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SET FORCING AND STRONG CONDENSATION FOR H (�2)

LIUZHENWU

Abstract. The Axiomof Strong Condensation, first introduced byWoodin in [14], is an abstract version
of the Condensation Lemma of L. In this paper, we construct a set-sized forcing to obtain Strong Con-
densation for H (�2). As an application, we show that “ZFC + Axiom of Strong Condensation + ¬��1”
is consistent, which answers a question in [14]. As another application, we give a partial answer to a question
of Jech by proving that “ZFC+ there is a supercompact cardinal + any ideal on �1 which is definable over
H (�2) is not precipitous” is consistent under sufficient large cardinal assumptions.

§1. Introduction. In this paper we investigate the Axiom of Strong Conden-
sation, which is an abstract version of Gödel’s Condensation Lemma proposed
by Woodin. As a fundamental feature of the Constructible Universe L, the Con-
densation Lemma has immense consequences on the consistency of mathematical
statements inside and outside of set theory.
The purpose of our study is to discover to what extent the Axiom of Strong Con-
densation and its localized versions capture the power of the CondensationLemma.
There are two main objectives. The first objective is to explore the consequences
of the Axiom of Strong Condensation. This is almost achieved in the work of Law
([10]) and Woodin ([14]). Their results suggest that the appearance of the Con-
densation Lemma can be replaced by the Axiom of Strong Condensation in most
arguments and constructions. The second objective, which is also the main focus of
this paper, is to seek for theorems of “ZFC+V = L” which cannot be derived from
Strong Condensation alone.
For this purpose, we need to examine various models of Strong Condensation
derived fromdifferent approaches.L is such amodel, which is certainly of no interest
here. On the other hand, there are also several known constructions of nontrivial
models of Strong Condensation, including the models from Beller–Jensen–Welch
([2]) andWoodin ([14]).However, theirmodels, satisfying forms of “fine-structural”
properties, are very similar to L. As the main result of this paper, we construct a
not so “fine-structural” model of Strong Condensation for H (�2) using set-sized
forcing1:
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Theorem 1.1. Assume CH and 2�1 = �2. Then there is a cardinal-preserving set
forcing P which forces Strong Condensation forH (�2).
As the main application of Theorem 1.1, we study the relationship between the

Axiom of Strong Condensation and ��1 . ��1 is certainly a natural candidate for
the second objective, since it seems impossible to prove��1 using the Condensation
Lemma alone. The first proof that��1 holds in L is to be found in Jensen’s ground
breaking paper ([9]) which also gives birth to both the square principle and fine
structure theory. It was then followed by a proof of Silver using Silvermachines ([4]).
Finally, Friedman–Koepke ([6]) gives a proof using hyperfine structure. All of these
proofs involve some forms of fine structure. Woodin asked whether the converse
is also true, i.e., whether the Axiom of Strong Condensation is consistent with
the failure of ��1 . We answer this question affirmatively:
Theorem 1.2. Assume there exists κ such that the set

S = {� < κ | � is a measurable cardinal}
is stationary below κ, then ZFC+ Axiom of Strong Condensation +¬��1 is
consistent.
Theorem 1.1 also has some effect on results related to large cardinals. Jech asked

whether certain large cardinals entail the existence of a precipitous ideal on �1 in
the same model.2 As the second application of Theorem 1.1, we construct a model
in which a supercompact cardinal exists and no ideal definable over H (�2) is
precipitous. This generalizes previous results of Foreman–Magidor-Shelah ([5]),
Schimmerling–Velickovic ([11]), Woodin ([14]).
The article is organized as follows. In Section 2, we present the basic definitions

and a summary of the background. We also prove several lemmas which will be
used in later sections. In Section 3, we provide the forcing construction for the
main theorem. In Section 4, we construct a model in which the Axiom of Strong
Condensation holds and ��1 fails. In Section 5, we study the application on pre-
cipitous ideals. We prove that supercompact cardinals do not entail any precipitous
ideal on �1 definable overH (�2) and show that this result is somewhat optimal. In
Section 6, we give some final remarks.
Most of the notations in this paper are standard. For a set S, we use P�1 (S) to

denote the set of countable subsets of S and tc(S) to denote the transitive closure
of S. For any X ≺M , a ∈ X , P ⊂M , let X̄ stand for the transitive collapse of X ,
�X : X → X̄ be the collapsing map, aX be the image of a under the collapsing map
andPX the pointwise image ofP under the collapsingmap. For any structure 〈X,P〉,
if it is clear from the context, we always identify the structure with its underlying
set X . For any function F , we write dom(F ) for the domain of F , ran(F ) for the
range of F and Field(F ) for dom(F )∪ ran(F ). IfX ⊂ dom(F ), we let F [X ] denote
the set {a ∈ ran(F ) | (∃b ∈ X )a = F (b)}. We use Add(�1, 1) to denote the forcing
to add one �1-Cohen set. Our treatment of iterated forcing is based on [3].

§2. Preliminaries. The study of abstract condensation properties was initialized
by Woodin in [14]. Most of the content in this section is due to Woodin. However,

2Note that Jech’s question is not a question about large cardinal strength. He proved ([8]) that the
existence of a precipitous ideal is equiconsistent to the existence of one measurable cardinal.
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some of these facts never appeared in the literature, let alone their proofs. In this
section, we try to systematically summarize the known facts about the Strong Con-
densation property and present their proofs, which were not yet available.We believe
that the proofs in this section aremostly identical to the original unpublished proofs
by Woodin.

2.1. Strong condensation. In [14], Woodin defines the Strong Condensation
property.

Definition 2.1 ([14]). Suppose thatM is a transitive set closed under the Gödel
operations and that

F : Ord ∩M →M
is a bijection.
We say that the function F witnesses Strong Condensation for M if for any
X ≺ 〈M,F 〉,

FX = F � (Ord ∩ X̄ ).
We say that Strong Condensation holds forM if such an F exists.

He also defines the following global version.

Definition 2.2 ([14]). The Axiom of Strong Condensation is the statement that
for each regular cardinal κ, Strong Condensation holds forH (κ).

From now on, we will abbreviate Strong Condensation by SC, SC for H (κ) by
SCκ and the Axiom of Strong Condensation by ASC. L is the canonical model
of ASC. At first glance, ASC does not capture the full strength of the condensation
property in L, i.e., it does not assert the existence of a global bijection F : Ord→ V
such that F � κ witnesses SCκ for all uncountable regular κ, while in L,<L induces
such a bijection. Nevertheless, it turns out that such a bijection exists.

Fact 2.3.

(1) If κ < � are two uncountable regular cardinals, then SC� implies SCκ. In
particular, if F witnesses SC�, then F � κ witnesses SCκ.

(2) If F1 and F2 both witness SCκ for some regular cardinal κ, then

F1 = F2 ↔ F1 � �1 = F2 � �1.
Fact 2.3(1) is a direct corollary of Lemma 2.6 below. Fact 2.3(2) is clear.

Corollary 2.4. Assume ASC. Then there is anA ⊆ �1, such thatV = HOD[A].
In particular, there is a Δ1(A)-definable global well-ordering.

Proof. Define a class function f : Reg \ {�} → V by letting f(κ) be the set of
all functions witnessing SCκ. Let

K = {F ∈ P(H (�1)) | ∀α∃κ∃F ′(κ > α ∧ F ′ ∈ f(κ) ∧ F ′ � �1 = F )}.
Since for any κ, f(κ) is nonempty, K is also nonempty. By Fact 2.3(1), for
each F ∈ K and all regular κ, there is an F ′ ∈ f(κ) such that F ′ � �1 = F .
By Fact 2.3(2), for any F ∈ K and any κ, there is a unique F ′ ∈ f(κ) such that
F ′ � �1 = F . Fix some F ∈ K . Now let F ′′ be a class function with domain
Ord such that for all regular κ, F ′′ � κ is the unique F ′ ∈ f(κ) such that
F ′ � �1 = F . It follows that F ′′ : Ord → V is a global bijection witnessing ASC.
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It is straightforward to verify thatV = HOD[F ]. Since ASC trivially implies GCH,
the corollary follows by coding F into a subset A of �1. �
Like L, SC is absolute between models.

Theorem 2.5 ([14]). Suppose that M is a transitive set closed under the Gödel
operations and F : Ord∩M →M is a bijection. Suppose that N is a transitive inner
model such that

(1) N |= ZC+Σ1-Replacement,
(2) {M,F } ⊂ N ,
(3) F witnesses SC forM in N .

Then F witnesses SC forM .

ASC is arguably the strongest abstract condensation property that can be
extracted from L, as all truths in L whose known proofs only involve Gödel’s
Condensation Lemma remain true in models of ASC.3 We list some of them in
Table 1.4

The proof of Fact 2.3 relies heavily on the following characterization of SC. This
characterization will be used throughout this paper. In particular, in the proof of
Theorem 1.1, we will force an F witnessing this characterization.

Lemma 2.6. Assume GCH. For any regular cardinal κ > �1, the following are
equivalent:

(1) SCκ.
(2) there is a bijection F from κ to H (κ) and a club C of P�1 (H (κ)) such that
for every X ∈ C , X is a countable elementary submodel of 〈H (κ), F 〉, and
FX ⊂ F .

L M |= ASC
Lα-hierarchies F [α]-hierarchies

Acceptability(GCH) F -Acceptability(GCH)
♦κ ♦κ ([14])

no �1-Erdős cardinal no �1-Erdős cardinal ([7], [14])
no precipitous ideal no precipitous ideal ([10])
Δ1 global well-ordering Δ1(A) global well-ordering for some A ⊂ �1 (§2)

0� exists iff ∃j : L ≺ L nontrivial M� exists iff ∃j :M ≺M nontrivial
Table 1. Comparison between L and models of ASC.

3See [14] and [7] for the definition of various weaker forms of the condensation principle and their
relationship with ASC.
4Acceptability is the following statement: If there is a subset of � inL	+1 \L	 , then there is a surjection

of � onto L	 in L	+1. F -Acceptability is similarly obtained by replacing the Lα -hierarchies by the
F [α]-hierarchies. The F [α]-hierarchies consist of all F [α] such that F [α] is transitive, closed under
Gödel operations and F � α witnesses SC for F [α].
M� can be defined as the set of true sentences ofM = L[A] with � many order indiscernibles and all

ordinals α < �1 as constants. Here although A is a class predicate, we only care about the information
from its restriction A ∩ �1. This is because under ASC, A ∩ �1 captures the information of A up to
arbitrary height. For the exact definition see [13]. Also see Section 2.2 for some basic facts about sharps.
Woodin proves that in any modelM of the Axiom of Condensation (a weaker abstract condensation

property, see [14] for the definition), there is no precipitous ideal (a proof can be found in [10]). It follows
that any model of ASC contains no precipitous ideal.
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Proof. Clearly, (1) implies (2). We will prove that (2) also implies (1). We first
reduce the requirement in the definition of SCκ:

Claim 2.7. If F is a bijection from κ to H (κ) such that for every countable
elementary submodel X of 〈H (κ), F 〉, FX ⊂ F holds, then F witnesses SCκ.
Proof. Assume the claim fails and let F : κ → H (κ) be a witness. By the
definition of SCκ, there is an uncountable elementary submodel X of 〈H (κ), F 〉
such that FX �⊂ F . We can find x, y ∈ X such that (x <F y ∧ �X (y) <F �X (x)),
where <F is the well-ordering on H (κ) derived from F .
Fix such a pair {x, y} and let � be a sufficiently large regular cardinal. Choose
a countable K ≺ H (�) such that {κ, F, x, y,X} ⊂ K . By elementarity, K |= x <F
y∧�X (y) <F �X (x). As F,X ∈ K , 〈K ∩X,F ∩K ∩X 〉 ≺ 〈H (κ), F 〉. We writeXK
for 〈K ∩X,F ∩K ∩X 〉. Since x <F y andXK is a countable elementary submodel
of 〈H (κ), F 〉, by our requirement on F , �XK (x) <F �XK (y). On the other hand,
sinceK |= �X (y) <F �X (x), 〈K ∩H (κ), F ∩K〉 |= �X (y) <F �X (x). By the Tarski
criterion, we have 〈K ∩H (κ), F ∩K〉 ≺ 〈H (κ), F 〉. Using the assumption and the
countability of K ∩H (κ) again, �K∩H (κ)(�X (y)) <F �K∩H (κ)(�X (x)).
Via an induction on the rank of elements of XK , we show that for all z ∈ XK ,
�XK (z) = �K(�X (z)) as follows: If a ∈ �XK (z), then there is an a′ ∈ XK such that
�XK (a′) = a and a′ ∈ z. By the induction hypothesis, a = �XK (a′) = �K(�X (a′)).
However, as a′, z ∈ XK , a′ ∈ z → �X (a′) ∈ �X (z) → �K (�X (a′)) ∈ �K(�X (z)).
Hence a ∈ �K (�X (z)).
Now assume a ∈ �K(�X (z)). Then there is an a′ ∈ K such that a = �K(a′)
and a′ ∈ �X (z). Since �X (z) ∈ H (κ)X and H (κ)X is transitive, a′ ∈ H (κ)X .
Let a′′ ∈ X be such that �X (a′′) = a′. Since X ∈ K , by elementarity a′′ ∈ K and
a′′ ∈ z. By the induction hypothesis, a = �K (�X (a′′)) = �XK (a′′) ∈ �XK (z).
In conclusion, �XK (y) = �K(�X (y)) = �K∩H (κ)(�X (y)) <F �K∩H (κ)(�X (x)) =
�K(�X (x)) = �XK (x). This leads to a contradiction. �
Returning to the proof of the lemma, let C and F be as stated in the lemma. By
our claim, we need to prove that FX ⊂ F for all countable X ≺ 〈H (κ), F 〉. Since
κ > �1, it suffices to show that for all α ∈ X ∩ Ord, if F [α] is transitive and of
uncountable size, then (F � α)X = FF [α]∩X ⊂ F .
Fix one such α ∈ X and pick D ⊂ C � F [α] to be a club of P�1 (F [α]). This
is possible since |F [α]| > � and C is a club. Without loss of generality, we can
assume that there is a function d : (F [α])<� → F [α] such that D = {A ⊂ F [α] |
d [A<�] ⊂ A}. Now for eachK closed under d , there is a countableY ≺ 〈H (κ), F 〉
such that K = Y ∩ F [α] and FY ⊂ F . Moreover, since F [α] is transitive, FK is an
initial segment of FY . Thus FK ⊂ F � α. As |α| < κ, d ∈ H (κ), so 〈H (κ), F 〉 |=
there is a function d : (F [α])<� → F [α] such that whenever K ∈ P�1 (F [α]) is
closed under d then FK ⊂ F � α. By elementarity, the last statement is also true
in X . Fix a witnessing function dX ∈ X . Then by elementarity, F [α] ∩ X is closed
under dX , which means FF [α]∩X ⊂ F � α ⊂ F . �
By examining the above proof, it can be seen that a version of Lemma 2.6 remains
true when replacingH (κ) by anyM which is an uncountable transitive model such
that H (�1) ∈ M and M ≺ H (κ). In this situation, SC for M holds iff there is a
bijection F from OrdM toM and a club C of P�1 (M ) such that for every X ∈ C ,
X is a countable elementary submodel of 〈M,F 〉, and FX ⊂ F . This implies that if
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SCκ holds, then there are unboundedly many α < κ such that SC holds for F [α].
This justifies the definition of F [α]-hierarchies.

2.2. Models of SC. We summarize some approaches to construct models of SC.
Clearly, for any real r, L[r] is a model of ASC. The following propositions indicate
that for any A ⊂ �1, L[A] is a model of ASC if CH holds and r� exists for all
reals r.

Proposition 2.8. CH ↔ SC�1 .
Proof. Note that any elementary submodel of H (�1) is transitive. Hence any

bijection F : �1 → H (�1) witnesses SC�1 . �
To state the next proposition, we recall some standard background of sharps.

The reader is referred to [12] for further details. For any transitive a, consider the
structure

〈L�(a),∈, a, xk , b〉k∈�,b∈a ,
where � is a limit ordinal and {xk | k ∈ �} is a set of ordinal indiscernibles
for 〈L�(a),∈, a, b〉b∈a indexed in increasing order. We denote the language of
the above structure by L. In general, due to the lack of a definable global well-
order, this structure does not have a built-in Skolem function. However, we can
still define partial Skolem functions which moreover suffice for the general theory
of sharps. For any finite subset B of a, we can choose an 〈L�(a),∈〉 definable
well-ordering <B on {d ∈ L�(a) | d is 〈L�(a),∈〉-definable from B ∪ Ord} in a
uniform way.5 Note {xk | k ∈ �} remains an indiscernible sequence of the
structure 〈L�(a),∈, a, b,<B 〉b∈a,B∈[a]<� . Expand L to L′, the language of 〈L�(a),∈,
a, xk, b,<B〉k∈�,b∈a,B∈[a]<� . We further extend L′ to a language La by inductively
introducing the following partial Skolem terms. Suppose that t0, . . . , tk are terms
which have been defined. Suppose that φ(c0, . . . , cn, d0, . . . , dk) is a formula of set
theory with free variables ci , dj . Then for any b0, . . . , bm ∈ a, define
tφ{b0 ,...,bm}(t0, . . . , tk)

=

{
<{b0,...,bm} -least �y such that L�(a) |= φ(�y, t0, . . . , tk) if such y exists,
∅ otherwise.

Since any element of L�(a) is definable from a ∪ Ord in 〈L�(a),∈, a, b〉b∈a , any
x ∈ L�(a) is definable from a finite set Bx ⊂ a and a finite set Ox of ordinals
using a formula ϕx(s, t). Now if L�(a) |= ∃xφ(x,�t ) holds for some La formula φ,
then there is such an x definable from finite sets Bx ⊂ a and Ox ⊂ Ord. Thus the
term tφBx (�t ) witnesses that L�(a) |= ∃xφ(x,�t ). Hence in our setting, it suffices to
use the partial Skolem terms, which will be called “Skolem terms” subsequently,
to define the sharps.A useful remark is that by alternating the order of free variables,
for any permutation �t′ of �t, and any formula φ, there is a formula φ′ such that

5The exact definition of<B is irrelevant. We present one possible definition as following. Note that d
is definable in 〈L� (a),∈〉 using parameters from B ∪ Ord iff there is an ordinal 	 < � and a formula 
such that d is definable over 〈L	 ,∈〉 using the formula with parameters {B}∪O, whereO ∈ 	<� . Let
Form be the set of formulas equipped with the usual Gödel’s well-ordering. Let<′ be the lexicographical
well-orderingon �×Form×Ord<� . Now for any suchd , let 〈	d , d ,Od 〉 be the<′-least triplewitnessing
the definition. Now define d <B e if 〈	d , d ,Od 〉 < 〈	e , e, Oe〉.
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tφB (�t) = t
φ′
B (�t

′). Thus when we write tφBx (�t), we can always assume that �t is of some
fixed style. This simplifies the following definition.

Definition 2.9. An EM blueprint for a is a complete theory in La with
underlying structure 〈L�(a),∈, a, xk , b,<B〉k∈�,b∈a,B∈[a]<� .
For such a, we say a� exists if there is an EM blueprint T for a such that

(1) (Unboundedness) For any n-ary Skolem term tφB (·), T contains the sentence:
tφB (x0, . . . , xn−1) ∈ Ord→ tφB (x0, . . . , xn−1) < xn.

(2) (Remarkability) For any (m + n + 1)-ary Skolem term tφB (·), and a finite
sequence �c from b, T contains the sentence:

tφB (�c, x0, . . . , xm+n) < xm →
tφB(�c, x0, . . . , xm+n) = t

φ
B (�c, x0, . . . , xm−1, xm+n+1, . . . , xm+2n+1).

(3) (Well-foundedness) For every α < �1, (M, α) is wellfounded, where (M, α)
is the unique (up to isomorphism) model satisfying T that is generated from
α-many indiscernibles, which means that (M, α) is equal to the Skolem Hull
of a and α-many indiscernibles using the built-in Skolem terms in (M, α).

(4) (Witness condition) Whenever ∃xφ(x) ∈ T , then for some term t involving
no indiscernibles not appearing in φ(x), φ(t) ∈ T .

By the general analysis of sharps, unboundedness implies that the set of indis-
cernibles in any (M, α) is closed. Remarkability implies that in any (M, α), if x
is generated from a finite set X of indiscernibles and a term t, then the rank
of x is below the least indiscernible greater than supX . It is known that the
EM blueprint T witnessing that a� exists is unique. To simplify the presentation,
we thus define a� to be the unique transitive (M,�) model satisfying T . In particu-
lar, a� = 〈L�(a),∈, xk , a,<B〉k∈�,b∈a,B∈[a]<� such thatL�(a) is equal to the Skolem
Hull of a ∪ {xk | k < �} using the Skolem terms from La . More generally, for any
set y, we define y� to be (tc(y))�. We will not use any specific property of a� other
than the following fact: L�(a) ≺ L(a). Another remark is that if |a| ≤ α and a�
exists,then a� ∈ H (α+).
Proposition 2.10. Suppose κ > � is regular. Suppose F witnesses SCκ and for
any x ∈ H (κ), x� exists. Suppose that in L[F ], there is no inaccessible cardinal
above κ. Then L[F ] is a model of ZFC+ASC andH (κ) ⊂ L[F ].
Proof. Fix α < κ and consider F � α ∈ H (α+). By assumption, (F � α)�
exists. Let x0 be the first indiscernible of (F � α)�. Then by the usual analysis of
indiscernibles, x0 must be an inaccessible cardinal in L(tc(F � α)) and x0 > α.
It follows that for any α < κ, there is � < α+ such that

L(tc(F � α)) |= � is an inaccessible cardinal greater than α.
Without loss of generality, we can assume that F (0) = ∅. In what follows,
we define a function F ′ : Ord → H (κ) by inductively assigning value to F ′(α).
Set F ′(0) = F (0) = ∅. Inductively on α < κ, we define as follows:
Case 1) α = � +1 is a successor ordinal. As F is a bijection from κ toH (κ) and
F ′(�) ∈ H (κ) is defined, there is a unique ordinal �̄ such that F ′(�) = F (�̄).
Subcase 1a) If � = 0 or �̄ �= 0, then set F ′(α) = F (�̄ + 1).
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Subcase 1b) If �̄ = 0 and � �= 0, then we set F ′(α) = ∅.
Case 2) α is a limit ordinal. Let �α = sup{� < α | F ′(�) �= ∅}.
Subcase 2a) If �α = α or L(tc(F � �α)) |= there is no inaccessible cardinal � s.t

�α ≤ � ≤ α, then let F ′(α) = ∅.
Subcase 2b) �α < α and L(tc(F � �α)) |= α is the least inaccessible above �α .6

Denote sup{� < κ | (∃	 < α)(F ′(	) = F (�))} by �α .
Subsubcase 2ba) F (�α) is undefined. Set F ′(α) = ∅.7
Subsubcase 2bb) F (�α) is defined. Set F ′(α) = F (�α).
Basically, F ′ can be viewed as a function stretched from F . Let <L[F ′] be the

canonical Σ1-well ordering of L[F ′]. Let F̄ : Ord → L[F ′] be the bijection derived
from <L[F ′]. We claim that for any uncountable regular cardinal �, F̄ � � witnesses
SC� in L[F ′] andH (κ) ⊂ L[F ′].
Claim 2.11. H (κ) ⊂ L[F ′].
Proof. We will show that H (�) ⊂ F ′[�] for any uncountable regular cardinal

� ≤ κ.
We first assume � > � is a successor cardinal. A simple observation from the

construction is that F ′[�] = F [	] for some 	 ≤ κ and F ′ � (� \ F ′−1[{∅}])
is an injection. Thus it suffices to verify that 	 = �. As |F ′[α]| < � for any
α < � and � is the first ordinal � such that |F [�]| ≥ �, 	 ≤ �. It remains to
show that 	 ≥ �. Assume otherwise, 	 < �. It is clear that 	 must be a limit
ordinal. As F ′ � (� \ F ′−1[{∅}]) is an injection, there is a least 	̄ < � such
that F [	] = F ′[	̄]. 	̄ must be a limit ordinal by construction. It follows that
for any α ∈ [	̄ , �), �α = 	̄. By our assumption, there is � ∈ [	̄ , 	̄+) such that
L(tc(F � 	̄)) |= � is the least inaccessible cardinal greater than 	̄. But as � is a car-
dinal, [	̄ , 	̄+) ⊂ [	̄ , �) and hence � < �. Now on stage �, �� = 	̄ and �� = 	. Hence
by our construction F ′(�) = F (	). Contradiction.
Now when � is a limit cardinal, the statement follows easily. �
This proof also implies F ′(α) = ∅ whenever α ≥ κ. Hence for any cardinal �,

L�[F ] ⊂ L�[F ′]. On the other hand, by induction on rank, we can check that
for any X ∈ L�[F ′], the transitive closure tc(X ) of X is in H (�)L[F ]. However,
note that H (�)L[F ] = L�[F ].8 Hence X ∈ L�[F ]. It follows that L�[F ] = L�[F ′]
for all �.
Next we prove that F̄ � � witnesses SC� in L[F ′] for every uncountable

regular �. We first treat the case when � ≤ κ. For � ≤ �1, there is nothing to show.
Assume � > �1, we will apply Lemma 2.6. Note that F̄ � � is a bijection from � to
H (�)L[F

′] = L�[F ]. Consider the club consisting of all countable X ≺ 〈L�[F ], F 〉.
We will show that for any X in the club, (F̄ � �)X = F̄ � (ot(X ∩ �)). By the
definition of F̄ and elementarity between X and L�[F ], this amounts to showing
that (F ′ � �)X = F ′ � (ot(X ∩ �)). As F witnesses SC, FX ⊂ F .
6Equivalently, Subcase 2a) 2b) can be defined as:

2a) L(tc(F � �α)) |= α = �α or α is not inaccessible.
2b) L(tc(F � �α)) |= α > �α and α is inaccessible.

Although the current definition is more complicated, it does clarify the later presentation.
7Note this happens when �α = κ.
8For � ≤ κ, F � � is a surjection onto H (�)L[F ]. For � > κ, as tc(F ) ∈ L� [F ], H (�)L[F ] = L� [F ]

by the condensation lemma for L[F ].
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By induction on 	 ∈ X ∩ Ord, we need to verify that F ′(	X ) = (F ′(	))X .
The successor and 0 cases are trivial. Assume 	 is limit. Note that by induction
hypothesis, (�	)X = sup{� < 	X | F ′

X (�) �= ∅} = sup{� < 	X | F ′(�) �= ∅} = �	X
and thus �	 = 	 ↔ �	X = 	X . We need the following claim to transfer the sharps
along the collapsing maps.
Claim 2.12. Suppose X is a countable elementary submodel ofH (	+) and a ∈ X
is transitive. Suppose that a� exists in X . Then (aX )� exists and is equal to (a�)X .
Proof. Write a� as 〈L�(a),∈, xk , a, b,<B〉k∈�,b∈a,B∈[a]<� . Then (a�)X = 〈L�X
(aX ),∈, (xk)X , aX , b,<B 〉k∈�,b∈aX ,B∈[aX ]<� .
As (a�)X ∼= a� � X , {(xk)X | k < �} is an increasing sequence of indiscernibles
for the structure 〈L�X (aX ),∈, aX , b〉b∈aX . Hence the theory T of (a�)X is an EM
blueprint for aX .
We will verify that the requirements (1)–(4) of Definition 2.9 hold for T . (1), (2),
and (4) follow routinely from the elementarity betweenX andH (	+). We only need
to verify (3).
For α < �1, we need to construct a well-founded (M, α) model for T . Consider
a well-founded (M, α) model M̂ for the theory of a�. Let {x� | � < α} be the
corresponding indiscernible sequence. Note that a� can be canonically embedded
into M̂ by mapping all constants accordingly and all indiscernibles to the first �
many x� . Thus we can identify (Lx� (a))

M̂ with L�(a). Let K be the Skolem Hull
of (L�(a) ∩ X ) ∪ {x� | � < α} using the built-in Skolem terms tφB of a� in M̂ for
B ⊂ X ∩ b.
We claim thatK is an (M, α) model for T . We first show thatK ∩ (Lx� (a))M̂ =
L�(a)∩X . ClearlyK ∩(Lx� (a))M̂ ⊃ L�(a)∩X by the definition ofK . On the other
hand, suppose that c ∈ K ∩ (Lx� (a))M̂ . Now in M̂ , c = tφB (A) for some B ⊂ a ∩X
and A is a finite sequence of (L�(a) ∩ X ) ∪ {x� | � < α}. By remarkability,
c = tφB (A

′), A′ is a finite sequence of (L�(a) ∩ X ) ∪ {x� | � < �}. Note that
as L� ≺ M̂ and <L�B =<M̂B ∩L� , c = (tφB (A′))L� . By elementarity between X and
H (	+), c ∈ L�(a) ∩ X .
Hence K ∩ (Lx� (a))M̂ is isomorphic to (a�)X . Now for any c ∈ L�(a) ∩ X , c
is generated by some Skolem term in a� using parameters from a ∩ X and a finite
set of xk . Hence c is generated by the same Skolem term in K ∩ (Lx� (a))M̂ using
parameters from a ∩ X and a finite set of xk . Hence L�(a) ∩ X is contained in the
Skolem Hull of (a ∩ X ) ∪ 〈x� | � < α〉 in K . It then follows that K is the Skolem
Hull of (a ∩ X ) ∪ {x� | � < α} in K . But as {x� | � < α} is an indiscernible
sequence for K , K is clearly an (M, α) model for T , the theory of (a�)X . �
Using the above claim, we have

(∗) L(tc(F � �	X )) |= 	X is the least inaccessible cardinal greater than �	X
if and only if

	X ∈ (F � �	X )� ∧ (F � �	X )� |= 	X is the least inaccessible cardinal greater than �	X
if and only if

	X ∈ ((F � �	)�)X ∧ ((F � �	)�)X |= 	X is the least inaccessible cardinal
greater than (�	)X
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if and only if

	 ∈ (F � �	)� ∧ (F � �	)� |= 	 is the least inaccessible cardinal greater than �	
if and only if

(∗∗) L((tc(F � �	)) |= 	 is the least inaccessible cardinal greater than �	 .
If both (∗) and (∗∗) hold and �	 < 	, then F ′(	X ) = F (�	X ) = (F (�	))X =

(F ′(	))X . Otherwise, F ′(	X ) = ∅ = (F ′(	))X . This ends the induction and the case
� ≤ κ.
Now we deal with the case � > κ. Now F̄ � � is a bijection from � to

H (�)L[F
′] = L�[F ] and definable over 〈H (�)L[F ′], F 〉. By the condensation lemma

for the relativized constructible universe, for any countable X ≺ L�[F ] such that
κ ∈ X , there is � < �1 such that X ∼= L� [FX ]. Thus F̄X is derived from the canon-
ical well-ordering of L� [F ′

X ]. As in the last case, it remains to show that F
′
X ⊂ F ′.

Since κ ∈ X , Lκ[F ] = H (κ) ∈ X . Hence, X ∩ H (κ) ≺ H (κ). By the proof for
the last case, F ′ � κX = F ′

X � κX . On the other hand, we will inductively show
that for all 	X ∈ [κX , �), F ′(	X ) is trivial and �	X = κX . When 	X = κX , by our
construction �	X = κX . Hence we are in Subcase 2a) and thus F

′(	X ) is trivial.
Suppose the induction arrives at a 	X > κX , Then by induction hypothesis, it is
routine to check that �	X = κX . We also know that

L[F ] |= 	 is not an inaccessible cardinal.
As ranF = tc(F ) = H (κ), L[F ] = L[tc(F )]. Moreover as F codes a well-ordering
of tc(F ), L(tc(F )) = L[tc(F )] = L[F ]. Thus

L(tc(F )) |= 	 is not an inaccessible cardinal.
Hence

L�(tc(F )) |= 	 is not an inaccessible cardinal.
Therefore we are in Subcase 2a) and F ′(	X ) is trivial. Now note that F ′

X � [κX , �) is
also trivial by the definition of F ′ above κ. Therefore F ′ � [κX , �) = F ′

X � [κX , �).
Hence F ′

X ⊂ F ′. This ends the case � > κ. �
We remark here that the inaccessibility can be replaced by any lightface Π1

property of ordinals. In particular, we could require the final model compatible
with several large cardinal properties below �1-Erdős. For example, if we need a
inaccessible cardinal above κ, then we only need to require that L[F ] |= “there is a
unique inaccessible cardinal above κ” and modify the proof accordingly.
The following remarkable theorem of Beller–Jensen–Welch [2] provides a class

forcing extension of V that satisfies ASC:

Theorem 2.13 (Jensen’s Coding Theorem). There is a class forcing P such that if
G is P-generic over V then V [G ] |= ZFC + V = L[R], R ⊂ �. If V |= GCH then
P preserves cardinals.
In [14], Woodin describes a different approach to construct models of SC. In con-

trast to L, these models carry a rather complicated structure and serve as the base
for Pmax variants for several club guessing properties.
Theorem 2.14. Assume AD holds in L(R) and x ∈ R. Let

N = HODL(R)[x].
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Suppose that 	 is an uncountable cardinal ofN which is below the least weakly compact
cardinal of N . Then SC holds for (H (	))N in N .9

Woodin then askedhow toobtainmodels of SCvia a set forcing notion.A solution
to this question, together with Proposition 2.10 provide an approach to prove
consistency results related to ASC. By Proposition 2.8, the first nontrivial target is
to force SC�2 .

10

§3. Forcing SC�2 . In this section, we present the forcing construction for
Theorem 1.1. As mentioned, we will force the existence of a function F witnessing
(2) of Lemma 2.6. For technical reasons, instead of F , we construct a bijection
H : �2 → P(�1) satisfying a variant of the condensation property, and show that
the desired function F is induced by H . We describe the general framework as
follows. Our forcing P is constructed as an �2-length countable support iteration
P�2 = 〈Pα, Q̇α | α ∈ [�1, �2)〉. This nonstandard index set is designed to simplify
the presentation. The iteration starts with a single forcing P�1 , which we will also
denote by Q̇�−

1
. Q̇�−

1
and P�1 should be compared with Q0 and P1 in the usual

definition of iterated forcing. We also set �−
1 + 1 = �1. Now for any α ∈ [�1, �2)

and q ∈ Pα , q(�−
1 ) is a P�1 -condition. After forcing with P�1 we obtain H � �1.

Then inductively on α ∈ [�1, �2), we assign values to H (α) and define Qα
simultaneously. Finally we construct the desired bijection F using H . We will
then verify that F witnesses SC�2 and thus complete the proof of the theorem.

11

For any condition p ∈ Pα , set spt(p) = {� ∈ α ∪ {�−
1 } | p � � � p(�) is

not trivial}.
Along with the definition of P�2 , we define the following objects:

• A sequence 〈Ṡα | α ∈ [�1, �2)〉 such that each Ṡα is a Pα-name of a subset of
(�1)V

Pα in V Pα for α ∈ [�1, �2);
• A sequence 〈Ṡ′′α | α ∈ [�1, �2)〉 such that each Ṡ′′α is a Pα-name of a stationary,
co-stationary subset of (�1)V

Pα in V Pα for α ∈ [�1, �2);
• A sequence 〈Ḣα | α ∈ [�1, �2)〉 such that each Ḣα is a Pα-name of an injection
from α to P(�1)V

Pα and for � < α, �Pα Ḣ� ⊂ Ḣα .
We also fix a bookkeeping bijection h : [�1, �2)→ [�1, �2)×�2 such that (h(α))0
≤ α for all α ∈ [�1, �2). This h will be used to enumerate P(�1)V P�2. During the
construction, we often identify a Pα-name as a P� -name for �1 ≤ α < � < �2.
We will repeatedly use the forcing maximality principle to construct names, i.e. to
define a name ȧ, we only need to describe how to evaluate this name in any fixed

9In fact, via HODanalysis forL(R) in the context of AD, the initial segment of HODL(R) is a extender
model and has fine structure. On the other hand, this model contains reals likeMn , the minimal mouse
containing nWoodin cardinals, and is not of the form L	 [A] for any bounded subset A of 	.
10One may ask whether it is possible to force over some Vκ using Jensen’s Coding Theorem to get

models of ASC, where κ is inaccessible. The answer is no. Let G be P-generic over V , where P is the
forcing for Jensen’s Coding Theorem defined as a class in Vκ . It can be verified that Vκ [G ] |= V = L[R]
for some R ⊂ �. Nevertheless, V [G ]κ 	= Vκ [G ] as some real is not in Vκ [G ]. For example, the theory
of Lκ [R].
11It will be clear that P�2 is a totally proper forcing notion, i.e., a proper forcing that does not add

reals. However, the iterants of P�2 are not proper, and thus we will directly deal with P�2 rather than
adopting the general framework of proper forcing.
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generic extension.We shall always keep and verify the following inductive hypothesis
(*) for all α ∈ [�1, �2) during the construction:
(1) Pα is �1-distributive and has an �1-sized dense subset.
(2) If G is Pα-generic and �1 ≤ � < α, then in V [G ],

C� = {� ∈ �1 | (∃p ∈ G � �)p �P� (∃q ∈ G � � + 1)� ∈ q(�)}
is a club subset of �1 and C� �∈ V [G � P	 ] for any 	 ∈ [�1, �).

Now we start the induction on α ∈ [�1, �2). P�1 is defined as follows:
• p ∈ P�1 if p is an injection from α to P�1 (�1), where α < �1;
• p <P�1

q if q ⊂ p.
P�1 is essentially the forcing Add(�1, 1). Hence P�1 is cardinal preserving and

does not add new countable sets of ordinals. Let G�1 be a P�1 -generic filter over V .
InV [G�1 ], we defineH�1 to be

⋃
G�1 . Clearly,H�1 is a bijection from�1 toP�1 (�1).

Let A�1 be the structure 〈Field(H�1 ),H�1 ,∈〉. Let
S′�1 = {X ⊂ A�1 | |X | = � ∧ 〈X,Hα � X,∈〉 ≺ A�1 ∧ (H�1 )X ⊂ H�1 )}.

Fix a bijection e�1 from �1 to A�1 . Let S
′′
�1
be the set {X ∈ �1 | e�1 [X ] ∈ S′�1}.

We will verify that S′′�1 is stationary co-stationary later in the section. It is also clear
that (*) holds for P�1 .
Now assume α = � + 1 is a successor. Assume that P� , Ḣ� and Ṡ′′� have

been constructed and satisfy the desired properties. We need to define Q̇� , Ḣα ,
Ṡ� , and Ṡ′′α . Let G� be any P� -generic over V . In what follows, we define Q� ,
Hα , Sα , and S′′α in V [G� ]. Q� is the forcing which shoots a club through S′′� ,
i.e. the conditions are the countable closed subsets of S′′� , ordered by end-extension.
As (*) holds for P� , it is routine to verify (*) for Pα = P� ∗ Q̇� using the properties
of club-shooting forcing. In particular, if Gα is Pα-generic, then the following hold
in V [Gα]:

• ℵα = (ℵα)V , for α ∈ Ord;
• Ord� = (Ord�)V ;
• CH and 2�1 = �2;
• If C� =

⋃
p∈Gα p(�), then C� ⊂ S′′� is a club in �1.

If� = �1, thenwe letW�1 be a bijection from�2 toP(�1)
V [G�1 ]\P�1 (�1).Otherwise

� > �1, then fix a bijectionW� from�2 to P(�1)V [G� ] \
⋃
	<� V [G	 ].

12 In any case,
let S� beWh(�)0(h(�)1). Since h(�)0 ≤ � , S� is well-defined and unbounded in �1.
The unboundedness follows from the fact that (*)(1) implies any bounded subset
of �1 is in the ground model. Let Hα be H� ∪ {〈�, S� 〉}. Let Aα be the structure
〈Field(Hα),Hα,∈〉. Let

S′α = {X ⊂ Aα | |X | = � ∧ 〈X,Hα � X,∈〉 ≺ Aα ∧ (Hα)X ⊂ Hα)}.
12Note thatP(�1)

V [G� ]\⋃	<� V [G	 ] is definable in the forcing language and thus inV [G� ]. By (*)(2),
when � > �1 is a successor ordinal, then C� is in P(�1)

V [G� ] \ ⋃	<� V [G	 ]. When � is a limit ordinal,
by (*)(2), there is a subset A of �1 coding all previous C	 and thus A is in P(�1)

V [G� ] \ ⋃	<� V [G	 ].
In both cases, using (*)(1), we know that P(�1)

V [G� ] \ ⋃	<� V [G	 ] is of size �2 and thusW� can be
defined.
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Fix a bijection eα from �1 to Aα . Let S′′α be the set {X ∈ �1 | eα [X ] ∈ S′α}. We will
show that both S′′α and S

′
α are stationary and co-stationary in their corresponding

structures. It is also not difficult to observe that for any 	 < α, S′′α is contained in S
′′
	

modulo the nonstationary ideal.
If α > �1 is limit, Pα is defined following the rule of countable support iterated
forcing. We will verify (*) for such α later. Let Ḣα be a Pα-name of the function⋃
�1<�<α

Ḣ� . We then define Aα , S′α , and S′′α using exactly the same definition as
in the successor case. It will also be shown that S′′α and S′α are stationary and
co-stationary sets and that for any 	 < α, S′′α is almost contained in S

′′
	 .

To finish the definition of P�2 , we need to prove that Ṡ
′′
α is stationary and

co-stationary for all α and that (*) holds for limit α. This will be shown by verifying
that Pα has a dense set of “complete and flat” conditions.

Definition 3.1. A Pα-condition p is flat if there is a unique 	 < �1 and a
sequence 〈pi | i ∈ spt(p)〉 ⊂ V such that

(∀� ∈ spt(p) \ {�−
1 })(p � � � p(�) = p� ∧ sup(p�) = 	13).

For any sufficiently large � and any countable M ≺ H (�) containing Pα14 , a
condition q is (M,Pα)-complete if the set {p ∈ M ∩ Pα | q < p} is Pα-generic
overM .

Lemma 3.2. Suppose (*) holds for all � < α. For sufficiently large �, any countable
M ≺ H (�) containing Pα and p ∈ M , there is a flat (M,Pα)-complete condition q
extending p.

Proof. Fix an enumeration 〈Dn | n < �〉 of the open dense subsets of Pα inM .
Fix a bijection � : �1 ↔ P�1 (�1) in M . Let 〈αn | n < �〉 be an increasing
sequence of ordinals with the supremumM ∩�1. Thus �[M ∩�1] = (P�1 (�1))M =
M ∩ P�1 (�1). Fix an enumeration 〈�n | n < �〉 of M ∩ α. We also assume that
M inherits a well-ordering <� from H (�). We inductively construct a sequence of
Pα-conditions 〈pn | n < �〉 hitting some appropriate dense sets and obtain a lower
bound in the end. We will ensure p0 = p, pn ∈ M , and pn+1 < pn for all n < �
during the construction.
Suppose now pn has been constructed. We will choose pn+1 < pn such that15

i) dom((pn+1)(�−
1 )) > αn, ran((pn+1)(�

−
1 )) ⊃ �[αn] and pn+1 ∈ Dn.

ii) There are objects 〈Bn�m | m ≤ n〉 and 〈	n�m,i | i ≤ n + 1, m ≤ n〉 such that for
all i ≤ n + 1 and m ≤ n, Bn�m is a subset of αn in M , 	n�m,i is in the interval
(αn,M ∩ �1) and16

13Note this implies p� is forced to be a closed subset of 	 + 1 with maximum 	.
14From now on when we say Pα ∈ M , we implicitly assume that the definition of Pα can be carried

out inM , i.e.,M contains all necessary parameters used in the definition of Pα .
15An alternative argument is to show that when the pn ’s hit all Dn ’s, some pn must satisfy the

requirement below. This can be done by showing the corresponding set of conditions is dense, which is
essentially the same as the current argument.
16It is clear that if pn+1 forces this sentence, then pn+1 � �m already forces this in P�m . The same also

holds for the next two items.
	n�m,n+1 is designed to show that S�m is unbounded in �1. 	

n
�m,k
is designed to show S�m 	= S�k .
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pn+1 �Pα Ṡ�m ∩ αn = Bn�m ∧ 	n�m,n+1 ∈ Ṡ�m ∧ (∀k ≤ n)
(�k < �m → (	n�m,k ∈ Ṡ�k ↔ 	n�m,k �∈ Ṡ�m )).

iii) There is a system 〈B̄n	 | n < � ∧ 	 ∈M ∩ α〉 such that if 	 ∈ spt(pn), then
pn+1 �Pα sup(pn+1(	)) > αn ∧ pn+1(	) ∩ αn = B̄n	 .

iv) There is a sequence 〈�n	 | 	 ∈ spt(pn)〉 such that if 	 ∈ spt(pn), then
�n	 ∈ (αn,M ∩�1) ∧ pn+1 �Pα ė	 [�

n−1
	 ] ≺ ė	 [�n	 ] ≺ Ȧ	+1.

Since αn is countable and � ∈ M , we can choose p0n < pn in Dn ∩M such that
dom((p0n)(�

−
1 )) > αn and ran((p

0
n)(�

−
1 )) ⊃ �[αn]. Now

p0n �Pα (∀� ∈ spt(pn))({X ∈ P�1 (Ȧ�+1) | ė� [�n−1� ] ≺ X ≺ Ȧ�+1}
contains a club in P�1 (Ȧ�+1))) ∧ ė� [�1] = Ȧ�+1)

It follows that p0n �Pα (∀� ∈ spt(pn))(∃�n� > αn)ė� [�n−1� ] ≺ ė� [�n� ] ≺ Ȧ�+1. So
p0n �Pα (∃〈�n� | � ∈ spt(pn)〉)(∀� ∈ spt(pn))�n� > αn ∧

ė� [�n−1� ] ≺ ė� [�n� ] ≺ Ȧ�+1.
Againwe can pick 〈�n� | � ∈ spt(pn)〉 andp1n inM such that for every � ∈ spt(pn),

p1n �Pα �
n
� > αn ∧ ė� [�n−1� ] ≺ ė� [�n� ] ≺ Ȧ�+1.

By our construction and the hypothesis (*)(1), for all �1 < �2 < α, S�1 and S�2
are unbounded in �1 with all initial segments in V and S�1 �= S�2 . Hence
p1n �Pα (∀m < n)(∃Bn�m ∈ P�1 (�1)V )(∃〈	n�m,i | i ≤ n + 1〉)(Ṡ�m ∩ αn = Bn�m

∧ 	n�m,n+1 ∈ Ṡ�m ∧ (∀k ≤ n)(�k < �m → (	n�m,k ∈ Ṡ�k ↔ 	n�m,k �∈
Ṡ�m ))).

Now we can pick 〈Bn�m | m ≤ n〉, 〈	n�m,i | i ≤ n + 1, m ≤ n〉 and p2n in M such
that whenever m < n,

p2n �Pα Ṡ�m ∩ αn = Bn�m ∧ 	n�m,n+1 ∈ Ṡ�m ∧ (∀k ≤ n)(�k < �m →
(	n�m,k ∈ Ṡ�k ↔ 	n�m,k �∈ Ṡ�m )).

Note that each 	n�m,i is bounded byM ∩ �1.
We will inductively construct a sequence of conditions 〈pn,� | � ∈ spt(p2n)〉 inM

which will have the properties that for all � ∈ spt(p2n), spt(pn,�) = spt(p2n)∩ (� +1)
and pn,� <P�+1 p

2
n � (� + 1).

When � = �−
1 , let pn,�1 = p

2
n � �1. Suppose � ∈ spt(p2n) and pn,	 is con-

structed for every 	 < � and 	 ∈ spt(p2n), then we define pn,� as follows. For 	 < � ,
if 	 ∈ spt(p2n), then let pn,�(	) = pn,	(	), otherwise letpn,�(	) = 1̇Q	 .pn,� � � is well-
defined and is a P� -condition. Since spt(p2n)∩� ∈M and the previous construction
can be carried out in M , pn,� � � ∈ M . Then we choose pn,�(�) ∈ M to be the
<� -least P� -name ṫ of a Q̇� -condition such that p2n � � �P� ṫ <Q̇� p

2
n(�) ∧

sup(ṫ) > αn. Note that pn,� is inM and satisfies our requirement.
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Now define p3n as

p3n(	) =

{
1̇Q	 	 �∈ spt(p2n),
pn,	(	) 	 ∈ spt(p2n).

By our construction and the hypothesis (*)(1), for all 	 ∈ spt(pn), p3n(	) is forced
to be in V and to have supremum larger than αn. Since p3n ∈ M and its support
is countable, there are pn+1 < p3n and 〈B̄n	 | 	 ∈ spt(pn)〉 in M such that for all
	 ∈ spt(pn),

pn+1 � 	 � pn+1(	) ∩ αn = B̄n	 .
It is now routine to verify pn+1 satisfies (i)–(iv).
Now we define a flat condition q such that q < pn for all n < �. Let

q(�−
1 ) =

⋃
n<�

(pn(�−
1 ))

�〈〈ot(M ∩ �),
⋃
n<�

Bn� 〉 | � ∈ [�1, α) ∩M 〉.

Wefirst verify that q(�−
1 ) is a P�1 -condition. It is clear that q(�

−
1 ) is a function from

ot(M ∩ α) to P�1 (�1). We only need to verify that for any �1, �2 ∈ M ∩ (α \ �1)
and any � ∈M ∩ �1,⋃

n<�

Bn�1 �= q(�−
1 )(�) and

⋃
n<�

Bn�1 �=
⋃
n<�

Bn�2 .

For the first inequality, notice that for any � ∈ M ∩ �1, there is a k < � such
that q(�−

1 )(�) = pk(�
−
1 )(�) ∈ P�1 (�1) ∩M , and hence q(�−

1 )(�) is bounded in
M ∩ �1. On the other hand, let m be such that �m = �1, then for all m < n < �,
	n�m,n+1 ∈ ⋃n<� Bn�m . Notice that the supremum of 〈	n�m,n+1 | n < �〉 is M ∩ �1,
thus

⋃
n<� B

n
�1
=
⋃
n<� B

n
�m is unbounded inM ∩�1, hence

⋃
n<� B

n
�1

�= q(�−
1 )(�).

For the second inequality, let i be such that �2 = �i , then there is a k < �
such that 	k�m,i ∈ Bk�m ↔ 	k�m,i �∈ Bk�i . Note also that by the properties of Bk� ,
for any j < k < � and � ∈ M ∩ (α \ �1), Bj� = Bk� ∩ (max(Bj� ) + 1). Hence
	k�m,i ∈

⋃
n<� B

n
�1
=
⋃
n<� B

n
�m if and only if 	

k
�m,i

�∈ ⋃n<� Bn�2 = ⋃n<� Bn�i .
For each � ∈ ⋃n<� spt(pn), we define q(�) to be a P� -name such that

q � � �P� q(�) =
⋃
n<�

pn(�) ∪ {M ∩ �1}.

For each � �∈ ⋃n<� spt(pn), we let q(�) be the trivial condition. By induction on
� ∈ [�1, α), we show q � � is a P�-condition and for all n < �, q � � <� pn � � .
This justifies the definition of q and implies that q is a Pα-condition.
We have already shown that q(�−

1 ) is a P�1-condition stronger than pn(�
−
1 )

for all n < �. Now suppose � ∈ [�1, α) and q(	) has been constructed for all
	 ∈ [�1, �) ∪ {�−

1 }. By the induction hypothesis, q � � is a P� -condition, and for
all n < �, q � � <� pn � � . There are two cases:
Case 1. � �∈ ⋃i<� spt(pi). q(�) is the trivial condition and for each n < �, pn(�)
is also trivial. Hence the induction hypothesis is true at � + 1.
Case 2. � ∈ ⋃i<� spt(pi), then there is an i < � such that (∀n > i)� ∈ spt(pn).
We firstly verify that q � � �P� M ∩ �1 ∈ Ṡ′′� .
Note that if i < n, q � � < pn+1 � � �P� sup(pn+1(�)) > αn and pn+1 �
� �P� ė� [�

n−1
� ] ≺ ė� [�n� ] ≺ Ȧ�+1. So for all i < m < n < �, pn+1 � � �P�
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ė� [�m� ] ≺ ė� [�n� ] ≺ Ȧ�+1. Since for all n > i , �n� < M ∩�1 and
⋃
n<� �

n
� = �1 ∩M ,

〈ė� [�n� ] | n < �〉 is forced to be an elementary chain with limit ė� [M ∩ �1]. Since
q � � is stronger than all pn � � ,

q � � �P� ė� [M ∩ �1] ≺ Ȧ�+1.
Now we can verify q � � �P� ė� [M ∩ �1] ∈ Ṡ′� . Note q � � �P� (�1)ė� [M∩�1] =
M ∩�1. Let �� be the P� -name for the collapsing map for ė� [M ∩�1]. So q � � �P�

�� (Ṡ�) = Ṡ� ∩(M ∩�1) =
⋃
n<� B

n
� . Thus q � � �P� (H�+1)ė� (M∩�1)(ot(M ∩�)) =

H�+1(�)∩M = q(�−
1 )(ot(M∩�)). On the other hand, by the induction hypothesis,

for any 	 ∈M ∩ [�1, �), q � 	 is a P	 -condition. Hence q � 	 �P	 (H	+1)ė	 [M∩�1] =
q(�−

1 ) � ot(M∩(	+1)).Moreover as for any 	 ∈M∩[�1, �),�P� (H	+1)ė	 [M∩�1] ⊂
(H�+1)ė� [M∩�1], q � � �P� (H�+1)ė� [M∩�1] = q(�

−
1 ) � ot(M ∩ (� + 1)) ⊂ Ḣ�+1.

So by the definition of Ṡ′� and Ṡ
′′
� , q � � �P� ė� [M ∩ �1] ∈ S′� and M ∩

�1 ∈ Ṡ′′� .
By our assumption, pn+1 � � �P� sup(pn+1(�)) > αn. As q � � <P� pn+1 � � ,

q � � �P� sup(pn+1(�)) > αn. Therefore

q � � �P� M ∩�1 = sup
n<�
αn ≤

⋃
n<�

sup(pn(�)) = sup

(⋃
n<�

pn(�)

)
≤M ∩ �1.

Since q � � �P� M ∩ �1 ∈ Ṡ′′� , it follows from the definition of Q̇� that q � � �P�

q(�) is a Q̇� -condition and q(�) < pn(�) for all n < �. It then follows from the
induction hypothesis that q � �+1 is a P� -condition such that q � �+1 < pn � �+1
for all n < �.
Now q ∈ ⋂n<� Dn and is thus an (M,Pα)-complete condition. Moreover, for

each 	 ∈ spt(q) \ �1, q � 	 � q(	) =
⋃
n<� B̄

n
	 ∪ {M ∩ �1}. Hence, q is a flat

condition. �
Definition 3.3. We say that q is an (M,Pα)-complete flat condition if q is defined

as in the proof of Lemma 3.2 forM and Pα .

Note that if q is an (M,Pα)-complete flat condition, then the following facts hold.

Fact 3.4.

(1) dom(q(�−
1 )) = ot(M ∩ α) and sup(q(�)) =M ∩�1 for all � ∈ spt(q) \ �1.

(2) For all � ∈ spt(q) \ {�−
1 }, q �M ∩ �1 ∈ S′′� .

(3) q � (Hα)ėα [M∩�1] = q(�
−
1 ) � ot(M ∩ α).

As a corollary, we have

Proposition 3.5. (*) holds at α.

Proof. We only need to check (1). By Lemma 3.2, Pα is �1-distributive. More-
over, the set of all (M,Pα)-complete flat conditions is of size �1 and dense
in Pα. �
We finish the definition of P�2 by proving:

Lemma 3.6. For any α ∈ [�1, �2), Ṡ′′α is a stationary and co-stationary subset
of �1.
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Proof. We first show that S′′α is a stationary subset of �1 via a density argument.
This amounts to showing the following: For any p ∈ Pα and any Pα-name Ċ
such that p � Ċ is a club subset of �1, there is a q <Pα p such that q �Pα Ċ ∩
Ṡ′′α �= ∅.
Let � be a sufficiently large regular cardinal. Pick a countableM ≺ H (�) such
that {Pα, Ċ , p} ⊂ M andM contains all parameters involved in the definition of
Pα . Hence Ḣα ∈ M . Applying Lemma 3.2, choose an (M,Pα)-complete condition
q′ <Pα p. The following can be verified using a density argument as in the proof of
Lemma 3.2.

(1) q′ � “Ċ ∩M is unbounded inM ∩ �1”, and thus q′ �M ∩ �1 ∈ Ċ .
(2) There is an unbounded subset Bα ofM ∩ �1 such that q′ � “Ṡα ∩M = Bα
and for all � ∈ spt(q′), Bα �= Ṡ� ∩M”.

(3) q′ � ėα[M ∩ �1] ≺ Ȧα+1.
Let q be defined as follows:

q(	) =

{
q′(	) ∪ {〈ot(M ∩ (α + 1)), Bα〉}, if 	 = �1,
q′(	), otherwise.

By (2) and Fact 3.4 (1), q(�−
1 ) is an injection from ot(M ∩ (α + 1)) to P�1 (�1).

It follows that q is a Pα-condition. By (1), q �M ∩�1 ∈ Ċ .
We finish the proof by verifying q �Pα M ∩�1 ∈ Ṡ′′α . Note q �Pα (�1)ėα [M∩�1] =
M ∩ �1. Let �α be the Pα-name of the collapsing map for ėα [M ∩ �1].
By Fact 3.4(3), q � (Hα)ėα [M∩�1] = q(�

−
1 ) � ot(M ∩α). Since q �Pα �α(Ṡα) = Bα ,

q � (Hα+1)ėα [M∩�1] = (Hα)ėα [M∩�1] ∪ {〈ot(M ∩ α + 1), Bα〉} = q(�−
1 ) ⊂ Ḣα+1.

So by (3) and the definition of Ṡ′α , q � ėα [M ∩ �1] ∈ Ṡ′α . By the definition of Ṡ′′α ,
q �M ∩ �1 ∈ Ṡ′′α . This completes the proof of the stationarity of Ṡ′′α .
To show that Ṡ′′α is co-stationary, we only need to repeat the same argument with
one exception. Let q′ <Pα p be defined as in the above proof. Now define q as
follows:

q(	) =

{
q′(	) ∪ {〈ot(M ∩ (α + 1)), B〉}, if 	 = �1,
q′(	), otherwise.

It is then routine to verify that q(�−
1 ) is a injection from ot(M ∩ (α+1)) toP�1 (�1)

and thus q is a condition. It is also easy to check, via the same argument, that
q �Pα M ∩ �1 �∈ Ṡ′′α . �
Finally, we let P�2 be the direct limit of all Pα for α ∈ [�1, �2).
Proposition 3.7. P�2 is �1-distributive and �2-c.c..

Proof. The proof of Lemma 3.2 implies that for any p ∈ P�2 , any sufficiently
large � and any countableM ≺ H (�) containing Pα , there is an (M,P�2 )-complete
condition q < p. Thus P�2 is �1-distributive. Since P�2 is a �2-length countable
support iteration and all Pα are�2-c.c., by Proposition 7.8 of [3], it follows that P�2
is �2-c.c. �
Suppose G�2 is a P�2 -generic over V . Then in V [G�2 ] the following hold:

• ℵα = (ℵα)V , for α ∈ Ord;
• Ord� = (Ord�)V ;
• CH + 2�1 = �2.
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LetH be
⋃
�<�2
H� , and letA�2 be the structure 〈Field(H ),H,∈〉. By construction

H is an injection from �2 to
⋃
α∈[�1,�2)(P(�1))

V [Gα]. Since P�2 is �2-c.c. and is an
�2-length countable support iteration, every subset of �1 in V [G�2 ] appears in
some V [Gα], where α ∈ [�1, �2). Hence (P(�1))V [G�2 ] =

⋃
α∈(�1,�2)(P(�1))

V [Gα].
It follows thatH is a bijection from �2 to (P(�1))V [G�2 ].
We will now verify that the structure A�2 has the desired SC property.

Lemma 3.8. InV [G�2 ], there is a clubC in P�1 (A�2 ) such that wheneverY is inC ,
〈Y,H ∩Y,∈〉 ≺ A�2 ∧HY ⊂ H .
Proof. Fix κ sufficiently large and let

D = {M ≺ H (κ) | |M | = � ∧ {H,P�2 , G�2} ⊂M.

Let C be the restriction of D onto A�2 . Then C is a club subset of P�1 (A�2 ).
Fix an arbitrary Y ∈ C and let X ∈ D be such thatX ∩A�2 = Y . By elementarity,
for any � , if � ∈ �2∩X = �2∩Y , thenC� and e� are both inX . Since C� is a club,
X ∩�1 ∈ C� ⊂ S′′� . Applying e� it follows that X ∩Aα = e� [X ∩�1] ∈ S′� . By the
definition of S′α , HX∩Aα ⊂ Hα ⊂ H . Since X ∩ �2 is unbounded in sup(X ∩ �2),
HY = HX∩A�2 =

⋃
α∈X∩�2 HX∩Aα ⊂ H . The inclusion holds because X ∩ Aα is

transitive in X . �
We can now construct F from H . Recall that every element X in H (�2) can be

uniformly decoded from some subset of �1 as follows: For any X ∈ H (�2), let
H0(X ) = tc(X )∪{X}. Note thatH0 is an injection fromH (�2) toH (�2). Now for
each subsetE ′ of�1×�1 coding a well-founded�1-sized binary relation<E′ , there
is a unique Y ∈ H (�2) such that (Y,∈) ∼= (E ′, <E′). Let E be the inverse image of
E ′ under the Gödel pairing function. Hence, for all such E ⊂ �1 we can uniformly
decode a unique element H−1

0 (Y ) of H (�2). We inductively define F (α) ∈ H (�2)
to be decoded from the <H -least E ∈ P(�1) such that E can be decoded and no
X ∈ F [α] can be decoded fromE. Note thatF is a bijection from�2 toH (�2) such
that F � �1 is a bijection from�1 toH (�1) and F is Δ1-definable over 〈H (�2),H 〉,
thus we have:

Proposition 3.9. If M ≺ 〈H (�2),H,∈〉, then F � M is a bijection from OrdM
toM .

Proof. By definability and elementarity, F � M is definable over M , and is a
bijection. �
Lemma 3.10. In V [G�2 ], there is a club C in P�1 (H (�2)) such that 〈X,F ∩X,∈〉

≺ 〈H (�2), F,∈〉 ∧ FX ⊂ F whenever X ∈ C .
Proof. Consider the clubC given byLemma 3.8.We show thisC works. FixX ∈

C , then 〈X,H,∈〉 ≺ 〈H (�2),H,∈〉 and HX ⊂ H . By induction on Ord∩X , we
show F (α)X = F (αX ). Suppose α < �1. Then F (α) ∈ H (�1) and thus F (α)X =
F (α) = F (αX ).
Assume that α ∈ Ord∩X and F (�)X = F (�X ) for all � ∈ α∩X . LetA = F (α).

By elementarity, let α′ ∈ X be such that H (α′) witnesses the definition of F (α),
i.e., H (α′) codes A and for all � ′ < α′, either H (� ′) is not a code or H (� ′) codes
some F (�) with � < α. Hence
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X |= H (α′) codes A
iff X̄ |= H (α′)X codes AX
iff X̄ |= H (α′X ) codes AX .

Similarly, for all � ′ ∈ α′ ∩ X , there is a � ∈ α ∩X such that
X̄ |= either H (� ′X ) is not a code orH (� ′X ) codes F (�)X .

Since for all � ∈ α ∩X , F (�)X = F (�X ) and the coding is absolute between any
transitive models, we have that for all � ′ < α′X ,H (�

′) is not a code orH (� ′) codes
F (�X ) for some � ∈ α ∩ X and H (α′X ) codes AX . Note that AX is not equal to
F (�X ) for � ∈ α ∩ X , hence H (α′X ) witnesses the definition of F (αX ). It follows
that F (αX ) = AX = F (α)X . �
Remark 3.11. For any predicate A ⊂ �2 in V , we can modify P�2 so that if
M ≺ H (�2)V [G�2 ] is closed under F , then 〈M,M ∩ A〉 ≺ 〈H (�2), A〉.
We end this section by imposing a notation for later usage. The forcing defined
in this section will be denoted by Pe , where e is a parameter coding the construction
of P�2 . In particular, the information coded by e includes the bookkeeping function
h, the bijections {ėα | α < �2}, and the names of the well-ordering {Ẇα | α < �2}.
We can moreover require e to be a subset of �2. Note also that if M ⊂ V are
two transitive class models of ZFC such thatH (�2)M = H (�2)V , then the forcing
poset Pe defined inM is also a poset for SC�2 in V .

§4. Joint consistency of ASC and ¬��1 . In this section, we show the joint
consistency of ASC and ¬��1 . Recall that a sequence 〈C� | � ∈ lim(�2)〉 is a
��1- sequence if for any � ∈ lim(�2), the following hold:
(1) C� is a club subset of �,
(2) ot(C�) ≤ �1,
(3) if � ∈ lim(C�), then C� = C� ∩ � .
We say ¬��1 holds if there is no ��1 - sequence.
Theorem 4.1. Assume there exists a κ such that the set

S = {α < κ | α is a measurable cardinal}
is stationary below κ, then it is consistent that ZFC+ ASC +¬��1 .
Webasically follow the framework for constructingmodels of the failure of square
on the successor of regular cardinals, due to Solovay. We outline the framework as
follows. First we collapse a large cardinal κ to �2. If there is a square sequence �C
in the generic extension, then we show the forcing can be canonically factorized at
some limit level α such that �C � α is decided by the generic up to the same level.
Then we show the quotient forcing is not able to thread �C � α. But as �C is a square
sequence, Cα must thread �C � α. This gives a contradiction. The large cardinal
required for this argument is oneMahlo cardinal. In our current setting, we need to
first collapse κ to �2 and then force SC for�2. We may then factorize the forcing as
above. However, we meet one obstacle during the attempt to show that the quotient
forcing cannot thread the sequence up to that stage, which is caused by the fact
that the quotient forcing is not �-closed. This is the reason we need a stronger
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large cardinal assumption for the construction. We want to remark that the large
cardinal assumption seems to be far from optimal. We conjecture that stationary
many Ramsey cardinals suffice.
The following lemma is the only place where measurability is required.

Lemma 4.2. Let α be a measurable cardinal and let � > α be a regular cardinal.
Suppose c ∈ H (�). Then there is a pair of modelsM0 andM1 such that:
(1) M0 ≺ 〈H (�), α, c〉,M1 ≺ 〈H (�), α, c〉.
(2) If 	 = sup(α ∩M0 ∩M1), then P�1 (M0 ∩ V	) ⊂M1.
(3) sup(M0 ∩ α) = sup(M1 ∩ α) > 	.
(4) |M0| = �, |M1| = �1 andH (�1) ⊂M1.
Proof. We construct two sequences of models 〈M 0n | n < �〉 and 〈M 1n | n < �〉

such that for i = 0, 1 and n < �:

(1) |M 0n | = � and |M 1n | = �1.
(2) Min ≺Min+1 ≺ 〈H (�), α, c〉.
(3) If 	in = sup(M

i
n ∩ α), thenMin+1 ∩ 	in =Min ∩ 	in and 	in+1 > 	in .

(4) (α ∩Min+1 ∩M 1−in+1 ) \min{	in, 	1−in } = ∅.
(5) P�1 (M

0
0 ∩ Vα) ⊂M 10 andH (�1) ⊂M 10 .

LettingM0 =
⋃
n<� M

0
n andM1 =

⋃
n<� M

1
n , it is routine to verify that

• 	 = sup(M0 ∩M1 ∩ α) = sup(M 00 ∩ α).
• P�1 (M 00 ∩Vα) = P�1 (M0 ∩ V	) ⊂M1.
• sup(M0 ∩ α) =

⋃
n<� 	

0
n =

⋃
n<� 	

1
n = sup(M1 ∩ α).

HenceM0 andM1 are as required.
The construction is based on the following standard fact. We include a proof for

the reader’s convenience.

Fact 4.3 (folklore). Suppose � > α is a regular cardinal, M ≺ 〈H (�), α,<〉
and � ∈ ⋂

A∈�∩M A, where � ∈ M is a normal measure over α. If M (�) =
Sk〈H (�),α,<〉(M ∪ {�}), thenM (�) ∩ � =M ∩ � =M ∩ α.
Proof. For the first equality, fix a Skolem term t and an a ∈ M such that

t(a, �) < �. Now A = {	 < α | t(a, 	) < 	} ∈ M must be in �. By the normality
of �, there is a B ⊂ A and a � inM such that B ∈ � and t(a, 	) = � for all 	 ∈ B.
Hence t(a, �) = � ∈M .
For the second equality, note that � is greater than any ordinal 	 ∈M ∩α as � is

in the measure one set (	, α). �
We can now inductively construct 〈M 0n | n < �〉 and 〈M 1n | n < �〉. Choose

arbitraryM 00 andM
1
0 such that P�1 (M

0
0 ∩ Vα) ⊂ M 10 and H (�1) ⊂ M 10 . Assume

M 0n and M
1
n are constructed. Fix a �0 ∈ ⋂

A∈�∩M 0n A. Let M
0
n+1 = M

0
n (�0). Fix

�1 ∈
⋂
A∈�∩M 1n A\M 0n+1. LetM 1n+1 =M 1n (�1). Clearly (1) and (2) hold. By Fact 4.3,

it is routine to check that (3) and (4) hold. �
Without loss of generality, we start from amodel where GCH holds and there is a

κ witnessing the assumption.Moreover, we also assume that there is no inaccessible
cardinal above κ. Now force with Col(�1, < κ) ∗Pe , where Pe is the forcing defined
in Section 3. LetG beCol(�1, < κ)∗Pe-generic overV . By Theorem 1.1, SC�2 holds
in V [G ]. We will show later in this section that there is no ��1 sequence in V [G ].
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Now in V [G ], we can verify the assumption of Proposition 2.10 as follows: Let A
be a bounded subset of �2. By the κ-c.c., A is in some intermediate model V [Ḡ ]
generated by some complete subforcing of Col(�1, < κ) × Pe of size less than κ.
Thus In V [Ḡ], there remain some measurable cardinals above |tc(A)|. Hence A�
exists in V [Ḡ ] and thus exists in V [G ] by the absoluteness of sharps.
Nowapplying Proposition 2.10,L[F ] is amodel ofASC andZFCwhich agrees on
�1 and�2 withV [G ]. AsL[F ] is an innermodel ofV [G ], if there is no��1-sequence
in V [G ], then there is no ��1 -sequence in L[F ].
The rest of this section is devoted to the proof of the failure of ��1 in V [G ].
Lemma 4.4. There is no ��1 sequence in V [G ].
For any α < � ≤ κ, denote the forcing Col(�1, < �) by C� and Col(�1, [α, �))
byCα,� . We rely on the following fact revealing the analogy betweenCκ ∗Pe and Pe .
The proof is an easy modification of the proof of Lemma 3.2 and is omitted here.

Definition 4.5. ACκ ∗Pe-condition p = p0∗p1 is flat if there is a unique ordinal
	p < �1 and sequences 〈p0i | i ∈ spt(p0)〉 ∈ V and 〈p1i | i ∈ spt(p1)〉 ∈ V such that

(∀i ∈ spt(p0))(p0(i) = p0i ∧ dom(p0i ) = 	p),
(∀i ∈ spt(p1))(p � i � p1(i) = p1i ∧ (i �= �1 → sup(p1i ) = 	p)).

Lemma 4.6. For all sufficiently large �, any countable M ≺ H (�) and p ∈ M ,
there is a flat (M,Cκ ∗ Pe)-complete condition q = q0 ∗ q1 extending p such that
(1) dom(q1(�−

1 )) = ot(M ∩ κ), spt(q0) = spt(q1) =M ∩ κ.
(2) 	q =M ∩�1.
We give some simple analysis of Cκ ∗ Pe . By the analysis of Pe in Section 3,
we may assume Pe consists only of countable conditions which are elements of V Cκ

and for allα < κ,Pα is of size�1 inV Cκ . SinceCκ is countably closed,wemay further
assume Pe ⊂ V . For any α < κ, we factor Cκ as Cα ×Cα,κ. In V Cκ , we factor Pe as
Pα∗P[α,κ). For anyα1,α2 < κ, if Pα2 ∈ V Cα1 , thenCκ∗Pe = Cα1×Cα1,κ∗Pα2 ∗P[α2,κ)
and Cα1 ∗ Pα2 ∗ Cα1,κ ∗ P[α2,κ) are equivalent forcing notions.
For anyα < κ, we say thatCκ∗Pe is factorable atα ifCκ∗Pe = Cα∗Pα∗Cα,κ∗P[α,κ).
We will show there are club many α < κ such that Cκ is factorable at α.

Proof of Lemma 4.4. Work in V [G ] where G is a Cκ ∗ Pe-generic filter. Assume
for a contradiction that �C = 〈Cα | α ∈ Lim(�V [G ]2 )〉 is a square sequence. Write G
asG1 ∗G2, whereG1 isCκ-generic overV andG2 is Pe-generic overV [G1]. For any
α < κ, we factor Cκ as Cα × Cα,κ and let G1 = G1α × G1[α,κ) be the corresponding
generic filter. In V [G1], we factor Pe as Pα ∗ P[α,κ) and let G2 = G2α ×G2[α,κ) be the
corresponding generic filter.

Claim 4.7. Let D consist of all α ∈ κ such that the following hold :
(1) Pα ∈ V Cα .
(2) �C � α ⊂ V Cα∗Pα .

Then D is a club.

Proof. We construct two functions f1, f2 : κ → κ such that if α closed under
f1 and f2, then α ∈ D. Fix � < κ. In V [G1], P� is an �1 sized subset of V .
By the κ-c.c. of Cκ, there is a nice name t for P� in Vκ. Let f1(�) be least such that
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t ∈ Vf1(�). Then t is a Cf1(�)-name and thus P� ∈ V [G1f1(�)]. In V [G ], C� is a sub-
set of � . Since Cκ ∗ Pe is κ-c.c., there is a nice name t for C� in Vκ. Let f2(�)
be least such that t is a Cκ ∗ Pf2(�)-name in Vf2(�), then C� ∈ V [G1

f1(f2(�))

∗G2
f2(�)
].17 �

For any α ∈ D, Cκ ∗ Pe is factorable at α. Recall that S = {α < κ |
α is measurable} is a stationary subset ofκ. Fixα ∈ D∩S, then �C � α ∈ V [G1α∗G2α]
and α is measurable. We show that no C ∈ V [G ] can thread �C � α.18 As Cα must
thread �C � α, this leads to a contradiction and thus ends the proof of Lemma 4.4.
Case 1) C ∈ V [G1α ∗G2α ].
As α is �V [G

1
α∗G2α ]

2 , the cofinality of C is larger than �1. Hence there is a � < α
such that � ∈ Lim(C ) and C ∩ � is of cofinality greater than �1. As C threads
�C � α, C� = C ∩� . However, by the definition of a square sequence, the order type
of C� = C ∩ � must be less than �1 in V [G ]. Hence C cannot thread �C � α.
Case 2) C is not in V [G1α ∗G2α].
Let Ċ be a Cκ ∗ Pe-name for C . Fix any Cα ∗ Pα-condition t ∈ G1α ∗ G2α such

that there are Cκ ∗ Pe-conditions p and q such that p � Cα ∗ Pα = q � Cα ∗ Pα = t,
p � 	 ∈ Ċ , and q � 	 �∈ Ċ . Via a density argument, for any condition s < t,
it suffices to find r < s which forces a contradiction. For simplicity, we assume
s = t.
Fix a sufficiently large � > κ such that the above is expressible inH (�). Consider

the structure N = 〈H (�),Cκ ∗ Pe, Ċ , �̇C, p, q, 	〉. Let 〈M0, M1〉 be the pair of ele-
mentary submodels ofN constructed by applying Lemma 4.2 to α, � and the above
mentioned parameters inH (�). We denote sup(M0 ∩ α) = sup(M1 ∩ α) by α′ and
sup(M0 ∩M1 ∩α) by ᾱ. SinceM0 is a countable elementary submodel ofH (�), we
can apply Lemma 4.6 to get a flat (M0,Cκ ∗ Pe)-complete condition p̄ = p̄0 ∗ p̄1
extending p. We claim that p̄∩Vᾱ ∈M1. This is because p̄ = p̄1(�−

1 )∪ p̄ \ p̄1(�−
1 ),

where p̄1(�−
1 ) ∈ H (�1) ⊂ M1 and (p̄ ∩ Vᾱ) \ p̄(�−

1 ) ∈ P�1 (M0 ∩ Vᾱ) ⊂ M1.
Fix a countable elementary submodel M̄ of M1 such that p̄ ∩ Vᾱ ∈ M̄ and
sup(M̄ ∩α) = sup(M1 ∩α) = α′. This is possible since α′ has countable cofinality.
Note that p̄∩Vᾱ and q are compatible, let q′ ∈ M̄ witness this.Applying Lemma 4.6,
let q̄ < q′ be a flat (M̄ ,Cκ ∗ Pe)-complete condition. Note that spt(p̄) ⊂ M0 and
spt(q̄) ⊂ M̄ . Via a classical argument, we can show that
Claim 4.8. p̄ � 	 ∈ Csup(α∩M0) = Cα′ and q̄ � 	 �∈ Csup(α∩M̄) = Cα′ .
Proof. We only verify the claim for p̄. The verification process for q̄ is the same.

Since p̄ is (M0,Cκ ∗ Pe)-complete, it forces that Ċ is unbounded in M0 ∩ α and
thus α′ = sup(M0 ∩ α) is a limit point of Ċ . Note that 	 ∈ M ∩ α. Hence,
p̄ � 	 ∈ Ċ ∩ α′ = Cα′ . �
The following is the key of the argument:
Claim 4.9. p̄ � α and q̄ � α are compatible.
Proof. Inductively on 	 ≤ α, we construct conditions r	 extending both p̄ � 	

and q̄ � 	 such that

17The appearance of f1 ensures that V [G1f1(f2(�))
∗ G2

f2(�)
] is meaningful.

18We say a set C threads �C � α if C is a club subset of α, ot(C ) ≤ |α| and for all � ∈ Lim(C ),
C ∩ � = C� .
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(1) r	1 � 	2 = r	2 for 	 ≥ 	1 > 	2.
(2) spt(r	) = spt(p̄ � 	) ∪ spt(q̄ � 	).
For 	 < ᾱ, q̄ � 	 < q′ � 	 < p̄ � 	. We choose r	 to be q̄ � 	.
Now suppose 	 = � + 1 > ᾱ. If � �∈ spt(p̄ � α) ∪ spt(q̄ � α), then let

r	(�) =

{
r�(�), if � < �,
1, if � = �.

Otherwise, � ∈ spt(p̄ � α) ∪ spt(q̄ � α). Assume � ∈ spt(p̄ � α) ⊂ M0. It follows
that � ∈ (M0 ∩ α) \ ᾱ. Let

r	(�) =

{
r�(�), if � < �,
p̄(�), if � = �.

Then r	 is as desired as r� < q̄ � � � q̄(�) is trivial. The case � ∈ spt(q̄ � α) ⊂ M̄
is similar.
Finally for 	 ≥ ᾱ limit, we take r	 to be the greatest lower bound of all r� with
� < 	. Clearly r	 is as desired. �
Let r be a common extension of p̄ � α and q̄ � α. Let rp be a common extension
of r and p̄ and rq be a common extension of r and q̄. Then rp � 	 ∈ Cα′ and
rq � 	 �∈ Cα′ . Let Gα be an arbitrary Cα ∗ Pα-generic filter containing r. Then
by Claim 4.7, whether 	 ∈ Cα′ or not is decided in V [Gα]. If 	 ∈ Cα′ and G is
any generic filter extending Gα and rq , then V [G ] |= 	 �∈ Cα′ . Similar for the case
	 �∈ Cα′ . Hence r forces a contradiction. It also clear that r is stronger than t.
This ends Case 2) and the proof of Lemma 4.4. �

§5. An application on precipitous ideals over �1. In this section, we study the
relationship between SC and precipitous ideals. Recall that an ideal I on κ is
precipitous iff for all generic G ⊆ P(κ)/I , the ultrapower V κ/G is well-founded.
As mentioned in Section 2, ASC refutes the existence of a precipitous ideal. The
following general fact is due toWoodin. The special case when κ = �1 is also proved
by Schimmerling–Velickovic ([11]). We include a proof for completeness.

Proposition 5.1. Suppose κ is regular and SCκ+ holds and is witnessed by F :
κ+ → H (κ+). Then no ideal over κ definable in 〈H (κ+), F 〉 is precipitous.
Proof. Suppose the proposition fails at κ, and let I be a precipitous ideal over
κ definable in 〈H (κ+), F 〉. Without loss of generality, we can assume that the
critical point of the corresponding generic embedding jG is forced to be � by the
trivial condition κ, where � ∈ [�1, κ] is a regular cardinal. Since I ∈ L[F ] and
the precipitousness of an ideal is a Π1 property,L[F ] |= I is a precipitous ideal over
κ such that κ �P(	)/I cpt(jG) = �.
Let (α, �, F ) be the following sentence: F witnesses SC	+, where 	 is a regular
cardinal such that α = 	+, and there is a precipitous ideal I over 	 such that
�P(	)/I cpt(jG) = � . InL[F ],(κ+, �, F ) holds. Let (α, �) be the lexicographically
least pair such thatL[F � α] |= (α, �, F � α). In L[F � α], we haveV = L[F � α]
and V |= (∀(ᾱ, �̄) <lex (α, �))(L[F � ᾱ] |= ¬(ᾱ, �̄ , F � ᾱ)).
Hence wemay assume there is anF : α → F [α] and a regular cardinal� such that
V = L[F ] |= (α, �, F ) and for all (ᾱ, �̄) <lex (α, �),L[F � ᾱ] |= ¬(ᾱ, �̄ , F � ᾱ).
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Let I be a precipitous ideal on 	 such that �P(	)/I cpt(jG) = � , where 	+ = α. Let
j : V →M ⊂ V [G ] be the valuation of jG in V [G ], where G is P(	)/I -generic.
By elementarityM |= “j(F ) witnesses SC holds for j(F [α])”. By Theorem 2.5,

V [G ] |=“j(F ) witnesses SC holds for j(F [α])”. Note that j[F [α]] ≺ j(F [α]),
which follows from Tarski criterion and the elementarity of j. Although j[F [α]]
may not be in M , it is in V [G ]. So applying SC for j(F [α]) in V [G ], we get
F [α] = the transitive collapse of j[F [α]] = j(F )[ot(Ord∩j[F [α]])] = j(F )[α]
and thus F = j(F ) � α. By elementarity,M |= V = L[j(F )] and for all (ᾱ, �̄) <lex
(j(α), j(�)), L[j(F ) � ᾱ] |= ¬(ᾱ, �̄ , j(F ) � ᾱ). However,L[j(F ) � α] = L[F ] |=
(α, �, j(F ) � α). Note that (α, �) <lex (j(α), j(�)). Contradiction. �
Remark 5.2. In the above model for κ = �1, we also have that any ideal on�1 is

not�2-saturated.Assume there is a saturated ideal I on�1. Let j : V →M ⊂ V [G ]
be the generic embedding. Then �M1 = j(�1) = �2. By elementarity, in M , j(F )
witnesses SC for (H (�2))M = j(H (�2)). We have (H (�1))M = j(F )[�M1 ] =
j(F )[�2] = H (�2), which is impossible since their theories are different. This gives
a different proof of a theorem of Baumgartner and Taylor ([1]) that there is a
set-forcing which kills all saturated ideals on �1.

Corollary5.3. It is consistent relative to a supercompact cardinal that Con (there
is a supercompact cardinal+no ideal on �1 definable over H (�2) is precipitous).

Proof. Start with a groundmodelV where a supercompact cardinal κ exists and
GCHholds.LetG be aPe-generic overV . Then inV [G ],κ remains supercompact as
the size of Pe is small. On the other hand, by Proposition 5.1, there is no precipitous
ideal on �1 which is definable over H (�2). �
If a precipitous ideal over �1 exists in this model, then it cannot be the nonsta-

tionary ideal on �1 by definability. It is natural to ask whether SC over H (�2) is
already strong enough to give a complete solution to Jech’s question, which was
stated in the introduction. This is refuted by the following theorem.

Theorem 5.4. The following are equiconsistent:

(1) ZFC + there exists a measurable cardinal.
(2) ZFC + SC�2 + there is a precipitous ideal on �1.

The proof heavily relies on master condition arguments. For an elementary
embedding j : V → M and a P-generic filter G over V , a j-G master condi-
tion is a j(P) condition p such that for all q ∈ G , p < j(q). If a master condition p
exists, then we can define the lifted embedding jG : V [G ]→M [H ], whereH � p is
any j(P)-generic filter overM . The general framework for constructing a precipi-
tous ideal on�1 in an�2-length countable support iterated forcing model originates
from [8] (also see [3]). We will follow this framework and make sufficient adaptions
to fulfill our goal.

Proof. It is well known (see [8]) that Con(2) implies Con(1). We need to prove
that Con(1) implies Con(2). AssumeV |=GCH+ κ is a measurable cardinal. LetU
be a κ-complete normal measure over κ and j : V →M be the derived elementary
embedding.
Consider the forcingCol(�,< κ)∗Pe , where e is chosen inMCol(�,<κ). LetG∗K be

aCol(�,< κ)∗Pe-generic filter overV . It follows thatPe ∈M [G ]. By the discussion
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at the end of Section 3, Pe is also a forcing for SC�2 in V [G ]. We will also assume
that Pe consists only of flat conditions. Hence each condition in Pe is a countable
set in V Col(�,<κ). As V |= GCH, GCH holds in V [G ]. By Theorem 1.1, it follows
that V [G ∗K ] |= SC�2 . For any α ∈ [κ, κ+), let Kα be the Pα-generic derived from
K . Let H be the bijection from �2 to (P(�1))V [G∗K ] as defined in Section 3. For
α ∈ [κ, κ+), let Hα = H � α. The rest of the proof is devoted to showing that there
is a precipitous ideal over �1 in V [G ∗K ].
Denote Col(�,< κ) by P. The proofs of the following facts are standard:

(1) j(P) ∼= P∗Q, whereQ = Col(�, [κ,< j(κ)))M . We identify these two posets
without further comment.

(2) Let G ′ be Q-generic over V [G ], then G ∗ G ′ is j(P)-generic over V . Also
in V [G ∗ G ′], there is an elementary embedding jG : V [G ] → M [G ∗ G ′]
extending j, where jG(G) = G ∗G ′.

(3) �V [G ]1 = κ and �M [G∗G
′]

1 = j(κ).
(4) In V [G ∗ G ′], let UG = {X ∈ P(κ) ∩ V [G ] | κ ∈ jG(X )}. Then UG is a
normal ultrafilter on P(κ) ∩ V [G ] andM [G ∗G ′] = Ult(V [G ], UG ).

(5) In V [G ], Let IG = {X ∈ P(κ) | �V [G ]Q κ �∈ jG(X )}. Then IG is a normal
precipitous ideal over �1.

Since in M [G ], Pe is of size κ+ and j(κ) is inaccessible, Pe can be completely
embedded intoQ such that the quotient forcing is isomorphic to Q. Let i�2 be such
a complete embedding. In what follows, we always view G ′ as K ∗ r, where r is
Q/Pe generic over V [G ∗ K ], i.e., we always assume K is contained in G ′ via the
embedding i�2 . As a result, we have jG : V [G ]→M [G ∗K ∗ r], where K ∗ r = G ′.
We now deal with P�1 . In M [G ∗ G ′], jG (P�1 ) is the forcing to add a generic
bijection from j(κ) to Pj(κ)(j(κ)) using countable conditions. We need to build
a master condition for jG and K�1 in M [G ∗ G ′]. By the definition of Pe , H is a
bijection from κ+ to P(κ) ∩M [G ]. As we assume that K ∈ M [G ∗ G ′], it follows
that H is also inM [G ∗ G ′]. Hence inM [G ∗ G ′], H is a countable injection into
Pj(κ)(j(κ)) and thus a condition of jG(P�1 ). As

⋃
jG [K�1 ] =

⋃
K�1 = H�1 ⊂ H ,

H is a master condition for jG and K�1 . It will become clear in the proof of
Claim 5.5 why we choose H instead of H�1 to be the master condition. Whenever
K ′
�1
is jG(P�1 )-generic over V [G ∗ G ′] such that H ∈ K ′

�1
, we can lift jG to

j�1 : V [G ∗K�1 ]→M [G ∗G ′ ∗K ′
�1
].

In V [G ∗G ′ ∗K ′
�1 ], let U�1 = {X ∈ P(κ)∩V [G ∗K�1 ] | κ ∈ j�1 (X )}. ThenU�1

is a normal ultrafilter over P(κ) ∩ V [G ∗K�1 ]. Let

I�1 =
{
X ∈ P(κ) ∩ V [G ∗K�1 ] |�

V [G∗K�1 ]
(Q/K�1 )∗(jG (P�1 )/H )

κ �∈ j�1 (X )
}
.

It is clear that UG ⊂ U�1 and IG ⊂ I�1 . Moreover one can verify thatM [G ∗ G ′ ∗
K ′
�1 ] = Ult(V [G ∗K�1 ], U�1 ) and I�1 is a precipitous ideal over �1.
We shall construct the following objects by induction on α ∈ [κ, κ+) in V [G ]:
(1) A Q-name Ḋα for a master condition appropriate for the embedding jG :
V [G ]→M [G ∗G ′] and the forcing jG (Pα). Ḋα will be a condition in jG (Pα)
which is a lower bound for jG [Kα].

(2) A Q ∗ jG(Pα)/Dα-name for jα : V [G ∗ Kα] → M [G ∗ G ′ ∗ K ′
α] extending

jG , where K ′
α � Ḋα is jG(Pα)-generic.
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(3) AQ-name İα for a normal ideal on κ which is the set of thoseX ⊂ κ inV [G ∗
Kα] such that it is forced over V [G ∗Kα] by (j(P)/(G ∗Kα)) ∗ (jG(Pα)/Dα)
that κ �∈ jα(X ).

For κ ≤ α < � < κ+, we require that Dα(jG (�−
1 )) = H , D� � j(α) = Dα ,

j� � V [G ∗ Kα] = jα , and I� ∩ V [G ∗ Kα] = Iα . Let 〈C	 | 	 ∈ [κ, α)〉 be the
sequence of club sets added by Kα in V [G ∗Kα]. Then Dα is defined as:

Dα(	) =

⎧⎪⎨
⎪⎩
H, if 	 = jG (�−

1 ),
C� ∪ {κ}, if 	 = j(�) ∧ � �= �−

1 ,

∅, otherwise.

By our assumption,Kα ∈M [G ∗G ′]. It follows that 〈C	 | 	 ∈ [κ, α)〉 ∈M [G ∗G ′].
Also as j[α] ∈ M , Dα ∈ M [G ∗ G ′]. Since |κ|M [G∗G′] = �, the support of Dα is
countable inM [G ∗G ′].
By induction on α ∈ [κ, κ+), we check that Dα is a master condition and define

the embedding jα . The case α = κ was already treated above. Dκ is a master
condition for jG and K�1 . If α is a limit ordinal, then it follows from the induction
hypothesis thatDα is a condition. Now if p ∈ Kα , then by the induction hypothesis
for any � < α, j(p � �) > D� = Dα � � . Hence j(p) > Dα . It follows that jα :
V [G ∗Kα]→M [G ∗G ′ ∗K ′

α] can be defined wheneverK
′
α � Dα is jG (Pα)-generic

overM [G ∗G ′].
Now assume α = � +1 and the induction hypothesis holds at � . We may assume

thatDα = D��〈j(�), C� ∪{κ}〉. We need to check thatD� � C� ∪{κ} is a jG(Q̇� )-
condition. Let K ′

� � D� be an arbitrary j(P�)-generic filter over V [G ∗ G ′]. From
now on, we work inV [G ∗G ′∗K ′

� ]. Now j� : V [G ∗K� ]→M [G ∗G ′ ∗K ′
� ] lifts j�1 .

We need to prove C� ∪ {κ} ⊂ j�(S′′� ). Since C� ⊂ S′′� ⊂ j�(S′′� ), we only need to
check the following claim:

Claim 5.5. κ ∈ j� (S′′� ).
Proof. By the definition of S′′� and j� , κ ∈ j�(S′′� ) if the structure A =

〈j� (e� )[κ], j� (H� )∩j� (e� )[κ],∈〉 is a countable elementary substructure of j� (A�)
and

(j� (H� ) ∩ j� (e� )[κ])j� (e� )[κ] ⊂ j�(H� ).
It is clear that j�(e� )[κ] is countable in M [G ∗ G ′ ∗ K ′

� ]. By the definition of
e� , 〈e� [κ],H� ,∈〉 = A� . Now since j� is elementary, applying the Tarski criterion,
〈j� [e� [κ]], j� [H� ],∈〉 ≺ j�(A� ). It is also clear that j� [e� [κ]] = j� (e� )[κ]. Hence
A = 〈j� [e� [κ]], j� [H� ],∈〉 ≺ j� (A� ).
We finish the proof of the claim by showing that (j� (H� ) ∩ j� (e� )[κ])j� (e� )[κ] =

H� = j�(H� ) � � . The first equality holds because e� [κ] is a transitive set isomor-
phic to j� [e� [κ]]. We show the second equality. Since � < κ+ < j(κ), j� (H�) �
� ⊂ j�1 (H�1 ). By our construction, H ∈ K ′

�1 . Hence H� ⊂ H ⊂ j�1 (H�1 ) and
H� = j�1 (H�1 ) � � = j� (H�) � � . �
We now check that Dα is a master condition. Fix q ∈ Kα . As q � � ∈ K� ,

by induction hypothesis,D� is stronger than jG(q) � j(�). It remains to check that
jG (q(�)) = q(�) ⊂ C� . The equality follows from the fact that q is flat. Hence Dα
is a master condition.
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It follows thatwe can lift j�1 to jα : V [G ∗Kα]→M [G ∗G ′∗K ′
α], whereK

′
α � Dα

is a jG(Pα)-generic overV [G ∗G ′]. LetUα = {X ∈ P(κ)∩V [G ∗Kα] | κ ∈ jα(X )}
and

Iα =
{
X ∈ P(κ) ∩ V [G ∗Kα] |�V [G∗Kα ](Q/Kα)∗(jG (Pα)/Dα) κ �∈ jα(X )

}
.

As before, we haveM [G ∗G ′ ∗ K ′
α] = Ult(V [G ∗ Kα], Uα) and Iα is a precipitous

ideal on �1. It is routine to verify that I� = Iα ∩ V [G ∗K� ] from the construction.
Let I�2 =

⋃
α<�2

Iα . Then I�2 is a proper normal ideal on �1. We claim that I�2
is actually a precipitous ideal and thus finish the proof.

Claim 5.6. In V [G ∗K ], I�2 is a precipitous ideal.
Proof. Wefirst describe the general construction for a k which is jG (P�2 )-generic
over M [G ∗ G ′]. Let P′

�2 = {t ∈ jG (P�2 ) | ∃α(spt(t) ⊂ j(α) ∧ t < Dα)}. Note
that P′

�2 is a subset ofM [G ∗ G ′] but is not inM [G ∗ G ′]. However, we can force
with P′

�2 over V [G ∗G ′]. Let K̄ be a P′
�2 -generic filter over V [G ∗G ′]. Let k be the

jG(P�2 )-filter induced from K̄ .
We now show that k is in fact a jG (P�2 )-generic filter overM [G ∗ G ′]. Suppose
A is a maximal antichain in M [G ∗ G ′]. By the j(κ+)-c.c. and the fact that j[κ+]
is cofinal in j(κ+), there is some α ∈ (κ, κ+) such thatA is a maximal antichain of
jG(P�2 ) in M [G ∗ G ′]. Let A′ be the jG(Pα)-dense open set generated by A. It is
not difficult to verify that A′ ∩ (P′

�2 � j(α)) is a dense open subset of (P′
�2 � j(α)).

By genericity, there is a p ∈ A′ ∩ K̄ � j(α). Let t ∈ A be the unique condition in
jG(Pα) such that p is compatible with t. It follows that t ∈ k and thus k ∩ A �= ∅.
This ends the construction of k.
For any such K̄ and derived k, as before, in V [G ∗ G ′ ∗ K̄ ], we can lift j�1 to
j�2 : V [G ∗K ]→M [G ∗G ′∗k].Moreover for allX ∈ P(κ)∩V [G ∗K ], it is routine
to check that X ∈ I�2 iff for every P′

�2
-generic filter K̄ and derived embedding j�2 ,

κ �∈ j�2 (X ).
Now we can argue that I�2 is precipitous via a density argument. Fix X �∈ I�2 and
X ⊂ κ. We only need to show that X does not force that Ult(V [G ∗ K ], Ū ) is ill-
founded, where Ū is the P′

�2
-generic ultrafilter for P(κ)/I�2 . By the last paragraph,

there is a generic filter K̄ such that in V [G ∗G ′ ∗ K̄ ], κ ∈ j�2 (X ). Let U�2 = {X ∈
P(κ)∩V [G ∗K ] | κ ∈ j�2 (X )}. As before,U�2 is a P(κ)∩V [G ∗K ]-ultrafilter and
M [G ∗G ′ ∗ k] = Ult(V [G ∗K ], U�2 ). Hence Ult(V [G ∗K ], U�2 ) is well-founded.
It remains to show that U�2 is P(κ)/I�2 -generic. Let A be a maximal antichain
of P(κ)/I�2 in V [G ∗K ]. Suppose otherwise and let p ∈ G ∗G ′ ∗ K̄ be a condition
such that p � (∀X ∈ A)(κ �∈ j�2 (X )). Note that by the definition of P′

�2 , p is also
in G ∗G ′ ∗ k.
We now work in V [G ∗K ]. As p is inM , there is an f : κ → V representing p.
Let R = {α ∈ κ | f(α) ∈ G ∗ K}. Now in any jG (P�2 )-generic extension over
V [G ∗ K ] with generic k, κ ∈ j�2 (R) is equivalent to p ∈ G ∗ G ′ ∗ k. Hence
κ �∈ j�2 (X ∩R) and thus X ∩R is in I�2 for all X ∈ A.
On the other hand,R �∈ I�2 since p �jG (P�2 ) κ ∈ j�2 (R). This contradicts the fact
that A is maximal. �

§6. Final Remarks. This paper is the first attempt at the second objective we
posed in Section 1. The result on square sequences gives us the impression that SC
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cannot replace the role of fine structure in any proof of theorems in L which uses
fine structure essentially. However, it may still happen that there are truths in L
all of whose available proofs involve some form of fine structure, yet an essentially
different proof could be found. A natural candidate is the following question of
Woodin ([14]) concerning an abstract analogue of Jensen’s covering lemma for L.

Question 6.1. Suppose N is an inner model of ASC. Suppose that covering fails
for N in V .19 Must there exist a real x such thatN ⊆ L[x]?
On the other hand, a yet more difficult question is to construct model of larger

fragments of SC:

Question 6.2. Is there a set sized forcing notion to obtain SC�3?

A positive answer to this question would be very plausible and would answer
Jech’s question negatively.
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