~> 0 + .

Since V[t0, f] is a non-decreasing non-negative function of t (t0 < t^ ix), it follows that
lim V[t0, to + K] = 8 exists and is non-negative. Suppose, if possible, that 8 > 0. Then

we can choose a finite % > 1, T2ni and a set of tj(j = 2,3,. . . , (2%— 1)) satisfying

and such that

V(2(«2r-l)-z(«2r)) + l
r= l

I f T2m > h l e t hni = T2BI. If r2ni = «0, choose «2mi in such a way that t0 < t2ni < «2ni_x and

The possibility of such a choice is a consequence of the strong right-hand continuity
of z( •) at t = t0. In either case we have

Si
r = l

Now repeat this procedure with the interval [t0, t2n ] to define t2n +1, t2n +2,..., t2n%

satisfying

71,

and such that
71,

2 i
r=n,+l

and so on. We obtain in this way a monotonic decreasing sequence {tn} bounded below
by t0. If we define n,

00 00

weseethat 2 ys>
a bracketing of 2 a;r, has the property that || i/s| > | 5 for alls. Hence,

CO

by the theorem of Pettis (16), 2 xr cannot converge unconditionally. On the other
r = l

hand, using Lemma 1 we have
N

00

fori\f= 1,2,... and for each x*eX*. It follows that 2 | a;*(a;r) | < c» for every a;* e X*,

and so (from weak completeness) that 2 ^r converges unconditionally. We therefore
r = l

have a contradiction and conclude that 8 = 0. This completes the proof.
This important result appears to be due to Mr D. G. Kendall. I t is not known whether

the condition of weak completeness is a necessary one.
We shall use this theorem in conjunction with the following elementary property

of the Riemann-Stieltjes integral. For an account of this integral Dunford (4) and
Hille (8) may be consulted.
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THEOREM 2. Ifz(-) assumes its values in a Banach space X and is of Dunford bounded
variation on [a, b], and if 0( •) is a real or complex-valued function defined and continuous

Cb

[a,b], then the strong Riemann-Stieltjes integral <p(t)dz(t) exists and satisfies
J a

z(t) < 4 sup |0(«) | V[a,b].

The existence of the integral has been proved by Dunford (4). I t s value is the strong
n

limit of a sequence of sums of the type Yt ^(Ti) Ez(*i+i) ~ 2(^)]J where

and ti i

Applying Lemma 1 we have

a = tx < t2 < ... < tn+1 = b

ri^ti+1 for * = 1,2,3,...,».

= sup
1 i = l

sup \<j>(ri)\ sup Y1\x*(z(ti+x)-z(ti))\

4 sup \<P(t)\V[a,b].

Since this is true for each such sum we have

in: <f>(t)dz(t) sup \</>(t)\V[a,bl

3. The complementary function. I t is proved in Hille(8) that the Banach-algebra
analogue of the classical Cauchy—Lipschitz theorem is true. We require this theorem
only for the special case of linear equations, and in this case the existence of a com-
plementary function may be proved by a direct appeal to the classical theory, and the
theorem obtained is valid for Banach spaces. We state the results of this section mainly
for the sake of completeness.

THEOREM 3. If X is a Banach space over the complex field and if p(-) and q( •) are
complex-valued functions defined and continuous on [0, T], where 0 < T < oo, then there
exists exactly one function x{ •) which assumes its values in X and is such that

(i) x exists as a strong derivative (one-sidedly at t = 0 and t = T) throughout [0, T];
(ii) a;(0) = yx, x(0) = yz, where y^y^eX;

(iii) x exists as the strong derivative ofx (one-sidedly at t = 0 and t = T) and satisfies
x(t) +p(t) x(t) + q(t) x(t) = 6, whenever O^t^T, where 6 is the zero element of X.

We know from the classical theorem, in which X is the set of complex numbers,
that there exists a unique pair of twice differentiable complex-valued functions ux( •)
and u2( •) which satisfy

(4)

whenever 0 < t < T, and are such that

Ul(0) = 1, 1^(0) = 0, tt,(O) = 0, u2(0) = 1.
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It follows that x(t) = y1 ut(t) + y2u2(t)

defines a function which satisfies the conditions of the theorem. The proof of the
uniqueness of this solution is the strong convergence analogue of the classical proof.
Our proof yields the immediate

COROLLARY. The function x( •) defined in Theorem 3 assumes its values in the linear
manifold spanned by yx and y2.

Except where special care seems necessary we shall omit from now on the remark
about derivatives being one-sided at t = 0 and t = T.

The classical theory of the complementary function for the two-point boundary
problem (see, for example, Ince (9)) admits of a similar generalization. As before, we
suppose that p{ •) and q( •) are complex-valued functions continuous on [0, T], and we
also suppose that 0 < a < fe < T <oo. If ax, <x'x,..., fi2, fi'2 are complex constants such that
the set of equations

2 ( b ) = 0,

has no complex-valued solution £( •) on [0, T], other than £,{t) = 0, then we say that
these equations are incompatible. I t is well known (Ince (9)) that, if {vlt v2} is any
fundamental system of complex-valued solutions on [0, T] of Z(£) = 0, then equations
(5) are incompatible when and only when

U2(v2)

In particular, this will be true of A = det [C^(%)]. Using this condition it is easy
to prove

THEOREM 4. / / X is a Banach space over the complex field, and if equations (5) are
incompatible then there exists a unique function x( •), assuming its values in X, and such
that

(i) x exists as a strong derivative throughout [0, T];
(ii) U^x) = ylt U2(x) = y2, where yvy2eX; (6)
(iii) x exists as the strong derivative of x and satisfies x(t) + p(t) x(t) + q(t) x(t) = 6,

whenever O^t^T.
If x{ •) is any function from [0, T] to X which satisfies conditions (i) and (iii) of this

theorem then, by Theorem 3, it has a unique expression in the form

X(t) = Xj^U^t) +X2U2(t),

where xx — x(0) and x2 = x(0). In order that (ii) should also be satisfied we must have

Since A =f= 0 (because of incompatibility), these equations have a unique solution. It is
easy to see that the function thus defined is the only one satisfying the conditions of
the theorem.
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If A = 0 there may still be a solution, but it will no longer be unique. We shall not
consider this case.

4. The particular integral and the general solution. We now give a precise meaning to
the differential notation used in § 1.

If z( •) is a given function defined on [0, T], where 0 < T < oo, and assuming its values
in a complex Banach space X, and if p(-) and q(-) are complex-valued functions
defined and continuous on [0, T], then the equation

dx(t) +p{t) x(t) dt + q(t) x(t) dt = dz{t) (7)

will be said to possess a solution on [0, T] satisfying the boundary conditions

x(0) = y1, x(0)=y2, (8)

where ylty2eX, whenever there exists a function x(-) defined on [0,21], assuming its
values in the closed linear manifold spanned by y± and y2 together with the range of z( •),
and such that

(i) x exists as a strong derivative and is strongly continuous on [0, T];
(ii) x satisfies the boundary conditions (8);

(iii) [*(«)]£ + \p{t) x(t) dt + C q(t) x(t) dt = [z(t)]'tl (9)

whenever 0 < tx < t2 ̂  T, where the integrals are taken in the Riemann-Graves
sense (see Graves (7)).

Since the integrands in (9) are all strongly continuous, it is clear that condition (iii)
can be replaced by

(iii a) The strong derivative -j- [x(t) — z(t)] exists and satisfies

W){t)-\+{t)(t) + {t){t) = 0

throughout [0,17].

It follows from (iii a) and (i) that the strong continuity of z on [0, T] is a necessary
condition for equation (7) to have a solution. In our next theorem we state a set of
conditions sufficient for equation (7) to have a solution in the sense of this definition,
and we show that the solution is unique. We first prove

LEMMA 2. Ify(-)isa strongly continuous function from [0, T] to X and if

strong lim w(< + \ } ~ W ( 0 = y(t) whenO^
ftM> "

then the strong derivative w exists {one-sidedly att = 0 and t = T) and satisfies

w(t) = y(t) (10)
throughout [0,T].

Let wo(t) = w(t) - f y(r) dr when 0 < t < T,
Jo

= w{T) - (2 y{r) dr when t > T.
Jo

43 Camb. Philos. 51, 4
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T h e n .. wo(t + h) — wo(t) Q „ , , . ^ Astrong lim — { — = 6 for all t > 0.

Hence lim «*»*(«+ *)-«*"b(«) = 0

for each a;* e X* and all £ ^ 0. Consequently, by a well-known theorem of Dini (see
S a k s ( 1 8 ) > ' x*wo(t) = x*wo(O)

for all t~& 0 and each a;*eX*, so that

wo{t) = w0(0) forall i^O.

I t follows that when 0 < t < T the two-sided strong derivative w exists, and that w also
exists as a right-hand strong derivative at t = 0 and as a left-hand strong derivative
at t = T, and that (10) is satisfied throughout [0, T].

The use of this lemma was suggested to us by Mr D. G. Kendall. One immediate
consequence is that condition (iii) in the definition at the beginning of this section can
be replaced by

(iii b) For each te[0,T)

)x(t) + hq(t)x(t)-khz(t)\\ = o(h) &ah->0+,

where AJ(t) =f(t + h) -f(t).

For it follows from the lemma, on putting

w(t) = x(t) - z(t), y(t) = -p(t) x(t) - q(t) x{t),

that (iii a) and (iii 6) are equivalent.
We are now able to prove the fundamental existence and uniqueness theorem for the

one-point boundary problem.

THEOREM 5. If z(-) is a function defined on [0, T], where 0 < T < oo, which assumes its
values in a weakly complete Banach space X and which is strongly continuous and of
Dunford bounded variation on [0, T], then equation (7) has a unique solution on [0, T]
satisfying the boundary conditions (8).

Let g(t, T) be the Green function, so that

(i) g(t, T) is continuous, together with dg/dt and d2g/dt2 on [0, T]2;

(ii) g(t, t) = 0, [dgldi]T=t = 1 whenever 0 *S t < T;

(iii) ^+p(t)^t+q(t)g= 0 throughout [0, Tf.

I t is well known (see, for example, Ince(9)) that the Green function has a unique
expression in the form

g(t, T) = Ul(t) VI(T) + u2(t) V2(T), (11)

where {«1,M2} is the canonical fundamental system denned by (3) and (4) and where
{»!, v2) is a pair of complex-valued functions, each continuous on [0, T].
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The following strong Riemann-Stieltjes integrals exist:

* * ( < )
JO

where

(k =0,1,2).

671

(12)

We propose to show that xo(-) is a particular integral; that is, a solution of (7) with
boundary conditions a;0(0) = xo(O) = 6. (13)

We first show that xx(t) is the strong derivative of xe(t) whenever 0 < t < T. Using (11)
we have, when O^t<

Consequently

r*
h 1 1 Jo 1

rt rt+h
+ (&hu2(t) — hu2(t))\ V2(T) dz(r) +\ g(t + h,T)dz(T).

Jo Jt

»i(T)<fe(i
Jo

\Ahu2(t)-hu2(t)\\\\ v2(r)dz(T)
t+h

,T)dz(T)

For each fixed t e [0, T) the first two terms on the right are o(h) as h ->• 0 +. Next, by
Theorem 2, , h

,T)dz(T) sup ,T)\V[t,

But, from Theorem 1, lim V[t,t + h] = O.

Moreover, since g^1^, T) is continuous in t for each fixed T, we have, using the relation

g(r, T) = 0 for all T,

\g(t + h,T)\ = \g(t + h,T)-g(T,T)\ = | h | \^\t + 6h,r) |,

where 0 < 6 < 1, whenever t < T < i + h. But gK1' is continuous, and hence bounded, on
[0, T]2, and so, combining these results,

rt+h

Jt
,T)dz{T)\\=0(h)

Jt ||
as h->0 +, for each te[0, T7).

In order to apply Lemma 2 we now prove that xx is strongly continuous on [0, T].
\ then

II f*Q

VX{T) dz(-<

43-2
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So, by Theorem 2,

II *i(0 - Zi(s) || < 4 | ^ ( 0 - ^(s) | sup | VX{T) I V[0, T]
10.T]

+ 4 | u2(t) -u2{s) | sup | V2(T) I F[0, T] + 4/ sup | tf»{t, T) \ \ V[s, t\.
10.T] \IO,T]' I

I t now follows from Theorem 1 and the continuity of the % and vi on [0, T] that
|| x-^t) — x-^s) ||->0 as t->s with s fixed and as s-^-i with t fixed.

The function xx is therefore strongly continuous on [0, T] and so, by Lemma 2,
x0 exists as a strong derivative (one-sidedly at t = 0 and t = T) and satisfies

throughout [0, T\.
Next, when 0 ̂  t < t + h < T,

P
Jo

, T) — g°-\t, T) —

As before, the first term on the right is o(h), as h^- 0 + . And, by another application of
the mean-value theorem, using the fact that ^>{T, T) = 1 when 0 ̂  r < T, we can show
that the second term is also o(h) as h -> 0 + . Thus

|| Aaa^O - hxt(t) - Ahz(t) || = o(h),

as A-> 0 + , for each «€ [0, T). Using the relations

= f
Jo

and *!(«) = *0(0,

we obtain || Ahx0(t) + hp(t) xo(t) + hq{t) xo(t) - Ahz(t) || = o(h)

as h->• O + for each <€ [0, T).
Thus x0 satisfies condition (iii6). I t also satisfies condition (i) and the boundary

conditions (13), and is therefore a particular integral. I t is, in fact, the only particular
integral. For suppose x( •) and y( •) are both particular integrals, and let

on [0, T]. Then w( •) is strongly differentiable and

\LAhib(t)+P(t)w = 0(1)

as h-*0 + , for each te[O,T). But w is strongly continuous and so, by Lemma 2,
iv exists as the strong derivative of w (one sidedly at t = 0 and t = T) and satisfies

iv(t)+p(t)w(t) + q(t)w(t) = 6
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for all te [0, T]. Moreover, w(0) = w(0) = 6.

Hence, by Theorem 3, the trivial solution w(t) = 6 on [0, T] is also the only solution of
these equations. The particular integral is therefore unique.

It follows at once, as in the classical theory, that the general solution of (7) with
boundary conditions (8) is

Jo
and that this solution is also unique. It is evident from the form of this solution that
the range of the function x does he in the closed linear manifold spanned by the range
of z together with the vectors y1 and y2. The proof of Theorem 5 is thus complete.

In the discussion preceding Theorem 5 we may replace the boundary conditions (8)
by the two-point boundary conditions (6). By a slightly more difficult argument we
shall prove

THEOREM 6. Ifz(-)isa function defined on [0, T], where 0<T<co, which assumes its
values in a weakly complete Banach space X and which is strongly continuous and of
Dunford bounded variation on [0, T], and if equations (5) are incompatible, then equation
(7) possesses a unique solution satisfying the boundary conditions (6).

We shall consider only the case a^t^b. The proof for the cases omitted

is an easy modification of that given here.
The Green function for this problem is a complex-valued function g(t, T) denned on

[a,6]2 and having the following properties:

(i) d2g/dt2 exists and satisfies^! +p(t) •£ +q(t)g = 0 throughout [a,6]2,
, ,, ,. at* at

except on the line t = T= U2(g) = 0 when a < T < 6; ,
(iii) g is continuous on [a, b]2 and g®> is continuous on [a, 6]2 except on the j '

line t = r, where it satisfies

for all Tc(a, b).

Ince (9) gives an account of the construction of the Green function. Briefly, the
procedure is as follows. Let

g+(t, r) = ux(t) V^T) + u2(t) V2(T) gjjt, r) = %(<) W^T) + u2{t) WZ{T),

where v1,v2>w1,w2 are complex-valued and continuous on [a, 6]. We show that these
functions can be chosen in such a way that the function g denned by

g(t, T) = g+(t, T) when t ^ T j

= g_(t,T) when t<T)

has the desired properties. We first observe that g+ and g_ both satisfy

+,w
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throughout [a, ft]2. Condition (14) (iii) on the line t = T yields the equations

(15)

for all re (a, b). But, since {%, M2} is a fundamental system, its Wronskian W has the
property that ^

Thus equations (15) can be solved uniquely for the differences [^(T) — w-Jj)] and
[V2(T) ~ M>2(T)] for each r e [a, 6]. Next, from the conditions (14) (ii) we have, when
a < T < b (and hence, by continuity of the vi and wit when a ̂  r < b),

2

3 = 1

or

where

£

= 0 (» = 1,2)

- U>,(T)] (• = 1,2), (16)

and

From §3 we know that det[C^(My)] + O; and so, since we have already found the
differences [^(T) — M>J(T)], it follows that equations (16) may be solved uniquely for
the WJ(T) in terms of known functions which are continuous on [a, b]. Hence we can
also find the V,(T). The function g(t, T) thus obtained satisfies the conditions (14). We
remark that these conditions imply that g®> is continuous on [a, b]2 except on the line
t = T.

As in the one-point boundary problem, we can now define the strong Riemann-
Stieltjes integrals* . 6

**(*)= g*\t,T)dz{T) (4 = 0,1,2).
J a

Then, if a^t<t + h<b

(g+(t + h,r)- g+(t, T) - htf?(t, T)) dz(r)
J a

9-{t + h,T)- g_(t, T) - hjf»(t, T)) dz(T)

t+h
(g+(t + h,T)- gjjt + h, r)) dz(r)

I t can now be shown, as in the proof of Theorem 5, that the first two terms on the right
are o(h) as h -> 0 + . Also, from the continuity of g on [a, b]2

9+(T,T) = gjj,

* For, by Theorem 2, I g^(t,
J a

r»
exists and is equal to g^(t,T)dz(r).

J t

r)dz(T) exists. And(if<< 6) by Theorems 1 and 2, | g™(t,T)dz(T)2,
J 1
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whenever a^r^b. Hence, by an application of Theorems 1 and 2 and the mean-value
theorem,

^ 4 sup I g+(t + h,T) - g + ( r , T ) -g_(t + h,r)+ g_{r,T) \ V[t, t + h]

= O(h),

as h -+ 0 + for each t e [a, b). As before, x1 is strongly continuous on [a, 6]; and so, using
Lemma 2, we see that x0 exists as a strong derivative on [a, b] (one-sidedly at t = a and
t = 6) and that i o ( i ) = ^
throughout [a, 6].

Next, flA^Q

fb I
(g®(t + h,r)- g™(t, T) - hg®Hf, T)) dz(r)

Jt I

I ̂  (g™(t + h,r)- g<?(t + h,r)- l)dz((r)

By the now familiar argument, the first two terms on the right are o(h) as A-» 0 + for
each tz[a,b). From condition (14) (iii) we have

g^(r, T) - gV>{r, T) = 1 when a < T < 6,
so that, as before,

, T) — </!>(£ + h, T) — 1) dz(r)

sup | g^(t + h,T) — g®!(t + h,r) — g^(r, r) + g^?(T>T) I ^P> * + ^]

as &->• 0 +, for each t€ [a, 6). We have thus shown that

as A->- 0 +, for each te [a, 6). The argument may now be concluded, as in the proof of
Theorem 5, to show that xo( •) is a particular integral on [a, b] (i.e. a solution of (7) with
boundary conditions TJx{x0) = U2(x0) = 6). The general solution on [a, 6] is

x{t) = fgit
Jo

(17)

where {(j)^ <f>^ is the unique pair of complex-valued solutions of

</> + p<f> + q<f> = 0

such that TJ^j) = 8^. The uniqueness of this solution follows, using the same method
as before, by an application of Theorem 4. It is evident that the function x of (17)
assumes its values in the closed linear manifold spanned by the vectors y± and y2

together with the range of z.
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This, together with a similar argument for the cases 0 < t < a and b<t^T, completes
the proof of Theorem 6.

5. Examples. A collection of formal solutions of well-known equations with one-
point boundary conditions has been published by Moyal (14). The theorems of the
present paper show these solutions to be valid, in the sense explained in § 4, under the
conditions stated by Moyal. In this section we therefore confine ourselves to the two-
point boundary problem.

Example 1. Simple Brownian motion. The Langevin equation,
dx(t) + ax(t)dt = dz(t) (a>0), (18)

has already been discussed. It is convenient to depart slightly from the notation of
Theorem 6, via a change of origin and time scale, and to seek a solution of (18) on the
interval [ — T, T] which satisfies the boundary conditions

where 0 < t0 ^ T and y+, y_ e X.
If z( •) assumes its values in a weakly complete Banach space X and is strongly con-

tinuous and of Dunford bounded variation on [ — T, T], then there is a unique solution
given by

p. (l-e^>)(e--e-^) ip
J_(, 2asinha£0 a}u

K ' w

+ 2 sinhat {

In the usual discussions of (18), X is taken to be a Hilbert space of random variables
of finite variance and z a random function whose expectation is everywhere zero, whose
increments over disjoint intervals are orthogonal, and which satisfies

where <r is a real constant, for all real s and t. z is thus everywhere strongly continuous,
and it can also be shown that z is of Dunford bounded variation on every bounded
interval. Hence T can be chosen arbitrarily large, and it follows in this case that the
solution (20) is valid for all finite values of t. If y+ and y_ are taken to be random
variables of zero variance (i.e. random variables which are almost certainly constant),
we find that, when s = t + r with r (> 0) constant,

<?[x{t)]->0 as t^ao,

where &\_-~\ denotes the mathematical expectation, and

o
(x(s),x(t)) = e-a(s^(i(0,x(<))^-—e~XT as

Thus x(t) tends towards a process stationary to the second order with zero mean and
covariance a2

^s,t) = —e-'^.

Example 2. The Brownian oscillator has the following equation:
(0<x<w0). (21)
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This represents the linear motion of a particle of unit mass subject to the same random
impulse process as in Example 1 and also to the viscous drag 2ax(t) and the linear
restoring force o>lx(t).

When z( •) satisfies the conditions stated in Example 1, equation (21) with boundary
conditions (19) has the solution (when —T^t^T)

dz(r)
_<„ sin 2wt0

1 f<
- - e-««-T) s i n wit - T) dz{r)

e-at

where co = (to2. — a2)*.
In the special case of Hilbert space it can be shown, on making the same hypotheses

as in Example 1, that £[*(t)] ^ 0 as t -> oo,
2 / \

and (x{s),x(t))-> — e~aT (costor sinwr) asf^-oo.
*±ut \ CO J

We acknowledge with pleasure our indebtedness to Mr D. G. Kendall, who not only
read and criticized in detail the first draft of this paper but subsequently gave us
generous assistance and advice.
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