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SET FORCING AND STRONG CONDENSATION FOR H ()

LIUZHEN WU

Abstract. The Axiom of Strong Condensation, first introduced by Woodin in [14]. is an abstract version
of the Condensation Lemma of L. In this paper, we construct a set-sized forcing to obtain Strong Con-
densation for H (w,). As an application, we show that “ZFC + Axiom of Strong Condensation + ﬂDU,l ”
is consistent, which answers a question in [14]. As another application, we give a partial answer to a question
of Jech by proving that “ZFC + there is a supercompact cardinal 4 any ideal on w; which is definable over
H (w») is not precipitous” is consistent under sufficient large cardinal assumptions.

§1. Introduction. In this paper we investigate the Axiom of Strong Conden-
sation, which is an abstract version of Godel’s Condensation Lemma proposed
by Woodin. As a fundamental feature of the Constructible Universe L, the Con-
densation Lemma has immense consequences on the consistency of mathematical
statements inside and outside of set theory.

The purpose of our study is to discover to what extent the Axiom of Strong Con-
densation and its localized versions capture the power of the Condensation Lemma.
There are two main objectives. The first objective is to explore the consequences
of the Axiom of Strong Condensation. This is almost achieved in the work of Law
([10]) and Woodin ([14]). Their results suggest that the appearance of the Con-
densation Lemma can be replaced by the Axiom of Strong Condensation in most
arguments and constructions. The second objective, which is also the main focus of
this paper, is to seek for theorems of “ZFC+ V" = L” which cannot be derived from
Strong Condensation alone.

For this purpose. we need to examine various models of Strong Condensation
derived from different approaches. L is such a model, which is certainly of no interest
here. On the other hand, there are also several known constructions of nontrivial
models of Strong Condensation, including the models from Beller—Jensen—Welch
([2]) and Woodin ([14]). However, their models, satisfying forms of “fine-structural”
properties, are very similar to L. As the main result of this paper, we construct a
not so “fine-structural” model of Strong Condensation for H (w,) using set-sized
forcing!:
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Tt was independently shown by Sy Friedman that Strong Condensation for H(w,) holds in the
forcing extension in [7].
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THEOREM 1.1. Assume CH and 2”" = w,. Then there is a cardinal-preserving set
forcing P which forces Strong Condensation for H (w).

As the main application of Theorem 1.1, we study the relationship between the
Axiom of Strong Condensation and . [, is certainly a natural candidate for
the second objective, since it seems impossible to prove ,,, using the Condensation
Lemma alone. The first proof that [J,,, holds in L is to be found in Jensen’s ground
breaking paper ([9]) which also gives birth to both the square principle and fine
structure theory. It was then followed by a proof of Silver using Silver machines ([4]).
Finally, Friedman—Koepke ([6]) gives a proof using hyperfine structure. All of these
proofs involve some forms of fine structure. Woodin asked whether the converse
is also true, i.e., whether the Axiom of Strong Condensation is consistent with
the failure of [J,,,. We answer this question affirmatively:

THEOREM 1.2. Assume there exists k such that the set
S = {n < k| n is a measurable cardinal}

is stationary below k. then ZFC+ Axiom of Strong Condensation +-0,, is
consistent.

Theorem 1.1 also has some effect on results related to large cardinals. Jech asked
whether certain large cardinals entail the existence of a precipitous ideal on w; in
the same model.> As the second application of Theorem 1.1, we construct a model
in which a supercompact cardinal exists and no ideal definable over H (w») is
precipitous. This generalizes previous results of Foreman—Magidor-Shelah ([5]).
Schimmerling—Velickovic ([11]), Woodin ([14]).

The article is organized as follows. In Section 2, we present the basic definitions
and a summary of the background. We also prove several lemmas which will be
used in later sections. In Section 3, we provide the forcing construction for the
main theorem. In Section 4, we construct a model in which the Axiom of Strong
Condensation holds and [, fails. In Section 5. we study the application on pre-
cipitous ideals. We prove that supercompact cardinals do not entail any precipitous
ideal on w; definable over H (w,) and show that this result is somewhat optimal. In
Section 6, we give some final remarks.

Most of the notations in this paper are standard. For a set S, we use P, (S) to
denote the set of countable subsets of S and t¢(S) to denote the transitive closure
of S.Forany X < M, a € X, P C M, let X stand for the transitive collapse of X,
nx 1 X — X be the collapsing map, ay be the image of « under the collapsing map
and Py the pointwise image of P under the collapsing map. For any structure (X, P),
if it is clear from the context, we always identify the structure with its underlying
set X. For any function F, we write dom(F) for the domain of F. ran(F) for the
range of F and Field(F) for dom(F)Uran(F). If X C dom(F), welet F[X]denote
theset {a € ran(F) | (3b € X)a = F(b)}. We use Add(w,, 1) to denote the forcing
to add one w;-Cohen set. Our treatment of iterated forcing is based on [3].

§2. Preliminaries. The study of abstract condensation properties was initialized
by Woodin in [14]. Most of the content in this section is due to Woodin. However,

2Note that Jech’s question is not a question about large cardinal strength. He proved ([8]) that the
existence of a precipitous ideal is equiconsistent to the existence of one measurable cardinal.
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some of these facts never appeared in the literature, let alone their proofs. In this
section, we try to systematically summarize the known facts about the Strong Con-
densation property and present their proofs, which were not yet available. We believe
that the proofs in this section are mostly identical to the original unpublished proofs
by Woodin.

2.1. Strong condensation. In [14], Woodin defines the Strong Condensation
property.

DErFINITION 2.1 ([14]). Suppose that M is a transitive set closed under the Godel
operations and that

F:0rdNM— M

is a bijection.

We say that the function F witnesses Strong Condensation for M if for any
X < (M,F). .

Fy=F | (OrdNX).
We say that Strong Condensation holds for M if such an F exists.
He also defines the following global version.

DEFINITION 2.2 ([14]). The Axiom of Strong Condensation is the statement that
for each regular cardinal . Strong Condensation holds for H (k).

From now on. we will abbreviate Strong Condensation by SC. SC for H (k) by
SC, and the Axiom of Strong Condensation by ASC. L is the canonical model
of ASC. At first glance, ASC does not capture the full strength of the condensation
property in L, i.e., it does not assert the existence of a global bijection F : Ord — V'
such that F' | k witnesses SC,, for all uncountable regular ., while in L, <; induces
such a bijection. Nevertheless, it turns out that such a bijection exists.

Fact 2.3.
(1) If & < n are two uncountable regular cardinals, then SC, implies SC,. In

particular, if F witnesses SC,, then F | k witnesses SC,,.
(2) If Fi and F, both witness SC,. for some regular cardinal k. then

Fi=F < F [a)lez [CU].

Fact 2.3(1) is a direct corollary of Lemma 2.6 below. Fact 2.3(2) is clear.
COROLLARY 2.4. Assume ASC. Then there isan A C wy, such that V= HODJA].
In particular, there is a A (A)-definable global well-ordering.

ProoF. Define a class function f : Reg \ {w} — V by letting f (k) be the set of
all functions witnessing SC,. Let

K={F e P(H(w))|VadkIF' (k >aNF' € f(k) NF' | w; =F)}.

Since for any k. f (k) is nonempty, K is also nonempty. By Fact 2.3(1), for
each F € K and all regular &, there is an F' € f (k) such that F' | w; = F.
By Fact 2.3(2). for any F € K and any . there is a unique F’ € f (k) such that
F' | w1 = F. Fix some F € K. Now let F” be a class function with domain
Ord such that for all regular k. F” | & is the unique F’ € f(x) such that
F' | w; = F. Tt follows that F” : Ord — V is a global bijection witnessing ASC.
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It is straightforward to verify that ¥ = HODJ[F]. Since ASC trivially implies GCH,
the corollary follows by coding F into a subset 4 of w;. -

Like L, SC is absolute between models.

THEOREM 2.5 ([14]). Suppose that M is a transitive set closed under the Gédel
operations and F : OrdNM — M is a bijection. Suppose that N is a transitive inner
model such that

(1) N = ZC+X,-Replacement,
(2) {M.F}CN,
(3) F witnesses SC for M in N.

Then F witnesses SC for M.

ASC is arguably the strongest abstract condensation property that can be
extracted from L, as all truths in L whose known proofs only involve Godel’s
Condensation Lemma remain true in models of ASC.> We list some of them in
Table 1.4

The proof of Fact 2.3 relies heavily on the following characterization of SC. This
characterization will be used throughout this paper. In particular, in the proof of
Theorem 1.1, we will force an F witnessing this characterization.

Lemma 2.6. Assume GCH. For any regular cardinal k > wy, the following are
equivalent:
(1) SC,.
(2) there is a bijection F from r to H(k) and a club C of P, (H(k)) such that
for every X € C, X is a countable elementary submodel of (H (k). F), and

Fy C F.
L M = ASC
L, -hierarchies F[a]-hierarchies
Acceptability(GCH) F-Acceptability(GCH)
On Ow ([14])
no w;-Erdés cardinal no w;-Erdés cardinal ([7]. [14])
no precipitous ideal no precipitous ideal ([10])
A; global well-ordering A1 (A) global well-ordering for some A C w; (§2)
0f exists iff 37 : L < L nontrivial M?* existsiff 37 : M < M nontrivial

TaBLE 1. Comparison between L and models of ASC.

3See [14] and [7] for the definition of various weaker forms of the condensation principle and their
relationship with ASC.

4 Acceptability is the following statement: If there is a subset of § in L, .1\ L,. then thereis a surjection
of 6 onto L, in L, . F-Acceptability is similarly obtained by replacing the Lq-hierarchies by the
F[a]-hierarchies. The F[a]-hierarchies consist of all F[a] such that F[«] is transitive, closed under
Godel operations and F' | a witnesses SC for Fla].

M* can be defined as the set of true sentences of M = L[A4] with @ many order indiscernibles and all
ordinals @ < @) as constants. Here although A is a class predicate, we only care about the information
from its restriction 4 N w;. This is because under ASC, 4 N w; captures the information of 4 up to
arbitrary height. For the exact definition see [13]. Also see Section 2.2 for some basic facts about sharps.

Woodin proves that in any model M of the Axiom of Condensation (a weaker abstract condensation
property. see [14] for the definition), there is no precipitous ideal (a proof can be found in [10]). It follows
that any model of ASC contains no precipitous ideal.
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ProoF. Clearly, (1) implies (2). We will prove that (2) also implies (1). We first
reduce the requirement in the definition of SCy:

Cramv 2.7. If F is a bijection from k to H(k) such that for every countable
elementary submodel X of (H(k),F), Fx C F holds, then F witnesses SCj.

PrOOF. Assume the claim fails and let F : k — H(k) be a witness. By the
definition of SC,, there is an uncountable elementary submodel X of (H (k). F)
such that Fy ¢ F. We can find x, y € X such that (x <p y Ay (y) <r mx(x)).
where < is the well-ordering on H () derived from F.

Fix such a pair {x. y} and let ¢ be a sufficiently large regular cardinal. Choose
a countable K < H (d) such that {x. F. x, y, X} C K. By elementarity, K = x <p
yAny(y) <prxy(x).AsEX € K. (KNX,FNKNX) < (H(k), F). We write XX
for (KNX,FNKNX).Since x <p y and XX is a countable elementary submodel
of (H (k). F), by our requirement on F, nyx(x) <r 7y« (y). On the other hand,
since K =ny(y) <p ny(x). (KNH(k), FNK) | ny(y) <r nx(x). By the Tarski
criterion, we have (K N H(k), F N K) < (H (k). F). Using the assumption and the
countability of K N H (k) again. gz (.) (nx (v)) <r grme) (mx(x)).

Via an induction on the rank of elements of XX, we show that for all z € XX,
nyx(z) = ng(ny(z)) as follows: If @ € my«(z). then there is an a’ € XX such that
nyx(a') = a and a’ € z. By the induction hypothesis, ¢ = ny«x(a’) = ng(ny(a’)).
However, asa’.z € XX, a’' € z = ny(a’) € ny(z) = ng(nyx(a’)) € nx(ny(z)).
Hence a € g (ny(z)).

Now assume a € ng(ny(z)). Then there is an @’ € K such that ¢ = ng(a’)
and a' € ny(z). Since ny(z) € H(k)y and H(k)y is transitive, a’ € H(k)y.
Let a” € X be such that ny(a”) = a’. Since X € K, by elementarity a” € K and
a" € z. By the induction hypothesis, a = nx (nx(a”)) = nyx(a”) € nyx(z).

In conclusion, 7wy« (y) = ng(nx(y)) = nKﬁH(m)(nX (») <r ”KmH(@(ﬂX(X)) =
7k (myx(x)) = nyx (x). This leads to a contradiction. 4

Returning to the proof of the lemma, let C and F be as stated in the lemma. By
our claim, we need to prove that Fy C F for all countable X < (H (), F). Since
Kk > oy, it suffices to show that for all @ € X N Ord, if F[«a] is transitive and of
uncountable size, then (F | )y = Friainx C F.

Fix one such a € X and pick D C C | F[a] to be a club of P, (F[«a]). This
is possible since |F[a]| > w and C is a club. Without loss of generality, we can
assume that there is a function d : (F[a])<? — F[a] such that D = {4 C F[a] |
d[A=”] C A}. Now foreach K closed under d, there is a countable Y < (H (k). F)
such that K = Y N Fla] and Fy C F. Moreover, since F[«a] is transitive, Fg is an
initial segment of Fy. Thus Fx C F | a. As|a| < k.d € H(k).so (H(k),F) =
there is a function d : (F[a])<® — F[a] such that whenever K € P, (F[a]) is
closed under d then Fx C F | a. By elementarity, the last statement is also true
in X. Fix a witnessing function dy € X. Then by elementarity, F[a] N X is closed
under dy. which means Frpajny C F [ C F. -

By examining the above proof, it can be seen that a version of Lemma 2.6 remains
true when replacing H (k) by any M which is an uncountable transitive model such
that H(w;) € M and M < H (k). In this situation, SC for M holds iff there is a
bijection F from Ord" to M and a club C of P, (M) such that for every X € C,
X is a countable elementary submodel of (M, F'), and Fy C F. This implies that if
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SC, holds, then there are unboundedly many a < & such that SC holds for F[a].
This justifies the definition of F[a]-hierarchies.

2.2. Models of SC. We summarize some approaches to construct models of SC.
Clearly, for any real r, L[r] is a model of ASC. The following propositions indicate
that for any 4 C ;. L[A4] is a model of ASC if CH holds and r* exists for all
reals r.

ProposITION 2.8. CH > SC,,,.

ProoF. Note that any elementary submodel of H (w;) is transitive. Hence any
bijection F : w; — H (w;) witnesses SC,, . -

To state the next proposition, we recall some standard background of sharps.
The reader is referred to [12] for further details. For any transitive a, consider the
structure

<L5 (a)7 67 a, X, b)kewﬁea:

where ¢ is a limit ordinal and {x; | k € w} is a set of ordinal indiscernibles
for (Ls(a),€.a,b)pe, indexed in increasing order. We denote the language of
the above structure by £. In general, due to the lack of a definable global well-
order, this structure does not have a built-in Skolem function. However, we can
still define partial Skolem functions which moreover suffice for the general theory
of sharps. For any finite subset B of a, we can choose an <L5(a), €) definable
well-ordering <p on {d € Ls(a) | dis (Ls(a), €)-definable from B U Ord} in a
uniform way.” Note {x; | k € w} remains an indiscernible sequence of the
structure (Ly(a). €. a.b, <p)pea pefa)<- Expand £ to &', the language of (Ls(a). €.
a, xr.b. <p)kecwpeapeia<o- We further extend £’ to a language £, by inductively
introducing the following partial Skolem terms. Suppose that #y.....#; are terms
which have been defined. Suppose that ¢(co.....cn.do.....d;) is a formula of set
theory with free variables c;. d;. Then for any by. . ... b, € a. define

| <{by....,,y -least ¥ such that Ls(a) = ¢(7.t..... 1) if such y exists.
0 otherwise.

Since any element of Ls(a) is definable from a U Ord in (L;(a), €. a,b)pe,. any
x € Ls(a) is definable from a finite set B, C a and a finite set O, of ordinals
using a formula ¢, (s, ). Now if Ls(a) = Ixé(x, ') holds for some £, formula ¢,
then there is such an x definable from finite sets B, C a and O, C Ord. Thus the
term tﬁv(f) witnesses that Ls(a) | Jx¢(x, ). Hence in our setting, it suffices to
use the partial Skolem terms, which will be called “Skolem terms” subsequently,
to define the sharps. A useful remark is that by alternating the order of free variables,
for any permutation 7/ of 7, and any formula ¢, there is a formula ¢’ such that

3The exact definition of < g is irrelevant. We present one possible definition as following. Note that d
is definable in (Ls(a). €) using parameters from B U Ord iff there is an ordinal y < J and a formula
such that d is definable over (L, €) using the formula y with parameters {B} U O, where O € y<©. Let
Form be the set of formulas equipped with the usual Godel’s well-ordering. Let <’ be the lexicographical
well-ordering on & x Form x Ord<®. Now for any such d. let (y,. w4, O ) be the <’-least triple witnessing
the definition. Now define d <p e if (yy. wq. O4) < (ye. We. Oc).

https://doi.org/10.1017/js1.2014.62 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2014.62

62 LIUZHEN WU

(1) = lﬁl (7'). Thus when we write lﬁv (7). we can always assume that 7’is of some
fixed style. This simplifies the following definition.

DerFNITION 2.9. An EM blueprint for « is a complete theory in £, with
underlying structure (Ls(a). €. a. Xk, b, <p)rewpeaBefa)<e-
For such a. we say a' exists if there is an EM blueprint 7 for a such that

(1) (Unboundedness) For any n-ary Skolem term ¢ B( ). T contains the sentence:

tg(xo,...,x,,,l) € Ord — tg(xo,...,x,,,l) < Xp.

(2) (Remarkability) For any (m + n + 1)-ary Skolem term tg(-), and a finite
sequence ¢ from b, T contains the sentence:

— b=
Ip C,X0,~~~-an+n) = IB(C,.Xo,....Xm Ls Xmtn+lseees xm+2n+l)-

(3) (Well-foundedness) For every a < w1, (M., ) is wellfounded, where (M, )
is the unique (up to isomorphism) model satisfying T that is generated from
a-many indiscernibles, which means that (M, ) is equal to the Skolem Hull
of a and a-many indiscernibles using the built-in Skolem terms in (M, a).

(4) (Witness condition) Whenever 3x¢(x) € T, then for some term ¢ involving
no indiscernibles not appearing in ¢(x). ¢(¢) € T.

By the general analysis of sharps, unboundedness implies that the set of indis-
cernibles in any (M, «) is closed. Remarkability implies that in any (M, ), if x
is generated from a finite set X of indiscernibles and a term ¢, then the rank
of x is below the least indiscernible greater than sup X. It is known that the
EM blueprint T witnessing that a* exists is unique. To simplify the presentation,
we thus define af to be the unique transitive (M, w) model satisfying T'. In particu-
lar, a* = (Ls(a). €. Xk. a. <p)kecwbeapepa<e such that Ls(a) is equal to the Skolem
Hull of @ U {x; | kK < w} using the Skolem terms from £,. More generally, for any
set y. we define ! to be (z¢(y))!. We will not use any specific property of a* other
than the following fact: Ls(a) < L(a). Another remark is that if |¢| < o and a*
exists.then a* € H(a™).

ProrosITION 2.10. Suppose k > w is regular. Suppose F witnesses SC,, and for
any x € H(k), x* exists. Suppose that in L[F]. there is no inaccessible cardinal
above k. Then L[F] is a model of ZFC+ASC and H (k) C L[F].

PrOOF. Fix a < & and consider F | a € H(a%). By assumption, (F | )t
exists. Let xo be the first indiscernible of (F | a)f. Then by the usual analysis of
indiscernibles, xo must be an inaccessible cardinal in L(tc(F | «)) and xo > .
It follows that for any a < &, there is # < a™ such that

L(t¢(F | a)) = n is an inaccessible cardinal greater than a.

Without loss of generality, we can assume that F(0) = (. In what follows,
we define a function F’ : Ord — H (k) by inductively assigning value to F'(«).
Set F'(0) = F(0) = (. Inductively on a < . we define as follows:

CASE 1) a = f 4 1 is a successor ordinal. As F is a bijection from « to H () and
F'(B) € H(k) is defined, there is a unique ordinal f such that F/(f) = F(f).

Suscasg 1a) If f = 0 or § # 0. then set F'(a) = F(f + 1).
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SUBCASE 1b) If # = 0 and 8 # 0. then we set F’(a) = 0.

CASE 2) a is a limit ordinal. Let &, = sup{f < a | F'(B) # 0}.

SuBcask 2a) If &, = a or L(tc(F | &,)) = there is no inaccessible cardinal # s.t
o < < a,thenlet F'(a) = 0.

SUBCASE 2b) &, < a and L(tc(F | &,)) = a is the least inaccessible above &,.°
Denote sup{f < | (37 < @)(F'(y) = F(R))} by da.

SUBSUBCASE 2ba) F (d,) is undefined. Set F'(a) = 0.

SUBSUBCASE 2bb) F (d,) is defined. Set F/(a) = F (6a).

Basically, F' can be viewed as a function stretched from F. Let <jr/ be the
canonical £;-well ordering of L[F’]. Let F : Ord — L[F'] be the bijection derived
from <. We claim that for any uncountable regular cardinal #, F | 5 witnesses
SC, in L[F'] and H (k) C L[F'].

Cram 2.11. H(x) C L[F].

Proor. We will show that H (1) C F’[4] for any uncountable regular cardinal
A< K.

We first assume 1 > w is a successor cardinal. A simple observation from the
construction is that F'[A] = F[y] for some y < x and F’ [ (A \ F'7'[{0}])
is an injection. Thus it suffices to verify that y = 1. As |[F'[a]] < 4 for any
a < A and A is the first ordinal f# such that |F[f]] > 4, y < A. It remains to
show that y > 1. Assume otherwise, y < A. It is clear that y must be a limit
ordinal. As F’ | (4 \ F’~'[{0}]) is an injection, there is a least § < /4 such
that F[y] = F’[7]. 7 must be a limit ordinal by construction. It follows that
for any a € [7,4), &, = 7. By our assumption, there is # € [},77) such that
L(tc(F | 7)) | n is the least inaccessible cardinal greater than 7. But as / is a car-
dinal. [},7%) C [7.4) and hence # < A. Now on stage 7. &, = 7 and J, = y. Hence
by our construction F’() = F(y). Contradiction.

Now when A is a limit cardinal, the statement follows easily. -

This proof also implies F’(a) = () whenever a > x. Hence for any cardinal 7,
L,[F] C L,[F’]. On the other hand. by induction on rank, we can check that
for any X € L,[F’]. the transitive closure 7¢(X) of X is in H (n)*F]. However,
note that H (7)1 = L,[F].8 Hence X € L,[F]. It follows that L,[F] = L,[F’]
for all 7.

Next we prove that F | 5 witnesses SC, in L[F'] for every uncountable
regular 7. We first treat the case when # < k. For # < w, there is nothing to show.
Assume 5 > ;. we will apply Lemma 2.6. Note that F | 7 is a bijection from 7 to
H(p)MF'1 = L,[F]. Consider the club consisting of all countable X < (L,[F], F).
We will show that for any X in the club, (F | #)y = F | (ot(X N#)). By the
definition of F and elementarity between X and L,[F]. this amounts to showing
that (F' [ n)xy = F' | (ot(X N#)). As F witnesses SC, Fy C F.

%Equivalently, Subcase 2a) 2b) can be defined as:
2a) L(tc(F | &a)) | a = &q or ais not inaccessible.
2b) L(te(F | &a)) E a > &q and a is inaccessible.
Although the current definition is more complicated, it does clarify the later presentation.
"Note this happens when 6, = &.
8For # < k. F | 5 is a surjection onto H (n)!F1. For n > &. as tc(F) € Ly[F]. H(n)"F1 = L,[F]
by the condensation lemma for L[F].
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By induction on y € X N Ord, we need to verify that F'(yy) = (F'(y))x.
The successor and 0 cases are trivial. Assume y is limit. Note that by induction
hypothesis. (£,)x = sup{ < 7x | F4() # 0} = sup{f < yx | F'(B) # 0} = &,
and thus &, = y < ¢&,, = yx. We need the following claim to transfer the sharps
along the collapsing maps.

Cramm 2.12. Suppose X is a countable elementary submodel of H(y ™) anda € X
is transitive. Suppose that a* exists in X . Then (ax ) exists and is equal to (a*)y.

ProoF. Write a* as (Ls(a). €. x¢. a.b. <p)kewbeapefai<o- Then (a¥)y = (Ls,
(ax). €. (xx)x.ax.b. <B>k€w,b€u,\cB€[u,\/]<”’-

As (a*)y 2 a* | X, {(xt)x | kK < w} is an increasing sequence of indiscernibles
for the structure (Ls, (ax). €, ax,b)pecq,. Hence the theory T of (a*)y is an EM
blueprint for ay.

We will verify that the requirements (1)—(4) of Definition 2.9 hold for T'. (1), (2).
and (4) follow routinely from the elementarity between X and H (y*). We only need
to verify (3).

For o < w1, we need to construct a well-founded (M, o) model for 7. Consider
a well-founded (M, a) model M for the theory of a. Let {x5 | f < a} be the
corresponding indiscernible sequence. Note that a* can be canonically embedded
into M by mapping all constants accordingly and all indiscernibles to the first o
many xg. Thus we can identify (L., (a))™ with Ls(a). Let K be the Skolem Hull
of (Ls(a) N X) U {xs | B < a} using the built-in Skolem terms 7% of a* in M for
BcCXnb. )

We claim that K is an (M, ) model for T. We first show that K N (L, (a))” =
Ls(a)NnX.Clearly KN(Ly,(a))™ D Ls(a)NX by the definition of K. On the other
hand, suppose that ¢ € K N (L, (a))™. Nowin M, ¢ = t5(4) forsome B C anNX
and A is a finite sequence of (Ls(a) N X) U {xp | p < a}. By remarkability,
¢ = 15(4"). A" is a finite sequence of (Ls(a) N X) U {xp | p < w}. Note that
as Ly < M and <k =<¥ NL;, ¢ = (15(4’))%. By elementarity between X and
H(y").ceLs(a)nX.

Hence K N (L,,(a))™ is isomorphic to (a*)y. Now for any ¢ € Ls(a) N X, ¢
is generated by some Skolem term in a using parameters from ¢ N X and a finite
set of x. Hence ¢ is generated by the same Skolem term in K N (L, (a))™ using
parameters from a N X and a finite set of x;. Hence Ls(a) N X is contained in the
Skolem Hull of (¢ N X) U (xp | f < a) in K. It then follows that K is the Skolem
Hull of (¢ N X)U{xp | f < a}in K. But as {xg | f < a} is an indiscernible
sequence for K, K is clearly an (M, o) model for T, the theory of (aﬂ) X- -

Using the above claim, we have
(x)  L(tc(F 1 ¢&,,)) | yx is the least inaccessible cardinal greater than &,
if and only if
yx € (F | f},X)ﬂ AF | é./x)ﬁ = 7x is the least inaccessible cardinal greater than &,
if and only if
yx € (F 1))y A(F 1 &)y | yx is the least inaccessible cardinal
greater than (&,) x
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if and only if

ye(F é},)ﬁ A(F | é},)ﬁ k= 7 is the least inaccessible cardinal greater than &,
if and only if
(%) L((tc(F 1 ¢&,)) = y is the least inaccessible cardinal greater than &, .

If both (%) and (*x) hold and &, < y. then F'(yy) = F(&,,) = (F(&))x =
(F'(y))x. Otherwise. F'(yx) = 0 = (F'(y))x. This ends the induction and the case
n < K.

Now we deal with the case # > k. Now F | 7 is a bijection from # to
H(p)MF'] = L,[F] and definable over (H () '], F). By the condensation lemma
for the relativized constructible universe, for any countable X < L,[F] such that
k € X, thereis f < w; such that X = Lg[Fy]. Thus Fy is derived from the canon-
ical well-ordering of Lg[Fy]. As in the last case, it remains to show that Fy, C F’.
Since k € X, L[F] = H( ) € X. Hence, X N H (k) < H(k). Bytheprooffor
the last case, F' | kxy = Fy | xx. On the other hand, we will inductively show
that for all yx € [kx.f). F'(yx) is trivial and &,, = kyx. When yx = ky, by our
construction &,, = ky. Hence we are in Subcase 2a) and thus F’(yy) is trivial.
Suppose the induction arrives at a yy > ky, Then by induction hypothesis, it is
routine to check that &,, = ky. We also know that

L[F] E y is not an inaccessible cardinal.

AsranF =tc(F) = H(k), L L[tc(F)]. Moreover as F codes a well-ordering
OfZC(F),L( c(F)) = L[te(F )] [ ]. Thus

L(t¢(F)) [ y is not an inaccessible cardinal.

Hence
L,(tc(F)) = y is not an inaccessible cardinal.

Therefore we are in Subcase 2a) and F’(yy) is trivial. Now note that Fy | [kx. ) is
also trivial by the definition of F’ above «. Therefore F' | [kx.f) = F§ | [kx. ).
Hence Fj, C F’. This ends the case 7 > k. N

We remark here that the inaccessibility can be replaced by any lightface IT;
property of ordinals. In particular, we could require the final model compatible
with several large cardinal properties below w;-Erdés. For example, if we need a
inaccessible cardinal above k., then we only need to require that L[F] = “there is a
unique inaccessible cardinal above £ and modify the proof accordingly.

The following remarkable theorem of Beller—Jensen—Welch [2] provides a class
forcing extension of }' that satisfies ASC:

TueoreM 2.13 (Jensen’s Coding Theorem). There is a class forcing P such that if
G is P-generic over V then V|G = ZFC +V = L[R], R C w. If V |= GCH then
P preserves cardinals.

In [14], Woodin describes a different approach to construct models of SC. In con-
trast to L. these models carry a rather complicated structure and serve as the base
for P, variants for several club guessing properties.

THEOREM 2.14. Assume AD holds in L(R) and x € R. Let
N = HOD*®[x].
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Suppose that y is an uncountable cardinal of N which is below the least weakly compact
cardinal of N. Then SC holds for (H(y))N in N.°

Woodin then asked how to obtain models of SC via a set forcing notion. A solution
to this question, together with Proposition 2.10 provide an approach to prove
consistency results related to ASC. By Proposition 2.8, the first nontrivial target is
to force SC,,.!°

§3. Forcing SC,,. In this section, we present the forcing construction for
Theorem 1.1. As mentioned, we will force the existence of a function F witnessing
(2) of Lemma 2.6. For technical reasons, instead of F, we construct a bijection
H : w; — P(w) satisfying a variant of the condensation property. and show that
the desired function F is induced by H. We describe the general framework as
follows. Our forcing P is constructed as an w,-length countable support iteration
P,, = (Ps.Qu | @ € [w;.®,)). This nonstandard index set is designed to simplify
the presentation. The iteration starts with a single forcing P,,,, which we will also
denote by le_. wa and P,, should be compared with Qyp and P; in the usual

definition of iterated forcing. We also set w; + 1 = w;. Now for any a € [w;.w»)
and ¢ € P,. ¢(w; ) is a P, -condition. After forcing with P,,, we obtain H | w.
Then inductively on o € [w;,w,). we assign values to H(a) and define Q,
simultaneously. Finally we construct the desired bijection F using H. We will
then verify that F witnesses SC,,, and thus complete the proof of the theorem.!!
For any condition p € P,. set spt(p) = {f € aU{w;} | p | B IF p(B)is
not trivial}.
Along with the definition of P,,,. we define the following objects:

e A sequence (Sa | @ € [, wy)) such that each S, is a P,-name of a subset of
(1) in VIF.)“ for o € [y, w5); '
o Asequence (S” | a € [w1.ws)) such that each S/ is a P,-name of a stationary,
co-stationary subset of (01)”"™ in VP fora € [w1. w2);
e Asequence (H, | a € [w1,w)) such that each H, is a P,-name of an injection
from « to P(wl)VHD” and for f < a, IFp, Hﬁ C H,.
We also fix a bookkeeping bijection / : [, w2) — [@w1.w2) X w; such that (h(a))o

< aforall a € [w1,w,). This / will be used to enumerate P(w;)" > During the
construction, we often identify a P,-name as a Pg-name for w; < a < f < ws.
We will repeatedly use the forcing maximality principle to construct names, i.e. to
define a name a. we only need to describe how to evaluate this name in any fixed

°In fact, via HOD analysis for L(R) in the context of AD, the initial segment of HODX®) is a extender
model and has fine structure. On the other hand, this model contains reals like M,,, the minimal mouse
containing n Woodin cardinals, and is not of the form L, [A] for any bounded subset 4 of y.

190ne may ask whether it is possible to force over some ¥}, using Jensen’s Coding Theorem to get
models of ASC, where « is inaccessible. The answer is no. Let G be P-generic over V', where P is the
forcing for Jensen’s Coding Theorem defined as a class in V. It can be verified that V;[G] = V = L[R]
for some R C w. Nevertheless, V' [G]x # Vk[G] as some real is not in Vx[G]. For example, the theory
of Lk[R].

1Tt will be clear that PPy, is a totally proper forcing notion, i.e.. a proper forcing that does not add
reals. However, the iterants of IP,, are not proper, and thus we will directly deal with P, rather than
adopting the general framework of proper forcing.
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generic extension. We shall always keep and verify the following inductive hypothesis
(*) for all & € [w). ;) during the construction:

(1) P, is w;-distributive and has an w;-sized dense subset.
(2) If G is P,-generic and w; < B < «, then in V[G],

Cy={necw |BpeG|Pple, GgeG|p+1necqlp)}
is a club subset of w; and Cy & V[G | P,] for any y € [w1. f3).
Now we start the induction on a € [w1, ;). Py, is defined as follows:
e p € P, if pis an injection from « to Py, (w;), where o < oy
e p<p, qifq Cp.
PP, is essentially the forcing Add(w;, 1). Hence Py, is cardinal preserving and
does not add new countable sets of ordinals. Let G, be a P, -generic filter over V.

In V[G,,,]. we define H,,, to be |J G, . Clearly, H,, is a bijection from w; to P, (w).
Let A, be the structure (Field(H,, ), H,, . €). Let

S, ={X CAu || X|=0N(X.Hy | X.€) < Ay, A (Ho,)x C He,)}.

Fix a bijection e,, from w; to 4,,. Let S;; be the set {X € w; | e, [X] € S, }.
We will verify that S/ is stationary co-stationary later in the section. It is also clear
that (*) holds for P, .

Now assume a = f + 1 is a successor. Assume that Pg, H/; and S'[’g’ have

been constructed and satisfy the desired properties. We need to define Q/f, H,.
Sg. and S//. Let Gy be any Pg-generic over V. In what follows, we define Qp.
Ho. Sa. and Sy in V[Gg]. Qp is the forcing which shoots a club through Sy,
i.e. the conditions are the countable closed subsets of S, ordered by end-extension.
As (*) holds for Py, it is routine to verify (*) for P, = Py * Oy using the properties
of club-shooting forcing. In particular, if G, is P,-generic, then the following hold
in V[G,]:

R, = (R,)Y. for o € Ord;

Ord” = (0Ord®)";

CH and 2®' = wy:

If Cp =U,cq, P(B). then Cy C Sy isaclubin c;.

If f = . then we let W, be a bijection from w; to P(w;) "¢\ P,, (cw;). Otherwise
f > 1. then fix a bijection Wj from w; to P(w) 19\, _; V'[G,]."* In any case,
let Sg be W), (h(B)1). Since h(B)o < B. Sy is well-defined and unbounded in w;.
The unboundedness follows from the fact that (*)(1) implies any bounded subset
of wy is in the ground model. Let H, be Hz U {(f.Sp)}. Let A, be the structure
(Field(H,). H,. €). Let

S!={X CAu||X|=0AN(X.Hy | X.€) < Ao N (Ha)x C Hya)}.

12Note that P(w;) V19! \U,<p V[G,]is definablein the forcing language and thus in V'[Gg]. By (*)(2).
when f# > w is a successor ordinal, then Cy is in P(w) "€ \ U;</3 V[G,]. When f is a limit ordinal.
by (*)(2). there is a subset 4 of w; coding all previous C, and thus 4 is in P(w;)" %1\ U,<s V1G]
In both cases. using (*)(1). we know that P(w;)" 181\ U,<p VIGy]is of size w, and thus Wy can be
defined.
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Fix a bijection ¢, from w; to A,. Let S? be the set {X € w; | eo[X] € S, }. We will
show that both S/ and S/, are stationary and co-stationary in their corresponding
structures. It is also not difficult to observe that forany y < ., S is contained in S/
modulo the nonstationary ideal.

If a > w; is limit, P, is defined following the rule of countable support iterated
forcing. We will verify (*) for such « later. Let H, be a Py-name of the function
Ue<p<a Hjy. We then define 4,, S',. and S/ using exactly the same definition as
in the successor case. It will also be shown that S/ and S/ are stationary and
co-stationary sets and that for any y < a, S,/ is almost contained in S’

To finish the definition of P,,, we need to prove that S” is stationary and
co-stationary for all « and that (*) holds for limit «. This will be shown by verifying
that P, has a dense set of “complete and flat” conditions.

DerNITION 3.1. A P,-condition p is flat if there is a unique y < w; and a
sequence {p; | i € spt(p)) C V such that

(V2 € spt(p) \ {w; D(p [ 21F p(2) = pi Asup(p;) = p").

For any sufficiently large 0 and any countable M < H(0) containing P,'* . a
condition ¢ is (M, P,)-complete if the set {p € M NP, | ¢ < p} is P,-generic
over M.

LemMA 3.2. Suppose (*) holds for all f < . For sufficiently large 0, any countable
M < H(0) containing P, and p € M. there is a flat (M.P,)-complete condition q
extending p.

Proor. Fix an enumeration (D, | n < @) of the open dense subsets of P, in M.
Fix a bijection 7 : @, > Py, (w;) in M. Let (o, | n < w) be an increasing
sequence of ordinals with the supremum M Nw;. Thus z[M Nw] = (Py, (@)Y =
M N P, (). Fix an enumeration (p, | n < w) of M N . We also assume that
M inherits a well-ordering <y from H (6). We inductively construct a sequence of
P,-conditions (p, | n < w) hitting some appropriate dense sets and obtain a lower
bound in the end. We will ensure py = p, p, € M, and p,.; < p, foralln < w
during the construction.

Suppose now p, has been constructed. We will choose p,.| < p, such that!?

1) dom((pn+l)(w1_)) > oy, ran((pn+1)(w1_)) D n[ay,] and puyy € Dy,

ii) There are objects (B, | m < n)and (y, ;|i <n+1,m < n) such that for
alli <n+1land m < n, B/’}m is a subset of o, iIn M, ngii is in the interval
(ay. M N ;) and'®

13Note this implies p; is forced to be a closed subset of y + 1 with maximum 7.

14From now on when we say P, € M. we implicitly assume that the definition of P, can be carried
outin M, i.e.. M contains all necessary parameters used in the definition of P,,.

15An alternative argument is to show that when the p,’s hit all D,’. some p, must satisfy the
requirement below. This can be done by showing the corresponding set of conditions is dense, which is
essentially the same as the current argument.

167t is clear that if Pn+1 forces this sentence, then p,,.; | pm already forces this in Pp,,. The same also
holds for the next two items.

ng.nﬂ is designed to show that S),, is unbounded in ;. 7;,”.1( is designed to show S, # S, .
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pusilre, S, Moy =B} Ayp 1 €8, A(Vk <n)
(Pk < pm — (V/r)l,,,ik € S/’k AN V/rllm,k ¢ S w))-

iii) There is a system (Bf |n<wAy e Mna)such thatif y € spt(p,), then

Pt e, sup(pas1 (7)) > o A puia(y) Ny = BY.
iv) There is a sequence (77} | y € spt(p,)) such thatif y € spt(p,). then
1) € (an. M Vi) A pust e, &1 < 60001 < Ayar.
Since «, is countable and 7 € M, we can choose p?, < pnin D, N M such that
dom((pY)(w;)) > e, and ran((pY)(w; ) D nfa,]. Now

e, (98 € spt(pa))({X € Py (Agor) | o131 < X < Ao}
contains a club in Py, (4:1))) A églan] = Agi1)

It follows that p? IFp, (VB € spt(pa)) G > an)é[;[ﬂzfl] = églnpl < Apy1. So

Py lre, (3| B € spt(pn)) (VB € spt(pa))nfs > aw A
éplnly ™1 < églnpl < Apen.
Againwe can pick (nj | B € spt(p,)) and p) in M such that forevery f8 € spt(p,).

Palre, my > an Aégln ™' < égln] < Apia.
By our construction and the hypothesis (*)(1). for all f; < f» < . Sp, and Sp,
are unbounded in w; with all initial segments in V" and S # Sp,. Hence

polFe,  (Ym <n)(3B) € Py (0)")3(p i |i <n+1))(S,, Na, =B
A Vﬁ,,hn+1 € Spm A (Vk < l’l)(pk < Pm — (V/rllm,k € S/’k e V/rllm‘k &
S/)m)))'

Now we can pick (B, [ m < n).(y, ;|[i <n+1.m <n)and p2in M such
that whenever m < n.

pl% “_Pu Sﬂm N Oy = B/’Zm A y;,,,<n+l € S/)m A (Vk S n)(/)k < Pm —
Yok € Spi < Vp ke & Spu))-

Note that each y; ; is bounded by M N w;.

We will inductively construct a sequence of conditions (p, 5 | B € spt(p2)) in M
which will have the properties that for all § € spt(p2). spt(pn ) = spt(p2) N (B +1)
and p,p <p,,, pa | (B+1).

When B = w; . let pyo», = p2 | ®i. Suppose B € spt(p2) and p,, is con-
structed for every y < f8 and y € spt(p2). then we define p, 4 as follows. For y < .
ify € spt(p2). thenlet p, s(y) = py, (7). otherwiselet p, 4(y) = lg,. pup | Biswell-
defined and is a Pg-condition. Since spt( p2)N B € M and the previous construction
can be carried out in M. p,z | f € M. Then we choose p, 4(f) € M to be the
<p-least Pg-name 7 of a Qg-condition such that p2 | f p, £ <o, P2(B) A
sup(i) > a,. Note that p, g is in M and satisfies our requirement.
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Now define p; as

sy Jloo v Espt(py).
mlr) = {Pn‘y(?’) y € spt(p}).

By our construction and the hypothesis (*)(1), for all y € spt(p,). p3(y) is forced
to be in " and to have supremum larger than «,. Since P2 € M and its support
is countable, there are p,;1 < p; and (B! | y € spt(p,)) in M such that for all
7 € spt(pn). _

Pt 17 IF () Newy = B
It is now routine to verify p,. satisfies (i)—(iv).
Now we define a flat condition ¢ such that ¢ < p, forall n < w. Let

(o) = | (palo)) ™ (otM A p). | Bp) | B € [w1.a) N M).
n<mw n<w
We first verify that ¢ (w;) is a P, -condition. It is clear that ¢ (w; ") is a function from
ot(M N a) to P, (w;). We only need to verify that for any 1. € M N (a \ w;)
and any f € M Nw;,

U 85, # a(@r)(B)and | B}, # | B},

n<w n<w n<w
For the first inequality, notice that for any f € M N w;. there is a k < w such
that g(w; )(f) = pr(w; )(B) € Py, (w1) N M. and hence g(w; )(f) is bounded in
M N ;. On the other hand, let m be such that p,, = f;, then forallm < n < w,
Ypmntl € Un<w B), . Notice that the supremum of (y) ., | n < w)is M N ;.

thus U, ., Bj, = U,<,, B, is unbounded in M Ny, hence lJ, ., By # q(w; )(B).
For the second inequality, let i be such that f/ = p;, then there is a k <

such that y% € BS <« y% . ¢ Bi. Note also that by the properties of By,
foranyj <k<wand f € M N (a \wl) B/§ = Bk (max(B; )+1) Hence

Vp,,, € Un<w /)’1 = Un<w B/rllm if and Only if ypm,z ¢ Un<w Bﬂz Un<w B/’ll,
For each § € |, spt(px). we define ¢ () to be a Pg-name such that

[ BIe, g(B) = | pa(B) U{M Ny}
n<w
For each f & (J,,, spt(pa). we let ¢(f3) be the trivial condition. By induction on
p € [w1. ). we show ¢ | f is a Pg-condition and foralln < w. ¢ | f <p pa | B.
This justifies the definition of ¢ and implies that ¢ is a P,-condition.

We have already shown that ¢(w; ) is a PP, -condition stronger than p,(w; )
for all n < w. Now suppose f € [w;.a) and ¢(y) has been constructed for all
7 € [wi. ) U {w; }. By the induction hypothesis, ¢ | f is a Pg-condition, and for
alln <w, q | f<p ps | B. There are two cases:

Case 1. f & U, spt(pi). ¢(B) is the trivial condition and for each n < w. p,(f)
is also trivial. Hence the induction hypothesis is true at § + 1.

Case 2. f € U, spt(p;). then there is an i < w such that (Vn > i) € spt(p,).
We firstly verify that g | g IFp, M N € Sl’{.

Note that if i < n. ¢ | f < par1 | B IFe, sup(pas1(B)) > a, and puyr |
B e, éﬂ[n;_]] < éplngl < Apr- Soforalli <m < n < w, ppi1 | f Irp,
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éplny] < éplngl < Appr. Since foralln > i, nj < M Ny and U, 71 = o1 N M,
{éplng]l | n < w) is forced to be an elementary chain with limit é4[M N w]. Since
q | fis stronger than all p, | f,

q | Blre, éslM Nwi] < Ag.y.

Now we can verify ¢ | § kg, és[M Nwi] € Sj. Note g | f e, (01)eyimnm) =
M Nw;. Let mp be the Pg-name for the collapsing map for ég[M Nw]. So q [ B ke,
np(Sp) = SpN(M Nwr) = U,,, By Thus g [ B lre, (Hpi1)e,(r00) (0LMNB)) =
Hp 1 (B)NM = g(w; )(ot(M N}p)). On the other hand. by the induction hypothesis.
foranyy € M N[w.B). q | y is aP,-condition. Hence ¢ | 7 ke, (Hyi1)e (mno =
q(w;) [ ot(MN(y+1)). Moreover asforany y € MN[w;. f).lFp, (H,J,l)e-},[Mm(f,l] -
(Hp1)esimnan)- 4 | B IFe, (Hﬁ+1)gﬁ[mel] =qlo;) [ ot(M N (f+1)) C Hps.
So by'the definition of S} and Sg. ¢ | B Ikp, és[M Nwi] € S; and M N
w| € S‘g.

By our assumption, p,i1 [ f IFe, sup(pai1(f)) > an. Asq [ f<e, pas1 | B.
q | f ke, sup(pur1(f)) > a,. Therefore

n<mw

n<w n<mw

q!Ble, MNw =supa, < | sup(pa(B)) = sup <U pn(ﬂ)> <MnNor.

Since g [ B lkp, M Ny € S'[’g’, it follows from the definition of Q./f thatq [ B IFp,

¢(pB) is a Qg-condition and ¢(f) < p,(B) for all n < w. It then follows from the
induction hypothesis that ¢ | f+1is aPg-conditionsuch thatg [ f+1 < p, [ f+1
foralln < w.

Now g € ﬂn <o Dn and is thus an (M. P,)-complete condition. Moreover, for
each y € spt(q) \ wi. ¢ | 7 IF ¢(y) = U<, B! U{M N }. Hence. ¢ is a flat
condition. B

DEFINITION 3.3, We say that ¢ is an (M. P, )-complete flat condition if ¢ is defined
as in the proof of Lemma 3.2 for M and P,.

Note that if ¢ is an (M, P, )-complete flat condition, then the following facts hold.

Facrt 3.4.

(1) dom(q(wy)) = 0ot(M Na) and sup(q(f)) = M Nw, forall p € spt(q) \ w;.
(2) Forall p € spt(q) \ {ew; }.qIF M Nwy € Sf.

(3) q I (Ha)éynrrw) = q(@p) [ ot(M N a).
As a corollary, we have
PRrROPOSITION 3.5. (*) holds at .

Proor. We only need to check (1). By Lemma 3.2, P, is w;-distributive. More-
over, the set of all (M.P,)-complete flat conditions is of size w; and dense
in P,. 4

We finish the definition of P,,, by proving:

LemMMA 3.6. For any o € [w1.w3). Sg is a stationary and co-stationary subset

of wy.
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ProOF. We first show that S is a stationary subset of w; via a density argument.
This amounts to showing the following: For any p € P, and any P,-name C
such that p IF C is a club subset of w,. there is a ¢ <p, p such that g IFp, C N
S £ 0.

Let 0 be a sufficiently large regular cardinal. Pick a countable M < H(0) such
that {P,. C. p} C M and M contains all parameters involved in the definition of
P,. Hence H, € M. Applying Lemma 3.2, choose an (M, P, )-complete condition
q' <p, p.The following can be verified using a density argument as in the proof of
Lemma 3.2.

(1) ¢’ IF “C N M is unbounded in M N;”. and thus ¢’ I M Nw; € C.

(2) There is an unbounded subset B, of M N w; such that ¢’ I “Soa N M = B,
and for all § € spt(q’), By # Sg N M.

(3) ¢'IF éo[M New1] < Agi1.

Let ¢ be defined as follows:

() = ¢ ()U{{ottM N(a+1)),Ba)}. ify =0,
7= q' (). otherwise.

By (2) and Fact 3.4 (1). ¢(w, ) is an injection from ot(M N (a + 1)) to Py, (w1).
It follows that ¢ is a P,-condition. By (1). ¢ I M Nw; € C.

We finish the proof by verifying ¢ IFp, M Nw; € Sg Note g IFp, (C()])éa[Mﬂwl] =
M N w;. Let n, be the P,-name of the collapsing map for é,[M N w].
By Fact 3.4(3). ¢ IF (Ho)s, 00 = ¢(@; ) | ot(M Na). Since g Ikp, 74(Sa) = Ba.
q I (Ha-«—l)éa[Mﬁwl] = (Ha)éa[M_ﬁa)l] U {<0t(M Nao+ 1_)=Ba>} = Q(wl_) - Ha-_&—l~
So by (3) and the definition of S/, g IF é,[M N w;] € S’,. By the definition of S”/,
qF M N € S”. This completes the proof of the stationarity of S

To show that S is co-stationary, we only need to repeat the same argument with
one exception. Let ¢’ <p, p be defined as in the above proof. Now define ¢ as
follows:

/() = {q'm U{(otM N (a+1).B)}. ify =on,

q'(y). otherwise.

It is then routine to verify that ¢ (w;") is a injection from ot(M N(a+1)) to Py, (@)
and thus ¢ is a condition. It is also easy to check. via the same argument. that
q e, M Ny & SY. a
Finally, we let P, be the direct limit of all P,, for a € [wy, w2).
PROPOSITION 3.7. P, is w-distributive and wi-c.c..

Proor. The proof of Lemma 3.2 implies that for any p € P,,. any sufficiently
large 0 and any countable M < H () containing P, there is an (M, P, )-complete
condition ¢ < p. Thus P, is w;-distributive. Since P, is a w,-length countable
support iteration and all P, are w,-c.c., by Proposition 7.8 of [3], it follows that PP,
1S wy-C.C. =

Suppose G, is a P,,,-generic over V. Then in V' [G,,] the following hold:

o R, = (R,)". for a € Ord:;

e Ord” = (0Ord®)":;

o CH + 2“" = ws.
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Let H be Uy, Hy. and let A, be the structure (Field(H). H. €). By construction
H is an injection from , to Uae[wlwz)(P (wy))"1G], Since P, is wy-c.c. and is an
wy-length countable support iteration, every subset of w; in V[G,,] appears in
some V'[Go]. where o € [w1, @2). Hence (P(w1))"1%:) = (), o) (P(01)) 7 1Ge].
It follows that H is a bijection from ws to (P(cw;))" 1G],

We will now verify that the structure 4,,, has the desired SC property.

LEMMA 3.8. In V[G,,]. thereis a club C in P, (A,) such that whenever Y isin C,
(YHNY.€) <Ay, NHy C H.

Proor. Fix k sufficiently large and let
D={M<H()||M|=wnA{HTP,,. G,}C M.

Let C be the restriction of D onto 4,,. Then C is a club subset of Py, (A4, ).
Fix an arbitrary ¥ € C and let X € D be such that X N 4, = Y. By elementarity,
forany .if f € wyNX = w,N Y, then Cy and eg are both in X. Since Cy is a club,
X Ny € Cp C Sy Applying ey it follows that X N A, = eg[X N ] € S;. By the
definition of S, Hxn4, C H, C H. Since X N w; is unbounded in sup(X N w,),
Hy = Hynu,, = Uae)mw2 Hyn4, C H. The inclusion holds because X N A4, is
transitive in X. -

We can now construct F from H. Recall that every element X in H (w>) can be
uniformly decoded from some subset of w; as follows: For any X € H(w,), let
Hy(X) = te(X)U{X}. Note that Hy is an injection from H (w,) to H (w,). Now for
each subset £’ of w; x w| coding a well-founded ) -sized binary relation <, there
is a unique Y € H(w,) such that (Y, €) = (E’, <g/). Let E be the inverse image of
E’ under the Godel pairing function. Hence, for all such £ C w; we can uniformly
decode a unique element H, ' (Y) of H(w,). We inductively define F () € H(w)
to be decoded from the <z-least E € P(w;) such that E can be decoded and no
X € F[a]can be decoded from E. Note that F is a bijection from w; to H (w;) such
that F | o is a bijection from w; to H (w;) and F is A;-definable over (H (w,). H).
thus we have:

PROPOSITION 3.9. If M < (H(w,). H, €), then F | M is a bijection from Ord™

toM.
ProOF. By definability and elementarity, /' | M is definable over M, and is a
bijection. B

LemMA 3.10. In V[G,,]. there is a club C in P, (H (w2)) such that (X, F N X. €)
< (H(wy), F,€) N Fy C F whenever X € C.

ProOOF. Consider the club C given by Lemma 3.8. We show this C works. Fix X €
C. then (X,H. €) < (H(w,).H.€) and Hy C H. By induction on OrdNX, we
show F(a)y = F(ay). Suppose a < w;. Then F(a) € H(w;) and thus F(a)y =
F(OL) = F(OL)().

Assume that € OrdNX and F(B)y = F(By) forall f € anNX.Let A = F(a).
By elementarity, let o’ € X be such that H (a’) witnesses the definition of F ().
i.e., H(a') codes A and for all f’ < o, either H(f’) is not a code or H (') codes
some F(f) with f < .. Hence
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X E H(a') codes 4
iff X = H(a')y codes Ay
iff X = H(aly)codes Ay.

Similarly, for all / € o’ N X, thereisa f € @ N X such that
X | either H(BY) is not a code or H(p% ) codes F(f)x.

Since forall B € aN X, F(B)xy = F(By) and the coding is absolute between any
transitive models, we have that for all 8’ < o/, H(’) is not a code or H (") codes
F(Byx) for some f € a N X and H(a)) codes Ay. Note that Ay is not equal to
F(pyx) for p € an X, hence H(ay) witnesses the definition of F(ay). It follows
thatF(aX):szF(a)X. =

ReEMARK 3.11. For any predicate 4 C w, in V', we can modify P,, so that if
M < H(w,)"%]is closed under F, then (M, M N 4) < (H (w,), A).

We end this section by imposing a notation for later usage. The forcing defined
in this section will be denoted by P, where e is a parameter coding the construction
of P,,,. In particular, the information coded by e includes the bookkeeping function
h, the bijections {é, | & < w,}. and the names of the well-ordering { W, | & < w,}.
We can moreover require e to be a subset of w,. Note also that if M C V are
two transitive class models of ZFC such that H (w;)” = H(w,)" . then the forcing
poset P, defined in M is also a poset for SC,,, in V.

84. Joint consistency of ASC and —[J,,. In this section, we show the joint
consistency of ASC and —[,,. Recall that a sequence (C; | ¢ € lim(w,)) is a
O, - sequence if for any ¢ € lim(w;), the following hold:

(1) Cgisaclub subset of &,

(2) ot(Cs) < ).

(3) if g e lim(C¢), then Cp=CsN p.

We say -, holds if there is no [J,,, - sequence.
THEOREM 4.1. Assume there exists a  such that the set

S = {a < k| o is a measurable cardinal}

is stationary below k. then it is consistent that ZFC + ASC +-,,,.

‘We basically follow the framework for constructing models of the failure of square
on the successor of regular cardinals, due to Solovay. We outline the framework as
follows. First we collapse a large cardinal & to w». If there is a square sequence C
in the generic extension, then we show the forcing can be canonically factorized at
some limit level o such that C | « is decided by the generic up to the same level.
Then we show the quotient forcing is not able to thread C | «. But as C is a square
sequence, C, must thread C | «. This gives a contradiction. The large cardinal
required for this argument is one Mahlo cardinal. In our current setting, we need to
first collapse x to w, and then force SC for w,. We may then factorize the forcing as
above. However, we meet one obstacle during the attempt to show that the quotient
forcing cannot thread the sequence up to that stage, which is caused by the fact
that the quotient forcing is not w-closed. This is the reason we need a stronger
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large cardinal assumption for the construction. We want to remark that the large
cardinal assumption seems to be far from optimal. We conjecture that stationary
many Ramsey cardinals suffice.

The following lemma is the only place where measurability is required.

Lemma 4.2. Let o be a measurable cardinal and let > o be a regular cardinal.
Suppose ¢ € H(0). Then there is a pair of models My and M such that:

(1) My < (H(0),a.c), My < (H(0), . c).

(2) Ify = sup(a N My N M), then P, (MyNV,) C M.

(3) sup(MoNa) =sup(M; Na) > y.

(4) |M()| =, |M1| = W andH(wl) C M.

ProOF. We construct two sequences of models (M? | n < w) and (M| | n < w)
such that fori = 0,1 and n < w:

(1) [M})| = wand [M,| = o.
(2) My <M. < (H() a.c).
(3) Ify,, sup(M’ Na), then M’+1 Ny =MiNy,andyl, | >y
() (OLﬁM’ n+1)\mln{yn n l}_(b

(5) P, (M) m Va) C M| and H(wy) C M{.
Letting Mo = ,_,, M? and M; = |J,_,, M. it is routine to verify that

e y =sup(MyN M, Na) =sup(MJNa).

o P, (M{NV,) =P, (MyNV,)C M1

e sup(MoNa)=U,cp, 70 = Upew 72 = sup(M; Na).
Hence M, and M, are as required.

The construction is based on the following standard fact. We include a proof for
the reader’s convenience.

Fact 4.3 (folklore). Suppose 0 > « is a regular cardinal, M < (H(0).a, <)
and & € (\yeunp A. where p € M is a normal measure over a. If M(S) =

Sk(H©@.0.) (A1 U {&}). then M(E)NE=MNE=MnNa.

ProoF. For the first equality, fix a Skolem term ¢ and an ¢ € M such that
tla.&) <& Nowd ={y<alitlay) <y} € M must be in u. By the normality
of i, thereisa B C Aand ad in M such that B € u and t(a.y) = ¢ forall y € B.
Hence t(a.&) =6 € M.

For the second equality, note that ¢ is greater than any ordinal y € M N« as & is
in the measure one set (y, o). -

We can now inductively construct (M) | n < w) and (M) | n < w). Choose
arbitrary M) and M| such that P,, (M{ N V,) C M} and H(w;) C M. Assume
M and M are constructed Fix a o € Nyeunmn 4. Let M) = MJ(&). Fix
& € ﬂAeli A\M)) . Let M, = M, (&).Clearly (1) and (2) hold. By Fact 4.3,
it is routine to check thdt (3) dnd (4) hold. 4

Without loss of generality, we start from a model where GCH holds and there is a
K witnessing the assumption. Moreover, we also assume that there is no inaccessible
cardinal above k. Now force with Col(w1. < k) * P,, where P, is the forcing defined
in Section 3. Let G be Col(w;, < k) *P,-generic over V. By Theorem 1.1, SC,,, holds
in V[G]. We will show later in this section that there is no [J,,, sequence in V[G].
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Now in V[G], we can verify the assumption of Proposition 2.10 as follows: Let 4
be a bounded subset of w,. By the k-c.c., 4 is in some intermediate model V' [G]
generated by some complete subforcing of Col(w, < k) x P, of size less than .
Thus In V[G]. there remain some measurable cardinals above |7c(4)|. Hence A"
exists in [G] and thus exists in V'[G] by the absoluteness of sharps.

Now applying Proposition 2.10, L[ F']is a model of ASC and ZFC which agrees on
) and w, with V' [G]. As L[F]is an inner model of V' [G]. if there is no [, -sequence
in V[G], then there is no [, -sequence in L[F].

The rest of this section is devoted to the proof of the failure of [J,,, in V[G].

LemMmaA 4.4, There is no O, sequence in V[G].

For any o < f < k. denote the forcing Col(w;. < ) by Cy and Col(w;. [a. f))
by C, 4. We rely on the following fact revealing the analogy between C,, * P, and PP,
The proof is an easy modification of the proof of Lemma 3.2 and is omitted here.

DerNITION 4.5. A C, xP.-condition p = pg* p; is flat if there is a unique ordinal
7p < wy and sequences (p? | i € spt(py)) € V and (p} | i € spt(p1)) € V such that

(Vi € spt(po))(poli) = pY A dom(p)) = y,).
(Vi € spt(p1))(p i Ik pi(i) = p} A (i # w1 — sup(p}) = 7).

LEmMMA 4.6. For all sufficiently large 0, any countable M < H(0) and p € M,
there is a flat (M, C,, * P,)-complete condition g = qo * q1 extending p such that

(1) dom(qi(w;)) = ot(M N k). spt(qo) = spt(q1) = M N k.

(2) Vg =M Nwy.

We give some simple analysis of C, * P,. By the analysis of P, in Section 3,
we may assume PP, consists only of countable conditions which are elements of ¥ ©+
andforalla < k. P, is of size ; in VC+. Since C,, is countably closed. we may further
assume P, C V. For any a < &, we factor C,; as C, x Cqo .. In ¥ we factor P, as
Py *Ppg ). Forany ay, ax < &, if Py, € ) Ce1 then C,, P, = Coy X Coy %Py x P, )
and Cy, * Py, * Cy, x * P, ) are equivalent forcing notions.

Forany o < k. wesay that C.+IP, is factorable at a/if Co P, = Co#Po+Cp #Ppg 1)
We will show there are club many a < k such that C, is factorable at «.

PrOOF OF LEMMA 4.4. Work in V'[G] where G is a C, * P,-generic filter. Assume
for a contradiction that C = (C,, | o € Lim (a)zy[G]» is a square sequence. Write G
as G'* G2, where G is C,-generic over V and G? is P,-generic over V'[G']. For any
a < k. we factor C,, as C, x C,, and let G' = G x G[ltm) be the corresponding

generic filter. In V[G']. we factor P, as P, Py, ) and let G? = G2 x G[zaﬁ) be the
corresponding generic filter.

Cram 4.7. Let D consist of all o € k such that the following hold.:

(1) P, € J Ce,
(2) Clac yCarPa,

Then D is a club.

Proor. We construct two functions [, f» : K — & such that if « closed under
f1and f5. then a € D. Fix f < . In V[G'], Py is an w; sized subset of V.
By the k-c.c. of Cy. there is a nice name ¢ for Pg in V.. Let f1(f) be least such that
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t € Vyp- Thentisa C; 5-name and thus Py € V[G/]“1</f)]‘ In V[G]. Cg is a sub-
set of f8. Since C,; * IP, is k-c.c.. there is a nice name ¢ for Cg in V. Let f2(B)
be least such that ¢ is a C,, * ]I”f2<ﬁ)-name in Vi) then Cp € V[Gjl”1<f2(/3))
* G./%z(ﬁ)]']7 B

For any o € D, C, * P, is factorable at . Recall that S = {a < K |
« is measurable} is a stationary subset of k. Fix @ € DNS. then Clac VIGL+G2]
and a is measurable. We show that no C € V[G] can thread C | .'® As C, must
thread C | «. this leads to a contradiction and thus ends the proof of Lemma 4.4.

Casel) C € V[Gl « G2].

As a is wzy [GLI’*G‘;], the cofinality of C is larger than w;. Hence thereis a ff < «
such that B € Lim(C) and C N B is of cofinality greater than w;. As C threads
Cla.C s = C N . However, by the definition of a square sequence. the order type
of Cp = C N f must be less than w; in V'[G]. Hence C cannot thread Cla.

Case2) Cisnotin V[Gl x G2].

Let C be a C, * P,-name for C. Fix any C, * P,-condition € G} x G2 such
that there are C,; * P,-conditions p and ¢ such that p | C, xP, = ¢ | C, %P, = ¢,
plky e C.and ¢ Iy ¢ C. Via a density argument, for any condition s < ¢,
it suffices to find » < s which forces a contradiction. For simplicity, we assume
s =1

Fix a sufficiently large 0 > & such that the above is expressible in H (0). Consider
the structure N = (H(0).C, *P,.C. 6‘,p,q,y>. Let (My. M) be the pair of ele-
mentary submodels of N constructed by applying Lemma 4.2 to «, € and the above
mentioned parameters in H (0). We denote sup(My N a) = sup(M; Na) by o’ and
sup(Mo N M; Na) by &. Since M is a countable elementary submodel of H (9), we
can apply Lemma 4.6 to get a flat (M, C, x P,)-complete condition p = pg * p;
extending p. We claim that 5N Vs € M,. Thisis because p = pi(w; )Up\ pi(w; ).
where pi(w;) € H(w) C M, and (p n Vi) \ plowy) € Py (MoN Va) C M.
Fix a countable elementary submodel M of M; such that p N V; € M and
sup(M Na) = sup(M| Na) = o’. This is possible since o’ has countable cofinality.
Note that N V5 and g are compatible, let ¢’ € M witness this. Applying Lemma 4.6,
let § < ¢’ be a flat (M, C,, * P,)-complete condition. Note that spt(p) C M, and
spt(7) € M. Via a classical argument, we can show that

Cram4.8. pl-y € Copann,) = Cor and g 1=y & Cypianiry = Car-

ProoOF. We only verify the claim for p. The verification process for ¢ is the same.
Since p is (M, C, * P.)-complete, it forces that C is unbounded in My N « and
thus o/ = sup(My N «) is a limit point of C. Note that y € M N «. Hence,
plryeCna’ = Cy. .

The following is the key of the argument:

CramM4.9. p | aandq | a are compatible.

ProOF. Inductively on y < o, we construct conditions r, extending both p [ y
and ¢ [ y such that
7The appearance of f| ensures that V[G}.l(h(/}))

18We say a set C threads C | a if C is a club subset of a. ot(C) < |a| and for all § € Lim(C).
cCNnp= Cﬂ.

* G}z(ﬁ)] is meaningful.
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(1) ry T y2 =1, fory >y > .
(2) spt(ry) =spt(p [ y) Uspt(q [ 7).
Fory<a.gly<q y<ply Wechooser,tobeq [y.
Now supposey =+ 1> a. If p & spt(p | ) Uspt(G | «), then let

. V/f(é), ifo < ﬁ,
M&—{L it6 = p.

Otherwise, € spt(p | o) Uspt(g | a). Assume S8 € spt(p | o) C My. It follows
that f € (MyNa) \ @. Let

. V/f(é), ifo < ﬁ,
Mw_{ﬂ&,iw—ﬂ

Then r, is as desired as 15 < ¢ [ B I G(B) is trivial. The case § € spt(§ | @) C M
is similar.

Finally for y > & limit, we take r, to be the greatest lower bound of all rz with
f < y.Clearly r, is as desired. -

Let r be a common extension of p [ @ and 4 | «. Let r, be a common extension
of r and p and r, be a common extension of r and g. Then r, I+ y € Cy and
rg Ik y & Co. Let G, be an arbitrary C,, * IP,-generic filter containing r. Then
by Claim 4.7, whether y € C, or not is decided in V[G,]. If y € C, and G is
any generic filter extending G, and r,. then V[G] = y ¢ C, . Similar for the case
y & C, . Hence r forces a contradiction. It also clear that r is stronger than ¢.

This ends Case 2) and the proof of Lemma 4.4. -

85. An application on precipitous ideals over ;. In this section, we study the
relationship between SC and precipitous ideals. Recall that an ideal I on & is
precipitous iff for all generic G C P(k)/I, the ultrapower V'*/G is well-founded.
As mentioned in Section 2, ASC refutes the existence of a precipitous ideal. The
following general fact is due to Woodin. The special case when k = w) is also proved
by Schimmerling—Velickovic ([11]). We include a proof for completeness.

ProPOSITION 5.1. Suppose & is regular and SCy+ holds and is witnessed by F :
k't — H(k™). Then no ideal over k definable in (H (k™), F) is precipitous.

PrOOF. Suppose the proposition fails at «, and let / be a precipitous ideal over
k definable in (H (k7). F ). Without loss of generality, we can assume that the
critical point of the corresponding generic embedding j is forced to be # by the
trivial condition k, where 7 € [w], k] is a regular cardinal. Since / € L[F] and
the precipitousness of an ideal is a IT; property, L[F] |= I is a precipitous ideal over
w such that & IFp,y 7 ept(je) = 1.

Let w(a. f, F) be the following sentence: F witnesses SC,+, where 7 is a regular
cardinal such that « = %, and there is a precipitous ideal I over y such that
IFpyyr ept(je) = B.In LIF]. w(k". 7. F) holds. Let (c. #) be the lexicographically
least pair such that L[F | o] = w(o. f.F [ ). In L[F | a]. wehave V = L[F | o]
and V' = (¥(d@. ) <iex (@ ))(LIF [ G] = ~p(@. B, F | G)).

Hence we may assume thereisan F' : o — F[a] and a regular cardinal f§ such that
V =L[F] [ w(a. f. F)andforall (&, f) <px (. B). LIF | @] = ~w(@. . F | ).
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Let I be a precipitous ideal on y such that Ikp,y/; cpt(jc) = ff. where y* = a. Let
Jj:V — M C V[G] be the valuation of js in V[G], where G is P(y)/I-generic.
By elementarity M = “j(F) witnesses SC holds for j(F[a])”. By Theorem 2.5,
V[G] E“j(F) witnesses SC holds for j(F[a])”. Note that j[F[a]] < j(F[a]).
which follows from Tarski criterion and the elementarity of j. Although j[F[«a]]
may not be in M. it is in V[G]. So applying SC for j(F[a]) in V[G]. we get
F[a] = the transitive collapse of j[F[a]] = j(F)[ot(Ord Nj[F[a]])] = j(F)[e]

and thus F = j(F) | a. By elementarity, M = V = L[j(F)]and for all (@. B) <jex

(j().j(B). LIi(F) I & = ~w(a.B.j(F) | &). However. L[j(F) | o] = L[F] |=
w(a. . j(F) | a). Note that (a. f) <jex (j(a). j(B)). Contradiction. =

REMARK 5.2. In the above model for & = w;. we also have that any ideal on w is
not wy-saturated. Assume thereis a saturatedideal / onw;. Let j : V' — M C V[G]
be the generic embedding. Then w{ = j(w;) = w,. By elementarity, in M, j(F)
witnesses SC for (H (w2))™ = j(H(w,)). We have (H(w)))™ = j(F)lo}] =
J(F)[w2] = H (wy). which is impossible since their theories are different. This gives
a different proof of a theorem of Baumgartner and Taylor ([1]) that there is a
set-forcing which kills all saturated ideals on w;.

COROLLARY 5.3. [t is consistent relative to a supercompact cardinal that Con (there
is a supercompact cardinal+no ideal on w, definable over H (w,) is precipitous).

ProoFr. Start with a ground model V' where a supercompact cardinal x exists and
GCH holds. Let G be a P,-genericover V. Thenin V'[G]. x remains supercompact as
the size of P, is small. On the other hand, by Proposition 5.1, there is no precipitous
ideal on w; which is definable over H (w,). 4

If a precipitous ideal over w; exists in this model, then it cannot be the nonsta-
tionary ideal on w; by definability. It is natural to ask whether SC over H (w,) is
already strong enough to give a complete solution to Jech’s question, which was
stated in the introduction. This is refuted by the following theorem.

THEOREM 5.4. The following are equiconsistent:

(1) ZFC + there exists a measurable cardinal.
(2) ZFC + SC,,, + there is a precipitous ideal on w,.

The proof heavily relies on master condition arguments. For an elementary
embedding j : V' — M and a P-generic filter G over V', a j-G master condi-
tionis a j(P) condition p such that forallg € G, p < j(q). If a master condition p
exists, then we can define the lifted embedding js : V[G] — M[H], where H > p s
any j(P)-generic filter over M. The general framework for constructing a precipi-
tous ideal on w in an w;-length countable support iterated forcing model originates
from [8] (also see [3]). We will follow this framework and make sufficient adaptions
to fulfill our goal.

Proor. It is well known (see [8]) that Con(2) implies Con(1). We need to prove
that Con(1) implies Con(2). Assume ¥ =GCH + & is a measurable cardinal. Let U
be a k-complete normal measure over x and j : V' — M be the derived elementary
embedding.

Consider the forcing Col(w. < k)*P,, where e is chosen in M €0 (@<r) Let G*K be
aCol(w, < k)*P,-generic filter over V. It follows that P, € M[G]. By the discussion
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at the end of Section 3, IP, is also a forcing for SC,, in V'[G]. We will also assume
that P, consists only of flat conditions. Hence each condition in P, is a countable
set in pCl@<r) A5 V' = GCH. GCH holds in ¥[G]. By Theorem 1.1, it follows
that V[G * K] |= SC,,. For any a € [k, k™). let K, be the P,-generic derived from
K. Let H be the bijection from w, to (P(w;))"19*K1 as defined in Section 3. For
a € [k.kT), let H, = H | . The rest of the proof is devoted to showing that there
is a precipitous ideal over w; in V[G * K].
Denote Col(w, < &) by P. The proofs of the following facts are standard:

(1) j(P) 2 PxQ.where Q = Col(w.[k.< j(x)))™. We identify these two posets
without further comment.

(2) Let G’ be Q-generic over V[G], then G * G’ is j(P)-generic over V. Also
in V[G * G']. there is an elementary embedding js : V[G] — M[G * G']
extending j, where j(G) = G * G'.

(3) /1 = k& and M = (k).

(4) InV[G* G let Us = {X € P() N V[G] | k € jo(X)}. Then Ug is a
normal ultrafilter on P(k) N V[G]and M[G * G'] = Ult(V[G], Ug).

(5) In V[G], Let I = {X € P(k) | Il—é[G] k & jo(X)}. Then I is a normal
precipitous ideal over w;.

Since in M[G]. P, is of size k* and j (k) is inaccessible, P, can be completely
embedded into @ such that the quotient forcing is isomorphic to Q. Let i, be such
a complete embedding. In what follows, we always view G’ as K * r, where r is
Q/P, generic over V[G * K]. i.e., we always assume K is contained in G’ via the
embedding i,,. As a result, we have jg : V[G] = M[G x K xr], where K xr = G'.

We now deal with P,,,. In M[G * G'], jg(P,,) is the forcing to add a generic
bijection from j (k) to P, (j(x)) using countable conditions. We need to build
a master condition for j; and K, in M[G * G']. By the definition of P,, H is a
bijection from k* to P(k) N M[G]. As we assume that K € M[G * G']. it follows
that H is also in M[G * G']. Hence in M[G * G'], H is a countable injection into
P;(,)(j(x)) and thus a condition of j(Py, ). As | j[Kw] =UKe, = H,, C H.
H is a master condition for j; and K,,. It will become clear in the proof of
Claim 5.5 why we choose H instead of H,, to be the master condition. Whenever
K}, is jG(P,,)-generic over V[G x G'] such that H € K/ . we can lift js to
Jou  VIG % K] = M[G * G'x K/, ].

InV[G*G'*K/],].let U, ={X € P()NV[G*K,,]| K € jo, (X)}. Then U,
is a normal ultrafilter over P(x) N V[G * K, ]. Let

VG Ko, ] .
Iy, = {X € P(r) NVIG * Koy 1k, toen, ) £ & Jon (X)}'

It is clear that Ug C Uy, and I C I,,. Moreover one can verify that M[G x G’ x
K], 1= Ult(V[G * K,,]. Uy, ) and 1, is a precipitous ideal over w;.
We shall construct the following objects by induction on « € [k, xT) in V[G]:
(1) A Q-name D, for a master condition appropriate for the embedding jg :
V[G] — MG % G'] and the forcing j; (Pg). D, will be a condition in j (P,)
which is a lower bound for j;[K,].
(2) A Qx* jG(Py)/Dy-name for j, : V[G x K,] = M[G x G' x K] extending
ji.where K!, 3 D, is j(P,)-generic.
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(3) A Q-name I, for a normalideal on x which is the set of those X C & in V[G *
K, ] such that it is forced over V[G x K,] by (j(P)/(G * K,)) * (j6(Py)/Da)
that & & jo(X).

For k < a < f < w*. we require that D,(jo(w; ) = H. Dg | j(a) = D.

Jp I VIG * Ko] = jo. and Ig N V[G % K,] = Io. Let (C, | y € [k.)) be the
sequence of club sets added by K, in V[G * K,]. Then D, is defined as:

H, ify = jg(wp).
Do(y) = CpU{k}. ify=j(B)AB# ;.
0, otherwise.

By our assumption, K, € M[G * G']. It follows that (C, | y € [k.a)) € M[G % G'].
Also as jla] € M. D, € M[G x G']. Since |x|"[6*G'] = . the support of D, is
countable in M[G * G'].

By induction on « € [k, k"), we check that D, is a master condition and define
the embedding j,. The case @ = k was already treated above. D, is a master
condition for jg and K, . If « is a limit ordinal, then it follows from the induction
hypothesis that D,, is a condition. Now if p € K, then by the induction hypothesis
forany f < a, j(p | p) > Dy = Do | f. Hence j(p) > D,. It follows that j, :
V(G % K,] — M[G * G x K] can be defined whenever K/, 5 D,, is jg (P,)-generic
over M[G *x G'].

Now assume a = f + 1 and the induction hypothesis holds at f. We may assume
that D, = Dy~ (j(B). CsU{r}). Weneed to check that Dy I CyU{k}isa jc(Qp)-
condition. Let K 5 Dy be an arbitrary J (Pg)-generic filter over V[G * G’]. From
now on. we work in V[G G’ «K4]. Now jg : V[G =« Ky] — M[G *G’*K/’f] lifts jg, -
We need to prove Ci U {s} C jz(Sy). Since Cy C Sy C jz(Sy). we only need to
check the following claim:

CLAIM 5.5. K € jﬁ(Sl’{).

PrOOF. By the definition of Sy and js. k € j/;(S;;) if the structure 4 =
(jplep)lr]. jp(Hp) N jz(ep)[k]. €) is a countable elementary substructure of jgz(A4p)
and

(p(Hp) N jglep)lE]) s, epim € Jp(Hg)

It is clear that jz(ep)[x] is countable in M[G * G’ * K/’g]. By the definition of
ep. (ep[k]. Hg. €) = Ap. Now since jg is elementary, applying the Tarski criterion,
<j5[€p[/i]],jﬂ[Hﬁ], €) < jﬁ(Aﬁ). It is also clear that Jpleplkll = jﬂ(é’ﬁ)[ﬁ]. Hence
A = (jpleglrll. jg[Hpl. €) < jp(Ap).

We finish the proof of the claim by showing that (js(Hpg) N jg(ep)[K]),(e)e) =
Hg = jg(Hpg) | p. The first equality holds because eg[x] is a transitive set isomor-
phic to jglep[]]. We show the second equality. Since f < st < j(k). jg(Hp) |
p C ju (Hy,). By our construction, H € K/, . Hence Hy C H C j,, (H,,) and
Hﬁ:ja)l(le) rﬁ:jﬂ(Hﬁ) fﬁ =

We now check that D, is a master condition. Fix ¢ € K,. As g [ f € Kp,
by induction hypothesis, Dy is stronger than j(¢) [ j(f). It remains to check that
Ja(q(B)) = q(B) C Cg. The equality follows from the fact that ¢ is flat. Hence D,
is a master condition.
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It follows that we can lift j,, to j, : V[G*K,] = M[G+G'*K]], where K! 5 D,,
isa jg(P,)-genericover V[G*G']. Let U, = {X € P(k)NV[G*K,] | K € jo(X)}
and

I = {X € P(R)NVIG * Kal (g7l o)) & eéja(X)}.

As before, we have M[G * G' x K] = Ult(V[G * K,)]. Uy) and 1, is a precipitous
ideal on . It is routine to verify that /3 = I, N V[G * Kg] from the construction.

Let 1,, = U, <, lo- Then I, is a proper normal ideal on w;. We claim that /,,,
is actually a precipitous ideal and thus finish the proof.

CLamM 5.6. In V|G * K], 1, is a precipitous ideal.

ProOF. We first describe the general construction for a k which is j¢ (P, )-generic
over M[G * G']. Let P, = {1 € jG(Ps,) | Ja(spt(r) C jla) At < Dy)}. Note
that I, is a subset of M [G *x G'] but is not in M[G * G']. However, we can force
with P/, over V'[G * G']. Let K be a P}, -generic filter over V'[G  G']. Let k be the
je (P, ) filter induced from K.

We now show that & is in fact a jg (P, )-generic filter over M[G * G']. Suppose
A is a maximal antichain in M[G * G']. By the j(x")-c.c. and the fact that j[x™]
is cofinal in j(k™), there is some o € (k. k™) such that 4 is a maximal antichain of
j6(Py,,) in M[G * G']. Let A’ be the jg(PP,)-dense open set generated by 4. It is
not difficult to verify that 4’ N (P,,, [ j(«)) is a dense open subset of (P, [ j(a)).
By genericity, thereisa p € A’ N K | j(a). Let t € A be the unique condition in
Jj6(P,) such that p is compatible with 7. It follows that 7 € k and thus k N 4 # 0.
This ends the construction of k.

For any such K and derived k. as before. in V[G * G’ * K]. we can lift j,, to
Jan : VIG*K] — M[G*G'xk]. Moreover forall X € P(k)NV[G*K]. itis routine
to check that X € I, iff for every P/, -generic filter K and derived embedding jo,.
K& Jo (X).

Now we can argue that [, is precipitous via a density argument. Fix X" ¢ 1, and
X C k. We only need to show that X does not force that Ult(V[G x K], U) is ill-
founded. where U is the P), -generic ultrafilter for P(x)/I,,,. By the last paragraph,
there is a generic filter K such thatin V[G * G' * K]. k € ju,,(X). Let U,, = {X €
P(k)NV[G*K]| K € ju,(X)}. As before, U,, isa P(k) N V[G * K]-ultrafilter and
MG x G’ xk]= Ult(V[G % K], Uy,). Hence Ult(V[G x K], U,,) is well-founded.

It remains to show that U, is P(K) /1,,-generic. Let 4 be a delmdl antichain
of P(k)/I,, in V[G * K]. Suppose otherwise and let p € G * G’ + K be a condition
such that p I- (VX € A)(k & j,,(X)). Note that by the definition of P, . p is also
inG G xk.

We now work in V[G * K]. As pisin M, thereis an f : k — V representing p.
Let R = {a € 6 | f(a) € G *x K}. Now in any j¢(P,,)-generic extension over
V[G x K] with generic k, k € j,,(R) is equivalent to p € G * G’ * k. Hence
K & jo,(X NR)and thus X N Risin I, forall X € 4.

On the other hand, R ¢ 1, since p IF; (o)) B € Ja,(R). This contradicts the fact
that 4 is maximal. =

86. Final Remarks. This paper is the first attempt at the second objective we
posed in Section 1. The result on square sequences gives us the impression that SC
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cannot replace the role of fine structure in any proof of theorems in L which uses
fine structure essentially. However, it may still happen that there are truths in L
all of whose available proofs involve some form of fine structure, yet an essentially
different proof could be found. A natural candidate is the following question of
Woodin ([14]) concerning an abstract analogue of Jensen’s covering lemma for L.

QUESTION 6.1. Suppose N is an inner model of ASC. Suppose that covering fails
for N in V. Must there exist a real x such that N C L[x]?

On the other hand, a yet more difficult question is to construct model of larger
fragments of SC:

QUESTION 6.2. Is there a set sized forcing notion to obtain SC,,?

A positive answer to this question would be very plausible and would answer
Jech’s question negatively.
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