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Unsteady turbulent buoyant plumes
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We model the unsteady evolution of turbulent buoyant plumes following temporal
changes to the source conditions. The integral model is derived from radial integration
of the governing equations expressing the evolution of mass, axial momentum and
buoyancy in the plume. The non-uniform radial profiles of the axial velocity and
density deficit in the plume are explicitly captured by shape factors in the integral
equations; the commonly assumed top-hat profiles lead to shape factors equal to
unity. The resultant model for unsteady plumes is hyperbolic when the momentum
shape factor, determined from the radial profile of the mean axial velocity in the
plume, differs from unity. The solutions of the model when source conditions are
maintained at constant values are shown to retain the form of the well-established
steady plume solutions. We demonstrate through a linear stability analysis of these
steady solutions that the inclusion of a momentum shape factor in the governing
equations that differs from unity leads to a well-posed integral model. Therefore,
our model does not exhibit the mathematical pathologies that appear in previously
proposed unsteady integral models of turbulent plumes. A stability threshold for the
value of the shape factor is also identified, resulting in a range of its values where
the amplitudes of small perturbations to the steady solutions decay with distance from
the source. The hyperbolic character of the system of equations allows the formation
of discontinuities in the fields describing the plume properties during the unsteady
evolution, and we compute numerical solutions to illustrate the transient development
of a plume following an abrupt change in the source conditions. The adjustment of
the plume to the new source conditions occurs through the propagation of a pulse
of fluid through the plume. The dynamics of this pulse is described by a similarity
solution and, through the construction of this new similarity solution, we identify
three regimes in which the evolution of the transient pulse following adjustment of
the source qualitatively differs.

Key words: plumes/thermals, turbulent convection

1. Introduction
Turbulent buoyant plumes occur in numerous industrial and environmental settings

(Woods 2010; Hunt & van den Bremer 2011). Industrial examples include ventilation
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and heating (e.g. Baines & Turner 1969; Linden, Lane-Serff & Smeed 1990; Shrinivas
& Hunt 2014), industrial chimneys (e.g. Slawson & Csanady 1967) and waste-water
disposal (e.g. Koh & Brooks 1975). In the natural environment, turbulent plumes
are found in meteorological (e.g. Emanuel 1994; Stevens 2005), oceanographical (e.g.
Speer & Rona 1989; Straneo & Cenedese 2015) and volcanological (e.g. Woods 1988;
Sparks et al. 1997; Woodhouse et al. 2013) settings. Models of steady plumes, based
on the integral modelling approach pioneered by Zeldovich (1937), Schmidt (1941),
Rouse, Yih & Humphreys (1952), Priestley & Ball (1955) and Morton, Taylor &
Turner (1956), have been applied extensively to understand plume dynamics. In this
approach, the turbulent flow in the plume is described on a time scale that is longer
than the eddy turnover time (the time scale that characterizes the turbulent motion),
and therefore the complicated turbulent motions are not explicitly modelled and only
the evolution of mean flow quantities with distance from the source is modelled. A
further simplification is obtained by integrating the mean flow quantities over the
cross-section of the plume, resulting in a system of nonlinear ordinary differential
equations that describe the spatial development of the steady integral flow quantities
such as the fluxes of mass, momentum and buoyancy.

To obtain the integral fluxes, it is necessary to specify the radial and azimuthal
dependence of the three-dimensional mean fields. When the flow domain and ambient
conditions do not introduce an asymmetry, the time-averaged flow quantities are
axisymmetric and swirl-free (i.e. there is no azimuthal dependence of the mean flow
quantities). Experiments suggest that, at sufficiently high Reynolds number and for an
unstratified ambient fluid, buoyant plumes attain self-similar radial profiles for both
the mean axial velocity and the concentration of the species that gives rise to the
density difference between the plume and the ambient fluid sufficiently far from the
fluid source (Papanicolaou & List 1988; Shabbir & George 1994; Wang & Law 2002;
Ezzamel, Salizzoni & Hunt 2015). Furthermore, higher-order turbulent quantities such
as the turbulent intensity (the root mean square of velocity component fluctuations
and concentration fluctuations from the mean) and turbulent stresses also evolve with
self-similar radial profiles (Papanicolaou & List 1988; Wang & Law 2002; Ezzamel
et al. 2015). The cross-sectional integration then results in a system of ordinary
differential equations that models the evolution of the mass flux, momentum flux and
buoyancy flux with distance from the source. For stratified ambient environments,
the detailed structure and evolution of the mean and turbulent quantities have been
scrutinized less thoroughly. However, the applicability of integral models assuming
similarity of the mean flow profiles has been demonstrated through comparison of
model predictions with laboratory experiments (see, e.g., Morton et al. 1956; List
1982) and in field-scale applications (see, e.g., Turner 1986; Woods 1988; Speer &
Rona 1989; Kaye 2008).

While averaging over the turbulent time scale and integrating over the plume
cross-section significantly simplifies the mathematical description of the plume
dynamics, detailed information about the turbulent flow is not fully captured. The
integral model of Morton et al. (1956) incorporates the turbulent nature of the
flow through a parameterization of turbulent mixing as an inflow of fluid from the
ambient to the plume, referred to as entrainment. The velocity of the entraining flow
is linearly related to the mean axial velocity scale of the plume (as dimensional
analysis demands, since the only velocity scale that remains following time-averaging
and cross-sectional integration is the mean axial velocity of the plume). Morton et al.
(1956) take a constant entrainment coefficient, and the application of this model has
been successful in describing steady buoyant plumes over a wide range of scales,
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Unsteady turbulent buoyant plumes 597

from the laboratory (see, e.g., Morton et al. 1956; List 1982) to plumes from large
volcanic eruptions (e.g. Woods 1988), illustrating the success of the integral modelling
approach with a constant entrainment coefficient.

Detailed examination of laboratory experiments of turbulent plumes suggests that
the entrainment coefficient does not have a constant universal value, but rather
evolves as the flow develops (Wang & Law 2002; Kaminski, Tait & Carazzo 2005;
Ezzamel et al. 2015). In particular, for plumes that are strongly forced with a flux
of momentum at the source (referred to as buoyant jets), the entrainment coefficient
transitions from a value appropriate for jets to the value for plumes as the flow
becomes increasingly driven by buoyancy. Integral models that include an evolving
entrainment coefficient have been proposed (see, e.g., Fox 1970; Kaminski et al. 2005;
Carazzo, Kaminski & Tait 2006; Craske & van Reeuwijk 2015a,b), building on the
integral modelling approach of Priestley & Ball (1955) whereby an integral expression
for the conservation of axial kinetic energy is used with conservation of momentum
to derive an integral expression for conservation of mass. (This modelling approach is
discussed further in appendix A.) However, the assumption of a constant entrainment
coefficient captures the leading-order behaviour of turbulent buoyant plumes over
a wide range of scales (Turner 1986), and for fully developed turbulent plumes
sufficiently far from the source, a constant entrainment coefficient is appropriate and
represents the similarity of the flow profiles and the turbulent entrainment processes
at different heights in the plume (Turner 1986; Ezzamel et al. 2015).

The applicability of steady models to the inherently unsteady turbulent motion
relies on a separation of time scales. If the conditions at the plume source and in
the ambient are held steady, the steady integral models describe the plume behaviour
well on time scales that are long compared with the eddy turnover time (Woods
2010). However, if the source conditions change on a time scale that is longer than
the turbulent fluctuations, then a signature of the source variation may be seen in
the time-averaged plume dynamics downstream of the source (e.g. Scase, Caulfield
& Dalziel 2008; Scase 2009). Unsteady sources occur frequently in natural settings,
for example as the strength of a volcanic source changes in magnitude during an
eruption. In addition, temporal changes in ambient conditions on a time scale similar
to the ascent time of a fluid parcel are likely to result in a transient response of the
plume.

To model unsteady plumes, integral models have been proposed (Delichatsios
1979; Yu 1990; Vul’fson & Borodin 2001; Scase, Caulfield & Dalziel 2006a; Scase
et al. 2006b, 2008; Scase 2009; Scase, Aspden & Caulfield 2009) which extend the
modelling approach of Morton et al. (1956) while retaining some of the underlying
assumptions of the steady model. In particular, the unsteady models capture the
variations of flow quantities on a time scale that is longer than the eddy turnover time,
and assume that the radial profiles of the mean axial velocity and the concentration
of the buoyancy-generating species remain in a self-similar form throughout the
evolution. However, given the difficulty in obtaining robust experimental results for
plumes with time-varying source conditions, the underlying assumptions have yet
to be scrutinized in detail. Numerical simulation of the governing equations can be
used as a surrogate for laboratory experiments and allow detailed investigations of
the turbulent flow properties throughout the modelled domain (Jiang & Luo 2000;
Plourde et al. 2008; Craske & van Reeuwijk 2013, 2015a). The physical basis of
this class of unsteady models has been further questioned by Scase & Hewitt (2012)
in an analysis of the stability of the steady solutions of the models of Delichatsios
(1979), Yu (1990) and Scase et al. (2006b) to small harmonic perturbations at the
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source. Scase & Hewitt (2012) find that the perturbations grow as they propagate
through the plume, and that the growth rate increases without bound as the frequency
of the source oscillations is increased; therefore the models are ill-posed, suggesting
that a critical physical process has been neglected (Joseph & Saut 1990).

In an attempt to ‘regularize’ the unsteady plume models, Scase & Hewitt (2012)
introduce a phenomenological diffusive term to represent turbulent mixing processes
into the equation that expresses the balance of axial momentum; it curtails the
unbounded growth of short-wavelength perturbations, thus leading to a well-posed
model. The form of the diffusive term has been investigated by Craske & van
Reeuwijk (2015a) for momentum-driven (non-buoyant) jets using direct numerical
simulations; the numerical simulations suggest that the diffusive term proposed by
Scase & Hewitt (2012) does not describe the transient evolution of momentum-driven
jets well. Here, we find that the diffusive term introduced by Scase & Hewitt
(2012) leads to a new pathology in the system of equations; the steady states of the
‘regularized’ model are spatially unstable and therefore cannot be realized.

We show here that the ill-posedness in the unsteady models analysed by Scase
& Hewitt (2012) is due to the assumption of a top-hat profile for the mean axial
velocity (i.e. the axial velocity at any height is assumed to be radially invariant within
the plume and zero outside of the plume) and therefore a failure to account for the
non-uniform radial profile of the mean axial velocity of the plume. Non-uniform radial
profiles for the axial velocity were examined in the early studies of steady plumes by
Priestley & Ball (1955) and Morton et al. (1956). However, solutions of steady plume
models have the same form whether top-hat or non-uniform radial profiles for the
mean axial velocity are adopted, as dimensional analysis demands, with only changes
to coefficients in the solutions (Morton et al. 1956; Linden 2000; Kaye 2008), and
many subsequent analyses of steady plumes have adopted the top-hat formulation.

When a top-hat velocity profile is adopted, the cross-sectionally averaged mass
and momentum of the plume are transported with the same rate, but the transport
rates differ when the radial profile of the mean axial velocity is non-uniform. We
therefore propose an integral model of unsteady plumes that explicitly accounts for the
different transport rates of the cross-sectionally averaged mass and axial momentum
of the plume, by introducing a ‘shape factor’ in the equation for the conservation
of momentum that differs from unity when non-uniform radial profiles of the mean
axial velocity are assumed. A shape factor that differs from unity in shallow-water
hydraulic models has been shown to fundamentally alter solutions of the system of
equations due to a change in the characteristics of the hyperbolic system (Hogg &
Pritchard 2004). Here, we show that the inclusion of a shape factor changes the
character of the system of equations describing unsteady plumes and leads to a
well-posed system of equations without the need to include diffusive terms.

A similar approach to regularizing an unsteady integral model of momentum-driven
jets has been proposed recently by Craske & van Reeuwijk (2015a,b). Through
analysis of their direct numerical simulations, Craske & van Reeuwijk (2015a,b)
develop a well-posed integral model of unsteady jets that includes a description of
dispersion in the jet, resulting from the non-uniform radial profile of the mean axial
velocity which leads to different transport rates for mass, axial momentum and kinetic
energy (referred to as type I dispersion by Craske & van Reeuwijk 2015a,b), and
the deviation of the radial profile of mean axial velocity from a self-similar form
(referred to as type II dispersion). Type II dispersion is important in jets, where
the flow structure evolves significantly in the neighbourhood of the source even for
temporally invariant source conditions (Wang & Law 2002; Kaminski et al. 2005;
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Unsteady turbulent buoyant plumes 599

Ezzamel et al. 2015), but is likely to be less important for fully developed turbulent
plumes for which the radial profiles are in self-similar forms (Ezzamel et al. 2015).
However, Craske & van Reeuwijk (2015a,b) show that explicitly accounting for the
non-uniform radial profile of mean axial velocity (type I dispersion) in the integral
equations is critical to the well-posedness of the unsteady integral model for jets.

In this paper we demonstrate, through an analysis of the temporal evolution of small
perturbations to steady solutions, that an integral model of unsteady plumes is well-
posed when the momentum shape factor differs from unity. Furthermore, we identify
a stability threshold in the value of the shape factor above which the amplitude of
small perturbations decays. The system of equations we propose is hyperbolic, with a
characteristic structure that, in certain situations, allows for the formation of ‘shocks’
during the transient evolution. Through the construction of similarity solutions, we
identify scaling relationships that capture the propagation and growth of a transient
pulse that is advected through the plume following an abrupt change in the source
conditions, and determine the regimes in which shocks are formed.

This paper is organized as follows. In § 2 we provide a derivation of an integral
model of unsteady buoyant plumes, and we demonstrate that the use of integral
flow quantities requires the inclusion of shape factors for the transport rates of the
(cross-sectionally averaged) axial momentum and buoyancy of the plume. We show
that a momentum shape factor only slightly modifies the classical power-law solutions
of Morton et al. (1956). In § 3 we re-examine the phenomenological diffusive term
introduced by Scase & Hewitt (2012), and show that this model potentially introduces
a new pathology into the system of equations whereby steady solutions are spatially
unstable. We therefore examine the mathematical structure and well-posedness of an
unsteady integral model for plumes that includes a momentum shape factor, and we
demonstrate in § 4 that this leads to a well-posed system of equations. Numerical
solutions of our unsteady model are presented in § 5 to support the mathematical
analysis. In § 6 we consider the evolution of a plume following an abrupt change in
the source buoyancy flux and show that the adjustment of the plume occurs through
the propagation of a pulse whose dynamics is described by a similarity solution.
Finally, in § 7 we discuss the implications of our mathematical model and draw our
conclusions.

2. An integral model for unsteady turbulent buoyant plumes

We model an unsteady turbulent buoyant plume formed due to the release of a fluid
from a point source into an otherwise quiescent ambient fluid of a different density.
A cylindrical coordinate system is adopted, with r̂ and ẑ denoting unit vectors in the
radial and vertical directions respectively. The plume and ambient are composed of
incompressible fluids, and the plume is assumed to have a circular (time-averaged)
cross-section. The velocity field, u, is assumed to be axisymmetric, with u= ur̂+wẑ.
We further assume that the plume is slender (as observed in experiments, e.g. Rouse
et al. 1952), such that R/H� 1, where R and H denote typical length scales in the
radial and vertical directions respectively, that the Reynolds number of the emitted
fluid at the source is sufficiently high, such that the turbulent motion is fully developed
throughout the flow domain, and that the plume fluid transports a scalar species (such
as heat or salt) with the plume density linearly related to the concentration of the
species.

Turbulence in the plume is responsible for the entrainment of ambient fluid and
mixing of the plume and ambient fluids, and its role is central to the ensuing
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dynamics. We therefore adopt the Reynolds-averaged Navier–Stokes equations to
describe the fluid motion, with a Reynolds-averaged advection–diffusion equation
to describe the transport of the scalar species that results in the density difference
between the plume and the ambient fluids, taking u = u + u′, w = w + w′ and
gr= gr+ gr, where u and u′ denote the ensemble average and the fluctuation about the
average of u respectively, and similarly for w and gr, and where gr = g(ρa− ρ)/ρ0 is
the reduced gravity, with g denoting the gravitational acceleration, ρ and ρa denoting
the density of the plume and ambient fluids respectively, and ρ0 being a characteristic
density scale. The equations for the conservation of (the ensemble averaged) mass,
axial momentum and reduced gravity are then

1
r
∂

∂r
(ru)+ ∂w

∂z
= 0, (2.1a)

∂w
∂t
+ 1

r
∂

∂r
(ruw)+ ∂

∂z
(w2)= gr − 1

r
∂

∂r
(ru′w′)− ∂

∂z
(w′2), (2.1b)

∂gr

∂t
+ 1

r
∂

∂r
(rgru)+ ∂

∂z
(grw)= g

ρ0

(
∂ρa

∂t
+ ∂

∂z
(wρa)

)
− 1

r
∂

∂r
(rgr

′u′)− ∂

∂z
(gr
′w′).

(2.1c)

It should be noted that in (2.1) the slenderness of the plume has been used to simplify
the Reynolds-averaged Navier–Stokes equations, as described for steady plumes by
Linden (2000). In particular, the radial momentum balance (not given) shows that, to
leading order in the plume slenderness, there is no radial pressure gradient. Therefore,
the pressure in the plume can be taken to be equal to the hydrostatic pressure of
the ambient. We have also invoked the Boussinesq approximation whereby differences
in density are sufficiently small that they may be neglected except where they are
multiplied by the gravitational acceleration. Furthermore, we have neglected molecular
diffusion terms under the assumption that the Reynolds number and Péclet number are
sufficiently large that mixing is dominantly due to turbulence.

Integral equations are obtained by integrating each of equations (2.1) over a cross-
section of the plume. We define a surface r= b(z, t) representing the boundary of the
plume over which entrainment of ambient fluid into the plume occurs, and impose the
boundary condition on this surface,

u(b, z, t)= ∂b
∂t
+w(b, z, t)

∂b
∂z
+ ue, (2.2)

where the entrainment velocity, ue, is the radial velocity of the ambient fluid across
r = b(z, t) (note that ue < 0 when ambient fluid is entrained into the plume). This
boundary condition represents the advection of the surface with the local velocity
of the plume, with entrainment represented as a sink of mass (equivalently volume
under the Boussinesq approximation), with the volume flux per unit area of the
surface across r = b(z, t) given by ue. We note that this approach differs from that
taken by Craske & van Reeuwijk (2015a,b), who adopt the characteristic length
and velocity scales defined through the cross-sectionally averaged fluxes of mass
and axial momentum which themselves are defined in terms of an additional length
scale at which the mean axial velocity can be considered negligible in contrast
to the mean axial velocity at the centreline. As turbulent plumes typically exhibit
non-uniform radial profiles of axial velocity and concentration of species, with
decaying velocity and concentration with the radial distance from the plume axis, in
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laboratory experiments or direct numerical simulations there is a choice as to how to
define the plume edge, taking, for examples, the radial distance at which the axial
velocity or concentration reaches a specified threshold, or the radial distance at which
the mass flux included in a cross-sectional integral captures a specified proportion of
the total mass flux induced by the plume. We discuss below how these choices are
represented in our model.

Integration of the point-wise conservation equation (2.1) over a plume cross-section,
using Leibniz’s theorem for interchanging differentiation and integration (Flanders
1973) together with the boundary condition (2.2), gives

b
∂b
∂t
+ ∂

∂z

∫ b

0
rw dr=−bue, (2.3a)

∂

∂t

∫ b

0
rw dr+ ∂

∂z

∫ b

0
rw2 dr=

∫ b

0
rgr dr− ∂

∂z

∫ b

0
rw′2 dr

− bw(b, z, t)ue − bu′w′(b, z, t)+ bw′2(b, z, t)
∂b
∂z
, (2.3b)

∂

∂t

∫ b

0
rgr dr+ ∂

∂z

∫ b

0
rwgr dr= g

ρ0

∫ b

0

(
∂ρa

∂t
+w

∂ρa

∂z

)
r dr

− ∂

∂z

∫ b

0
rg′rw′ dr− bg′r(b, z, t)ue − bu′g′r(b, z, t)− bw′g′r(b, z, t)

∂b
∂z
, (2.3c)

representing the evolution of mass, momentum and buoyancy respectively.
We define the integral volume flux as Q = b2W (note that, under the Boussinesq

assumption, Q can also be referred to as the (specific) mass flux), the (specific)
momentum flux as M = b2W2 and the buoyancy flux as F= b2WG′. Here, W and G′
denote the cross-sectionally averaged mean axial velocity and the reduced gravity of
the plume respectively, and are given by

W = 2
b2

∫ b

0
rw dr, and G′ = 2

b2

∫ b

0
rgr dr. (2.4a,b)

We then have ∫ b

0
rw2 dr= 1

2
SmM and

∫ b

0
rwgr dr= 1

2
Sf F, (2.5a,b)

where Sm and Sf are momentum and buoyancy ‘shape factors’ respectively, defined as

Sm(z, t)= 1+ 2
b2W2

∫ b

0
r(w−W)2 dr (2.6)

and

Sf (z, t)= 1+ 2
b2WG′

∫ b

0
r(w−W)(gr −G′) dr. (2.7)

Thus, the shape factors quantify the effect of non-uniform radial profiles of the
axial velocity and density on the rates of transport of momentum and scalar species.
Crucially, we note that Sm > 1, which is representative of the more rapid transport
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of momentum than mass in the plume, unless the mean axial velocity is radially
invariant within the plume (in which case Sm≡ 1 and Sf ≡ 1). It should be noted that
this latter condition occurs only for ‘top-hat’ profiles as described below.

The plume edge, given by the surface r= b(z, t), is chosen to be at a radial distance
such that the boundary terms in (2.3) are negligible in comparison to the integral
terms (e.g. w(b)�W, u′w′(b)�W2, etc.). Furthermore, the entrainment assumption
of Morton et al. (1956) allows the entrainment velocity to be written as ue =−αW,
where α is the entrainment coefficient. This simplification of the turbulence mixing
dynamics assumes a similarity of turbulent structures at each height in the plume.
The entrainment coefficient must be determined empirically and, for fully developed
plumes far from the source where the radial profiles of the axial velocity have a self-
similar Gaussian form, a constant value α = 0.1± 0.01 is appropriate (Morton et al.
1956; List 1982; Woods 2010). However, near to the source (or for non-ideal initial
conditions), the entrainment coefficient may vary substantially as the flow develops
(Wang & Law 2002; Kaminski et al. 2005; Ezzamel et al. 2015). In this study we
take a constant entrainment coefficient, with the exception of appendix A, where we
also examine the steady solutions of a model with an entrainment coefficient that
varies as the flow develops.

We note from (2.6) that the value of the momentum shape factor is tied to the
choice of the plume width, b(z, t). If we assume that the mean axial velocity has
a self-similar Gaussian profile in the radial direction, as inferred from laboratory
experiments on steady plumes (Papanicolaou & List 1988; Shabbir & George 1994),
so that the mean axial velocity of the plume can be written as

w(r, z, t)=W(z, t)e−r2/R2
, (2.8)

where W(z, t) is the mean axial velocity on the plume axis and R(z, t) is a
characteristic length scale for radial variation determined from observations, then
the shape factor is given by

Sm = b2(1+ e−b2/R2
)

2R2(1− e−b2/R2
)
. (2.9)

The plume width can be related to the length scale of the Gaussian radial profile
R(z, t) through a threshold on the mean axial velocity. For example, Morton et al.
(1956) and Papanicolaou & List (1988) define the characteristic length scale of a
Gaussian plume as the radial position at which the axial velocity is a factor of 1/e
of the centreline value (i.e. b= R), and this results in Sm = 1.08.

The entrainment hypothesis and the use of shape factors for the integral fluxes of
momentum and buoyancy allow the integral conservation equation (2.3) to be written
in terms of the integral fluxes of volume, momentum and buoyancy as

∂

∂t

(
Q2

M

)
+ ∂Q
∂z
= 2α
√

M, (2.10a)

∂Q
∂t
+ ∂

∂z
(SmM)= QF

M
− ∂

∂z

∫ b

0
2rw′2 dr, (2.10b)

∂

∂t

(
QF
M

)
+ ∂

∂z
(Sf F)= b2g

ρ0

(
∂ρa

∂t
+W

∂ρa

∂z

)
− ∂

∂z

∫ b

0
2rg′rw′ dr. (2.10c)
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While the system (2.10) applies to a spatially and temporally varying ambient
density field, for the remainder of this study we consider plumes in an unstratified
ambient, with ρa constant. The shape factors Sm and Sf could be spatially and
temporally varying, as the radial profiles of the axial plume velocity and reduced
gravity evolve (Carazzo et al. 2006; Craske & van Reeuwijk 2015a,b; Ezzamel et al.
2015). However, for fully developed plumes, laboratory experiments suggest that
the axial plume velocity and reduced gravity attain self-similar forms (Morton et al.
1956; Papanicolaou & List 1988; Shabbir & George 1994; Ezzamel et al. 2015), such
that the shape factors can be taken to be constants. While temporal changes in the
source conditions could result in local variations in the shape factors, we expect the
contribution of that change to be small. Therefore, here we consider the simplest
case of Sm = S with S constant and Sf ≡ 1 to investigate the structure of the model,
but note that we would expect that Sf differs from unity. For example, taking a
Gaussian profile for the reduced gravity, gr(r, z, t) = Gr(z, t)e−r2/λ2R2 , where Gr(z, t)
is the centreline value and λ ≈ 1.2 (Papanicolaou & List 1988), we find Sf = 1.06
when taking b= R. However, it will be shown below that it is the divergence of the
momentum shape factor, Sm, from unity that makes the significant difference to the
model system (2.10), changing it from parabolic for Sm = 1 to hyperbolic for Sm > 1,
whereas the buoyancy shape factor plays a less significant role, only leading to loss
of hyperbolicity if Sf = Sm ±

√
S2

m − Sm (see § 4).
In the integral equations for conservation of momentum (2.10b) and conservation

of buoyancy (2.10c) we have retained integral terms that represent turbulent axial
diffusion of momentum and buoyancy respectively. Typically, in steady plume
models these diffusive terms have been neglected (we refer to the system of integral
equations (2.10) without the turbulent diffusive terms as the ‘non-diffusive’ system).
Indeed, Morton (1971) argues that

∂

∂z
(w′2)� 1

r
∂

∂r
(ru′w′) and

∂

∂z
(w′gr

′)� 1
r
∂

∂r
(ru′gr

′), (2.11a,b)

and therefore the contributions of the turbulent diffusion terms to the plume dynamics
are of a similar magnitude to boundary terms which are neglected. We note that some
studies on momentum-driven jets from maintained sources retain the axial derivatives
of quadratic fluctuation terms to model the contribution of a non-hydrostatic axial
pressure gradient (see, e.g., Shabbir & George 1994; Wang & Law 2002; Yannapoulos
2006). When these turbulent diffusion terms are neglected, the momentum shape factor
is taken to be constant (Sm= S with S constant), the buoyancy shape factor Sf ≡ 1 and
the ambient fluid is unstratified, the governing equations (2.10) can be written as

∂

∂t

(
Q2

M

)
+ ∂Q
∂z
= 2α
√

M, (2.12a)

∂Q
∂t
+ S

∂M
∂z
= QF

M
, (2.12b)

∂

∂t

(
QF
M

)
+ ∂F
∂z
= 0. (2.12c)

The steady integral equations with pure-plume boundary conditions (Q = 0, M = 0,
F = F0 at z = 0) have well-known power-law solutions (Morton et al. 1956), and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

10
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.101


604 M. J. Woodhouse, J. C. Phillips and A. J. Hogg

these solutions are little altered by the momentum shape factor; for S > 1 the steady
solutions of the non-diffusive system of equation (2.12) are

Q=Q0(z)= q0z5/3, M =M0(z)=m0z4/3, F= F0, (2.13a−c)

where

q0 = 6α
5

(
9α
10

)1/3 (F0

S

)1/3

, m0 =
(

9α
10

)2/3 (F0

S

)2/3

. (2.14a,b)

In the top-hat limit S → 1 the solution of Morton et al. (1956) is recovered.
Furthermore, the effective radius of the plume, b0(z) = Q0/

√
M0 = 6αz/5, is

independent of the shape factor. Therefore, the momentum shape factor cannot
be determined from measurement of the plume radius alone, in contrast to the
entrainment coefficient which can be determined using the spreading rate of the
steady plume.

Scase & Hewitt (2012) advocate modelling of the turbulent diffusion terms
(particularly the diffusion of momentum) in (2.10) in the unsteady plume model to
obtain a well-posed system of equations. Recently, Craske & van Reeuwijk (2015a,b)
have demonstrated the relatively weak role of turbulent diffusion for momentum-driven
jets, but that diffusive effects in the jet occur due to the departure of flow variables
from self-similar forms (type II dispersion in the nomenclature of Craske & van
Reeuwijk 2015a,b). However, we suggest that the dominant dynamics for turbulent
plumes can be described by the non-diffusive system of equations. Indeed, we show
below that the inclusion of diffusive terms modelling turbulent diffusion can lead to
difficulties in the integral model. We therefore analyse the non-diffusive system and
show that a momentum shape factor that differs from unity is sufficient to obtain a
well-posed model.

3. Difficulties associated with the turbulent diffusive terms
In an analysis of a non-diffusive unsteady plume model with shape factors S ≡ 1

and Sf ≡ 1, corresponding to top-hat radial profiles for the axial velocity and reduced
gravity (i.e. w and gr are radially invariant for r 6 b and equal to zero for r > b),
Scase & Hewitt (2012) assess the well-posedness of the system of equations by
introducing small harmonic perturbations to the source buoyancy flux, and examine
the growth of the perturbations downstream of the source. A linear analysis shows
that the perturbations grow with distance from the source, indicating instability, and,
more importantly, the growth rate of the perturbations increases without bound as the
frequency of the harmonic oscillation of the source buoyancy flux increases (Scase
& Hewitt 2012). The non-diffusive system of equations with S ≡ 1 and Sf ≡ 1 is
therefore ill-posed, as there is a loss of continuous dependence of the solution on the
boundary conditions (Joseph & Saut 1990; Scase & Hewitt 2012). The ill-posedness
is manifested in numerical solutions of the system of equations by an inability to
compute solutions that are independent of the truncation implicit in the numerical
scheme (e.g. grid-scale dependence for finite-difference methods).

The ill-posedness identified by Scase & Hewitt (2012) in the non-diffusive system
when top-hat profiles are assumed (i.e. when S≡ 1) may be due to a missing physical
process that provides a mechanism to curtail the unbounded growth of the arbitrarily
short-wavelength/high-frequency modes (Joseph & Saut 1990; Scase & Hewitt 2012).
In an attempt to regularize the ill-posed system, Scase & Hewitt (2012) introduce
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Unsteady turbulent buoyant plumes 605

a phenomenological model for the diffusive term in the momentum balance (2.10b),
appealing to Prandtl’s mixing-length theory for turbulent eddy diffusion,

∂

∂z

∫ b

0
2rw′2 dr≈− κ

2α
b2 ∂

∂z

[
bW

∂W
∂z

]
, (3.1)

where κ > 0 is a dimensionless parameter characterizing the diffusion of momentum
through the action of turbulent eddies whose length scale is set by the radius of the
plume. The equation expressing the balance of axial momentum proposed by Scase &
Hewitt (2012) is then given by

∂Q
∂t
+ S

∂M
∂z
= QF

M
+ κ

2α
Q2

M
∂

∂z

[√
M
∂

∂z

(
M
Q

)]
. (3.2)

Scase & Hewitt (2012) provide numerical evidence that the diffusive term leads to a
well-posed system of equations. It should be noted that, while Scase & Hewitt (2012)
take S≡ 1, in the analysis presented below we analyse the more general problem of
S > 1.

Scase & Hewitt (2012) show that steady power-law solutions for pure-plume
boundary conditions exist for the diffusive system (with κ > 0 anticipated to
be small), and the structural change to the system of equations leads to a small
modification of the solutions of Morton et al. (1956) (given by (2.13) with S = 1).
The steady solutions of the ‘regularized’ system of equations with turbulent diffusion
of momentum are given by (Scase & Hewitt 2012)

Q(SH)
0 = q0

(
1− κ

10S

)−1/3
z5/3, (3.3a)

M(SH)
0 =m0

(
1− κ

10S

)−2/3
z4/3, (3.3b)

F(SH)
0 = F0. (3.3c)

However, we find that these power-law solutions are spatially unstable. Indeed, taking
perturbations of the form

Q(SH)(z)=Q(SH)
0 (z)(1+ εQ(SH)

1 (z)), M(SH)(z)=M(SH)
0 (z)(1+ εM(SH)

1 (z)) (3.4a,b)

(noting that the buoyancy flux F(z)≡F0 for a plume in an unstratified ambient), where
ε > 0 is an ordering parameter, and linearizing the governing ordinary differential
equations (for ε� 1), we obtain

z
dQ(SH)

1

dz
+ 5

3
Q(SH)

1 − 5
6

M(SH)
1 = 0, (3.5a)

6κ
5S

z2

(
d2M(SH)

1

dz2
− d2Q(SH)

1

dz2

)
− 2

(
1+ κ

10S

)
z

dM(SH)
1

dz

+ 8
3

Q(SH)
1 + 4

(
κ

10S
− 4

3

)
M(SH)

1 = 0. (3.5b)
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FIGURE 1. Spatial growth rates Re(σ ) as a function of the diffusion coefficient for (a) the
Scase & Hewitt (2012) system with momentum diffusion (3.2), (b) the alternative form
of the momentum diffusion equation (3.8) and (c) diffusion of buoyancy (3.11). In (a,b)
different values of the momentum shape factor are shown, with S= 1 (solid line), S= 1.5
(dashed line) and S= 2 (dash-dot line). In (c) the three branches of the growth rates are
distinguished, with one branch corresponding to a real mode (solid line) and two branches
that form a complex conjugate pair (dashed and dash-dot lines).

Seeking solutions of the form Q(SH)
1 = q1zσ and M(SH)

1 =m1zσ , we find that non-trivial
solutions are possible if σ = σ1 =−1 or

σ = σ± = 5S+ 4κ ±√25S2 + 240Sκ − 4κ2

6κ
. (3.6)

At least one of σ± > 0 for κ > 0 for any S > 1 (figure 1a) and therefore the steady
solutions of the Scase & Hewitt (2012) ‘regularized’ model are potentially spatially
unstable. The growing modes can be suppressed by the application of a boundary
condition on a truncated domain (Scase & Hewitt 2012), but we note that the system
of equations for an unstratified ambient is formally applied on a semi-infinite domain
without a far-field boundary condition. We note that, in the limit κ = 0, we find
that σ+ no longer appears in the analysis, while σ− → −10/3, and therefore the
steady solutions become spatially stable (as expected, since the ‘regularized’ system
reduces to the classical Morton et al. (1956) plume model). Spatial instability of
the steady solutions is also found in a stratified ambient (not shown here), and in
this case leads to severe difficulties as steady solutions cannot, in general, be found
analytically, and the spatial instability precludes the numerical computation of steady
solutions. Therefore, while the diffusive term introduced by Scase & Hewitt (2012)
into the momentum balance resolves the ill-posedness in the unsteady plume model,
the modification of the governing equations renders the steady solutions spatially
unstable. While our present analysis considers pure-plume boundary conditions (i.e.
Q(0) = 0, M(0) = 0 and F(0) = F0), in appendix B we show that spatially stable
steady solutions with arbitrary source conditions are not possible.

An alternative (although similar) form of the diffusion term can be formed by re-
ordering the cross-sectional integration following the mixing-length parameterization
of the fluctuation vertical momentum flux (with boundary terms introduced that are
assumed small and subsequently neglected), so that we write

∂

∂z

∫ b

0
2rw′2 dr≈− κ

2α
∂

∂z

[
b3W

∂W
∂z

]
, (3.7)
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in place of (3.1). We then obtain the following expression for conservation of
momentum:

∂Q
∂t
+ S

∂M
∂z
= QF

M
+ κ

2α
∂

∂z

[
Q2

√
M

∂

∂z

(
M
Q

)]
. (3.8)

The corresponding steady solutions are

Q(SH2)
0 = q0

(
1+ κ

5S

)−1/3
z5/3, (3.9a)

M(SH2)
0 =m0

(
1+ κ

5S

)−2/3
z4/3, (3.9b)

F(SH2)
0 = F0, (3.9c)

and a spatial stability analysis gives growth rates σ = σ1 =−1 or

σ = σ± = 5S− 3κ ±√25S2 + 170Sκ + 49κ2

10κ
. (3.10)

Thus, as with the Scase & Hewitt (2012) momentum diffusion term, there is a growing
mode (figure 1b), and the steady solutions are spatially unstable.

Finally, we consider the change to the classical steady solutions of Morton et al.
(1956) that occurs when a diffusive term is included in the equation for conservation
of buoyancy (2.10c) rather than in the equation for conservation of momentum (i.e.
we now take κ = 0). We again appeal to the Prandtl mixing-length theory to model
the fluctuation of the flux of buoyancy, and obtain the following diffusive equation for
the conservation of buoyancy:

∂

∂t

(
QF
M

)
+ ∂F
∂z
= κ1

2α
∂

∂z

[
Q2

√
M

∂

∂z

(
F
Q

)]
, (3.11)

where κ1 is a dimensionless parameter that describes the strength of the diffusion of
buoyancy. The classical steady solutions (2.13) for pure-plume boundary conditions
remain as solutions of the system (and other possible solutions cannot satisfy the
pure-plume boundary condition at z= 0). However, a spatial stability analysis of the
steady solutions (here including perturbations to the buoyancy flux in addition to the
mass and momentum fluxes) shows that small-amplitude perturbations to the steady
solutions are amplified unless the magnitude of the turbulence-induced diffusion is
relatively large (κ1 > 4/3, figure 1c).

The consequences of these analyses are that, while axial diffusivity effects may
capture some important unsteady processes in the mixing of momentum or buoyancy,
the form of the parameterization significantly alters the steady states attainable by the
system. Indeed, the states equivalent to those established by Morton et al. (1956) have
become spatially unstable, and therefore the unsteady model with axial diffusivity is
not able to describe the steady states without an ad hoc far-field boundary condition.

4. Well-posedness of the hyperbolic unsteady plume model
As the turbulent diffusive terms, modelled phenomenologically using a Prandtl

mixing-length approach, lead to a pathology in the integral plume model whereby
the well-established steady states of Morton et al. (1956) cannot be obtained, the
regularization through eddy diffusion, while potentially physically appealing, is
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mathematically problematic. We therefore seek an alternative regularization of the
system of unsteady integral equations; specifically, we examine the non-diffusive
system of equations (i.e. we neglect the turbulent diffusive terms in (2.10), as
suggested by Morton 1971) but allow the momentum shape factor to differ from
unity to describe the different rates of transport of mass and momentum that result
from non-uniform radial profiles. Thus, from here on in we study the non-diffusive
system of equations

∂

∂t

(
Q2

M

)
+ ∂Q
∂z
= 2α
√

M,
∂Q
∂t
+ S

∂M
∂z
= QF

M
,

∂

∂t

(
QF
M

)
+ ∂F
∂z
= 0. (4.1a−c)

The system (4.1) is strictly hyperbolic when S > 1, with three real characteristic
wave speeds given by

c0 =M/Q and c± = (S±
√

S(S− 1))M/Q. (4.2a,b)

We note, however, that in the limit S → 1 there is a loss of hyperbolicity since
the eigenvectors of the characteristic equation for the system (4.1) do not span
R3, although the wave speeds remain real and equal to c0; the system is formally
parabolic for S= 1 (Scase et al. 2006b). As we demonstrate below, the change in the
characteristic structure, and so change in type, of the governing equations that occurs
for S = 1 fundamentally alters solutions of the system of equations. (It should be
noted that if a shape factor for the buoyancy flux that differs from unity is included
in (4.1c), then c0 = Sf M/Q while c± remain unchanged, and a loss of hyperbolicity
occurs if Sf = S±√S(S− 1).)

In order to establish well-posedness of the system of equations, we analyse the
evolution of small perturbations to the steady solutions. It is convenient for subsequent
analysis and numerical computations to factor out the steady solution and to introduce
a new spatial coordinate, x = (q0/m0)z4/3. We consider the stability of the steady
solution to small perturbations. Therefore, we introduce an ordering parameter ε� 1
and perturbations to the steady solution of the form

Q(x, t) = Q0(x)(1+ εq(x, t)), (4.3a)
M(x, t) = M0(x)(1+ εm(x, t)), (4.3b)
F(x, t) = F0(1+ εf (x, t)), (4.3c)

and linearize the governing equation (4.1) to obtain

A
∂q
∂t
+ 4

3
B
∂q
∂x
+ C

1
x

q= 0, (4.4)

where q= (q,m, f )T and the matrices A, B and C are given by

A=
2 −1 0

1 0 0
1 −1 1

 , B=
1 0 0

0 S 0
0 0 1

 and C =
 5/3 −5/6 0
−4S/3 8S/3 −4S/3

0 0 0

 .
(4.5a−c)

When S≡ 1 the system (4.1) was shown to be ill-posed by Scase & Hewitt (2012),
who examined the response of the linearized system of equations to small-amplitude
harmonic variation of frequency ω in the source buoyancy flux, and found a closed
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form solution for the perturbations in terms of special functions. It was shown
that the amplitude of the perturbations grows with the distance from the source as
ω−7/8x−7/8 exp(

√
15ωx/4) for x� 1 (Scase & Hewitt 2012). Thus, the steady solutions

are linearly unstable, as the amplitudes of the perturbations grow as they propagate
away from the source, and, furthermore, the system of equations (4.1) with S= 1 is
ill-posed since high-frequency fluctuations increase in amplitude most rapidly with no
cutoff (Scase & Hewitt 2012).

For S> 1 we are unable to find closed form solutions of the linear system (4.4). We
therefore examine the evolution of perturbations in the far field through an asymptotic
analysis of the linear system (4.4) in the neighbourhood of the irregular singular point
x→∞ (Bender & Orszag 1978). We consider two stability problems: an initial-value
problem where the evolution of an arbitrary initial perturbation with compact support

q(x, 0)= q0(x) with q0(x)→ 0 as x→∞ (4.6)

is investigated, and a boundary-value problem where a fluctuation at the source x= 0
is imposed and the response of the system downstream of the source is examined.
Both of these problems can be analysed conveniently through the use of integral
transforms of the linear system (4.4); a Laplace transform in time for the initial-value
problem and a Fourier transform in time for the boundary-value problem. Denoting
the Laplace transform of q(x, t) as q̂(x, p) (with the Fourier transform obtained by
taking p= iω, where ω is the frequency of the harmonic source fluctuation imposed
in the boundary-value problem), we obtain

pAq̂+ 4
3

B
dq̂
dx
+ 1

x
Cq̂= Aq0. (4.7)

The far-field behaviour is obtained conveniently by letting q̂ = f (x)eg(x) (Bender &
Orszag 1978), with g(x) a singular function and f (x) regular as x→∞, so f (x) =
f 0 + f 1x−1 + f 2x−2 + · · · for x� 1. The linear system (4.7) can then be written as

4
3

B
df
dx
+
(

pA+ 4
3

B
dg
dx
+ 1

x
C

)
f = 0. (4.8)

A leading-order balance requires g(x) ∼ pλx as x→∞. Then λ and f 0 satisfy the
generalized eigenproblem Af 0 =−4λBf 0/3, and therefore

λ= λ0 =− 3
4 , with f 0 = f 00 = (0, 0, 1)T, f L

0 = f L
00 = (−1, 0, 1), (4.9a)

λ = λ+ =−3
4

(
S+√S(S− 1)

S

)
, with f 0 = f 0+ =

(
1,

1− (S−√S(S− 1))√
S(S− 1)

, 1
)T

,

f L
0 = f L

0+ = (S+
√

S(S− 1),−1, 0), (4.9b)

λ = λ− =−3
4

(
S−√S(S− 1)

S

)
, with f 0 = f 0− =

(
1,−1− (S+√S(S− 1))√

S(S− 1)
, 1
)T

,

f L
0 = f L

0− = (S−
√

S(S− 1),−1, 0), (4.9c)

where f L
0 denotes the left eigenvector satisfying f L

0A=−4λf L
0B/3.
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To proceed further we let g(x)∼ pλx+µ log x for x� 1. Substitution into (4.8) and
balancing coefficients of x gives, at order O(1/x),

p(A+ 4
3λB)f 1 + ( 4

3µB+ C)f 0 = 0, (4.10)

and so, by multiplying on the left by f L
0 , we find

µ=−3
4

f L
0Cf 0

f L
0Bf 0

, (4.11)

and therefore

µ=µ0 = 0 when λ= λ0, (4.12a)

µ=µ+ =−13
8
− 5(2S− 1)

16
√

S(S− 1)
when λ= λ+, (4.12b)

µ=µ− =−13
8
+ 5(2S− 1)

16
√

S(S− 1)
when λ= λ+. (4.12c)

The coefficient vectors (f 1, f 2, etc.) can be determined from higher-order terms in the
expansion but are not given here.

The leading-order behaviour in the far field is therefore given by

q(x, t)∼ f 0xµδ(t− λx), (4.13)

where δ(x) denotes the Dirac delta function, corresponding to the propagation of
discontinuities whose strength varies algebraically with distance from the source. The
amplitude of the perturbations grows if 1< S< 25/24, whereas the amplitude decays
algebraically if S > 25/24, as shown in figure 2. Importantly, the algebraic growth
rates µ do not depend on the transform variable p. Therefore, for the initial-value
problem the evolution of perturbations in the far field is independent of the spatial
length scale of the initial perturbation, whereas when considering a boundary-value
problem the growth rate of the perturbations does not depend on the frequency of
the harmonic boundary oscillations. Therefore, the far-field asymptotic analysis shows
that the system (4.1) with S> 1 is well-posed as there is a continuous dependence of
the solutions on the initial or boundary data, and small scales (either spatial scales in
the case of an initial-value problem or temporal scales for a boundary-value problem)
are not amplified more rapidly than longer scales. This is in contrast to the far-field
limit of the solution of a boundary-value problem that is determined by Scase &
Hewitt (2012), where exponential growth of the amplitude of perturbations is found
with a growth rate that increases exponentially with

√
ω, and therefore when S = 1

the system of equations is ill-posed. The distinguished behaviour for S= 1 is apparent
in the eigenvectors f 0+ and f 0−, which are singular in the limit S→ 1. Numerical
solutions demonstrating the evolution of a localized initial perturbation are presented
in § 5.

5. Solutions of the well-posed unsteady plume model
We consider now solutions of the nonlinear system of equations (4.1) with S > 1.

As the system of equations (4.1) is hyperbolic in this parameter regime, solutions may
exhibit discontinuities, across which we enforce the following jump conditions that
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FIGURE 2. The exponents of the far-field algebraic growth rates of the amplitude of the
volume flux perturbation, µ+ (dashed line) and µ− (solid line), as functions of the shape
factor S. The perturbation to the volume flux grows with increasing distance from the
source when µ− > 0, which occurs for S< 25/24.

respectively impose the conservation of mass, momentum and buoyancy fluxes over a
discontinuity at z= zs(t), moving with velocity c= dzs/ dt,[

Q− c
Q2

M

]z=z+s

z=z−s
= 0, [SM − cQ]z=z+s

z=z−s
= 0 and

[
F− c

QF
M

]z=z+s

z=z−s
= 0. (5.1a−c)

These jump conditions admit two different types of discontinuous solutions, which are
more easily analysed in terms of the primitive variables b, W and G′. Further denoting
the values of the dependent variables either side of the discontinuity with superscripts
+ and −, corresponding to z = z+s and z = z−s respectively, we find that provided the
velocity is discontinuous (W+ 6=W−) then the reduced gravity G′ is continuous (i.e.
G′+ =G′−). Furthermore, in this case, by eliminating b+ and b−, we find that

(W+ −W−)(c2 − cS(W+ +W−)+ SW+W−)= 0. (5.2)

When the shape factor is equal to unity, the only solution is c = W+ = W−, and
this contradicts the assumption that there is a discontinuity. Thus, for S= 1 it is not
possible to construct discontinuous solutions. However, when S> 1, we find

c= 1
2 S(W+ +W−)− 1

2(S
2(W+ +W−)2 − 4SW+W−)1/2, (5.3)

where the negative root has been chosen so that W− > c, a condition required for
causality. The other type of discontinuity occurs when W+ = W− = c. Then the
radius of the plume is also continuous, b+ = b−, but the reduced gravity may be
discontinuous and potentially even unbounded. We refer to this latter form as a
‘contact’ discontinuity, which occurs due to a linearly degenerate field in the system
of equations (Lax 1973).

To calculate numerically solutions of the nonlinear hyperbolic system of equations,
we employ the non-oscillatory central scheme of Kurganov & Tadmor (2000) with
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a third-order total variation diminishing Runge–Kutta time stepping scheme (Gottlieb
& Shu 1998), using an adaptive time step that ensures that the Courant–Friedrichs–
Lewy (CFL) number remains fixed at 1/8 to maintain numerical stability. The
high-resolution central scheme is a shock-capturing numerical method for conservation
laws (Kurganov & Tadmor 2000) and has been used extensively to compute solutions
of nonlinear hyperbolic systems. For numerical convenience, we factor out the steady
solutions from the dependent variables and compute solutions in the transformed
spatial coordinate x as, although the system is not autonomous in this representation,
the characteristic wave speeds remain bounded near to the source (i.e. as x → 0)
when the steady solution is realized, whereas the wave speeds of the system (4.1)
diverge as z→ 0. Therefore, in the mapped variables, we can take larger time steps
while maintaining numerical stability.

We consider first the evolution of a perturbation to the steady solution (2.13) to
confirm the far-field asymptotic analysis in § 4. We take as an initial condition a
Gaussian perturbation (in the transformed coordinate x) to the steady momentum flux
of the form

M(x, 0)/M0(x)= 1+ 0.01e−10(x−5)2, (5.4)

while the volume flux and buoyancy flux are not perturbed from the steady values,
and take the shape factor to be S = 1.1 (> 25/24). We compute numerically the
evolution of the perturbation using the Kurganov & Tadmor (2000) central scheme for
the nonlinear system rather than using the linearized equations, since the linearization
introduces a subtle structural change in the governing equations: for the linearized
system, all fields are (trivially) linearly degenerate and so discontinuities are of the
contact discontinuity type (Lax 1973), whereas two fields in the nonlinear system are
genuinely nonlinear. We find that the Kurganov & Tadmor (2000) scheme resolves the
shocks and rarefactions associated with the genuinely nonlinear fields accurately, but
has less accuracy when contact discontinuities occur for linearly degenerate fields (see,
e.g., Kurganov & Petrova 2000). In order to track the evolution of the perturbations to
long times (and so large distance from the source), we implement a moving numerical
domain, using the characteristic wave speeds of the linearized system to advect the
lower and upper grid points, with boundary conditions in the moving domain given
by the respective steady states. The numerical domain is then advected downstream,
and the number of grid points increases as the spatial extent of the perturbation grows
in order to maintain a specified numerical resolution.

In figure 3 we illustrate the evolution of the initial perturbation for dimensionless
times t 6 40 (noting that, for pure-plume source conditions, the time scale of motion,
τ , is related to the length scale, Z, and the source buoyancy flux, F0, through
τ =Z4/3F−1/3

0 ), showing the perturbations to the plume radius, mass flux and buoyancy
flux as functions of the scaled spatial coordinate x. The initial perturbation develops
into a pulse whose spatial extent grows as it propagates. The amplitude of the
perturbation slowly decreases, demonstrating linear stability of the system of equations
for S= 1.1. The three discontinuities are apparent in the evolving perturbation, with
the contact discontinuity that propagates at the speed of the intermediate characteristic
most clearly seen in the perturbation to the reduced gravity, G′.

We introduce integral measures of the amplitude of the perturbations, with

I (Q)=
∫ ∞

0

(
Q(x, t)
Q0(x)

− 1
)2

dx (5.5)
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FIGURE 3. (Colour online) The perturbations to the fluxes of volume, Q/Q0 − 1 (a),
momentum, M/M0− 1 (b), and buoyancy, F/F0− 1 (c), and to the plume radius, b/b0− 1
(d), the plume velocity, W/W0−1 (e), and the reduced gravity, G′/G′0−1 ( f ), as functions
of the scaled distance from the source, x, for dimensionless times t= 0 (orange), t= 10
(red), t = 20 (green), t = 30 (blue), and t = 40 (black). The momentum shape factor is
fixed at a value S = 1.1 > 25/24. The numerical solution scheme adopts a moving and
expanding spatial grid with a fixed grid spacing of 1x= 0.01.
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FIGURE 4. Integral measures of the size of perturbations from the steady solutions for
the volume flux, I (Q) (solid line), momentum flux, I (M) (dashed line), and buoyancy
flux, I (F) (dotted line), as functions of the dimensionless time t, for a shape factor (a)
S = 1.1 > 25/24 and (b) S = 1.02 < 25/24. The thick grey line illustrates the predicted
growth rate of perturbations of t2µ+ with (a) µ+ ≈−0.49 for S= 1.1 and (b) µ+ ≈ 0.65
for S= 1.02 obtained from the far-field asymptotic analysis (4.12b).

for the volume flux, and similarly for the fluxes of momentum and buoyancy.
Figure 4(a) shows the time evolution of I (Q), I (M) and I (F) when the shape
factor S = 1.1. Following a short transient reorganization of the initial condition for
t < 5 (not shown in the figure), the perturbations to the steady solution decay as
they propagate through the domain. The perturbations to the steady fluxes of volume
and momentum closely follow the prediction of the far-field analysis for t > 100, at
which time the signal of the perturbation that travels with the fastest characteristic
has reached x ≈ 197. The decay in the perturbation to the buoyancy flux is less
rapid, and the rate of decay diminishes as time progresses. This is expected from
the far-field asymptotic analysis of the linearized system, where a component of the
buoyancy flux is found to be advected at the speed of the plume without change in
amplitude (see (4.12a)).

For 1< S< 25/24 our far-field asymptotic analysis shows that the steady solutions
are linearly unstable. Numerical solutions of the governing equations support the
asymptotic analysis, as illustrated in figure 4(b), which shows the time evolution of
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FIGURE 5. (Colour online) The perturbation to the steady volume flux due to harmonic
oscillation of the source buoyancy flux with period 2π as a function of the scaled spatial
coordinate x at dimensionless time t= 99 for a shape factor of (a) S= 1.05> 25/24 and
(b) S= 1.03< 25/24. The red dashed line illustrates an algebraic growth of perturbations
of the form cxµ, where (a) µ=−0.12 for S= 1.05 and (b) µ= 0.26 for S= 1.03. The
prefactor c is selected to provide an envelope of the numerical solution.

the integral measures of the size of the perturbations for a shape factor S = 1.02
(< 25/24). For early times (t < 10) the perturbations to the steady solutions grow
algebraically with a growth rate that is close to the growth rate predicted from the
far-field analysis. We note that at early times the perturbation has not propagated far
downstream from the localized initial condition and therefore the far-field asymptotic
analysis would not be expected to describe fully the evolution. At later times (t> 50)
the growth of the perturbations deviates substantially from the predictions of the
linear far-field analysis as nonlinear effects begin to influence the evolution.

Numerical solutions of the governing equations also support the far-field asymptotic
analysis of the linearized system when a harmonic oscillation of the source boundary
conditions is imposed. Figure 5 illustrates the spatial structure of the perturbation
to the steady volume flux at time t = 99 for a shape factor of S = 1.05 > 25/24
(figure 5a) and S = 1.03 < 25/24 (figure 5b). The far-field analysis predicts linear
stability when S = 1.05 and instability when S = 1.03, and this is observed in the
numerical solutions, with the amplitude of perturbations decaying with increasing
distance downstream when S = 1.05 (figure 5a), in contrast to the growth in the
amplitude of the perturbations that is seen when S= 1.03 (figure 5b).

6. Similarity solutions for the unsteady evolution of plumes following an abrupt
change in the source buoyancy flux
We examine now the nonlinear evolution of plumes following an abrupt change in

the source conditions. Specifically, we consider solutions of the system of nonlinear
evolution equations (4.1) with S> 25/24 (so that the steady states are linearly stable)
for an initial boundary-value problem in which the magnitude of the buoyancy flux at
the source is instantaneously changed from F0 to F1 at t= 0. For t< 0 the plume is in
a steady state given by (2.13) and (2.14). We calculate the unsteady evolution as the
plume adjusts to the new steady state in which the buoyancy flux, F0, in (2.13) and
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FIGURE 6. (Colour online) The scaled width, B(z)= zQ̂/M̂1/2, the scaled velocity, W(z)=
z−1/3M̂/Q̂, and the buoyancy flux, F̂, as functions of the distance from source, z at
dimensionless times t= 2.4 (orange), t= 4.9 (red), t= 7.4 (green) and t= 9.9 (blue) for
an increase in buoyancy flux (F = 0.05) at t = 0 and with shape factor S = 1.1. In (b)
the scaled velocity W = z−1/3, corresponding to the steady velocity field of the original
buoyancy flux at the source, and the scaled velocity W = z−1/3201/3, corresponding to the
steady velocity field associated with the new buoyancy flux, are plotted with dashed lines.
In (c) the original buoyancy flux, F= F0 = 0.05, and the new steady-state buoyancy flux,
F= F1 = 1, are plotted with dashed lines.

(2.14) is replaced by F1. Thus, the initial conditions are given by (2.13) and (2.14),
while for t> 0 the new source conditions for the plume are given by F(0, t)=F1 and
Q(0, t)=M(0, t)= 0.

The numerical solutions demonstrate that the adjustment occurs by the advection of
an unsteady ‘pulse’ through the environment (see figures 6, 8 and 10 for examples of
computations), which is modelled by the nonlinear evolution equations (4.1). In this
section we draw out the self-similar adjustment that occurs in the dependent variables.

The similarity variable is established through the following scaling analyses, which
require all of the terms in the governing partial differential equations (4.1) to be of the
same order. To this end, to balance all of the derivative terms we require M ∼ Qz/t.
Turning then to the ‘source’ terms, from (4.1a) we have Q/z ∼ M1/2, while from
(4.1b) M/z ∼ QF1/M, where we have used F ∼ F1 as the scale of the buoyancy
flux. Together these yield z4 ∼ F1t3, and we therefore seek similarity solutions to the
system in terms of this gearing between the spatial and temporal scales. We note
that the existence of this similarity grouping was identified by Scase et al. (2006b)
(see also Scase et al. 2008), although they did not construct the complete similarity
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solution; indeed, for their system with S= 1 it was not possible to do so because the
ill-posedness of the system is manifested as irreconcilable divergences in the solution
(see § 4). Instead, Scase et al. (2006b) found a separable solution that did not satisfy
the boundary conditions but did capture some of the features found in their numerical
computation. We discuss in appendix C the counterpart to their separable solution in
the now regularized system of governing equations. Before analysing the form of the
similarity solutions, we note that there is another reason for anticipating the similarity
scaling deduced above: the system is hyperbolic for S>1, and all of the characteristics
are proportional to W = M/Q ∝ F1/3

1 z−1/3. The characteristic curves are of the form
dz/ dt∝W, thus also admitting the similarity scaling z4 ∼ F1t3, and it is through the
evolution of the characteristics that the system adjusts to its new state.

We now seek similarity solutions for the fluxes of volume, momentum and
buoyancy, which we write in the following form:

Q= 6α
5

(
9α
10S

)1/3

F1/3
1 z5/3Q̂(η), M =

(
9α
10S

)2/3

F2/3
1 z4/3M̂(η) and F= F1F̂(η),

(6.1a−c)
where the similarity variable is given by

η= 6α
5

(
10S
9α

)1/3 z4/3

F1/3
1 t

(6.2)

and the similarity functions Q̂(η), M̂(η) and F̂(η) are to be determined. In this form
the steady state given by (2.13) corresponds to constant values of Q̂, M̂ and F̂. It is
convenient to further substitute Q̂= ηq̂, M̂= η2m̂ and F̂= η3 f̂ because this simplifies
the governing equations, which are now given by

4
3
− 2

q̂
m̂

q̂2

m̂2
0

−1
4
3

S 0

− f̂
m̂

f̂ q̂
m̂2

4
3
− q̂

m̂

 η
d

dη

 q̂
m̂
f̂

=


5
3

m̂1/2 − 3q̂

4
3

Sf̂ q̂
m̂
− 4Sm̂+ q̂

−4f̂ + 2f̂ q̂
m̂

 . (6.3)

Symbolically, we write this coupled differential system as Dη dq̂/ dη= b, noting that
both the matrix D and the vector b are only functions of the dependent variables
q̂= (q̂, m̂, f̂ ). We note that the ‘separable’ similarity solutions derived by Scase et al.
(2006b) correspond to q̂= (q̂, m̂, f̂ )= constant, and these are discussed in appendix C.
For the motion driven by an abrupt change in the magnitude of the buoyancy flux at
source, the vital parameter is the ratio of the initial to final buoyancy fluxes at the
source given by F = F0/F1. We note that the initial conditions correspond to

(q̂, m̂, f̂ )=
(

F 1/3

η
,
F 2/3

η2
,
F

η3

)
. (6.4)

In terms of the similarity functions, these are enforced in the far field (η→∞) and
correspond to the region that is unaffected by the change of the buoyancy flux at the
source. The source conditions demand that

(q̂, m̂, f̂ )→
(

1
η
,

1
η2
,

1
η3

)
as η→ 0. (6.5)
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Constructing the similarity solutions then corresponds to integrating the governing
system of ordinary differential equations (6.3), subject to these conditions.

The matrix D is singular when(
4
3
− q̂

m̂

)(
16
9
− 8S

3
q̂
m̂
+ q̂2

m̂2

)
= 0. (6.6)

This corresponds to locations where q̂/m̂= 4/3 and q̂/m̂= 4(S ±√S2 − S)/3. These
are singular points of the governing system of equations and are of significance
because the dependent variables may have discontinuous gradients at these locations.
We show in appendix D how to derive the local behaviour close to the singular
points; this is required to initiate numerical integration from these locations.

The similarity solutions may also feature discontinuous solutions, in which case we
define the shock position, zs(t), scaled according to the similarity variables to be given
by

z4/3
s =

5
6α

(
9α
10S

)1/3

F1/3
1 tηs, (6.7)

where ηs is a constant. In this case of discontinuous solutions, the jump conditions
relate the dependent variables at η= η+s to those at η= η−s and are given by

[
q̂− 3q̂2

4m̂

]+
−
= 0,

[
Sm̂− 3q̂

4

]+
−
= 0 and

[
f − 3q̂f̂

4m̂

]+
−
= 0. (6.8a−c)

Key locations in the similarity solutions are the points at which the dependent
variables transition from the new steady state to an unsteady pulse and then from
this unsteady pulse to the original steady state. The family of slowest moving
characteristics associated with the new source is given by

dz
dt
= M

Q
(S−

√
S(S− 1))= zm̂

tq̂
(S−

√
S(S− 1)). (6.9)

The transition between the steady and unsteady portions of the solution must occur at
a singular point of D to permit the gradient of the solution to change discontinuously.
Thus, in this case q̂/m̂= 4(S−√S(S− 1))/3, and so we find that

dz
dt
= 3z

4t
. (6.10)

This implies that the transition point occurs at a constant value of the similarity
variables, η= ηc1, given by

ηc1 = 4
3(S−

√
S(S− 1)), (6.11)

using the condition (6.5). Likewise, the family of fastest moving characteristics is
given by

dz
dt
= M

Q
(S+

√
S(S− 1))= zm̂

tq̂
(S+

√
S(S− 1)), (6.12)
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and so the boundary between the unsteady pulse and the steady solution associated
with the original buoyancy flux occurs at a constant value of the similarity variable,
η= ηc2, given by

ηc2 = 4
3F

1/3(S+
√

S(S− 1)), (6.13)

using the condition (6.4), provided that the motion is due to a decrease in the source
strength (F > 1). If the source strength increases then the characteristics associated
with the new release overtake those due to the original source and, as we show below,
the motion forms ‘shocks’.

6.1. Increase in buoyancy flux
These flows correspond to a new scaled buoyancy flux such that F < 1. For η < ηc1
the similarity solution is given by

(q̂, m̂, f̂ )=
(

1
η
,

1
η2
,

1
η3

)
, (6.14)

where ηc1 is given by (6.11) and corresponds to the slowest moving characteristics
associated with the new buoyancy flux. The leading edge of the unsteady solution
corresponds to a shock at η = ηs such that, for η > ηs, the solution is given by the
steady state associated with the original buoyancy flux given by (2.13).

Construction of the similarity solution then requires the computation of the solution
for ηc1 < η < ηs, where ηs is to be determined as part of that solution. We note that
this domain includes a location where q̂/m̂ = 4/3. Here, there is the potential for a
contact discontinuity where the reduced gravity is discontinuous or even unbounded,
but the volume and momentum fluxes are continuous. The numerical problem is
therefore a boundary-value ordinary differential equation with an internal critical
point, which we solve using a numerical shooting technique. Our method of solution
proceeds as follows. First, we numerically integrate from η = ηc1 using the local
series expansion given in appendix D. This expansion provides a solution local to
the critical point and entails an undetermined constant, Cσ . Given a value of Cσ ,
the numerical integration can be continued until η = ηm1, at which q̂/m̂ = 4/3. The
solution is also numerically integrated from the shock at the leading edge. Given a
shock location ηs, the jump conditions (6.8) provide the conditions at η = η−s and
then the solutions may be numerically integrated until η = ηm2 at which q̂/m̂ = 4/3.
The constant Cσ and the shock location ηs are then iteratively adjusted until ηm1= ηm2
and q̂(ηm1) = q̂(ηm2) (noting that this ensures that the momentum flux is continuous
at this location as well), and when these conditions are satisfied, this provides the
entire solution.

The numerical integration of the governing partial differential equations is plotted
in figure 6 at various instances of time, and the underlying similarity form of solution
is plotted in figure 7. We note that there is excellent correspondence between the two,
as evidenced by the overlap between the similarity solution and the direct numerical
computations (the curves in figure 7 are virtually indistinguishable). We observe in
figure 6 that an increase in buoyancy flux at the source leads to a broadening of the
width of the plume in the unsteady pulse before the new steady state is established.
Notably, the velocity field is increased relative to the flow associated with the original
buoyancy flux. Together these lead to the surprising variation in the buoyancy flux
as it changes from the original value of F̂ = 0.05 to the new value of F̂ = 1; the
variation is not monotonic, and within the unsteady pulse the buoyancy flux overshoots
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FIGURE 7. (Colour online) The similarity solution for the volume flux, q̂(η), the
momentum flux, m̂(η), and the buoyancy flux, f̂ (η), as functions of the similarity variable
η for shape factor S= 1.1 and an increase in the source buoyancy flux F = 0.05 (plotted
with solid lines). Also plotted are results from the direct numerical integration of the
governing equations (dashed lines), although the two sets of curves are so close in values
that they are virtually indistinguishable. The values ηc1, ηm and ηs are also marked. These
correspond respectively to the boundary between the time-dependent part of the solution
and the steady state associated with the new buoyancy flux at the source, the location of
a contact discontinuity and the location of a shock that marks the interface between the
unsteady evolution and the steady state associated with the original buoyancy flux at the
source.

its new value before subsequently decreasing to attain it (see figure 6c). The similarity
structure is plotted in figure 7, where the similarity variables are plotted between the
leading and trailing edges of the unsteady region. These correspond to a shock at
η= ηs and a point where the gradient changes discontinuously at η= ηc1. In between
there is a contact discontinuity at η= ηm where the volume and momentum fluxes are
continuous, and the buoyancy flux is unbounded.

6.2. Decrease in buoyancy flux
When the buoyancy flux decreases relatively weakly (F <Fm = 6.9), we construct
the similarity solution between the two critical points, ηc1 and ηc2, given by (6.11) and
(6.13) respectively. For η > ηc2 the solution corresponds to the steady state associated
with the original buoyancy flux, whereas for η < ηc1 the solution corresponds to
the steady state associated with the new buoyancy flux. As described above, the
boundaries between the steady states and this unsteady pulse are characteristics
that propagate at the fastest and slowest rates. At some point ηm (ηc1 < ηm < ηc2)
the similarity solution reaches a state in which q̂/m̂ = 4/3 and there is a contact
discontinuity.

We construct the solutions as follows. We integrate from η = ηc1, initiating the
numerical solver with the local expansion derived in appendix D, which entails an
adjustable constant, Cσ1. We numerically integrate until η=ηm1, at which point q̂/m̂=
4/3. We also numerically integrate from η= ηc2, initiating the solution using a local
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FIGURE 8. (Colour online) The scaled width, B(z)= zQ̂/
√

M̂, the scaled velocity, W(z)=
z−1/3M̂/Q̂, and the buoyancy flux, F, as functions of the distance from source, z, at
dimensionless times t = 4.5 (orange), t = 9.5 (red), t = 14.5 (green) and t = 19.5 (blue)
for a decrease in buoyancy flux (F = 2) at t = 0 and with shape factor S = 1.1. In (b)
the scaled velocity W = z−1/3, corresponding to the steady velocity field of the original
buoyancy flux at the source, and the scaled velocity W = z−1/32−1/3, corresponding to the
steady velocity field associated with the new buoyancy flux, are plotted with dashed lines.

expansion derived in appendix D, which features another adjustable constant Cσ2. We
integrate until η = ηm2, at which point q̂/m̂ = 4/3. The solution is then found by
iteratively adjusting Cσ1 and Cσ2 until ηm1 = ηm2 and q̂(ηm1)= q̂(ηm2).

The numerical results from direct integration of the governing partial differential
equations are plotted at various instances of time in figure 8. Here, we observe that
the volume and momentum fluxes evolve continuously, in contrast to the evolution
following an increase in source strength (§ 6.1). During the unsteady evolution from
the original state to the new one, the radius of the plume decreases and the velocity
increases. The buoyancy flux, however, does not monotonically vary from the new
value (F̂= 1) to its original value (F̂= 2). Instead, it initially decreases (see figure 8c).
The similarity solution for the unsteady pulse is plotted in figure 9 between the leading
and trailing characteristics (ηc1<η<ηc2). This solution features a contact discontinuity
at η=ηm, although the mass and momentum fluxes remain continuous at this point. In
figure 9 we have plotted both the similarity solution and the rescaled results from the
direct numerical integration of the governing equations, and we note that the curves
for each of the fields are indistinguishable in this plot.

The morphology of the solution changes for larger decreases in the buoyancy flux.
When F >Fm we find that the similarity solution features another critical point at
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FIGURE 9. (Colour online) The similarity solution for the volume flux, q̂(η), the
momentum flux, m̂(η), and the buoyancy flux, f̂ (η), as functions of the similarity variable
η for shape factor S = 1.1 and a decrease in the source buoyancy flux F = 2 (plotted
with solid lines). Also plotted are results from the direct numerical integration of the
governing equations (dashed lines), although the two sets of curves are so close in values
that they are virtually indistinguishable. The values ηc1, ηm and ηc2 are also marked. These
correspond respectively to the boundary between the time-dependent part of the solution
and the steady state associated with the new buoyancy flux at the source, the location of
a contact discontinuity and the location of the interface between the unsteady evolution
and the steady steady associated with the original buoyancy flux at the source.

η= ηc3 at which det(D) vanishes and the system potentially becomes singular. Local
analysis of the behaviour close to this new critical point indicates that non-integer
powers in the series expansion are not possible here; the determined power σ is
negative, and so in order to ensure that the fields are bounded, we must enforce
Cσ3 = 0. This implies that the dependent variables pass smoothly through this critical
point. However, having attained a state in which q̂/m̂ > 4(S + √S(S− 1))/3, the
only way to connect to the rest of the solution is via an internal shock at η = ηs.
Our method for constructing the solution then proceeds as follows. We integrate
numerically from the critical point at η = ηc1, initiating the solution using the local
series expansion about this point and introducing an adjustment constant, Cσ1, to
a location η = ηm1 at which there is a contact discontinuity (q̂/m̂ = 4/3). We also
numerically integrate from η = ηc2, initiating the solution using the series expansion
with constant Cσ2. This constant is adjusted so that an internal critical point is reached
at η = ηc3 (ηc3 < ηc2), where we enforce the solvability condition given in (D 4). We
may then integrate further; we smoothly pass through the critical point and insert a
shock at η= ηs <ηc3, and then integrate until q̂/m̂= 4/3 at η= ηm2. This leaves two
adjustable constants, namely Cσ1 and ηs, which are iteratively adjusted until ηm1= ηm2

and q̂(ηm1)= q̂(ηm2) to give the complete solution.
The results from the numerical integration of the governing equations are plotted

in figure 10 for a large decrease in buoyancy flux at various instances of time. We
note that, as with the weaker decreases in flux, the plume responds by narrowing
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FIGURE 10. (Colour online) The scaled width, B(z)= zQ̂/
√

M̂, the scaled velocity, W(z)=
z−1/3M̂/Q̂, and the buoyancy flux, F, as functions of the distance from source, z, at
dimensionless times t = 4.5 (orange), t = 9.5 (red), t = 14.5 (green) and t = 19.5 (blue)
for a decrease in buoyancy flux F = 20 at t = 0 and with shape factor S = 1.1. In (b)
the scaled velocity W = z−1/3, corresponding to the steady velocity field of the original
buoyancy flux at the source, and the scaled velocity W = z−1/320−1/3, corresponding to
the steady velocity field associated with the new buoyancy flux, are plotted with dashed
lines.

and accelerating in order to adjust back to its original state. However, an internal
shock is also developed. For these parameter values (F = 20 and S = 1.1) the
shock is of relatively small magnitude, and it generates discontinuities in the velocity
and width fields, with the reduced gravity remaining continuous. From this figure
it is not possible to observe the presence of the internal critical point (η = ηc3)

because all of the variables and their derivatives are continuous. However, it can be
confirmed that there is an internal region within which q̂/m̂ > 4(S + √S(S− 1))/3.
The associated similarity solution within the unsteady pulse is plotted in figure 11. As
with the weaker decrease in buoyancy flux, this plot features continuous transitions
at the leading and trailing edges (η = ηc1 and η = ηc2 respectively) and a contact
discontinuity (η = ηm). Additionally, there is an internal critical point (η = ηc3) and
an internal shock (η = ηs). The rescaled results from the numerical integration of
the governing equations are overlain on the similarity solutions, and again they are
virtually indistinguishable, confirming the presence of this similarity solution in the
unsteady dynamics of the plume model.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

10
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.101


624 M. J. Woodhouse, J. C. Phillips and A. J. Hogg

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1.0

1.5

2.0

2.5

3.0

3.5

4.0

5.0

4.5

FIGURE 11. (Colour online) The similarity solution for the volume flux, q̂(η), the
momentum flux, m̂(η), and the buoyancy flux, f̂ (η), as functions of the similarity variable
η for shape factor S=1.1 and a decrease in the source buoyancy flux F =20 (plotted with
solid lines). Also plotted are results from the direct numerical integration of the governing
equations (dashed lines), although the two sets of curves are so close in values that they
are virtually indistinguishable. The values ηc1, ηm, ηs, ηc3 and ηc2 are also marked. These
correspond respectively to the boundary between the time-dependent part of the solution
and the steady state associated with the new buoyancy flux at the source, the location of
a contact discontinuity, the location of an internal shock between flow states, the location
of a continuous transition and the location of the interface between the unsteady evolution
and the steady state associated with the original buoyancy flux at the source.

7. Discussion and conclusion

Steady plume models are applicable on time scales that are long compared with
the eddy turnover time that characterizes transient turbulent features, and on time
scales shorter than the characteristic time for source variations (Scase et al. 2006b). In
many applications, the effect of variations of the source fluxes of mass, momentum
or buoyancy on the plume dynamics is of fundamental importance. Here, unsteady
models are essential. For an example, during volcanic eruptions the source conditions
can fluctuate in time due to unsteadiness in the physical processes occurring in the
volcanic conduit and at the vent. End members of the source unsteadiness are the
initiation phase (when an eruption first produces material that becomes buoyant and
ascends through the atmosphere) and the waning phase (when the eruption comes to
an end through either a gradual reduction in the rate at which material is erupted or
an abrupt cessation of the activity) of the eruption.

The unsteady model of turbulent plumes analysed by Scase et al. (2006b) and Scase
(2009) identified a key feature of the unsteady response of plumes to abrupt changes
in the source buoyancy flux: the plume adjusts to the new source conditions through a
‘pulse’ that propagates through the plume. However, the model of Scase et al. (2006b)
adopts top-hat profiles for the mean axial velocity and was shown to be ill-posed in
the analysis of Scase & Hewitt (2012), with the numerical solutions of Scase et al.
(2006b) and Scase (2009) attained only due to significant numerical viscosity.
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The diffusive regularization of the unsteady model proposed by Scase & Hewitt
(2012) has an intuitive physical basis: turbulent eddies have a vertical length scale
over which different levels of the plume are connected. Numerical solutions (Scase
& Hewitt 2012) suggest that the phenomenological model of the turbulent diffusion
of momentum advocated by Scase & Hewitt (2012) results in a well-posed unsteady
model, but the analysis presented here shows that this modification of the governing
system of equations renders the classical power-law solution for steady plumes
unstable. As the power-law solutions have strong empirical support (e.g. Morton et al.
1956; Papanicolaou & List 1988; Shabbir & George 1994), we conclude that the
diffusive regularization of Scase & Hewitt (2012) is not appropriate.

Our analysis identifies a different physical process, a difference in the rates of
transport of the cross-sectionally averaged mass and momentum of the plume (referred
to as type I dispersion by Craske & van Reeuwijk 2015a,b) which occurs due to
non-uniform radial profiles of the mean axial velocity in the plume, and we have
shown that including this process through a momentum shape factor leads to a
well-posed system of equations. However, this requires the top-hat description of the
radial profiles for the axial velocity in the plume, which has been applied extensively
(for convenience) in models of steady plumes, to be replaced with a description
of the radial variation. The resulting integral model for unsteady plumes introduces
only one additional parameter, the momentum shape factor, over the classical steady
plume model (Morton et al. 1956). Furthermore, the (ensemble averaged) radius of
the plume remains dependent on the entrainment coefficient alone, so the unsteady
model does not preclude calibration of the entrainment coefficient from laboratory
experiments that measure the steady plume width (or spreading angle). To determine
the momentum shape factor, the radial profile of the axial velocity can be measured
directly (e.g. Papanicolaou & List 1988; Shabbir & George 1994), and the shape
factor computed from (2.6).

Explicitly including a momentum shape factor that differs from unity results in
a strictly hyperbolic system of equations that governs the plume dynamics. This is
appealing, as laboratory experiments (Scase et al. 2008) and numerical modelling
(Scase et al. 2009) show that the adjustment of the plume to changes in the source
conditions occurs through the propagation of an unsteady pulse, as predicted by our
non-diffusive hyperbolic model. The development of the unsteady pulse following an
abrupt change in the source buoyancy flux is described by a similarity solution of the
hyperbolic system of equations. The construction of the similarity solution allows us
to identify three qualitatively different regimes of the unsteady evolution. Following
an increase in the source buoyancy flux, the pulse takes the form of a localized
increase in the plume width with a leading discontinuity. If the source buoyancy flux
is reduced then the plume width narrows. For a relatively strong reduction in the
source buoyancy flux an internal shock occurs in the similarity solution, whereas no
internal shock is found if the source buoyancy flux is reduced by a smaller amount.
We expect that diffusive processes that are not represented in our formulation will
act to locally smooth the sharp gradients that appear in solutions of the hyperbolic
model. However, hyperbolic models have been shown to capture the dominant flow
dynamics in many settings (Whitham 1974).

Craske & van Reeuwijk (2015a) identify, from direct numerical simulations, the
dispersion of momentum as a fundamental feature of turbulent jets, and construct
an integral model to describe unsteady jets which includes a description of the
non-uniform radial profile of the vertical velocity (Craske & van Reeuwijk 2015b)
through shape factors. In the model of Craske & van Reeuwijk (2015b) the integral
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conservation equations are derived from the point-wise momentum and energy
conservation equations, following the approach of Priestley & Ball (1955), and an
energy shape factor rather than a momentum shape factor is introduced. The resulting
system of integral conservation equations shares some features with the unsteady
integral model proposed here (albeit for a jet rather than a plume), in particular the
hyperbolic structure of the system of equations.

For jets the momentum of the flow as it is ejected from a source drives the
motion, and there is significant evolution of the radial profile of the axial velocity
(referred to as type II dispersion by Craske & van Reeuwijk 2015a,b) as the flow
develops away from the source. The evolution of the shape of the radial profiles of
axial velocity and buoyancy has been incorporated into a non-constant entrainment
coefficient by Kaminski et al. (2005) and Carazzo et al. (2006). Furthermore, in the
unsteady integral model of Craske & van Reeuwijk (2015b) the deviation of the
radial profiles from self-similar forms gives rise to diffusive terms in the system of
integral conservation equations. Our analysis shows that a description of momentum
dispersion, through a shape factor that differs from unity, is sufficient to obtain a
well-posed model of unsteady plumes. Therefore, while for jets it is necessary to
account for the evolution of the radial profile of axial velocity to self-similar form,
for unsteady pure plumes the classical entrainment closure of Morton et al. (1956)
remains applicable.

The mathematical model we present allows predictions of unsteady plume dynamics
to be made and, while our study has focused on changes to the source buoyancy flux,
the effect of general temporal variations in the source conditions can be examined.
Furthermore, our framework can be applied to describe the unsteady dynamics of
plumes in industrial and environmental settings, where additional physical processes
such as an ambient flow, thermodynamics and particle transport have a strong
influence on the evolution of the plume.
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Appendix A. Evolution of energy for unsteady plumes
In the derivation of our integral model for unsteady plumes we made direct use of

the point-wise continuity equation to obtain an integral equation for conservation of
mass, following the approach used by Morton et al. (1956) for steady plumes. This
requires a priori a choice to be made for a representative plume radius, b, and an
entrainment closure to describe the mixing of ambient fluid into the plume.

An alternative approach, pioneered by Priestley & Ball (1955) for steady flows
and developed by Fox (1970), Kaminski et al. (2005) and Carazzo et al. (2006),
is to substitute the expression of the evolution of axial kinetic energy for the
continuity equation in the set of point-wise conservation equations. As the equation
for conservation of axial kinetic energy is derived as an (axial velocity) moment of
the equation for the conservation of axial momentum, rewritten in conservation form
through application of the continuity equation, taking the conservation of axial kinetic
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energy together with the conservation of axial momentum provides no additional
information over the set of point-wise conservation equations with continuity and
conservation of axial momentum (see Morton 1971, for a detailed discussion). The
integral expression for conservation of axial momentum and conservation of axial
kinetic energy can be manipulated into a form that expresses conservation of mass in
the integral sense, and, from this, an expression for turbulent entrainment is obtained
(Priestley & Ball 1955; Fox 1970; Morton 1971; Kaminski et al. 2005; Carazzo et al.
2006). However, the integral equations that result from the use of the conservation of
axial kinetic energy differ from those obtained when the continuity equation is used
directly. Indeed, the differences occur due to the application of turbulent closures in
different terms following the cross-sectional integration of the point-wise conservation
equations: in the approach of Morton et al. (1956) the turbulence closure is applied as
an inflow velocity in the kinematic condition applied at the plume boundary, whereas
the closure is applied to the turbulent fluctuation terms that occur in the conservation
of axial momentum equation when the approach of Priestley & Ball (1955) is used.
Finally, as noted by Morton (1971), both closures introduce parameters that can only
be determined empirically.

Recently, Craske & van Reeuwijk (2015a,b) used the conservation of axial kinetic
energy in place of the continuity equations in the set of point-wise conservation
equations in their model of unsteady jets. In this appendix we adopt a similar
approach for buoyant plumes. We note that our approach differs as we again specify
the plume radius r= b(z, t) as a measurable surface in the plume and introduce shape
factors to account for non-uniform radial profiles of mean flow quantities. Thus, we
define the volume flux, axial momentum flux and the flux of mean axial kinetic
energy as

b2W = 2
∫ b

0
rw dr, Smb2W2 = 2

∫ b

0
rw2 dr and Seb2W3 = 2

∫ b

0
rw3 dr (A 1a−c)

respectively, where, in (A 1c), Se is an energy flux shape factor.
Integration of the point-wise Reynolds-averaged conservation equations for axial

momentum (2.1b), axial kinetic energy (see Craske & van Reeuwijk 2015a) and
reduced gravity (2.1c) gives the following set of integral equations:

∂

∂t
(b2W)+ ∂

∂z
(Smb2W2)= b2G′ − ∂

∂z
(Mf +Mp), (A 2a)

∂

∂t
(Smb2W2)+ ∂

∂z
(Seb2W3)= 2Sf b2G′W + (Pm + Pf + Pp)− ∂

∂z
(Ef + Ep), (A 2b)

∂

∂t
(b2G′)+ ∂

∂z
(Sf b2G′W)=−∂Bf

∂z
, (A 2c)

where, following Craske & van Reeuwijk (2015a,b), the correlation fluctuation terms
and non-hydrostatic pressure terms, which are formally higher order in the plume
slenderness, R/H, than the mean fluxes, are retained and given by

Mf = 2
∫ b

0
rw′2 dr, Mp = 2

∫ b

0
rp dr, Ef = 4

∫ b

0
rw′2

∂w
∂z

dr,

Ep = 4
∫ b

0
rpw dr, Pm = 4

∫ b

0
ru′w′

∂w
∂r

dr, Pf = 4
∫ b

0
rw′2

∂w
∂z

dr,

Pp = 4
∫ b

0
rp
∂w
∂z

dr, Bf = 2
∫ b

0
rg′rw′ dr.


(A 3)
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Here, p denotes the averaged deviation of the pressure in the plume from hydrostatic
pressure. It should be noted that in (A 2) we have neglected terms in which flow
quantities are evaluated on the plume boundary.

Manipulation of the integral equations for conservation of axial momentum (A 2a)
and conservation of axial kinetic energy (A 2b) leads to an expression akin to
conservation of mass,

Sm

Se

∂

∂t
(b2)+ ∂

∂z
(b2W)= 2αebW, (A 4)

where the entrainment rate αe is given by

αe =
(

Sm − Sf

Se

)
bG′

W2
+ 1

bW2

(
1

Sm
− Sm

Se

)
∂

∂z
(Smb2W2)+ b

2SeW
∂Sm

∂t
+ S2

m

2Se

∂

∂z

(
Se

S2
m

)
− Pm + Pp + Pf

2SebW3
− Sm

SebW2

∂

∂z
(Mf +Mp)+ 1

2SebW3

∂

∂z
(Ef + Ep). (A 5)

The form of the mass conservation (A 4) is similar to the expression proposed by
Craske & van Reeuwijk (2015a,b), but differs due to different choices for the plume
width. The entrainment rate has a similar form to that of Craske & van Reeuwijk
(2015a,b) for jets, although in (A 5) the first term on the right-hand side does not
appear for jets where G′ ≡ 0. A similar term, which results in an entrainment rate
that depends on the local Richardson number of the plume (given by Ri= bG′/W2),
occurs in the entrainment rate in the models that adopt the approach of Priestley &
Ball (1955) (e.g. Priestley & Ball 1955; Fox 1970; Kaminski et al. 2005; Carazzo
et al. 2006), and has been shown to be important when describing the near-source
development of buoyant jets into plumes (Kaminski et al. 2005; Carazzo et al. 2006;
Ezzamel et al. 2015). Further, the entrainment rate here includes a contribution
from temporal changes in the momentum shape factor that does not appear in the
entrainment rate of Craske & van Reeuwijk (2015a,b).

For turbulent plumes from pure-plume sources at distances sufficiently far from the
source, experiments suggest that the radial profiles of the mean axial velocity and
reduced gravity, and the second-order turbulent velocity statistics, have reached a self-
similar form (Ezzamel et al. 2015). The shape factors can then be taken as constant
values. Furthermore, following Craske & van Reeuwijk (2015b) and for simplicity, we
take the turbulent production and transport terms and non-hydrostatic pressure terms
to be such that the entrainment rate is given by

αe ≈ α0 +
(

Sm − Sf

Se

)
bG′

W2
+ 1

bW2

(
1

Sm
− Sm

Se

)
∂

∂z
(Smb2W2), (A 6)

with α0 constant.
Steady solutions of the plume model with the non-constant entrainment rate (A 6)

with pure-plume boundary conditions (Q(0)= 0, M(0)= 0, F(0)= F0) are given by

Q= 6α0

5

(
9α0

10

)1/3 (F0

Sm

)1/3 [
1− 8Sm

5Se
(Sm − S2

m − Sf + Se)

]−4/3

z5/3, (A 7a)

M =
(

9α0

10

)2/3 (F0

Sm

)2/3 [
1− 8Sm

5Se
(Sm − S2

m − Sf + Se)

]−2/3

z4/3, (A 7b)

F= F0. (A 7c)
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Therefore, the non-constant entrainment coefficient does not change the spatial
variation of the steady solutions, although the prefactors in the power-law forms are
changed from the Morton et al. (1956) solutions, unless the shape factors take values
such that S2

m − Sm − Se + Sf = 0, which occurs for Sm = 1 and Se = Sf . We note that
the factors could diverge if 1 − 8Sm(Sm − S2

m − Sf + Se)/5Se = 0. The radius of the
plume for the non-constant entrainment coefficient is given by

b= 6α0

5

[
1− 8Sm

5Se
(Sm − S2

m − Sf + Se)

]−1

z, (A 8)

and so the plume radius increases linearly with height as in the model of Morton et al.
(1956). However, in contrast to the model with a constant entrainment coefficient, the
spreading angle of the plume depends on the shape factors for momentum, buoyancy
and energy (unless S2

m − Sm − Se + Sf = 0).
An alternative approach is to augment the system of integral equations (A 2) with

the integral expression for conservation of mass (2.10a). We can then interpret the
integral expression for conservation of axial kinetic energy as governing the evolution
of the momentum shape factor, and, in order to fully specify this evolution, a closure
is required to describe the evolution of the energy shape factor. A higher velocity
moment of the point-wise conservation equations for mass and momentum would
provide an integral equation governing the evolution of the energy shape factor, but
would, of course, introduce a new shape factor. Therefore, a turbulence closure must
be invoked at some level within the hierarchy of equations. Laboratory experiments
(e.g. Papanicolaou & List 1988; Wang & Law 2002; Ezzamel et al. 2015) suggest
that the momentum shape factor can be taken as a constant value for fully developed
turbulent plumes sufficiently far from the source, and this represents a turbulence
closure at the level of conservation of mass, momentum and buoyancy.

Appendix B. A phase-plane analysis of steady solutions of the plume model with
diffusive terms

In § 3 the steady solutions of the integral model for unsteady plumes with
phenomenological diffusive terms included to describe turbulent mixing by eddy
diffusion were shown to be linearly unstable to small perturbations. Therefore, while
steady solutions of the diffusive system of equations can be found analytically (see
(3.3)) and are modifications of the well-known steady solutions given by Morton et al.
(1956), the solutions cannot be realized. However, the linear stability analysis in § 3
does not investigate other possible steady states. In particular, it could be possible
that other steady solutions that do not enforce pure-plume boundary conditions exist,
and that these could be attracting states for the steady diffusive system of equations.

Here, we examine the steady plume equations with diffusive terms by treating the
system of equations as a dynamical system. To this end, we allow the volume flux Q
to be the independent variable in the system rather than the distance from the source.
We note that in an unstratified ambient the buoyancy flux is conserved, and so F≡F0,
with F0 a specified constant.

We consider first the diffusive term proposed by Scase & Hewitt (2012) (as
given in the unsteady momentum conservation equation (3.2)). The equation for the
conservation of mass in the steady state allows us to write

d
dz
= 2αM1/2 d

dQ
, (B 1)
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and therefore, from the conservation of momentum, we find

κQ2 d2M
dQ2
+ κQ2

M
dM
dQ

2

+ (3κ + S)Q
dM
dQ
+ 2κM =−F0

2α
Q2

M3/2
, (B 2)

here treating M as a function of Q. Equation (B 2) can be further manipulated by
introducing new dependent variables

X =Q−4/5M(Q) and Y =Q1/5 dM
dQ
− 4

5
Q−4/5M(Q), (B 3a,b)

and an independent variable ξ , with Q= exp(ξ), which allows the system to be written
as the following autonomous system:

dX
dξ
= Y, (B 4a)

κ
dY
dξ
+ κ Y2

X
−
(

4κ
5
+ S
)

Y +
(

2κ
25
− 4S

5

)
X =−F0

2α
X−3/2. (B 4b)

The coupled nonlinear system (B 4) has a single fixed point at Y = 0 and X = X0
with

X0 =
(

5F0

8α(S− κ/10)

)2/5

, (B 5)

which, after returning to the original variables, is the steady solution given by (3.3).
However, other solutions of the autonomous system for arbitrary initial conditions can
be readily found by numerically integrating the system (B 4). The trajectories in the
phase plane corresponding to solutions of (B 4) with a momentum shape factor S= 1
are shown in figure 12. We see that the fixed point is a saddle with two stable
trajectories (such that initial conditions precisely on these trajectories converge to the
fixed point) and two unstable trajectories. For initial conditions that are perturbed
away from the pure-plume conditions (i.e. Q(z = 0) = M(z = 0) = 0) at the fixed
point, the trajectories move the solution away from the fixed point and we find either
M(Q)→ 0 or M(Q)→∞ along the phase-plane trajectories. Taking a momentum
shape factor that differs from unity does not change the topology of the trajectories
in the phase plane (figure 13).

A local analysis of trajectories that are perturbed away from the fixed point
reproduces the results of the linear stability analysis (3.6). Indeed, taking X =
X0 + X1(ξ) and Y = Y1(ξ) with |X1| � 1 and |Y1| � 1, we find

d
dξ

(
X1
Y1

)
=
(

0 1
1/5+ 2S/κ 4/5+ S/κ

)(
X1
Y1

)
, (B 6)

and the eigenvalues of the Jacobian matrix are

a± = 5S+ 4κ ±√25S2 + 240Sκ − 4κ2

10κ
. (B 7)

The corresponding eigenvectors are

v± = (1, a±)T. (B 8)

Therefore, we find X1 ∼ exp(a±ξ).
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FIGURE 12. Trajectories in the phase plane of solutions to the steady plume equations
with the diffusive regularization of Scase & Hewitt (2012) with F0 = 1, α = 0.1, κ = 0.1
and S= 1. The autonomous system has a single fixed point (denoted by the black point in
the figure) that corresponds to the steady pure-plume solution of Morton et al. (1956) with
a modification for the diffusive term (given by (3.3)). The fixed point is a saddle, with
two stable directions and two unstable directions, shown as bold solid lines in the figure,
with arrows denoting the stability of the trajectories. Additional trajectories, corresponding
to solutions with non-pure-plume initial conditions, are shown as thin grey lines.

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

5

 0

10

 –5

FIGURE 13. The stable and unstable trajectories through fixed points in the phase plane
of solutions to the steady plume equations with the diffusive regularization of Scase &
Hewitt (2012) with F0 = 1, α = 0.1 and κ = 0.1 for momentum shape factor S= 1 (solid
lines), S= 1.5 (dashed line) and S= 2.0 (dotted line).

The analysis presented above can be applied to the alternative form of the eddy
diffusion term in the momentum balance given in (3.8) for unsteady conditions.
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FIGURE 14. Trajectories in the phase plane of solutions to the steady plume equations
with the diffusive regularization (3.8) with F0 = 1, α = 0.1, κ = 0.1 and S = 1. The
autonomous system has a single fixed point (denoted by the black point in the figure) that
corresponds to the steady pure-plume solution of Morton et al. (1956) with a modification
for the diffusive term (given by (3.9)). The fixed point is a saddle, with two stable
directions and two unstable directions, shown as bold solid lines in the figure, with arrows
denoting the stability of the trajectories. Additional trajectories, corresponding to solutions
with non-pure-plume initial conditions, are shown as thin grey lines.

We again find a single fixed point that corresponds to the steady solution (3.9). The
topology of trajectories in the phase plane is qualitatively similar to that of the Scase
& Hewitt (2012) diffusive term (figures 14 and 15), with the single fixed point being
a saddle, and trajectories from arbitrary initial conditions having either M(Q)→ 0
or M(Q)→∞ as Q→∞. Taking a momentum shape factor that differs from unity
does not change the topology of the phase portrait (figure 15).

The conclusion of this analysis is that, for each of the proposed axial diffusion
terms ((3.1) and (3.7)), the steady solutions for pure-plume boundary conditions
are not stable, and, furthermore, for more general boundary conditions, the steady
solutions do not evolve towards the pure-plume solution in the far field. This is
in contrast to steady solutions of the non-diffusive system with general boundary
conditions, which converge to the pure-plume solution in the far field (Morton 1959;
Hunt & Kaye 2001, 2005).

Appendix C. Separable similarity solution
Scase et al. (2006b) identified a ‘separable’ similarity solution that emerged as an

exact solution to their time-dependent governing equations, and, although it did not
satisfy the boundary conditions exactly, it appeared to play a role in ‘organizing’ the
underlying dynamics when the buoyancy flux at the origin was abruptly reduced by a
relatively large factor. In this appendix we derive the analogue of their solution in our
regularized system of governing equations and discuss its relevance for the solutions
that arise when the source buoyancy flux is abruptly changed.

The separable solution emerges as a special case of the similarity solutions derived
in § 6 and corresponds to a fixed point in the differential system for (q̂(η), m̂(η), f̂ (η))
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FIGURE 15. The stable and unstable trajectories through fixed points in the phase plane of
solutions to the steady plume equations with the diffusive regularization (3.8) with F0= 1,
α= 0.1 and κ = 0.1 for momentum shape factor S= 1 (solid lines), S= 1.5 (dashed line)
and S= 2.0 (dotted line).

given by (6.3). Thus, we find that q̂= q̂0 ≡ (q̂0, m̂0, f̂0) is given by

q̂0 = 25
162

, m̂0 = 25
324

and f̂0 = 25
432

(2S− 1)
S

. (C 1a−c)

In terms of the original variables this corresponds to

Q= 2α2z3

9t
, M = α

2z4

9t2
and F= α

2(2S− 1)z4

9t3
. (C 2a−c)

Notably, this solution is independent of the source flux of buoyancy.
We may examine the stability of this fixed point in terms of the similarity variable

by introducing q̂= q̂0 + q̂1 and linearizing about the fixed point q̂0. This gives
−8

3
4 0

−1
4S
3

0

−3(2S− 1)
4

3(2S− 1)
2

−2
3

 η
dq̂1

dη
=


−3 3 0

3(2S− 1)
2S

−3(2S− 1)
S

0

2S 2(1− 4S)
8S
3

 q̂1.

(C 3)
We look for a solution of the form q̂1 = ηλq̃ and deduce that

(λ+ 4S)(64S2λ2 − 72S2λ− 72Sλ2 + 126Sλ− 162S− 36λ+ 81)= 0. (C 4)

From this condition, we deduce that there is always a root for which Re(λ)> 0 when
S > 1, while there are other roots for which Re(λ) < 0. Thus, the fixed point, q̂0, is
linearly unstable, and this implies that in terms of the similarity variables, while the
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FIGURE 16. (Colour online) The scaled width of the plume, q̂/
√

m̂, as a function of the
similarity variable, η, for F = 0.05 (green line), F = 2 (red line) and F = 20 (blue line)
and shape factor S= 1.1.

solution may approach the fixed point, it does not remain close to it asymptotically as
η→∞. We illustrate this by plotting q̂/

√
m̂ as a function of the similarity variable

η for F = 20, 2 and 0.05 (see figure 16). A steady state corresponds to q̂/
√

m̂= 1,
while for the separable solution q̂/

√
m̂ = 5/9. We note that while the evolution for

the strongest decrease in buoyancy flux (F = 20) becomes close to q̂/
√

m̂ = 5/9 at
one location during its evolution, this separable solution does not in general strongly
characterize the entire form of the similarity solution.

Appendix D. Local series expansions at critical points
In this appendix we examine similarity solutions governed by

Dη
dq̂
dη
= b, (D 1)

where D and b are the matrix and vector defined in (6.3). We examine the solutions
local to a critical point, η = ηci (i = 1, 2), of this differential system, where det(D)
vanishes.

It is convenient to write ν = log(η/ηci) and to write the following expansion of the
dependent variables, the matrix D and the forcing vector b:

q̂= q̂0 + νq̂1 + ν2q̂2 + νσ q̂σ + νσ+1q̂σ+1 + · · · , (D 2a)
D = D0 + νD1 + νσDσ + · · · , (D 2b)
b= b0 + νb1 + νσbσ + · · · , (D 2c)

where σ is not an integer. This form of expansion series is possible because
det(D0) = 0. We substitute the series (D 2) into (D 1) and in the regime ν � 1
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balance terms in powers of ν. At O(1) and at O(νσ−1) we find that

D0q̂1 = b0 and σD0q̂σ = 0. (D 3a,b)

The matrix D0 is singular; thus, we can find vectors e and êT such that D0e= 0 and
êTD0= 0 respectively. This means that from (D 3a) we deduce the solvability criterion

êTb0 = 0, (D 4)

and that q̂1 = C1e+ q̂f and q̂σ = Cσe, where q̂f is a particular solution of (D 3a) and
C1 and Cσ are constants. From a balance of terms at O(ν) and O(νσ ) we deduce

êTD1q̂1 = êTb1 and êT
(Dσ q̂1 + D1σ q̂σ )= êTbσ . (D 5a,b)

The first of these, (D 5a), determines the value of the constant C1, while the second,
(D 5b), determines the non-integer power σ .

We may apply this formulation to any of the critical points, but the locations
that are of most interest are the boundaries between the steady and unsteady
portions of the solution. First, we analyse the local behaviour near to ηc2 =
4F 1/3(S + √S(S− 1))/3, which corresponds to the boundary between the original
source and the unsteady pulse within the similarity solution. At this point the solution
is given by

q̂0 = (β0, β
2
0 , β

3
0 ), where β0 = 3

4(S+
√

S(S− 1))−1. (D 6)

The vectors e and êT are given by

eT =
(

16
9 S(2S− 1+ 2

√
S(S− 1)), 4

3(2S− 1+ 2
√

S(S− 1)), 1
)
, (D 7a)

êT =
(
− 3

4(2S− 1− 2
√

S(S− 1)), 1, 0
)
. (D 7b)

The particular solution is given by

q̂f = (−β0,−2β2
0 ,−3β3

0 ), (D 8)

the constant C1 = 0 and the exponent, σ , is

σ = 13
8
− 5(2S− 1)

16
√

S(S− 1)
. (D 9)

The local expansion is bounded as ν → 0 provided that σ > 0, a condition that
demands S> 25/24. We note that this condition is identical to the criterion for linear
stability. Its origin is identical: it comes from the requirement that the unsteady
adjustment remains bounded at its leading edge.

The solution at the trailing edge of the unsteady portion of the solution is broadly
similar. Expanding the dependent variables close to ηc1= 4(S−√S(S− 1))/3, we find
that the solution is given by

q̂0 = (β1, β
2
1 , β

3
1 ), where β1 = 3

4(S−
√

S(S− 1))−1. (D 10)
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The particular solution is given by

q̂f = (−β1,−2β2
1 ,−3β3

1 ), (D 11)

the constant C1 = 0 and the exponent, σ , is

σ = 13
8
+ 5(2S− 1)

16
√

S(S− 1)
. (D 12)
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