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The emission properties, structure and stability
of ionic liquid menisci undergoing electrically
assisted ion evaporation
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The properties and structure of electrically stressed ionic liquid menisci experiencing
ion evaporation are simulated using an electrohydrodynamic model with field-enhanced
thermionic emission in steady state for an axially symmetric geometry. Solutions are
explored as a function of the external background field, meniscus dimension, hydraulic
impedance and liquid temperature. Statically stable solutions for emitting menisci are
found to be constrained to a set of conditions: a minimum hydraulic impedance, a
maximum current output and a narrow range of background fields that maximizes at
menisci sizes of 0.5–3 μm in radius. Static stability is lost when the electric field adjacent
to the electrode that holds the meniscus corresponds to an electric pressure that exceeds
twice the surface tension stress of a sphere of the same size as the meniscus. Preliminary
investigations suggest this limit to be universal, therefore, independent of most ionic liquid
properties, reservoir pressure, hydraulic impedance or temperature and could explain the
experimentally observed bifurcation of a steady ion source into two or more emission sites.
Ohmic heating near the emission region increases the liquid temperature, which is found
to be important to accurately describe stability boundaries. Temperature increase does not
affect the current output when the hydraulic impedance is constant. This phenomenon
is thought to be due to an improved interface charge relaxation enhanced by the higher
electrical conductivity. Dissipated ohmic energy is mostly conducted to the electrode wall.
The higher thermal diffusivity of the wall versus the liquid, allows the ion source to run in
steady state without heating.
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1. Introduction

Electrospraying is a technique to extract charged particles from electrically conductive
liquid surfaces using strong electric fields. This technique can be implemented in various
configurations, but most commonly consists of an electrode in the form of a capillary tube,
through which fluid flows from a reservoir. A potential difference is then applied between
the liquid and a downstream electrode, thus polarizing the liquid exposed at the end of the
tube.

A fluid meniscus is formed in the cavity between the electrodes. The surface of the
meniscus adopts a geometrical shape that results from the balance of electric, surface
tension and hydrodynamic stresses. These forces depend on the applied potential, fluid
flow rate, electrode configuration and liquid properties.

Electrospray sources can operate in various emission regimes. The most widely known
is the cone-jet mode (Cloupeau & Prunet-Foch 1989), where the meniscus has a conical
shape near the contact line with the tube or Taylor cone (Taylor 1964), and transitions into
a fast-moving liquid jet close to the cone apex (Zeleny 1935). The jet surface is inherently
unstable and eventually breaks into droplets due to field-enhanced capillary instabilities
(Rayleigh 1892). The cone-jet mode has been widely studied in terms of its governing
physics and the resulting spray structure (Fernández de la Mora 2007; Gañán-Calvo &
Montanero 2009), from which scaling laws have been derived for metrics such as the jet
width, electric current output and the size and mass per unit charge of resulting droplets
(Fernández De La Mora & Loscertales 1994; Gañán-Calvo, Dávila & Barrero 1997).

When the fluid flow rate is reduced, the characteristic dimension that controls the size
of the jet and resulting droplets decreases, making the electric field, particularly in the
cone-jet transition region and the jet termination (Gamero-Castaño & Fernández De La
Mora 2000; Gamero-Castaño 2002), to become sufficiently large to trigger direct ion
evaporation from the charged interface (Iribarne 1976). The simultaneous ion evaporation
from a cone-jet electrospray defines a second operational mode, characterized by the
production of a mixed ion-droplet beam (Perel et al. 1969; Gamero-Castaño & Fernández
De La Mora 2000; Gamero-Castaño & Hruby 2001).

Under certain empirical conditions, namely a sufficiently high electric conductivity and
surface tension, a further reduction of the fluid flow rate results in the pure emission
of ions, characterized by the absence of any droplet current. While no direct visual
observation of a stable meniscus in this mode is available, it is likely that the jet is
quenched and ion emission occurs from a closed surface at the meniscus apex. According
to cone-jet scaling laws (Fernández De La Mora & Loscertales 1994), the fluid flow rate
corresponding to this regime is too low to support the formation of a stable jet.

The electrospray pure-ion evaporation mode is observed to exist only for a limited set of
liquids, namely liquid metals (Swanson 1983), concentrated sulfuric acid solutions (Perel
et al. 1969) and ionic liquids (Romero-Sanz et al. 2003; Lozano & Martínez-Sánchez
2005). In addition to its interesting phenomenology, the pure ionic regime has recently
gained significant attention for its potential applications in high-performance electric space
propulsion (Romero-Sanz, Aguirre De Carcer & Fernández De La Mora 2005; Legge &
Lozano 2011), focused ion beams for etching and deposition (Zorzos & Lozano 2008;
Pérez-Martínez et al. 2011; Takeuchi et al. 2013) or ion microscopy (Levi-Setti, Crow &
Wang 1985; Sugiyama & Sigesato 2004).

Ionic liquids are a type of molten salts that remain liquid at relatively low temperatures,
including room temperature and sometimes much lower. Unlike conventional simple salts,
ionic liquids are formed by complex molecular ions, which are poorly coordinated in part
due to their asymmetric nature, and, therefore, require significantly lower temperatures
to organize into a solid structure. However, also as in conventional salts, strong ionic
933 A43-2
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interactions between their molecules result in extraordinarily low vapour pressures,
allowing them to be exposed to a vacuum in their liquid state, practically without
evaporation.

Ionic liquid ion sources (ILIS) are of special interest because they can be made of
numerous combinations of organic molecules tailored to the specific requirements of each
application (Plechkova & Seddon 2008). Unlike liquid metal ion sources (LMIS), where
space charge plays a primordial role to enhance the stability of the meniscus by shielding
the effects of external electric perturbations (Gomer 1979), ILIS space charge effects are
less relevant, which makes the stability of the source more susceptible to the specific
properties of the working ionic liquid (Garoz et al. 2007), emitter geometry (Castro &
Fernández De La Mora 2009) and other perturbations.

Experimental challenges have hindered a clear understanding of ILIS, specially the role
of key operating parameters such as the external electric field (Krpoun & Shea 2008;
Pérez-Martínez & Lozano 2015), liquid temperature (Lozano & Martínez-Sánchez 2005),
and other physical and geometrical tip characteristics relevant to passive-type sources,
such as the size of the inlet pores (Courtney & Shea 2015), electrode shape or hydraulic
impedance of the feeding material (Castro & Fernández De La Mora 2009) and material
dielectric properties (Coffman et al. 2013). Among these challenges are the current lack
of non-destructive techniques to resolve the small scales of ILIS menisci (∼1–5 μm) to
interrogate the system in-situ, e.g. to capture the shape of the interface profile, the nature
of fluid interactions with the tip and the characteristics of internal creeping flow while
confirming that the source is operating in the pure ionic mode, for example, through
simultaneous mass spectrometry of the beam. Electron microscopy has been attempted
to observe the small menisci (Terhune et al. 2016), however, the electron beam interacts
strongly with the charged surface making these observations uncertain at best. The lack of
empirical evidence emphasizes the relevance of studying these liquid structures through
numerical simulations.

There is a large set of parameters that establish the operational characteristics of
electrospray sources. In many ways, empirical determination of these characteristics
becomes intractable given the vast number of parameter combinations that are possible.
This fact has motivated the development of computational models that aim to improve
the understanding of the fundamental physics of the electrospray emission process.
In the cone-jet literature, many simulation frameworks have been developed based on
the Taylor–Melcher leaky dielectric model (Saville 1997), which has been successful
in validating how emission properties and characteristic length scales are accurately
represented by universal scaling laws (Pantano, Gañán-Calvo & Barrero 1994; Higuera
2003; Collins et al. 2008; Herrada et al. 2012; Gamero-Castaño & Magnani 2019).

The Taylor–Melcher leaky dielectric model is valid in the limit when the electric charge
relaxation time is very short compared with the scale of the fluid hydrodynamic time,
and the charge is relaxed at the meniscus interface, therefore assuming quasi-neutrality in
the bulk fluid and fully conductive charge transport. This fact has shown to be not valid
for transient ultra-fast flows such as the onset of the electrospray first droplet ejection
(Gañán-Calvo et al. 2016; Pillai et al. 2016), where the hydrodynamic time scales become
of the order of the charge relaxation time and bulk charge convection becomes relevant.

Furthermore, the Taylor–Melcher leaky dielectric model has not been fully developed
to capture the onset of pure-ion evaporation from a closed interface. Ion evaporation is a
highly nonlinear activated process, which is usually modelled in a similar way to classical
field-enhanced thermionic emission where a critical electric field is required to reach a
state of substantial ion evaporation (Iribarne 1976).
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Interfacial charge transport is governed by this activated process and, therefore, the need
for special numerical techniques added to the standard Taylor–Melcher leaky dielectric
model to capture its behaviour. First efforts introducing surface charge transport for
pure ionic emission include the work of Higuera (2008), who simulated an ionic liquid
drop attached to a flat conducting plate. Equilibrium meniscus shapes were obtained by
sequentially solving the Laplace field equation outside and inside the droplet (no space
charge was considered) with the activated emission condition derived by Iribarne (1976).
Electric and surface tension stresses were placed as boundary conditions for a Stokes
flow solver. By using the interfacial velocity distributions coming from Stokes flow and a
second-order Runge–Kutta temporal integration method, Higuera propagated the interface
along time steps towards the equilibrium solution.

Higuera considered two cases. In the first case of constant meniscus volume, the author
was able to sketch out the concept of starting voltage seen in the I–V (current vs voltage)
traces, which is experimentally observed (Krpoun & Shea 2008). The current increase with
the electric field yielded a linear behaviour before it got unstable at a particular electric
field. The same scaling relationship is reported by a number of empirical studies and it is
believed to be due to the limits in conductive charge transport within ionic liquids (Lozano
& Martínez-Sánchez 2005; Legge & Lozano 2011; Courtney, Li & Lozano 2012).

In the second case, Higuera considered an external reservoir capable of pumping
fluid with pressure p0 towards the meniscus, and the pressure drop that occurs because
of friction of the fluid with the channel walls that connect the reservoir to the
external electrodes (hydraulic impedance). The non-dimensional total current emitted
vs non-dimensional field was shown to be very dependent on p0 and the hydraulic
impedance coefficient, yielding currents with abnormal dissimilar behaviour (up to three
orders of magnitude difference for relatively similar values of p0 and hydraulic impedance
coefficient).

Regardless of the limitations of Higuera’s model, the author was able to depict the
notion of a maximum external field, which suggests that purely ionic emission might only
be permissible within a narrow band of stability. The numerical variability for the current
in the second case as a function of p0 and the hydraulic impedance coefficient points out
the importance of upstream conditions in determining emission behaviour, which is in
agreement with experimental work.

Coffman (2016) updated Higuera’s model by removing volumetric constraints, by
including a substantial fraction of the liquid feeding system in the computational domain
and by introducing ohmic heating effects, which were predicted to play an important role
in the current output. Coffman’s free-volume generalization of the problem initialized by
Higuera took three main input parameters, namely the electric field downstream E0, a
characteristic meniscus size r0 and an hydraulic impedance coefficient CR. The author’s
model unveiled a set of a sharper family of emitting equilibrium shapes that sustained
pure-ion evaporation for high values of E0. These solutions exist under a specific set of
conditions, namely limited ranges of external E0 and meniscus dimension r0 (1 ∼ 5 μm).
These ranges would expand if sufficient hydraulic impedance is provided.

Coffman was able to reproduce the constant volume solutions of Higuera (no feeding
channel) and categorize them in a set of solutions of particularly small size (r0 ∼ 250 nm),
a low capillary number and high dielectric constant. This combination of parameters
yielded equilibrium solutions that were practically hydrostatic, and with a depleted
distribution of surface charge in such a way that the evaporation process was generally
decoupled from the balance between the surface tension and the electric stresses. This
extended Higuera’s solutions to a higher range of electric fields with stable solutions for
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relatively large meniscus sizes at sufficient hydraulic impedance, which were reported
to exist experimentally by Castro & Fernández De La Mora (2009) and Romero-Sanz
et al. (2003). Coffman reported an increase of the electric field stability range for higher
hydraulic impedance and an inverse proportionality relationship between the hydraulic
impedance and total emitted current. The trade-off between the stability increase and
the reduction in current throughput was found to be in agreement with the experimental
findings of Lozano & Martínez-Sánchez (2005).

Owing to the size of the problem (more than 10 independent non-dimensional
numbers and five variables), lack of computational power and the constraints imposed
by commercial solvers (mesh resolution limitations, no parallelization), Coffman et al.
(2016) only report a moderate exploration of the region of stability as a function of the
aforementioned input parameters, do not investigate ohmic heating effects on stability
and current emission, neglects volumetric charge effects due to temperature gradients and
couples the hydraulic impedance coefficient to the meniscus size.

The work presented here leverages the electrohydrodynamic (EHD) model with charge
evaporation by Coffman et al. (2016) and extends it to include bulk free charges originated
by variable conductivity coefficients, presenting the results for a hydraulic impedance
coefficient independent of the meniscus size. More importantly, this work provides a
detailed exploration of the stability regions and their interdependence on relevant metrics,
such as menisci contact angles with the flat electrode and total current emitted. Based
on these extensions, it appears that upper stability limits are a result of two competing
phenomena. The first one is given by the maximum current output that a static evaporating
meniscus can provide, while the second responds to a maximum electric pressure a
meniscus can withstand before no static solutions can be found. The bifurcation of a static
meniscus could be a possible outcome of this situation, which is reminiscent of what is
experimentally observed in this type of ion source. Numerical results suggest that this
presumed bifurcation may represent a universal limit for all working liquids experiencing
pure-ion emission with negligible space charge.

Results indicate that an accurate resolution of the aforementioned limits of stability
cannot be provided without considering energy effects. In this regard, simulations show
how heated menisci can typically access to a higher range of stable electric fields through
the increase of electrical conductivity near the emission region.

A detailed description of the numerical procedure is also provided to find the
equilibrium solutions and information regarding the influence of ohmic heating in relation
to the emission properties and stability boundaries. Section 2 presents the EHD model
adapted to tackle charge evaporation and the domain of simulation. Section 3 summarizes
the numerical details used to solve the equations of the model. Section 4 presents and
discusses the static stability of the equilibrium solutions found in the model. Finally, the
conclusions, future efforts and limitations are presented in § 5.

2. Description of the EHD model with electrically assisted charge evaporation

2.1. Geometrical domain
The geometry of the computational domain is similar to that considered in Coffman et al.
(2016) and is shown in figure 1. The geometry consists of an axially symmetric fluid
channel of radius r0 that terminates on a conducting flat electrode (ΓD). This electrode
is biased to a potential difference ΔV = −E0z0 with respect to another downstream flat
electrode (ΓU) located at a distance z0 from the fluid channel, where E0 is the downstream
electric field. The channel is filled with ionic liquid (Ω l). There is a vacuum in the volume
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Figure 1. Computational domain diagram, boundary nomenclatures and characteristic dimensions of the
problem.

between the bottom flat electrode and liquid surface and the downstream electrode (Ωv).
A fluid reservoir at pressure pr feeds liquid into the channel. This reservoir is not treated
computationally. The fluid enters the computational domain at ΓI , which is at a distance
zp from the downstream electrode, as if it were the outlet of a fully developed pipe flow
(Hagen–Poiseuille paraboloidal flow). The fluid meniscus (ΓM) separating the vacuum
and wetted regions is fixed (pinned) to the rim of the fluid channel and free to adopt any
value of θ . The vacuum region width is large enough (rp/r0 = zp/r0 = 20) to ensure the
downstream electric field remains undisturbed by the meniscus.

2.2. Physics of pure-ion evaporation
It is assumed in this work that pure-ion evaporation in high conductivity fluids like ionic
liquids can be described as an activated process of the form

jen = σkBT
h

exp
(−Ea

kBT

)
, (2.1)

where jen = j · n is the local current density emitted at the surface of the meniscus, Ea is
the activation energy, T is the liquid temperature, σ is the surface charge on ΓM and kB
and h are the Boltzmann and Planck constants, respectively (Iribarne 1976).
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• Solve system B3

Solve energy transport problem
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Update surface
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Figure 2. Numerical procedure diagram for obtaining an equilibrium surface for given ionic liquid
properties, Ê0, p̂r, Ẑ, R̂ and an initial guess Γ 0

M .

The activation energy can be considered to be a function of the free energy of solvation
for the extraction of a specific type of ion ΔG (of the order of 1–2 eV for many
solvated ions). In the presence of an electric field, it is also a function of the electric
field perpendicular to the meniscus interface in the vacuum Evn = E · n. This function
G(Evn) encompasses the effect of the electric field required to bring this ion from an
undisturbed region at infinity to the surface. Overall, the activation energy becomes
Ea = ΔG − G(Evn). An image charge argument can be brought into consideration when
analysing the dependence of G(Evn) with respect to the normal component of the external
electric field. In the limit of a planar interface geometry, this function can be approximated
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by

G(Evn) =
√

q3Evn
4πε0

, (2.2)

where q is the charge of the ion ejected and ε0 is the electric permittivity of vacuum.
When G(Evn) ∼ ΔG, the ion evaporation kinetics (2.1) increases to the level that charges
are emitted from the meniscus tip region. An estimation of the value of the critical electric
field at which this occurs is

E∗ = 4πε0 (ΔG)2

q3 . (2.3)

For typical values of ionic liquids, this critical electric field is of the order of 109 V m−1.
This value of electric field can be used to determine the characteristic size of the emission
region when neglecting hydrodynamic pressure. The electric pressure in the vicinity of
the emission region must balance the surface tension stress of the liquid surface, which is
given by a curvature (2/r∗) when the emission region is approximated as a spherical cap
of radius r∗. Explicitly, the balance of stresses in the normal direction should be

1
2
ε0Evn

2 − 1
2
ε0εrEl

n
2 = 2γ

r∗ , (2.4)

where El
n = E · n is the local electric field perpendicular to the meniscus surface in the

liquid. To a first approximation, the ionic liquid meniscus behaviour approaches that of
a perfect dielectric fluid where El

n ≈ Evn/εr. If the meniscus is emitting, it will adapt its
surface shape so that Evn ∼ E∗. Using these two assumptions, the balance of stresses in
(2.4) yields

1
2
ε0E∗2 εr − 1

εr
= 2γ

r∗ . (2.5)

For ionic liquids where ε � 1, the characteristic emission radius yields

r∗ = 4γ
ε0E∗2 , (2.6)

where r∗ is of the order of 50 nm.
The total current emitted in the surroundings of r∗ can be stated as

I∗ ≈ j∗A ≈ κEl
nA ≈ κE∗

εr
2πr∗2 = 32πκγ 2

ε2
0εrE∗3 , (2.7)

where j∗ ≈ κEl
n ≈ κE∗/εr is the characteristic current density in the emission region, κ

is the electrical conductivity and A = 2πr∗2
is a characteristic spherical cap area of the

emission region. For typical ILIS, I∗ is of the order of 50 to 500 nA. Mass conservation
allows us to give an approximate order of magnitude of the velocity in the bulk liquid and
near the emission region,

u∗ = j∗

ρ
q
m

, (2.8)

where ρ is the density of the ionic liquid and m the mass of the ions ejected. For ionic
liquids, u∗ is very small, of the order of 0.1 m s−1.
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Once they have been emitted, energy conservation can be used to approximate its
velocity in the vacuum ν∗

e right after travelling a distance r∗, therefore, still very close
to the meniscus emission region

1
2 mv∗2

e ≈ qΔΦ∗. (2.9)

In this case, ΔΦ∗ ≈ E∗r∗ is an approximation to the potential drop after this distance.
The Poisson equation in this region yields

∇ · (ε0E) = ρsc, (2.10)

which can be approximated to a first order to give an order magnitude of the field
increase due to space charge,

ε0
ΔE
r∗ ∼ ρsc ∼ j∗

v∗
e
. (2.11)

Equation (2.11) can be rearranged in relative terms to the critical electric field by using
(2.6), (2.7) and (2.9) as

ΔE
E∗ ∼ κ

ε0εr

r∗√
2q
m

E∗r∗
∼ τp

τe
∼
√√√√ I∗

16π
q
m
γ

κ

ε0εr
, (2.12)

where τp = r∗/
√
(2q/m)E∗r∗ is the characteristic passing time (time that an ion takes to

move past the emission region r∗), and τe = ε0εr/κ is the characteristic charge relaxation
time (time that an ion takes to move from the bulk liquid to the interface where it is ejected
due to thermoionic emission).

For materials such as ionic liquids (κ ∼ 1 S m−1), relatively long charge relaxation
times compared with the ion passing time in the emission region originate negligible
modifications of the electric field due to space charge, that is, ΔE/E∗ ∼ τp/τe is of the
order of 10−2 to 10−1. High conductivity liquids such as liquid metals have very short
charge relaxation times compared with ion passing times and space charge dominates the
magnitude of the electric fields near the emission region, thus yielding ΔE/E∗ of the order
of 100.

This work uses the surface charge approximation and does not resolve the Debye layer
along the meniscus interface. While the structure of the Debye layer is still not totally
established in ion evaporation conditions in ionic liquids (electrode-free), the characteristic
size of the electrical double layer (δ) in ionic liquids in contact with adjacent electrodes
is certainly better known. The Debye layer thickness is molecular in scale, at most δ ∼
10−9 m (Bazant, Storey & Kornyshev 2011; Gebbie et al. 2015; Smith, Lee & Perkin 2016).
This value is two orders of magnitude larger than the Debye length for ionic liquids when
computed with conventional formulations (δDL ∼ 10−11 m), although such sizes do not
make much physical sense given the relatively large size of ionic liquid molecules. In any
event, these values are at least an order of magnitude smaller than the r∗ ∼ 50 nm that
characterize the smallest liquid domain in this problem. Modifications to include Debye
layer effects would likely yield more accurate results, yet the surface charge approach
performed in this article predicts quite well the magnitude of the emitted current, matching
what is typically observed in experiments (I ∼ I∗), as seen in the following sections.
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2.3. Model equations
The conditions to generate an emitting free-volume ILIS emitting under the
aforementioned physical characteristic magnitudes in steady state (E∗, r∗, I∗) are highly
dependent on the geometrical characteristics of the electrodes, external field, upstream
fluid conditions and physical properties of the source working liquid.

The fluid comes from a propellant reservoir at pressure pr and enters the computational
domain at a pressure p = pr − Δp at the inlet ΓI , where the pressure drop Δp = QZ is
modelled using the standard Darcy law in which Q is the total fluid volumetric flow rate
and Z is the hydraulic impedance of the channel. The volumetric flow rate can be written
as a function of the emitted current I using the linear transformation Q = I/ρ(q/m). The
current emitted is an indirect result coming from the equilibrium solution shape of the
free-volume meniscus for a given electrode geometry, physical properties of the liquid,
E0, pr and Z.

The incompressible liquid flows along the liquid column (Ω l) towards the vicinity of
the emission region (r∗) when forced by the electric stresses acting on the surface of the
meniscus. Mass is emitted perpendicular to the surface of the meniscus ΓM in the form
of a continuous current density of ions jen = j · n. The conductivity is assumed to depend
linearly with temperature, i.e.

κ(T) = κ0 + κ ′(T − T0), (2.13)

where κ0 is the conductivity of the ionic liquid at a reference temperature T0 and κ ′ is a
constant sensitivity coefficient of the conductivity to temperature. As the space charge ρsc
for ILIS can be neglected to a first-order approximation, the electric stresses are calculated
by solving the Laplace equation in the vacuum domain and the Poisson equation and
charge conservation equations in the liquid domain. The Maxwell–Faraday equation yields
for both liquid and vacuum domains,

∇ × E = 0 in Ω l ∪ Ωv. (2.14)

Equation (2.14) is equivalent to writing the electric field as the derivative of an electric
potential E = −∇φ. The Laplace and Poisson equations in the vacuum and liquid domains
can be expressed as

∇ · (ε0E) = −ε0∇2φ = ρsc ≈ 0 in Ωv, (2.15)

∇ · (ε0εrE) = −ε0εr∇2φ = ρm in Ω l, (2.16)

where ρm is the charge density in the bulk fluid.
The Poisson equation on the interface domain can be expressed as

ε0Evn − ε0εrEl
n = σ on ΓM, (2.17)

where σ is the surface charge density along the meniscus interface ΓM . The charge
conservation equation is defined for the bulk liquid and the meniscus interface as

∇ · (κ(T)E + ρmu) = 0 in Ω l. (2.18)

Equation (2.18) contains two terms associated to the conductive ( jcond = κ(T)E) and
convective ( jconv = ρmu) bulk charge transport. The bulk convective charge transport term
can be neglected due to the fact that j∗ >> u∗ (2.8) for typical physical parameters of
ionic liquids, namely ρ ∼ O(103) kg m−3, q/m ∼ O(106)C kg−1. If that is the case, an
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expression can be obtained for ρm as a function of the electric field in Ω l by substituting
j = κ(T)E into the charge conservation equation (2.18) and subtracting (2.16). This yields

ρm = −ε0εr∇κ(T) · E
κ(T)

. (2.19)

Note from (2.19) that the breakup of quasi-neutrality is originated by spatial gradients in
conductivity. The dependency of the conductivity with temperature (2.13) combined with
temperature gradients in the bulk fluid originate this space charge.

Analogously, (2.20) is the charge conservation equation defined for the meniscus
interface, where the interfacial charge convection (left-hand side) balances the conductive
current density entering the interface, and the evaporated current density (first and second
terms on the right-hand side, respectively). The operator ∇S appearing in the convective
charge transport expression is the tangential surface gradient or the gradient of σ in the
direction tangent to ΓM (see Saville 1997),

u · ∇Sσ − σn · (n · ∇)u = κ (T)El
n − jen on ΓM. (2.20)

The rest of the boundary conditions for the electric problem are

φ = 0 on ΓI ∪ Γ l
D ∪ Γ vD,

φ = −E0z0 on ΓU,

−∇φ · n = 0 on Γ vL ∪ Γ l
L ∪ ΓR.

⎫⎪⎬⎪⎭ (2.21)

The dynamics of the fluid are described by the incompressible steady-state
Navier–Stokes equations,

∇ · u = 0 in Ω l, (2.22)

ρ (u · ∇)u = ∇ · 𝞽f + ρmE in Ω l, (2.23)

where ρ is the ionic liquid density, u is the fluid velocity and τf is the viscous fluid stress
tensor. The fluid stress tensor yields

𝞽f = −pI + 2μe = −pI + μ
(∇u + ∇uT) , (2.24)

where p is the bulk pressure, μ is the viscosity of the fluid and e = 1
2 (∇u + ∇uT) is

the strain rate tensor. It is observed that the product of fluid viscosity μ and electrical
conductivity is weakly dependent of temperature in ionic liquids (Zhang et al. 2006). That
is, κ(T)μ(T) = κ0μ0. Viscosity is modelled as

μ(T) = κ0μ0

κ0 + κ ′(T − T0)
(2.25)

to keep the extent of this relationship valid in these simulations, as in Coffman et al. (2016).
The balance of stresses in the normal and tangential direction to the interface ΓM are

respectively

n · (𝞽ve − 𝞽l
e − 𝞽f ) · n = γ∇ · n on ΓM, (2.26)

t · (𝞽ve − 𝞽l
e − 𝞽f ) · n = 0 on ΓM, (2.27)

where γ is the surface tension coefficient and 𝞽l
e, 𝞽ve are the electric stress tensors in the

liquid and vacuum, respectively.
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The fluid enters the computational domain as fully developed pipe flow at the inlet (ΓI),
namely constant pressure and negligible shear stress at all the channel cross-section,

n · 𝞽f · n = −p = − ( pr − Δp) on ΓI,

t · 𝞽f · n = 0 on ΓI,

}
(2.28)

where pr is the pressure at the reservoir and Δp = I/ρ(q/m)Z is the pressure drop caused
by the friction of the fluid with the walls. The fluid does not slip on the walls; thus,

u = 0 on Γ l
D. (2.29)

The mass conservation at the interface yields

jen = ρ
q
m

u · n on ΓM. (2.30)

The temperature in the meniscus is governed by the energy transport equation balancing
ohmic dissipation with conductive and convective transport of heat,

ρcpu · ∇T = κT∇2T + j · j
κ (T)

+Φ in Ω l, (2.31)

where cp is the heat capacity, κT is the thermal conductivity and Φ is the viscous
dissipation power per unit volume for the incompressible ionic liquid. The viscous
dissipation term takes the form

Φ = 2μe2
ij , (2.32)

where e2
ij indicates summation over all the elements of the strain rate tensor to the square

power.
The rest of the boundary conditions for the energy transport problem are

∇T · n = 0 on Γ l
L ∪ ΓM,

T = Tw on Γ l
D ∪ ΓI,

}
(2.33)

where Tw is the temperature on the wall of the fluid channel.
As a summary, tables 1 and 2 show the set of non-dimensional equations fulfilled in the

bulk and interface domains, respectively. Non-dimensional numbers are shown in table 3.
The reference parameters for the non-dimensionalization are the contact line radius (r0)
for the length scale; for the pressure and the stresses, the capillary pressure of a sphere
of such radius pc = 2γ /r0; for the electric fields, the corresponding Ec = √

4γ /r0ε0
whose electric pressure balances pc; the current density by jc = κ0Ec; velocities by
uc = jc/ρ(q/m); temperatures by the reference value T0 at which the conductivity κ equals
the reference conductivity κ0; viscosity is scaled by μ0 and surface and bulk volumetric
charges are scaled by σc = ε0Ec and ρmc = ε0Ec/r0, respectively.

These non-dimensional variable definitions are compiled for the reader in table 4. In
order to keep a better equation readability, it is useful to define the non-dimensional
conductivity K̂ = κ/κ0 and non-dimensional viscosity μ = μ/μ0 from (2.13) and (2.25)
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Equation Name Equation Domain

Vacuum Maxwell-Poisson ∇̂ · Ê = 0 Ωv

Liquid Maxwell-Poisson ∇̂ · (εrÊ) = ρ̂m Ω l

Maxwell-Faraday ∇̂ × Ê = 0 → Ê = −∇̂φ̂ Ω l ∪ Ωv

Charge conservation ∇̂ · ĵ = ∇̂ · (K̂Ê) = 0 Ω l

Mass conservation ∇̂ · û = 0 Ω l

Momentum conservation ε2
r We(û · ∇̂)û = ∇̂ ·

(
−p̂I + εrCaμ̂√

R̂
(∇̂û + ∇̂ûT)

)
+ 2ρ̂mÊ Ω l

Energy conservation
Gz

εrH
√

R̂
û · ∇̂T̂ = ∇̂2T̂

ε2
r HR̂

+ ( ĵ · ĵ)

K̂
+ CaKCεrμ̂

R̂2
ê2

ij Ω l

Table 1. Non-dimensionalized bulk equations.

Equation Name Equation

Charge conservation KCR̂−(3/2)(û · ∇̂Sσ̂ − σ̂n · (n · ∇̂)û) = K̂Êl
n − ĵen

Surface charge jump condition σ̂ = Êvn − εrÊl
n

Equality of tangential components of the electric field Êvt = Êl
t

Kinetic law for charge evaporation ĵen = σ̂ T̂
εrχ

exp
(

−ψ
T̂

(
1 − R̂−(1/4)

√
Êvn

))
Equilibrium of stresses in the tangential direction

εrCaμ̂√
R̂

t · (∇̂û + ∇̂ûT) · n = σ̂ Êt

Equilibrium of stresses in the normal direction
−p̂ + εrCaμ̂√

R̂
n · (∇̂û + ∇̂ûT) · n = Êv

2

n

−εrÊl2
n + (εr − 1)Ê2

t − 1
2 ∇̂ · n

Mass conservation of ions evaporated û · n = ĵen
Thermal insulation n · ∇̂T̂ = 0

Table 2. Non-dimensionalized equations fulfilled on the meniscus interface ΓM .

as

K̂ = 1 +Λ(T̂ − 1), (2.34)

μ̂ = 1

1 +Λ(T̂ − 1)
, (2.35)

where Λ = k′T0/κ0 is the non-dimensional sensitivity of the electric conductivity
to changes in temperature. While this non-dimensionalization has been mostly used
in the numerical procedure to keep consistency with existing literature (Coffman,
Martínez-Sánchez & Lozano 2019), it has been noted that dimensionless magnitudes
referencing the emission region (E0/E∗, I/I∗, r0/r∗) provide very useful physical
interpretations. Non-dimensionalization referencing the emission region can be easily
obtained by postprocessing solutions without modifying any physical result.
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We = ρu∗2r∗

2γ
. Weber number.

Ratio of characteristic inertial
fluid stresses to surface tension
stresses in the emission region.

Ca = μ0u∗

2γ
. Capillary number.

Ratio of viscous drag stresses
to surface tension stresses in
the emission region.

Λ = k′T0

κ0
. Non-dimensional

sensitivity of the electric
conductivity to changes in
temperature.

Kc = ε0εru∗

κ0r∗ . Ratio of the charge

relaxation time
(
ε0εr

κ0

)
to the

characteristic residence time of

liquid
(

r∗

u∗

)
in the meniscus

tip.

R̂ = r0

r∗ . Ratio between the radius
of the fluid channel r0 and the
characteristic emission size r∗.

χ = hκ0

kBT0ε0εr
. Ratio of the

kinetic emission time
(

h
kBT0

)
to the characteristic charge
relaxation time in the liquid(
ε0εr

κ0

)
.

ψ = ΔG
kBT0

. Ratio of solvation

energy ΔG and characteristic
thermal molecular energy kBT0.

Gz = ρcpu∗r∗

kT
. Graetz number.

The ratio of characteristic

convective
(
ρcpu∗T0

r∗

)
and

conductive
(

kT T0

r∗2

)
heat

transfer magnitudes.

H = (j∗r∗)2

κ0kT T0
. Ratio of the order

of magnitude of ohmic heat

dissipation

(
j∗2

κ0

)
and that of

the conductive heat transfer.

:

Table 3. Set of non-dimensional numbers.

Variable Name Dimensionless form

Length r̂ = r
r0

, ẑ = z
r0

Pressures and stresses p̂ = p
pc

, �̂� = 𝞽
pc

, pc = 2γ
r0

Electric fields Ê = E
Ec

, Ec =
√

4γ
ε0r0

Surface charge σ̂ = σ

σc
, σc = ε0Ec

Bulk charge ρ̂m = ρm

ρmc

, ρmc = ε0Ec

r0

Current density ĵ = j
jc

, jc = κ0Ec

Total emitted current Î = I
Ic

, Ic = jcr2
0

Velocity û = u
uc

, uc = jc

ρ
q
m

Temperature T̂ = T
T0

Table 4. Non-dimensional variables.
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A relevant non-dimensional number in this paper comes from the non-dimensional form
of the boundary conditions in (2.28). This yields

n · �̂�f · n = −
(

p̂r − ÎR̂5/2Ẑ
)

on ΓI,

t · �̂�f · n = 0 on ΓI,

⎫⎬⎭ (2.36)

where Î = ∫
ΓM

ĵ · n dΓM is the non-dimensional current, R̂ = r0/r∗ is the non-dimensional

contact line radius and Ẑ = Z/Z∗, Z∗ = 2γρ(q/m)/κ0E∗r∗3
is the non-dimensional value

of the hydraulic impedance Z.

3. Numerical procedure

3.1. Iterative solver description
The solver is initialized with a reasonable guess of the axisymmetric contour (Γ 0

M), which
is generally not in equilibrium. The initial guess is perturbed across several k iterations
with information obtained by solving equations in tables 1 and 2 sequentially. These
perturbations will approach the meniscus interface at each iteration (Γ k

M) towards its
equilibrium position. A detailed description of this iterative procedure is exposed in this
section.

In a single iteration, the EHD model is solved in three different steps, each of which
comprise the equations of a relevant physics, namely the electric, fluid and energy
transport problems. The electric part of the solver yields the non-dimensional potential
(φ̂k) in Ωv ∪ Ω l and the surface charge (σ̂ k) on ΓM at iteration k by solving (2.1),
(2.15), (2.16), (2.17), (2.18) (or equivalently (2.19), if neglecting bulk charge convection),
and (2.20) by assuming a known distribution of non-dimensional temperature T̂k−1 and
convective current density ĵk−1

conv from the previous iteration (left-hand side of (2.20)).
These distributions are interpolated from the previous iteration domain Ωk−1

l and Γ k−1
M to

Ωk
l and Γ k

M using standard linear mapping. An expression can be obtained for the surface
charge σ̂ k as a function of the potential derivatives by substituting (2.1) in (2.20). This
yields for iteration k,

σ̂ k = εrχ

T̂k−1
exp

ψ

T̂k−1

(
1 − R̂−(1/4)

√
−∇̂φ̂vk · n

)
·
(

K̂k−1
(
−∇̂φ̂lk · n

)
− ĵk−1

conv

)
, (3.1)

where ∇̂φ̂lk
, ∇̂φ̂vk

are the dimensionless potential gradients evaluated in Ω l and Ωv at
iteration k, respectively; and ĵk−1

conv is the non-dimensional left-hand side of (2.20) at the
previous iteration. Expression (3.1) can be used together with (2.15) and (2.16) to derive a
variational form solvable by the standard finite element methods (see annex B).

Alternatively, the non-dimensional surface charge jump condition (2.17) can be used to
write (3.1) as a function of the non-dimensional external electric field −∇̂φ̂vk

only,

σ̂ k =
K̂k−1

(
−∇̂φ̂vk · n

)
− εrĵk−1

conv

K̂k−1 + T̂k−1

χ
exp
( −ψ

T̂k−1

(
1 − R̂−(1/4)

√(
−∇̂φ̂vk · n

))) , (3.2)

where K̂k−1 is non-dimensional electric conductivity at the iteration k − 1, K̂k−1 = 1 +
Λ(T̂k−1 − 1). It is found in this work that form (3.2) is more stable, numerically.
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This EHD model goes beyond the standard Taylor–Melcher leaky dielectric formulation
in the inclusion of bulk volumetric charges ρm in the electric problem. These also become
part of the solution process, since they depend on conductivity gradients with temperature.
The interfacial charge σ and ρm are part of the same charge distribution, but σ appears as
an integrated value of this distribution across a differential disk-like volume of control
of the width of the Debye layer (Schnitzer & Yariv 2015; Mori & Young 2018). In the
Taylor–Melcher model, and in this model, the Poisson equation in the Debye layer region
is reduced to (2.17), and the charge conservation equation to (2.20). The surface charge
approximation is a very useful tool to avoid the calculation of the charge distribution in
the Debye layer, since at that region the charge density varies largely. Formally, the joint
calculation of ρm and σ could be interpreted as described in Appendix C.

From the solution of (B1), we obtain the non-dimensional electric stress tensors on ΓM

(τ̂ v
k

e , τ̂
lk

e ), the distribution of current density evaporated at the surface ĵe
k

n = ĵk · n, and the
total current evaporated (Îk = ∫

Γ k
M

ĵk · n dΓ k
M).

The fluid solver yields the non-dimensional velocity field (ûk), non-dimensional
pressure distribution (p̂k) along the surface of the meniscus and normal component of the
viscous stress tensor n · τ̂ f · n. It takes as inputs the difference of the tangential component
of the electric stress tensors in both Ωv and Ω l at iteration k: t · (τ̂ vk

e − τ̂ lk

e ) · n, the
non-dimensional distribution of current density ĵek

n on Γ k
M , and T̂k−1. The fluid problem

solves the Navier–Stokes equations subject to the inlet and wall boundary conditions in
(2.28) and (2.29). The boundary conditions for the Navier–Stokes flow along ΓM are
Neumann for the tangential direction (2.27) and Dirichlet for the normal direction (2.30).
This mixed boundary condition on irregular domains is enforced weakly using Lagrange
multipliers as in Verfürth (1986). Details of the weak form used are shown in § B3.

The energy transport solver yields the dimensionless temperature distribution along the
computational domain (T̂k). The temperature plays a substantial role in both the fluid
and electric problems, as the electrical conductivity (κ) and fluid viscosity (μ) are strong
functions of the temperature. It takes the non-dimensional current density (ĵk) and velocity
(ûk) in Ω l, as input. The variational form used can be seen in § B5.

Lastly, the solver uses the previously calculated tensor distributions and current to
guess another Γ k

M that is closer to the equilibrium condition. At this stage of the solving
process, a guess of the meniscus surface profile Γ k

M has been considered. It is assumed
that the surface is in equilibrium in the tangential direction (2.27), and the total evaporated
current density (2.1) is directly proportional to the normal velocity distribution along Γ k

M
through a mass-to-charge scaling constant (2.30). The equilibrium of stresses in the normal
direction (2.26) has yet to be enforced. Therefore, for a given surface Γ k

M , the distribution
of stresses in the normal direction along ΓM will not be 0, but a distribution of residuals
Rk = [rk

1, rk
2, . . . , rk

i , . . . , rk
NR

], where NR is the total number of points in the discretization
of Γ k

M . Equation (2.26) at iteration k yields

Rk = n · (�̂�vk

e − �̂�lk

e − �̂�k
f ) · n − 1

2∇̂ · nk. (3.3)

The objective of the problem is to drive a representative scalar metric of the residue to 0,
‖Rk‖ → 0 for increasing values of k. This process is described next.

3.2. Stopping criterion
In a problem of this nature, it is essential to define the numerical criterion to terminate the
simulations when no statically stable solutions can be found.
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3.2.1. Stopping condition
The stability condition used in this work is the same as that introduced by Coffman (2016).
Let us define the relative residual Rk = [αk

1, α
k
2, . . . , α

k
i , . . . , α

k
NR

], where

αk
i = max

(
|rk

i |
|(n · (�̂�vk

e − �̂�lk
e
) · n)i|

,
|rk

i |
|(n · �̂�k

f · n)i|
,

|rk
i |

|(1
2∇̂ · n)i|

)
. (3.4)

That is, αk
i is the maximum absolute relative magnitude of the residue at point i with

respect to the three relevant stresses (electric, fluid and surface tension) at iteration k.
Static stability is assumed if

max
i
αk

i ≤ ε (3.5)

The solver stops at the first k when condition (3.5) is met. Similar to Coffman (2016),
a value of ε = 0.01 is used here. A very slight deviation of the external conditions (e.g,
ΔÊ0 = 0.01, ΔR̂ = 0.001) will originate a large variation of the relative residual for initial
in-equilibrium surface shapes (of the order of αk

i ∼ O(1)). For this reason, ε = 0.01 leads
to a reasonable stopping condition for static equilibrium solutions.

3.2.2. Stopping criteria for no solutions found
A different stopping criterion is required when a maximum number of iterations is reached
without convergence, that is, k > kmax and maxi α

kmax
i > ε. A value of kmax = 1500 is used

here.
It is useful to define the signed metric A(Rk),

A(Rk) = s max
i
αk

i , (3.6)

where the sign s is 1 if the electric stress is higher than the sum of surface tension and
fluid stress, and -1 otherwise. Once the maximum iterations are reached, the metric A(Rk)

along k behaves in two ways.

(i) The signed metric A(Rk) oscillates along k between a positive and negative number.
The amplitude of the oscillations is static or grows with k. Each k that leads
to a maximum or minimum of A(Rk) shares a very similar associated meniscus
equilibrium shape. This behaviour often happens on the limits of stability for small
Ẑ and electric fields smaller than Êmax (see section 4 for the definition and discussion
of Êmax).

(ii) The signed metric A(Rk) is static and does not change when k increases. This may
suggest the existence of a solution that is marginally stable, thus, very close to the
boundaries of instability. This situation happens often for electric fields closer to
Êmax at sufficient Ẑ prior to the disappearance of the conical shape and at the lower
end field limit Ê0 = 0.513 when the electrified droplet becomes unstable preceding
the onset of emission. Near these regions, the equilibrium solutions present turning
points, or limit points at which a family of solutions turns back on itself. This fact
is a physical symptom of instability, as discussed in the literature of instability for
electrified droplets (Basaran & Scriven 1989a,b, 1990; Basaran & Wohlhuter 1992).
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3.3. Surface update
The methodology used to update the surface at each iteration is similar to that in Coffman
(2016). Let ŷk(r̂) be a parametrization of the meniscus interface Γ k

M as a function of r̂.
Let ŷk′

, ŷk′′
, . . . be the successive derivatives with respect to r̂, (e.g, ŷk′ = dŷ/dr̂, . . .).

The normal vector can be set as

nk = 1√
1 + ŷk′2

(−ŷk′
, 1). (3.7)

For a given ŷk, (3.8) can be used to write an expression of the non-dimensional surface
tension stress τ̂ k

st along the meniscus,

τ̂ k
st = 1

2
∇̂ · nk = 1

2
(1 + ŷk′2

)ŷk′ + rŷk′′

r̂(1 + ŷk′2
)3/2

. (3.8)

Conversely, for a given τ̂ k
st, the shape ŷk′

can be found that satisfies

r̂(1 + ŷk′2
)3/2τ̂ k

st − 1
2(1 + ŷk′2

)ŷk′ − 1
2 r̂ŷk′′ = 0. (3.9)

The surface is relaxed towards equilibrium iteratively by taking a fraction of the residue
distribution at past iterations to update the surface tension at each iteration, then integrate
(3.9) to find ŷk. Two alternatives for the surface update are

τ̂ k+1
st = τ̂ k

st + βRk, (3.10)

τ̂ k+1
st = τ̂ k

st + βRk − (Rk − Rk−1) · Rk

‖Rk − Rk−1‖2
(τ̂ k

st + βRk − τ̂ k−1
st − βRk−1). (3.11)

Equation (3.10) is a standard numerical relaxation scheme, with the β coefficient being
a numerical relaxation parameter (β ∈ (0, 1]). Equation (3.11) includes information from
the residual of past iterations (up to k − 1) and can originate a higher-order convergence.
This method is known as the Anderson extrapolation method (Anderson 1965). Intuitively,
the closer β is to unity, the more information will be added to the surface update from the
current iteration and the faster convergence will be. However, because of the characteristic
nonlinearity of the problem, β cannot be chosen arbitrarily close to unity. This nonlinearity
is accentuated at large meniscus radius R̂, for which the numerical solver is very prone to
fail for β ∼ 1 due to current runaway (Gallud 2019). For this reason, conservative values
of β are selected in the range β = 0.01 ∼ 0.1, depending on R̂. With the value τ̂ k+1

st , the
integration of (3.9) can be performed considering the axisymmetric boundary condition
and the pinning of the meniscus to the rim of the fluid channel,

ŷk+1′ = 0 on r̂ = 0,

ŷk+1 = 0 on r̂ = 1.

}
(3.12)

After obtaining the new interface profile ŷk+1, the stresses are recomputed by iterating
on the three problems described in this section.
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4. Results and discussion

4.1. Ionic liquid physical properties and model inputs
The results presented in this section follow the same characteristic non-dimensional
numbers based on the properties of standard ionic liquids as defined in
Coffman et al. (2019). These properties are similar to those of EMI − BF4, which is a
widely used ionic liquid in the literature of pure-ion evaporation (Romero-Sanz et al. 2003;
Legge & Lozano 2011).

The physical properties are κ0 = 1 S m−1, κ ′ = 0.04 S m−1 K−1, q/m = 106 C kg−1,
μ0 = 0.037 Pa s, κT = 0.2 W m−1 K−1, cp = 1500 J kg−1 K−1, γ = 0.05 N m−1, ΔG =
1 eV, ρ = 103 kg m−3 and εr = 10. These properties determine most of the non-
dimensional parameters shown in tables 1 and 2, namely Λ = 12, ψ = 38.6, χ = 1.81 ×
10−3, We = 2.26 × 10−6, Ca = 0.026, Gz = 0.024, Kc = 1.32 × 10−4 and H = 0.176.

The reported results contain variations of parameters that are mostly external to the
physical properties of the working ionic liquid. The space of independent variables that
are numerically explored are Ê0, R̂ and Ẑ. The reservoir pressure is taken to be p̂r = 0,
since this is the most common case for operation of passively fed emitters.

4.2. Diagram of the regions of static stability
A more detailed version of the stability diagram presented in Coffman (2016) is presented
in this section. In particular, this analysis extends the range of exploration of solutions
from an interval of non-dimensional contact line radius R̂ ∈ [10, 110] in Coffman (2016)
to R̂ ∈ [6, 210].

Figure 3 shows the combinations of non-dimensional external electric field Ê0 and
contact line radius R̂ that yield statically stable menisci. Static equilibrium solutions are
found at a given R̂ for combinations of electric fields outside the black stripped region
above Êmax and below the solid grey lines at their correspondent value of non-dimensional
hydraulic impedance coefficient. According to the characteristics of the equilibrium
solutions, the stability diagram is divided in four regions.

Region I spans the set of non-dimensional contact line radii above the critical R̂crit ≈ 16
and external fields below Ê0 ≈ 0.513. The region I is characterized by a lack of meaningful
current output. This family of hyperboloid-like equilibrium solutions is well known in the
literature (Basaran & Scriven 1989a) and out of the scope of discussion in this paper.
These non-emitting equilibrium shapes experience turning solutions when going past the
field Ê0 = 0.513. As mentioned in § 3.2.2, solutions turn back on themselves as a symptom
of imminent instability at turning points.

The existence of a critical radius below which no turning point exists (R̂crit) suggests
that the disparity between r∗ and r0 is important for stability. On the limit where r0 >>

r∗ (high R̂) the non-dimensional critical electric field scales as E∗/Ec = Ê∗ ∼ R̂1/2 (see
the non-dimensional kinetic law for charge evaporation in table 2). The invariance of the
turning point at Ê0 = 0.513 at high R̂ confirms that the associated instability is not driven
by the activated emission process, but by standard Rayleigh instability. In other words,
if the evaporation process were significant in this loss of stability, the maximum local
electric field in the vicinity of the meniscus tip would be of the order of the critical field.
Instead, equilibrium surfaces on the verge of the turning point instability ( Ê0 < 0.513) are
observed to be mostly independent of R̂ and Ẑ, and the local electric fields at the menisci
tip are more than one order of magnitude smaller than Ê∗.
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Ẑ = 0.0031
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Figure 3. Map of the static stability boundaries as a function of the non-dimensional external electric field Ê0
and non-dimensional contact line radius R̂ for seven hydraulic impedance coefficients. Static solutions exist at
a given R̂ for external electric fields smaller than the limit boundary for the aforementioned impedance. Dashed
lines show the regions of the stability diagram that share the same contact line angle θ with the electrode for
Ẑ = 0.0839. Contact angle values can be extrapolated to the other hydraulic impedance coefficients.

The lack of ion emission precludes any ion transport and εrĵconv/K̂ can also be
neglected. The surface charge expression in (3.2) can therefore be reduced to σ̂ = −∇̂φ̂v ·
n. The latter expression indicates the surface charge can be considered to be fully relaxed,
and the meniscus behaves like a conductor.

Beroz, Hart & Bush (2019) showed that the stability of a conducting axisymmetric
droplet exposed to an external electric field and pinned on a conducting surface follows a
scaling law of the form

r3
0

V
>

πε0E2
0

2γ
r0

, (4.1)

where r0 is the pinning radius and V is the volume of the droplet. This scaling law predicts
the stability limits obtained numerically by Basaran & Scriven (1990) for the cases of
negligible hydrostatic pressure inside the droplet.

Using the reference magnitudes, the non-dimensional form of (4.1) becomes

1

V̂
> 2πÊ2

0. (4.2)

The non-dimensional volume in the region of non-dimensional electric fields close to
the lower turning point is shown in figure 4. It is observed that increasing the electric field
yields equilibrium shapes of higher volume. The convergence criteria (3.5) was reached
for non-dimensional electric fields up to Ê0 = 0.513. As seen in figure 4 for electric fields
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Figure 4. Non-dimensional volume of the equilibrium shapes in region I of the stability diagram. Comparison
with the Basaran–Beroz limit (Beroz et al. 2019) in green. Solutions for R̂ greater than R̂crit are shown in red,
whereas solutions at smaller R̂ are shown in dashed blue. The volume of the shapes at selected iterations for the
first unstable Ê0 are shown in the black markers, where the volume can be seen to grow exponentially before
breaking the numerical procedure.

slightly higher than this limit, and contact line radii higher than R̂crit, the volume of the
shapes along the successive iterations approaches the Basaran–Beroz stability boundary
until the volume is large enough to trigger the Rayleigh instability. It is worth mentioning
that the derivative of the volume with respect to the external field becomes singular at the
instability, as expected by its turning point nature.

Region II spans non-dimensional contact line radii greater than R̂crit ≈ 16 and fields
greater than Ê0 ≈ 0.485. These high electric field solutions are characterized by menisci
with substantial charge evaporation.

Figure 3 shows the combination of electric fields and contact radius R̂ where statically
stable emitting solutions were found in region II for seven different non-dimensional
hydraulic impedance coefficients (Ẑ). Upper limits for increasing values of Ẑ are shown
in brighter grey-shaded hard lines. As shown in figure 3, for a given R̂, the range of
electric fields where static solutions were found increases for higher hydraulic impedance
coefficients until a maximum range ending at Êmax ≈ 1.414 ∼ √

2. The upper limit of
stability corresponding to Ẑ >= 0.0305 collapses at Ê0 = Êmax for R̂ > R̂crit.
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Figure 3 also shows the meniscus contact angle isolines with the downside electrode
Γ vD , θ , for the different combinations of R̂ and Ê0. Simulations show that θ is very weakly
dependent on the Ẑ and R̂ in this region. Contact angle isolines in figure 3 correspond to
Ẑ = 0.0839 and they could be extrapolated to other values of Ẑ within either region of
static stability. The dependence of the contact angle on the external electric field Ê0 is
distinct enough that solutions in region II can be classified further in two subregions.

Subregion II.a is limited to electric fields below Ê0 ≈ 1.1 and characterized by
equilibrium shapes that increment their contact line angle θ and decrease their volume
for increasing values of the electric field. Solutions within this moderate field range were
explored by Coffman et al. (2016) and showed a sharper interface than the hyperboloidal
menisci in region I. Prototypical interface geometries can be seen in figure 5(b). These
static menisci have a characteristic emission region of non-dimensional size r∗/r0 = R̂−1,
where the non-dimensional electric fields are of the order of the critical field Ê∗ ∼ R̂1/2.
The surface charge on these menisci is not relaxed and the temperature is around 3 %–5 %
higher than in the bulk ionic liquid due to heating by ohmic dissipation (Coffman et al.
2019). Figure 6 includes the flow structure of a prototypical equilibrium interface in
subregion II.a. Streamlines show the recirculation cells occupying a large volume of the
meniscus. This could be related to the low characteristic flow rates of menisci in the
pure-ion mode (Herrada et al. 2012). The emission region is amplified on the top of
figure 6, where electric fields of the order of the E∗ are found.

The balance of stresses in the normal direction of a prototypical equilibrium shape in
subregion II.a are shown in figure 7. Equilibrium shapes in this region look similar to
a flattened Taylor cone, with a closed small region at the apex, where the meniscus is
emitting. Near the emitting region, the curvature is high enough to sustain the majority
of the electric stress needed for pure-ion evaporation. Near the contact line region, the
meniscus does not emit. In this regard, the velocity field is negligible and the pressure is
mostly that from the boundary conditions in (2.36), or the one originated due to friction of
the fluid with the walls upstream. In this region near the contact line, the meniscus tends
to a planar geometry, therefore the electric stress is compensated mostly by the hydrostatic
pressure.

Regions I and II.a overlap in a narrow range of electric fields between Ê0 ∼ 0.485 and
the turning point in Ê0 ∼ 0.513 (green zone in figure 3). Whether the solver converges
to an emitting equilibrium shape of subregion II.a or non-emitting equilibrium shape in
region I depends on the initial guess provided to the solver. Figure 8 shows emitting (II.a)
and non-emitting (I) solutions existing for the same external field Ê0 = 0.49. The current
diminishes when the electric field is decreased with a starting solution from the emitting
subregion II.a. The current being very small at these field magnitudes undermines the
relative importance of the hydrodynamic stress with respect to the surface tension and
the electric stress. In this sense, the equilibrium shapes tend to resemble the canonical
Taylor solution with negligible static pressure. The exact Taylor conical shape cannot be
recovered with this setting due to the planar electrode geometry sustaining the meniscus
and the hydrostatic suction pressure originated by the small but non-zero current flow. This
hysteresis behaviour is well documented experimentally for LMIS (Forbes 1997), where
the extinction voltage is typically smaller than the one needed for the onset of pure-ion
emission.

The turning point nature of the instability when approaching subregion II.a from
non-emitting interfaces in region I, suggests the existence of a dynamic mechanism with
mass ejection that cannot be described by the time-independent meniscus model with
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Figure 5. Characteristic equilibrium shapes of representative regions identified in the stability diagram.
Equilibrium shapes in region I are depicted in (a) with Ẑ = 0.0839 and R̂ = 43. Region II.a characteristic
equilibrium shapes are in (b) with Ẑ = 0.0147 in solid and Ẑ = 0.147 in dotted lines for R̂ = 54. Region II.b
contains shapes depicted in (c) for Ẑ = 0.1586, R̂ = 54. Shapes along iterations for a combination of Ê0 = 1.43,
R̂ = 32 and Ẑ = 0.1586 in region III are shown in (d). Equilibrium was not reached in the latter simulation.

a closed interface presented in this paper. It is difficult to speculate what the emission
outcome would be in this transition. An option for this could be droplet breakup that
might be preceded by both cone-jet formation and ion evaporation. If such a cone jet were
to exist in this region, it would be reasonable to infer a substantial deviation of its interface
shape from the Taylor solution due to the high hydraulic impedance of capillaries feeding
pure-ion menisci. This shape would change rapidly, resembling a ‘suctioned’ Taylor cone
with a volume that would decrease at higher values of the electric field until the field was
high enough to sustain steady ion emission.

The reduction of meniscus volume in subregion II.a due to the increase of the external
field is accompanied with a rise in the contact angle θ with the downside electrode. It is
known that electric fields could exhibit unbounded singular behaviours near sharp corners
when these corners are greater than 180◦ (Li & Lu 2000). The corner sharpens as the values
of θ reach approximately 185◦–186◦ and the equilibrium geometric shapes augment their
curvature to compensate for the stronger electric stress that appears near the singularity.
This curvature increase manifests as a small bump appearing near the contact line for
external fields higher than Ê0 ≈ 1.1. This point marks the beginning of subregion II.b.

Subregion II.b is only accessible when sufficient hydraulic impedance is provided.
Equilibrium shapes contain this cylindrical bump near the contact line as seen in
figure 5(c). The shapes also reduce their contact line θ and raise their bump amplitude
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Figure 6. Prototypical pure-ion menisci internal flow structure. Operational space parameters used in this
figure correspond to R̂ = 43, Ê0 = 0.7, Ẑ = 0.0839, p̂r = 0. The non-dimensional magnitude of the electric
field is shown on the left. Field intensity is of the order of E∗ near the tip, where the evaporating fluid velocity
streamlines end. The effect of ohmic heating transport near the tip is represented in the temperature plot on the
right side subfigure.

for increasing values of the external electric field Ê0. The cylindrical bump does not emit
any charge for the span of electric fields simulated in this region.

It should be emphasized that the model presented in this paper is axisymmetric
and static. This prevents a determination of the effects of possible three-dimensional
disturbances on the surface of this cylindrical bump that resembles a toroid. Disturbances
like this originate capillary pinch-off instabilities and the eventual breakup of similar
toroidal interfaces into smaller menisci (Mehrabian & Feng 2013; Fragkopoulos &
Fernández-Nieves 2017). The determination of the dynamic stability of the equilibrium
shapes in this subregion is beyond the scope of this study. However, it is certainly relevant
to fully understand the structure and behaviour of these menisci and should be studied in
detail.

Region II terminates at external electric fields Ê0 higher than Êmax ≈ √
2, when

sufficient hydraulic impedance is provided. In dimensional form, the previous statement
can be recast as a function of a reference electric pressure. It is helpful to define such
pressure as a function of the electric field downstream from the emission region. In the
case of a planar electrode such as the one studied in this paper, this reference field is taken
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Figure 7. Plot (a) shows the distribution of dimensionless normal stresses for a prototypical equilibrium shape
in region II.a (Ê0 = 0.71, R̂ = 64.2, Ẑ = 0.0305). Values at r̂ = 0 correspond to the stresses onto the meniscus
axis of symmetry. Values at r̂ = 1 correspond to stresses onto the meniscus contact line with the electrode.
Electric stresses in red, surface tension in green, hydrodynamic fluid stresses in blue. The corresponding
equilibrium shape is shown in (b). The relative residual used as a criterion of convergence is shown in (c).
The absolute residual is shown in (d).
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Figure 8. Equilibrium shapes in the hysteresis region for the emitting case (solid red) and non-emitting case
(dotted red). Taylor cone geometry and characteristic emitting meniscus at higher stable fields are shown for
cross-reference.

as the external field E0,

1
2
ε0E2

0 > 2
(

2γ
r0

)
. (4.3)
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Ẑ = 0.048
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Figure 9. Aspect ratio of equilibrium shapes in region II at different hydraulic impedances.

It is then seen that the pure-ion emission cannot be sustained by a meniscus of pinning
radius r0 when the reference electric pressure is higher than approximately two times the
surface tension stress of a liquid sphere of the same radius.

When Ê0 > Êmax, menisci in region III exhibit a sharp transition towards instability
depicted in figure 5(d): the cylindrical contact line bump grows to such an extent that
the electric field on its crest becomes of the order of the critical field, while the central
emission region protuberance shrinks progressively until it disappears. At this point, the
cylindrical bump transforms into an emitting corona with a significantly larger emission
area, thus producing a dramatic increase in the current output that, in turn, produces a large
pressure drop through the feeding channel. This pressure drop induces a sudden suction
on the meniscus interface near the axis of symmetry, quickly terminating the simulation
as the numerical procedure cannot track these changes.

At Ê0 = Êmax point, the equilibrium interfaces turn on themselves when increasing the
values of the electric field in a similar way described in Basaran & Wohlhuter (1992) for
the electrified menisci in region I. This can be seen in figure 9, where the aspect ratio of
the equilibrium shapes obtained exhibits this singularity.

The scaling in (4.3) appears to be independent of all parameters of the operational space
considered in this study, namely p̂r, Ẑ and R̂ (when R̂ > R̂crit) and cannot be described
in detail with the axisymmetric and static models implemented for the same dynamic
instability reasons mentioned previously.

Regardless, reporting the existence of this sharp transition could be informative for
future investigations of menisci bifurcation phenomena that are known to exist in
the operation of pure-ion emission sources. Bifurcation is observed when the applied
voltage increases over a critical value that depends on source geometry and liquid
properties (Pérez-Martínez & Lozano 2015). Such critical voltage would correspond to a
non-dimensional field that, according to the results presented here, cannot exceed the upper
bound field value of the stability range. This is an important empirical validation point that
requires more in-depth work with versions of this model based on source geometries and
domains similar to those used in experiments.

Figure 10(a) shows the stress distributions along the meniscus interface for Ê0 = 1.41,
thus, very close to the instability boundary (4.3). Solutions for three different reservoir
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Figure 10. Plot (a) shows non-dimensional normal stresses and equilibrium shapes for solutions at Ê0 = 1.41,
R̂ = 43, Ẑ = 0.8394 as a function of the non-dimensional radial coordinate r̂. Stress solutions with three
different reservoir pressures are shown in dashed, solid and dotted lines corresponding to p̂r = 1, 0 and −1,
respectively. Electric stress distribution in red, surface tension stress in green and fluid hydrodynamic stress in
blue. Plot (b) shows corresponding equilibrium shapes. The relative and absolute residuals are shown in (c,d),
respectively.

pressures p̂r = −1, 0 and 1 are shown in dotted, solid and dashed lines, respectively. The
non-dimensional currents emitted are Î = 0.920 × 10−4, 1.971 × 10−4 and 2.978 × 10−4,
respectively (if non-dimensionalized by the characteristic emitted current, I/I∗ =
0.0814, 0.175 and 0.264, respectively). Differences in the stress distributions are
concentrated in the vicinity of the emission region, where electric fields need to increase
to accommodate higher current outputs at higher reservoir pressures. When emission is
irrelevant, such as in the vicinity of the contact line where the bump forms (figure 10b)
and σ̂ is relaxed, stress distributions are a function of the external electric field only and
directly independent from any parameter resultant from the emission. At this location, the
only stress that would contain direct information from the emission region is the fluid
hydrodynamic stress, where the local pressure equals that from the drop in the channel,
thus, proportional to the total emitted current. However, simulations show that this pressure
near the contact line p̂ = p̂r − ÎR̂5/2Ẑ is mostly invariant from p̂r, Ẑ, T̂ on Γ l

D, ψ and εr,
therefore, mostly a function of Ê0. This results in a set of equations that locally resemble
the equilibrium of a perfect non-emitting conductor subject to an upstream suction stress,
but with a sole degree of freedom or Ê0. This fact confers the limit observed in (4.3) some
sense of universality and independence from ionic liquid physical properties, other than γ .

In cases where the hydraulic impedance is not sufficiently high, statically unstable
solutions appear at values below Êmax. This can be seen in figure 11. The diagram is similar
to the one shown in figure 3, but instead of using the nominal non-dimensionalization used
in this paper, results in this analysis are presented with reference values of the field relating
to the emission region (E∗). Recall that the critical electric field depends exclusively on
the ionic liquid properties and not on the source geometry, whereas nominal field Ec is
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Figure 11. Boundaries of static stability as a function of the external field non-dimensionalized by the
critical field. Boundaries are shown for different dimensionless hydraulic impedance values Ẑ. The minimum
non-dimensional impedance for the existence of emitting solutions in the range of R̂ displayed in the figure is
shown in black. Limits for increasing values of Ẑ are shown in grey. Extrapolated values are shown in dotted
lines. The hypothetical bifurcation point is shown in green. For the analysed impedance values greater than
Ẑ = 0.0096, the maximum current limit crosses the presumable bifurcation limit at R̂cross ≈ 180, 75, 40 and 25
for Ẑ = 0.0147, 0.0302, 0.0514 and 0.0833, respectively.

a function of the non-dimensional contact line radius r0. For this reason, this alternative
non-dimensionalization is more useful for relating simulation results to experimental data.
In this non-dimensionalization the maximum electric pressure limit decays with the field
(green line), instead of being a vertical line.

First, the need of a minimum hydraulic impedance of Ẑ ≈ 0.0031 for static solutions to
exist can be noticed for any of the R̂ in the simulated range. The corresponding dimensional
impedance is approximately Z = 4.32 × 1018 Pa m−3 s−1 for the ionic liquid EMI-BF4.
This impedance is very close to that observed by Romero-Sanz et al. (2003) for achieving
the pure-ion regime in capillary tubes of similar diameter as those reported here. The value
of this impedance was predicted to be Z ≈ 4 × 1018 Pa m−3 s−1 by Pérez-Martínez (2016).
Second, it can be seen that the stability ranges are widened in figure 11 for increasing
values of Ẑ.

Figure 12 shows the isocurrent lines at three values of Ẑ. The limits of static stability
for each Ẑ are also shown with bolder lines. Note how the increase of the stability
boundaries is at the expense of a lower current output at fixed E0/E∗ and R̂. This trade-off
between current output and meniscus stability is well known in the experimental pure-ion
evaporation literature (Castro et al. 2006; Castro & Fernández De La Mora 2009; Hill et al.
2014).
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Figure 12. Dimensionless isocurrent maps as a function of the contact line radius and external field referenced
to r∗ and E∗, respectively. Results shown for three different values of hydraulic impedance. Hypothetical
bifurcation point is shown in green. Hypothetical maximum current limit is shown in hard black for each
of the Ẑ displayed. Extrapolations are shown dotted.

Figure 5(b) shows how equilibrium shapes adapt to this current reduction when
changing the hydraulic impedance at fixed R̂ and Ê0. For the higher impedance case (dotted
line), equilibrium shapes are smoother in the neighbourhood of the emission region. In this
case, local electric fields are less intense because of the lower current throughput demand.
Therefore, surface tension can balance the electric stress with larger radii of curvature.
Equilibrium shapes near the region close to the contact line are practically invariant with
the increase of Ẑ.

Third, the limit of stability for every hydraulic impedance shown in figure 12 resembles
an isocurrent line of about I/I∗ ∼ 2.2 for all the Ẑ shown in figure 12. This suggests
that the static stability of a meniscus in the pure-ion mode is linked to a limit in current
throughput, when Ê0 < Êmax.

The existence of a maximum current appears to be related to a reduction in the area
of emission at the apex of the meniscus. The contraction of the emission area is linked
to a decrease in the radius of curvature that is needed to compensate for the higher
electric stress. This trade-off between the reduction of the emission area and growth of
the current density appears to limit the current that can be extracted from the meniscus for
increasing values of Ê0 (see Appendix D). This phenomenon was predicted to exist also
for viscousless liquid metals (Forbes et al. 2004).

From the data shown in figures 11 and 12 at a given value of Ẑ, the two competing
instability phenomena will occur at different ranges of R̂. Menisci would lose their stability
by a presumably bifurcation phenomena if their size R̂ > R̂cross, and will be limited by a
maximum current throughput when R̂ < R̂cross. Interestingly, R̂cross provides the largest
span of stable electric fields. As seen in figures 11 and 12, this R̂cross decreases when
more hydraulic impedance is provided, and the range of fields widens. For representative
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values of r∗ in ionic liquids (∼50 nm) and impedances greater than Z = 1019 Pa m−3 s−1,
r0cross = R̂cross · r∗ is found to be below 3 μm in dimensional form (R̂cross ∼ 100).

If the range of stable fields was a measure of the probability of finding the meniscus
at any R̂, then R̂cross would be a good estimation of this value. As mentioned previously,
the scale of R̂cross is close to the diffraction limit of standard optical observation systems,
thus explaining in part the reason why non-invasive direct observation of pure-ion emitting
menisci has not been reported by the scientific community.

The characteristic small meniscus sizes where the static stability ranges are maximum
(R̂cross) are not in contradiction with the findings of Castro et al. (2006), Garoz et al. (2007)
or Romero-Sanz et al. (2005), where the pure-ion regime is achieved for substantially
larger diameter capillaries between 40 and 200 μm. The results in figures 3, 11 and 12 only
show the predicted static stability ranges for menisci of non-dimensional radius between
R̂ = 4 and R̂ = 210. For the r∗ of EMI-BF4, these ranges correspond to radii in between 0.1
to 10 μm. If the maximum field limit (4.3) is extrapolated to these radii, stable menisci are
still found, yet at a lower range of electric fields. It is worth mentioning that having direct
observation of these menisci could be very valuable, particularly to discard any emission
process governed by smaller ill-anchored menisci at the rim of the capillary channel.

The effect of the two mechanisms that lead to static instability on the current is shown
in figure 13. Figure 13 shows the current–field curves for different pairs of R̂ and Ẑ.
The curves with smaller radii and higher hydraulic impedance are shown in grey. The
maximum current achieved in these cases corresponds to an external field Ê0 = Êmax,
therefore losing stability by the presumed bifurcation of the meniscus. These results show
how the maximum currents achieved for such bifurcating menisci are typically smaller
than the current limit of I/I∗

max ≈ 2.4 obtained for the cases of lower Ẑ and higher R̂. In
these latter cases shown in black, stability is lost when reaching that current. Note how in
curves of such lower impedances, the current emitted per unit field is higher. This effect is
well known in the literature (Krpoun et al. 2009).

The dimensionless flow parameter η = √
ρκ0Q/γ εrε0 defined by Fernández De La

Mora & Loscertales (1994) is also shown on a right vertical axis in figure 13. Unlike
electrosprays in the mixed droplet-ion regime, where decreasing values of η are typically
needed for achieving higher currents (Lozano & Martínez-Sánchez 2002), electrosprays
in the pure-ion mode exhibit larger current throughput at increasing values of η. It is also
interesting to note that while conventional cone-jet electrosprays become unstable when
approaching η ∼ 1 from higher flow rates, the results in this work suggest that pure-ion
electrosprays also become unstable near η ∼ 1, but when approached from lower flow
rates.

The current limit of stability appears to hold in a wide range of electric fields, radii and
hydraulic impedances. Figure 14 shows the current emitted in the limit of stability for 21
different pairs of Ẑ and R̂ when the hydraulic impedance is not sufficient to trigger the
bifurcation process. The range of maximum currents is between 2.1–2.4 times I∗ for all
the simulated values.

The effect of the meniscus geometry (R̂) at fixed Ẑ = 0.0096 are shown in figure 15 for
different values of R̂. For all cases investigated in this figure, the values of Ẑ and R̂ are not
sufficient to trigger the presumed bifurcation and static equilibrium solutions were found
yielding current outputs below I/I∗ ≈ 2.1. Figure 15(a) shows the current output as a
function of the non-dimensional external field E0/E∗. Unlike electrospray cone-jets, where
the liquid profile and emitted current is a function of the operational parameters and mostly
independent from the electrode geometry (Fernández De La Mora & Loscertales 1994;
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Figure 13. Current emitted as a function of the external field for menisci in region II. From left to right,
the non-dimensional radius of the curves correspond to R̂ = 100, 75, 64, 54, 43 and 21. In that order, the
non-dimensional hydraulic impedance coefficients correspond to Ẑ = 0.0096, 0.021, 0.030, 0.045, 0.083 and
0.47. For the radius depicted in grey, the presumably bifurcation point was reached before I/I∗

max.
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Figure 14. Maximum values of the current reached for 21 different non-dimensional fields, radii and hydraulic
impedances. Values of radius and external fields are chosen in region II. Values of the hydraulic impedance are
chosen low enough for not triggering the bifurcation point at Ê0 = Êmax.

Gamero-Castaño & Magnani 2019), menisci in the pure-ion mode are typically smaller and
more sensitive to changes in the electric field, as their emission region is comparatively
closer to the electrodes and the space charge in the ion plume is negligible. The effect of
this is seen in the higher steepness of the current–field slope for the smaller menisci.

It is worth mentioning that, when the current emitted is plotted against an average
of the normal fields in the vacuum near the tip of the meniscus (Evn/E

∗), the results
nearly collapse into a single curve (figure 15b). This reinforces the notion that current
throughput could be regarded as a function of the local values of the electric fields,
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Figure 15. Figure shows the non-dimensional current emitted by differently sized meniscus at Ẑ = 0.0096
as a function of E0/E∗ (a) and an average of the Evn/E

∗ fields in the neighbourhood of the meniscus tip, or
r̂ = 0 (b). The average is performed as follows: (1/A0)

∫
A0
(Evn/E

∗) dA0, where A0 = ∫ Δr̂
0 2πr̂

√
1 + ŷ′2 dr̂ for

the portion of the meniscus Δr̂ that emits current (up to 1 % of the current density emitted at the apex).

including the mechanism behind a possible limitation in current, such as the one described
in Appendix D.

Region IV is defined for contact line radii below R̂crit and it is characterized by the lack
of a transition gap. Equilibrium menisci in this region evolve smoothly from a non-emitting
configuration to an emitting configuration for increasing values of Ê0.

Simulations of equilibrium shapes have also been performed for contact line radii above
r0 ≈ 250 nm (R̂ ≈ 6). The continuum approach below this length scale is likely no longer
valid due to the role that discrete molecular effects start to play.

Menisci in this region resemble those explored by Higuera (2008). As discussed by
Coffman et al. (2019), the non-dimensional critical electric field Ê∗ = R̂1/2 is of the order
of those found near the apex of the hyperboloidal shapes described by Basaran & Scriven
(1990). The pressure drop created by the evaporation process compensates for the electric
stress before the Rayleigh instability is triggered. This phenomenon can be seen in figure 4.
For the cases where R̂ < R̂crit (blue lines), the pressure drop reduces the volume increase
due to the action of the electric field to shapes that lie within the Basaran–Beroz limit
(Beroz et al. 2019). At this point, the meniscus is no longer hydrostatic, the surface
charge is not fully depleted and the channel pressure drop is significant, making the
Basaran–Beroz limit no longer valid.

If the electric field is increased further for emitting shapes with R̂ < R̂crit, then the
hydraulic pressure drop becomes more relevant than the surface tension in compensating
for the electric stress pull over the meniscus interface. It is observed that at very high
hydraulic impedance coefficients (Ẑ > 0.7136), the instability described in region III is
triggered at lower electric fields Ê0 < Êmax. Somewhat against intuition, for R̂ < R̂crit,
this instability occurs at increasingly lower external electric fields when Ẑ increases.
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Figure 16. Distribution of the normal component of the stress to the meniscus interface for an equilibrium
solution in region (IV) close to the electric field of instability (Ê0 = 1.2, R̂ = 10.7, Ẑ = 71.4); the meniscus
axisymmetric interface profile ẑ is shown in subfigure b). Normal electric and fluid stresses are shown in red
and blue, respectively, surface tension stress in green. Relative and absolute residuals are shown in subfigures
(c,d), respectively.

Unlike the distribution of stresses of the equilibrium solutions in region II, where most
of the electric stress is balanced by the surface tension near the meniscus apex, solutions
in region IV are somewhat planar when the electric field downstream approaches the limit
of stability. Figure 16 shows the normal stress distributions for an equilibrium solution in
region IV very close to the instability limit. The meniscus is practically hydrostatic in this
region (fluid flow stress is negligible). The electric field stress is practically counteracted
by the hydraulic pressure drop due to current evaporation. Without the surface tension
playing a relevant role, the hydraulic impedance coefficient controls the sensitivity of the
balance to the electric stress. It is observed that when the electric field remains close
enough to the stability boundary, the suction pressure due to the hydrostatic drop grows
beyond the value of the electric stress and turns the meniscus inside out, thus making
it adopt a concave form which was considered to be unstable due to the aforementioned
three-dimensional effects not captured in the axially symmetric formulation.

4.3. Influence of the liquid bulk temperature on emission and stability properties
The physical properties of ionic liquids depend on temperature, sometimes in a significant
way. It is therefore expected that liquid bulk temperature variations will have an effect on
the static stability of menisci investigated in this work.

Ohmic dissipation, as described by the energy transport equation (2.31) is the driving
mechanism behind the temperature gradients in the liquid, specifically in the vicinity of
the emission region where the current density is the highest.

The mechanical balance of stresses on the meniscus is affected through changes in
electric conductivity κ(T) and fluid viscosity μ(T), and through a modification of the
activation law for ion evaporation (2.1). The global effect of a liquid bulk temperature
increase on the emission characteristics can be seen in figures 17 and 18.

Intuitively, the rise of the electric conductivity due to a temperature increase may incur
more current throughput (for a meniscus with negligible convective charge transport,
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Figure 17. Plot (a) shows the non-dimensional emitted current density distribution along the meniscus
interface in the vicinity of the emission region (r̂ near 0). Non-dimensional temperature distribution along
the interface from the emission region to the contact line is shown in (b). The non-dimensional electric fields
normal to the meniscus interface in the vicinity of the emission region are shown in (c,d) for the vacuum and
liquid, respectively. Plot (c) also shows the non-dimensional surface charge distribution (dashed line). Results
are shown for three different ionic liquid bulk temperatures and the isothermal case for comparison reasons.
Simulation data corresponds to R̂ = 64, Ê0 = 0.78 and Ẑ = 0.0144.
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Figure 18. Current emitted scaled to I∗ as a function of the non-dimensional electric field. Results are shown
for three different temperatures at Ẑ = 0.0302. From right to left, meniscus sizes are R̂ = 107, 86, 64, 43
and 21.
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j = κ(T)E). However, while the current density distribution normal to meniscus interface
increases near the meniscus apex (figure 17a), the area of emission is slightly reduced
in such a way that the total current emitted (its integrated value along ΓM) remains
unexpectedly constant despite the temperature (and conductivity) increments. The total
current emitted does not change even if an isothermal meniscus is considered at T̂ = 1.
This total current emitted is I/I∗ = 0.317, for the parameters in figure 17.

Note that, for the linear conductivity model with temperature used in this paper and the
values of the parameters simulated (χ = 1.81 × 10−3 and Λ = 12), a higher conductivity
also increases the ratio between the characteristic emission time (τe ∼ h/kBT) and the
charge relaxation time (τr ∼ εrε0/κ(T)). For moderate increases of temperature, namely
T̂ ≈ 1.04, the increase of the ratio τe/τr is about 40 %, where

τe

τr
= χ(1 +Λ(T̂ − 1))

T̂
(4.4)

and χ = hκ0/kBT0ε0εr (see table 3). In this case, the meniscus is able to relax surface
charge faster than the rise of emission time scale at higher bulk temperatures. This
phenomenon can be seen in figure 17(c), where a more relaxed non-dimensional surface
charge distribution (σ̂ ∼ Êvn) is observed.

This over-relaxation of σ̂ will tend to reduce the internal electric field, given the
assumption that the external electric field Êvn has a weaker dependence on the temperature
(figure 17d). In dimensional form, this can be observed by using the interface field
condition (2.17) to write the internal field as a function of σ ,

El
n = ε0Evn − σ

ε0εr
. (4.5)

The validity of this assumption (see figure 17c) is supported by the fact that larger
variations in the external electric field would affect exponentially the current output
through (2.1).

The dependence of the emitted current density on the two phenomena can be better
appreciated when writing it as an explicit function of the normal electric field acting on
ΓM , Evn ,

jen = κ(T)El
n = κ0

(
1 +Λ

(
T̂ − 1

)) ε0Evn − σ

ε0εr

=
κ0

(
1 +Λ

(
T̂ − 1

)) Evn
εr

1 + τe

τr
exp

ψ

T̂

(
1 −

√
Evn
E∗

) , (4.6)

where (2.1) and (2.17) have been used to relate σ to jen and Evn .
Given these results, an anticipated increase of current due to a higher conductivity

is cancelled out by a reduction of the electric field inside the meniscus due to charge
relaxation. This effect can be seen in figure 18, which shows the negligible effect of the
liquid temperature on the extracted total current for a given Ẑ and R̂ as a function of Ê0.
These results support the hypothesis of Lozano & Martínez-Sánchez (2005), where the
experimental increase of current at higher temperatures is associated to a decrease of the
hydraulic impedance due to the lower viscosity of the ionic liquid.
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16R̂crit

r0/r∗

E0/E∗

T̂ = 0.95, Ẑ = 0.0302

1/2 ε0 E0
2 = 2 (2γ /r0)

Hysteresis region

T̂ = 1, Ẑ = 0.0833 (Isothermal)

T̂ = 1, Ẑ = 0.0833

T̂ = 1.08, Ẑ = 0.0302

T̂ = 1.0, Ẑ = 0.0302

Figure 19. Stability diagram obtained for different ionic liquid bulk temperatures at a constant hydraulic
impedance coefficient of Ẑ = 0.0302. Stability boundary is also shown for a higher impedance Ẑ = 0.0833
in grey. Stability computed considering an isothermal meniscus is shown with a dashed line for reference. For
the latter case, no energy equation was solved, and bulk temperature was set to T̂ = 1.

Another effect linked to an increase of the bulk temperature of the liquid is shown
in figure 18. It can be observed that the maximum current limit occurs at higher values
for higher T̂ , as predicted by the lumped parameter model in Appendix D. Conversely,
the effect of increasing the temperature is widening the range of electric fields where
pure-ion emission is statically stable, irrespective of the meniscus radii r0. The expansion
is reflected in the increase of the maximum I/I∗ at higher bulk temperatures (figure 19).
However, it is true that this range cannot increase without limit. According to the findings
in this paper, the maximum range is determined by the upper limit electric field above
which pure-ion emission cannot be sustained with a single axisymmetric meniscus (4.3).
Regardless, menisci operating at electric fields below (4.3) that are not stable at a given
impedance could stabilize if heated, while keeping the same impedance. This could give
insight into explaining the temperature thresholds needed for achieving the pure ionic
regime in capillary tubes of smaller impedance than porous tips (Romero-Sanz et al. 2005;
Garoz et al. 2007).

Figure 19 also shows that taking energy conservation into consideration is very relevant
in describing the static stability boundaries. Dashed lines show how much narrower the
stability field range would look like for Ẑ = 0.0833, when considering an isothermal
meniscus (i.e. without taking into account any heating effects). In fact, no statically stable
solutions were found at Ẑ = 0.0302 for the isothermal case. This effect is consistently
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(b)(a)

Figure 20. Non-dimensional power transported by conduction through the channel walls (blue, solid) and the
channel inlet (blue, dashed). Power transported by convection into the meniscus through the inlet (red, solid)
and out from the meniscus through the meniscus interface (red, dashed). Ohmic heating and viscous power are
shown in black and green, respectively.

related to the fact that heated menisci are more accessible to higher maximum currents at
similar values of Ẑ.

The energy transport results are shown in figures 20(a) and 20(b) as a function of
the external electric field Ê0 for two different hydraulic impedances corresponding to
Ẑ = 0.0302 and Ẑ = 0.0833, respectively. The non-dimensional contact line radius is
R̂ = 64.23 (3 μm for EMI-BF4). Figure 20 shows ˆ̇QR̂2, which is the non-dimensional
power transported in and out of Ω l, normalized by the ionic liquid physical properties
(E∗, r∗, κ0). The first fact to note is that the enthalpy convected into Ω l through ΓI
(red solid line) is practically balanced by the enthalpy convected out of Ω l through ion
evaporation on the meniscus interface (red dashed line). The scale of the ohmic dissipation
and conduction through the walls tends to dominate over the convected power at larger
fields. It is shown also that viscous dissipation (in green) is negligible over ohmic heating
(four orders of magnitude less).

Most of the steady-state ohmic heating is transported via conduction through the channel
walls (blue solid line) and the channel inlet (blue dashed line). A rough first order of
magnitude estimation of the impact of heat dissipation by conduction to a perfect thermally
conducting emitter structure could be stated as

E∗2
r∗3
κ0

ˆ̇QR̂2 ≈ ρeVDce
p
ΔT
Δt
, (4.7)

where ρe is the density of the emitter material, Ve
D is the dry volume of the emitter

and ce
p is its specific heat. Using the values of E∗ ≈ 6.95 × 108 V m−1, r∗ ≈ 46.7 nm and

κ0 ≈ 1 S m−1 and a dry volume of Ve
D = 0.5 mm3 per emitter, yields ΔT/Δt ≈

221 ˆ̇QR̂2 K h−1 for a carbon emitter (ce
p ≈ 710 J Kg−1 K−1, ρe ≈ 2260 Kg m−3) and
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Figure 21. Plot (a) shows the non-dimensional current density along the emission region in the meniscus
interface for different εr. Normal electric fields in the vacuum and interfacial charge in (b). Normal electric
fields in the liquid in (c). Non-dimensional numbers dependent on εr were updated as: We = 10−6, Ca = 0.017,
χ = 1.21 × 10−3, H = 0.078, Gz = 0.016 for εr = 15, and We = 5.65 × 10−7, Ca = 0.013, χ = 9.05 × 10−4,
H = 0.044, Gz = 0.012 for εr = 20.

ΔT/Δt ≈ 137 ˆ̇QR̂2 K h−1 for a tungsten emitter (ce
p ≈ 134 J Kg−1 K−1, ρe ≈

19 300 Kg m−3). For a moderately sized meniscus and electric field value in between
the two shown in figure 20, ˆ̇QR̂2 ≈ 5 × 10−3 and ΔT/Δt ≈ 1.11 and 0.69 K h−1 for a
carbon and tungsten emitter, respectively. The latter is a worst case estimation of the
heating in a floating emitter. Generally speaking, the part of the emitter that captures the
heat has substantially higher thermal diffusivity (α ∼ 2.165 × 10−4 m2 s−1 for carbon and
6.69 × 10−5 m2 s−1 for tungsten) than the ionic liquid (1.33 × 10−7 m2 s−1), therefore,
is able to dissipate heat with ease if connected to a thermal reservoir through a similar
interface size. These scalings reinforce the notion that the emitter runs fundamentally cold
in steady-state operation, and that stability of the source could be described with accuracy
with the constant room temperature boundary condition at the channel walls Γ l

D.

4.4. Other ionic liquids
The model presented in this paper is non-dimensional. Due to the similarities in
scale for many non-dimensional numbers of ionic liquids numbers, these results
are generalizable to other ionic liquids. In particular, from the results presented in
this paper so far, it has been observed that the upper limits of stability appear
to be dependent solely on γ , the meniscus size and the external field conditions
E0, and current emitted appears to be mostly determined by operational field
conditions only (Ê0, Ẑ, p̂r), when r0 >> r∗, and very weakly dependent on temperature
changes.

At the ΔG = 1 eV considered in this paper, hydrodynamic stresses play a minor role
and the highest variability in the emission conditions and equilibrium configurations will
mostly be given by parameters governing the electric problem, namely εr. Figure 21 shows
the current density, normal electric fields and interfacial charge along the emission region
for εr = 10, 15, 20, where most of the ionic liquids lie. Similar to what happens with the
temperature increase, the effect of a higher charge relaxation time with εr, is balanced
by higher electric fields in the liquid to yield almost equal currents. Note how interfacial
charge departs from relaxation when the εr increases. Recall the charge relaxation time
τe = ε0εr/κ0. From the results shown, a maximum value of εr is predicted beyond which
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Figure 22. Plot (a) shows the balance of stresses in the normal direction for the cases of ΔG = 1 eV (solid) and
ΔG = 1.3 eV (dashed). Results are shown up to r = 0.2 to reinforce the values at the emission region. Electric
stresses are shown in red, surface tension in green and hydrodynamic viscous stresses in blue. Equilibrium
shapes are shown in (b). Relative and absolute residuals are shown in (c,d). The same dimensional contact line
radius was used of 2 μm, which corresponds to R̂ = 42.8 when using ΔG = 1 eV, and R̂ = 121 when using
ΔG = 1.3 eV. The non-dimensional electric field is Ê0 = 0.77. The non-dimensional hydraulic impedance is
Ẑ = 0.105. Non-dimensional numbers dependent on ΔG were updated for ΔG = 1.3 eV as: Kc = 6.37 × 10−4,
ψ = 50.18 Ca = 0.044, H = 0.062, Gz = 0.041.

charges cannot travel fast enough to the interface for the scale of the characteristic emission
time τr, and emission vanishes.

It is also worth mentioning that accurate values of ΔG are not very well known for
ionic liquids. Variations in ΔG affect the critical field to the square power (2.3) and reduce
the value of r∗ at a power four rate (2.6). The sensitivity of the results to increments
of ΔG is substantial and can be seen in figure 22, where the balance of normal stresses
(a) and equilibrium shapes (b) are shown for two meniscus of equal radii and different
ΔG (1 and 1.3 eV in solid and dashed lines, respectively). Moderate variations of ΔG
originate equilibrium shapes with almost four times the magnitude of the normal stresses
in the emission region. It is worth mentioning how hydrodynamic stresses start to become
relevant in the emission region at higher values of ΔG, yet keeping the total current emitted
constant, and invariant to changes in this property.

5. Conclusions

A simulation framework based on the equations of electrohydrodynamics has been
extended from Coffman et al. (2019) and applied to explore the static stability of an ionic
liquid meniscus experiencing pure-ion evaporation. The dependencies of this process on
the external field Ê0, meniscus size R̂ and hydraulic impedance coefficient Ẑ have been
analysed in detail through a comprehensive set of simulation runs. Four regions in the
parameter space have been identified, three of which are found to be statically stable.
One of them is characterized at low fields with no current emission (I). The rest are
characterized by the evaporation of charge (II, IV).
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Region II is characterized by non-dimensional radius higher than R̂ > R̂crit. Within
this region, a set of solutions with cylindrical bumps was identified for combinations
of external electric fields larger than Ê0 ≈ 1.1 (subregion II.b). These II.b menisci are
prone to be dynamically unstable due to pinch-off effects not captured by the axially
symmetric formulation in this work. The existence of solutions in region II is conditioned
to a minimum hydraulic impedance and limited by a maximum current output Imax of
the order of I∗, mostly dependent on the temperature of the ionic liquid. In addition to
the identification of this I∗ limit, a possible meniscus bifurcation boundary is found that
restricts external fields generating a maximum electric pressure of 2(2γ /r0), independent
of the hydraulic impedance Ẑ and external reservoir pressure p̂r. A narrow range of
electric fields exists between non-emitting region I and emitting region II where hysteretic
solutions can be found for the same input impedance and meniscus size.

A different stable region is identified for meniscus radii below R̂crit (region IV), where
emission is supported for a continuous range of electric fields that is counter-intuitively
reduced at high hydraulic impedances. The reduction of the viscosity coefficient is
identified as the sole contributor to the increase of current observed at higher ionic liquid
temperatures, as current output is found to depend only on the hydraulic impedance,
external field, reservoir pressure and meniscus size. In cases where these parameters are
fixed, higher electrical conductivities resulting from heated ionic liquids play a negligible
role due to a better charge relaxation.

It is necessary to take the energy transport phenomena into account to prevent an
underestimation of the ranges of R̂–Ê0 in which pure-ion emitting equilibrium solutions
exist. Furthermore, energy transport reveals that ohmic heating is dissipated mostly via
conduction through the emitter structure, regardless of the current emitted. This reinforces
the notion that electrosprays in the pure-ion mode run mostly cold when the thermal
diffusivity of the electrode is substantially larger than that of the ionic liquid. Interestingly,
the temperature of the extracted ions is several hundred degrees higher than the liquid bulk
(Fernández De La Mora et al. 2020; Miller & Lozano 2020). This disparity is likely due
to the molecular stretching and vibrating processes occurring during the emission process,
as suggested by molecular dynamics simulations (Coles, Fedkiwf & Lozano 2012) and
by experimental measurements of the energy loss during the emission process (Lozano
2006).

This work provides more details of the numerical procedure and provides a substantial
extension to the analysis introduced in Coffman et al. (2019). However, the model still
neglects space charge and does not resolve the Debye layer. The model is also constrained
to a simplified planar geometry of the emitter structure and yields steady-state, axially
symmetric solutions and is therefore unable to capture three-dimensional bifurcating
transitions. A proper eigenmode study should be done to go beyond the static stability
analysis performed here and infer global stability boundaries of these menisci. It is
expected that the dynamic stability domains will not be very different from those computed
in this study (at least those that lie in subregion II.a), due to the negligible inertial effects
that characterize the ionic liquid flow in these systems.

Some of these limitations could be removed through the development of a plume model
to investigate the effects of space charge on the electric field, which would be required to
extend this computational approach to liquid metals. In addition, the resolution of the
Debye layer, implementation of more realistic geometries (curved electrodes) and less
constrained operational modes (meniscus pinned at any location on the electrode) are left
as future work.
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Despite the limitations of the model, the findings described in this work reveal the
existence of a hard limit in the external field and current throughput above which static
pure-ion emission cannot be sustained. These findings appear to confirm experimental
observations reported in the literature, where emission stability exists only in a relatively
narrow range of electric fields. Such range seems to be incompatible with the cone-jet
mode at sufficient hydraulic impedance and η values lower than ∼1 (Fernández De La
Mora & Loscertales 1994). The insensitivity of the upper bound of this range to any
upstream operational condition, namely hydraulic impedance, bulk temperature of the
ionic liquid or input pressure confers some sense of universality in the description of
the stability for ILIS. The validity of these results could have a definite impact on the
design of engineering devices, for instance, by selecting emitter geometries that promote
the formation of such a small meniscus working near the upper edge of the stability limit
to obtain the highest possible current in the pure ionic mode.
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Appendix A. Function space definitions

The function spaces used to derive the variational forms of the EHD model are defined
here. Let Lp

α(Ω) be the weighted function space such that

Lp
α (Ω) =

{
v,

(∫
Ω

|v|pr̂α
)1/p

< ∞
}
, (A1)

where r̂ is the non-dimensional radial coordinate in the axisymmetric domain Ω . Let
H1(Ω) be a Hilbert space of functions such that

H1 (Ω) =
{
v : v ∈ L2

1 (Ω) ,
∂v

∂ r̂
∈ L2

1 (Ω) ,
∂v

∂ ẑ
∈ L2

1 (Ω)

}
, (A2)

H1/2 (Γ ) = {v : v ∈ L2
1(Γ ) | ∃ṽ ∈ H1(Ω) : v = tr(ṽ)}. (A3)

The latter subspace reads as the space of restrictions to Γ ⊆ ∂Ω of functions of H1(Ω).
That is, v ∈ H1/2(Γ )means that there exists at least a function ṽ ∈ H1(Ω) such that ṽ = v

on Γ . Function spaces inside the Hilbert space are

V (Ω, Γ∗) = {v : v ∈ H1 (Ω) , v = 0 on Γ∗}, (A4)

S (Ω, Γ∗) = {v : v ∈ H1 (Ω) , v = g on Γ∗}, (A5)
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V1 (Ω) = H1 (Ω) ∩ L2
−1 (Ω) , (A6)

χ (Ω, Γ∗) = {v = (vr, vz) : v ∈ V1 (Ω)× H1 (Ω) , v = 0 on Γ∗}, (A7)

where Γ∗ ⊆ ∂Ω is the part of ∂Ω where Dirichlet boundary conditions equal to function
g are imposed.

Appendix B. Variational forms

The variational formulation of the electric problem at iteration k consists of finding
(φ̂k, σ̂ k) in S(Ω l ∪ Ωv, Γ∗)× H1/2(ΓM) such that

F
(
φ̂k, σ̂ k; v, λ̄

)
=
∫

Ω l

εrr̂∇̂φ̂k · ∇̂v dΩ l +
∫

Ωv

r̂∇̂φ̂k · ∇̂v dΩv

−
∫

Ω l

r̂ρ̂k−1
m v dΩ l −

∫
ΓM

r̂σ̂ kv dΓM −
∫
ΓM

r̂σ̂ kλ̄ dΓM

+
∫
ΓM

r̂
K̂k−1

(
−∇̂φ̂vk · n

)
− εrĵk−1

conv

K̂k−1 + T̂k−1

χ
exp
( −ψ

T̂k−1

(
1 − R̂−1/4

√
−∇̂φ̂vk · n

)) λ̄ dΓM = 0

∀(v, λ̄) ∈ V (Ω l ∪ Ωv, Γ∗)× H1/2 (ΓM) , (B1)

where according to (2.19),

ρ̂k−1
m = εr

∇̂K̂k−1 · ∇̂φ̂k

K̂k−1
, (B2)

where Γ∗ = ΓI ∪ ΓD ∪ ΓR and g are set according to the boundary conditions in (2.21).
System (B1) is highly nonlinear and can be solved using standard Newton iterations.

More details of the Jacobian form of system (B1) can be read in Gallud (2019).
The variational formulation of the fluid problem at iteration k consists of finding

(ûk, p̂k,n · �̂�k
f · n) in χ(Ω l, Γ

l
D)× H1(Ω l)× H1/2(ΓM) such that

a
(

ûk,w
)

+ d
(

ûk−1, ûk,w
)

+ b
(

w, p̂k
)

+ c
(

w,n · �̂�k
f · n

)
= −l

(
t ·
(
τ̂ v

k

e − τ̂ lk
e

)
· n,w · t

)
− 2

∫
Ω l

r̂ρ̂k−1
m ∇̂φ̂k · w dΩ l,

b
(

ûk, q
)

= 0,

c
(

ûk, λ
)

= l
(

ĵe
k

n , λ
)

∀w, q, λ ∈ χ
(
Ω l, Γ

l
D

)
× H1 (Ω l)× H1/2 (ΓM) ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(B3)

933 A43-42

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

98
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.988


Ionic liquid menisci in electrically assisted ion evaporation

where

a
(
û,w

) =
∫

Ω l

r̂
εrCaμ̂k−1

R̂1/2

(
∇̂û + ∇̂ûT

)
:
(
∇̂w + ∇̂wT

)
dΩ l

+
∫

Ω l

2
εrCaμ̂k−1

R̂1/2

ûrwr

r̂
dΩ l,

d
(
û, û,w

) =
∫

Ω l

r̂ε2
r We

[(
û · ∇̂

)
û
]

· w dΩ l,

b
(
û, q
) = −

∫
Ω l

∇̂ · (r̂û
)

q dΩ l,

c
(
û, λ
) = −

∫
ΓM

r̂û · nλ dΓM,

l (h, λ) = −
∫
ΓM

r̂hλ dΓM.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B4)

The variational formulation of the energy problem at iteration k consists of finding (T̂k) in
S(Ω l, ΓI ∪ Γ l

D) such that∫
Ω l

r̂

ε2
r HR̂

∇̂T̂k · ∇̂v dΩ l

+
∫

Ω l

r̂ΛT̂k∇̂φ̂k · ∇̂φ̂kv dΩ l +
∫

Ω l

r̂
Gz

εrH
√

R̂
ûk · ∇̂T̂kv dΩ l

=
∫

Ω l

r̂ (1 −Λ) ∇̂φ̂k · ∇̂φ̂kv dΩ l +
∫

Ω l

r̂
CaKCεr

R̂2
μ̂êk2

ij v dΩ l

∀ v ∈ V
(
Ω l, ΓM ∪ Γ l

D

)
. (B5)

Equation (B5) is nonlinear in T̂ , since the model for μ̂ = 1/(1 +Λ(T̂ − 1)).

Appendix C. Interpretation of the calculation of ρm and σ

Consider the full electric problem in the bulk liquid posed in this paper (2.14), (2.16),
(2.18) for the unknowns E, ρM , where the Debye layer is included as a part of the domain
where the solution is sought. Ideally, the solution to this problem involves the calculation
of the whole space charge distribution ρM in the bulk liquid domain and Debye layer.
The Taylor–Melcher leaky dielectric model (Saville 1997) approximates the steady-state
solution to this problem by considering that the fluid is quasi-neutral (ρM = 0) in the
majority of the liquid domain, except for the larger variation of ρM existing in the Debye
layer. Since the Debye layer is generally very narrow in comparison to the length scales of
the problem in question, the leaky dielectric model uses the integrated value of ρM across
the Debye layer as a surface charge σ to avoid the resolution of the full charge distribution.
In this framework, the Poisson equation yields

σ =
∫
δ

ρM dδ = ε0Evn − ε0εrEl
n. (C1)

In the problem presented in this paper, the bulk fluid cannot be considered quasi-neutral
due to gradients in conductivity, and the total charge distribution will extend beyond that
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present in the Debye layer. To understand this situation, the space charge distribution ρM
can be considered as the sum of two distributions ρM = ρm + ρf . The space charge ρm is
only a byproduct of the conductivity gradients in the bulk (ρm = 0 in the Debye layer). The
space charge ρf is only the free charge originated in the Debye layer that is also subject to
evaporation (ρf = 0 in the bulk liquid). One can solve (2.16), (2.14), (2.18) separately for
the fields originated from the two charge distributions (E = Em + Ef ). Since the equations
are linear, these fields can be added safely. The integrated Poisson equation for ρm and ρf
at the interface yields

σm = ε0Evnm
− ε0εrEl

nm
, (C2)

σf = ε0Evnf
− ε0εrEl

nf
. (C3)

This separation is consistent with the full problem if providing adequate boundary
conditions for the split electric field in the surface charge approximation. If σm = 0 then
due to charge conservation at the interface equation (2.20) yields κEl

nm
= 0. Inserting this

in (C2) yields Evnm
= 0 as a boundary condition for the electric field associated to ρm. In

this paper, the total electric field E is computed for convenience, as shown in system (B1).

Appendix D. Lumped parameter equation for the pure-ion current emitted by an
ionic liquid meniscus

A simplified model is presented here to develop an expression for the current emitted
by the meniscus as a function of the electric field in the vacuum side near the emission
region Evn , and also a function of an approximate value of the temperature around the
tip. This approximation is valid for menisci with relatively large non-dimensional contact
line radius R̂ > 60, where the upper limits of stability are apparently determined by a
maximum current output, and the electric stress is almost completely balanced by the
surface tension stress (Coffman et al. 2019) in the emission region. For these reasons,
any viscous effect, hydraulic pressure drop along the feeding channel, convective charge
transport and temperature gradients are neglected.

The electric fields and current density are non-dimensionalized in (4.6) by E∗ and j∗
respectively. This yields

ĵen = K̂Êvn

1 + K̂

T̂
F

, (D1)

where F = F(Êvn, T̂) = χ exp((ψ/T̂)(1 −
√

Êvn)) and K̂ = K̂(T̂) = 1 +Λ(T̂ − 1).

The non-dimensional equation (2.20), ĵen = εrK̂Êl
n, is used to get an expression for Êl

n as
a function of Êvn . The emission region is modelled as a spherical cap. The non-dimensional
equation (2.26) yields

Êv
2

n − Êv
2

n

εr

(
1 + K̂

T̂
F

)2 = 1
r̂c
, (D2)

where r̂c = rc/r∗ is the non-dimensional radius of curvature of the spherical cap emission
region. The total current emitted I/I∗ = r̂2

c ĵen can be used to substitute the radius of
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4

3

2

1

0
0.2 0.4 0.6 0.8 1.0 1.2

I/I∗

T̂ = 1.0

T̂ = 1.02

T̂ = 1.04

T̂ = 1.08

Ên
v = En

v/E∗ 

Figure 23. Current emitted for the zeroth-dimensional model presented in Appendix D. Equation (D4)
presents a maximum at Êvn = Evn/E

∗ ≈ 0.78, at a point close to the field of maximum current observed in
figure 15(b).

curvature in (D2),

Êv
2

n − Êv
2

n

εr

(
1 + K̂

T̂
F

)2 =
√√√√√√ K̂Êvn

I
I∗

(
1 + K̂

T̂
F

) . (D3)

Finally, I/I∗ can be isolated from (D3),

I
I∗ = K̂Êvn

(
1 + K̂

T̂
F

)⎛⎜⎜⎜⎜⎜⎝Êv2
n − Êv

2

n

εr

(
1 + K̂

T̂
F

)2

⎞⎟⎟⎟⎟⎟⎠
2 . (D4)

Figure 23 shows the non-dimensional current emitted using the lumped equation in (D4)
as a function of the non-dimensional electric field in the vacuum side near the emission
region. It can be observed that this current limit is of the order of the maximum currents
observed in figure 13 for both hydraulic impedance coefficients.

Appendix E. Mesh convergence details

In this annex section we provide details of the mesh used and numerical data regarding the
convergence to the equilibrium shape. The non-dimensional physical parameters for this
analysis are the same as those used in the results of the paper, and the non-dimensional
operational parameters are Ê0 = 0.7, R̂ = 176.8 and Ẑ = 0.0833. The non-dimensional
parameters used are very close to the limit cases of the results presented in this paper
(very high Ẑ and R̂).
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Figure 24. Plot (a) shows equilibrium shapes (coloured) and initial solutions (black) used in the convergence
analysis for the three different meshes used. Dashed plots reference the initial solution in the conical shape.
Solid plots reference the high field initial solution. Plot (b) shows a zoom-in of the equilibrium shapes near the
emission region.
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Figure 25. Plot (a) shows the residue function as a function of the iteration process for the three meshes
starting from the high field solution at Ê0. Plot (b) shows the results starting with the flattened Taylor cone
solution. The dashed lines in both subplots mark the convergence boundaries of |A(Rk)| < ε.

Two different initial solutions are provided to the solver that are very far away from
the equilibrium solution. The first initial solution is a ‘flattened’ Taylor cone of semiangle
60◦, with constant non-dimensional surface tension stress 1

2∇̂ · n = 70 in the numerical
emission region (r̂ ∈ [0, 2.5/R̂]).

The second initial solution is the equilibrium shape corresponding to Ê0 = 1.1. The
procedure is repeated for three different meshes with increasing element size: a coarse
mesh, a medium mesh and a fine mesh.

In the coarse mesh, the interface is discretized in 500 points. The points are distributed
geometrically, containing 90 points in the aforementioned emission region distance. For
the medium mesh, the interface is discretized in 900 points and 150 in the emission
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region distance. For the fine mesh, the points are 1750 and 250, respectively. No solution
converged for a coarser mesh. The numerical parameters used are ε = 0.01 for the
convergence limit (3.5) and β = 0.01.

With regard to the finite element category, second-order Lagrange triangular elements
were used for the potential φ̂, the velocity û and the temperature T̂ . First-order Lagrange
triangular elements were used for the interface charge σ̂ and the pressure p̂. A transfinite
mesh was used in the vicinity of the emission region to ensure accuracy of the normal
stresses. Out of the numerical emission region, a mesh frontal algorithm was used.

For the fine mesh, a total of 208 792 elements was used for the vacuum domain
and 180 679 for the liquid, respectively. For the medium mesh, 105 966 and 107 181,
respectively. For the coarse mesh, 59 191 and 72 164. The numbers are averaged, since
remeshing is done to prevent the quality of mesh from decaying due to large deformations.

Figure 24 shows both the initial solutions of the two cases considered in black, and
the convergence solutions in colour. It can be observed how despite the initial solutions
being very far from each other, they converge to the same solution for the three meshes
considered, thus reinforcing the idea that only a statically stable solution exists for given
external conditions. Plot (b) shows that the difference of the solutions as a function of
which initial shape was provided is less than 0.4 %. This variability is within the residue
tolerance limit of ε = 0.01.

Figure 25 shows the equilibrium residual as a function of the number of iterations k.
Note the chaotic behaviour in the first 500 iterations probably caused because the initial
solutions are very far from equilibrium. The convergence trajectory is very similar for the
three meshes considered. The finer mesh converges earlier, but at the expense of more
computational time.
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