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We consider linear and nonlinear waves in a stratified hydrostatic fluid within a channel
of variable area, under the restriction of one-dimensional flow. We derive a modified
version of Riemann’s invariant that is related to the wave luminosity. This quantity obeys
a simple dynamical equation in linear theory, from which the rules of wave reflection are
easily discerned; and it is adiabatically conserved in the high-frequency limit. Following a
suggestion by Lighthill, we apply the linear adiabatic invariant to predict mildly nonlinear
waves. This incurs only moderate error. We find that Lighthill’s criterion for shock
formation is essentially exact for leading shocks, and for shocks within high-frequency
waves. We conclude that approximate invariants can be used to accurately predict the
self-distortion of low-amplitude acoustic pulses, as well as the dissipation patterns for
weak shocks, in complicated environments such as stellar envelopes. We also identify
fully nonlinear solutions for a restricted class of problems.
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1. Introduction

The propagation of finite-amplitude acoustic waves, and especially the creation of shocks
within them, are of interest for physical problems across a wide range of scales —
from the collapse of sonoluminescent bubbles (Lin & Szeri 2001) to the eruption of
stellar envelopes in pre-supernova outbursts (Smith 2013). We shall consider the case
of quasi-one-dimensional oscillations of an otherwise hydrostatic, stratified background
state, allowing for variations in the cross-sectional area of the channel or atmosphere.
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An important point of reference is the simplest limit in which the cross-sectional area
is constant and the background state is uniform. Riemann (1860) solved this case exactly,
up to the moment of shock formation within the flow, in terms of invariants conserved
along sound fronts (characteristic trajectories). For the subsequent evolution, Whitham
(1974, building on the work of Landau 1945) developed an elegant analytical formalism
to very accurately predict the strength and trajectory of a weak shock. Specifically,
Whitham’s ‘equal-area’ construction applies to shocks made by a disturbance travelling
in one direction only, i.e. a simple wave.

Can these solutions be adapted to the general problem? In chapter 2 of Waves
in Fluids (Lighthill 1978), M. J. Lighthill proposed that they can. Considering the
equivalent of simple waves, Lighthill proposed an invariant that should be approximately
conserved along characteristic trajectories — approximately, because the argument relies
on low-amplitude perturbations and on the high-frequency limit in which wave reflection
is negligible. Coupled with the pressure—velocity relation appropriate to simple waves, this
conservation law allows one to transform a travelling-wave problem in the general problem
to its analogue in the simple limit, for which Riemann’s and Whitham’s approaches
provide a solution.

This method is appealing as an analytical technique even though it is not exact.
Low-amplitude, high-frequency waves are precisely the type that sample variations in
their environment before forming a shock. Furthermore, such waves are challenging to
treat with direct numerical simulations because accuracy demands hundreds or thousands
of numerical zones per wavelength. A shock forms only after many wavelengths of
propagation if the wave amplitude is low.

While Lighthill’s proposal has not, to our knowledge, been re-examined, similar
approaches have certainly been considered. High-frequency scalings, familiar from
Wentzel-Kramers—Brillouin (WKB) theory, motivate Subrahmanyam, Sujith & Lieuwen’s
(2001) proposed exact solutions for specific problems in linear acoustics. In our own
previous work (Ro & Matzner 2017), we reinvented aspects of Lighthill’s proposal,
including his criterion for shock formation (his equation 254), by positing that the
high-frequency scalings apply to individual characteristics. Other authors, such as Lin
& Szeri (2001) and Tyagi & Sujith (2003, 2005), also derive shock formation criteria that
coincide with Lighthill’s, as Tyagi & Sujith note.

To develop the theory further, we shall express linear acoustical motions in terms of
wave amplitudes that are conserved along characteristics except for the effects of reflection.
These amplitudes are modified versions of Riemann’s invariants; they are equivalent to
Lighthill’s proposed invariant in a linear travelling wave; and they are related in a simple
way to the wave luminosity. When the linearized amplitude equation is applied to a
nonlinear wave, errors are suppressed by factors of the gradients in the background. This
reflects the fact that wave amplitudes reduce to Riemann’s invariants in the uniform case.
Together, these points prove the validity of Lighthill’s proposal and the exactness of his
shock formation criterion in certain contexts, while also providing a convenient way to
evaluate wave reflection.

We start with adiabatic, quasi-one-dimensional fluid equations in Lagrangian form,
and obtain Riemann’s invariants J1 for the simple case of planar motion of a uniform
fluid. We then derive the variation of Ji in the general problem. Linearizing this
result and introducing wave amplitudes R4, we arrive at the linear amplitude evolution
equation. We relate these amplitudes to the wave luminosity, and consider the dynamics
of wave reflection. We then examine the nonlinear errors incurred when the linearized
equation is applied to waves of finite amplitude, showing that these are small in the
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high-frequency limit. Moreover, we show that Lighthill’s shock formation condition is
exact in certain cases, and essentially exact for shocks forming within high-frequency
waves. Then, we demonstrate that nonlinear solutions are available for a certain class of
problems. Finally, we conduct numerical experiments to demonstrate the application to
travelling waves in spherical and strongly stratified environments.

1.1. Notation

Our coordinates are radius » and time 7. The gravitational acceleration g(r), the
cross-sectional area A(r), the ratio of specific heats y (r9) and the background sound speed
co(rg) are all considered arbitrary continuous functions. Fluid variables include pressure
P, density p, velocity v and sound speed c. From these, we construct Riemann invariants
J+ and wave amplitudes R+, as well as the right- and left-going wave luminosities
L.+ along characteristic trajectories C*. The net wave luminosity is £, = Ly, — L,_.
An unperturbed quantity in the hydrostatic background state has subscript ‘0’, and
Lagrangian perturbations (for the same fluid element) have prefix ‘6°, i.e. 6f =f — fo.
For convenience, we define x = p/pg, and g = (y — 1)/2. We also define ¢ as the relative
strength of a reflected wave and t as the time of propagation in § 5.4. The characteristic
acoustic impedance is Z.

We use operator and subscript notation for partial derivatives, so d,f and f; both mean
of /ot. The Lagrangian time derivative operator is d;, equivalent to d; + vd, when we use
variables (r, ), and equivalent to d; when our variables are (rg, t). Subscripts 4+ and —
indicate that a quantity is associated with C* or C, i.e. sound fronts moving to increasing
or decreasing r. A dot indicates the time derivative along the appropriate trajectory: so
J4+ = [0; + (v + ¢)9d,]J+. Radial derivatives along ct trajectories are denoted d;g.

Note, we do not address phenomena that excite waves in the hydrostatic background
state. The acoustical perturbations we study must therefore enter the zone of interest across
its boundary, or be the result of body forces that upset the initial equilibrium but have since
disappeared.

2. Equations of motion

Our quasi-one-dimensional equations incorporate a couple assumptions: first, that motions

transverse to the gradient of r can be ignored; and second, that displacements are small

enough (67 < rp) that smooth functions of r can be replaced with their values at rg: for

instance, g = go and A = Ap. In addition, we neglect dissipative effects such as thermal

diffusion; see Ro & Matzner (2017) for a justification in the context of stellar outbursts.
We start with the conservation of mass,

dilnp +A719,Av =0, 2.1)
and momentum,
1
div+ —0,P = —g, (2.2)
0
as well as background hydrostatic equilibrium,
1
~ 9,,Po = —go. (2.3)
Po

We consider the fluid to be adiabatic and for simplicity we adopt an ideal gas equation of
state,

P[Py = (p/po) =", 2.4)
where y may be a function of ry.
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We convert the spatial gradient (9,) into gradients with respect to the initial radius (9,,)
using Ap dr = Agpg drg, which implies

p~ 0, = (A/A0)py By = py 0y 2.5)

using A =~ Ag. At the same time, we switch spatial variables from r to rg, allowing d; — 0.

Our equation for mass conservation becomes (using ! ~ Ty b,
0 In(p/po) + (p/0)0ryv + vy InA = 0. (2.6)
The momentum equation becomes
1
v+ —0,,0P =0 2.7)
£0
or, using P = x¥ Py and writing out the derivative,
P, 0y, P
o+ L0 g, x4+ 0 1) 4 B(Inx)dy, Iny = 0, 2.8)
00 00
which we re-write, using y Py = pocg, 9r,Po = —pogo and c%xV*1 =2, as
dv + pyx = (¥ — 1)go — i (Inx)dy, Iny. (2.9)
The mass equation takes in the form
orx + xzarov = —vxdy, InA, (2.10)

where we have multiplied through by x to put the time derivatives in the same form as the
momentum equation. Combining the momentum and mass equations,

ou + Boyyu =s, (2.11)
where

2 Y —1)go — c2(Inx)dy, 1
u:(”), B:|:02 C], and s= (& T Dsom iy lny) o, o)
X x> 0 —vxdy, InA

Note that our approximation of small radial perturbation only affects the form of s.

3. Uniform planar case: Riemann invariants

In the simplest limit of a homogeneous background fluid and constant area, go = 0 and
drInA = 0 so that s = 0. To derive the Riemann invariants, we seek a function J(x, v) and
a Lagrangian speed A that satisfy 9,/ + 19,,J = 0.

Writing out these partial derivatives in subscript notation, J; = Jx; + Jyv; = (Jy, Jo) Uy
and likewise J,, = (Jy, Jy)uy,. The equation we wish to solve, J; + AJ,, = 0, becomes
(Jv, Jous + Ay, Jy)uy, = 0; using (2.11) to eliminate the time derivative,

(Jy, J)(B — ADuy, = 0. (3.1
For this to be true for any u,, requires (J,, Jx)(B — Al) = 0. Taking the transpose,
(BT — An(Jy, J)" =0, (32)

which is solved if A and (J,, Jy)T are an eigenvalue and corresponding eigenvector of BT,
respectively.
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The eigenvalues are A+ = Zcx. These represent the Lagrangian speeds of sound
fronts moving to the right or left though space at speed v = ¢, because Agpo(dry/df) =
Ap(dr/dt — v) along any trajectory, and A — Aq for small perturbations. (We refer to A+
variously as the wave speed, propagation speed or characteristic speed, and to trajectories
C™ obeying iy = A+ as characteristics or sound fronts.)

The corresponding eigenvectors are (Jy, Jy)+ = (1, £c¢/x). The functions that have
these partial derivatives are the usual Riemann quantities,

dx c
Ji=v+£ / c—=v+£—, 3.3)
X q

which are invariants when s = 0. Having reconstructed the conservation of the Riemann
quantities for this restricted problem, we now turn to how J4 vary in the more general
context.

4. General problem

Lifting the restrictions of planar flow and a uniform fluid, Riemann’s quantity J is no
longer invariant. Its time variation along a characteristic is

J = Z Jf(ft"'/lfro) = (Jy, Jx) 5 + Ay 0ryco + A g0r,q. 4.1)
fe{vvxﬁc()#q}

The first term on the right-hand side arises from non-zero gravity and changes of area
(components of s), while the second and third terms account for gradients of the fluid
properties; these contain only radial derivatives because co and y are constant within each
fluid element.

We prefer to work with radial derivatives for later convenience, which we compute as
dy,J = J/A. Written out for outward and inward waves,

x¥ —1 go cglnx

+ — i
ol = ix(VH)/z co cx

Oy Iny

— Yo, A+ Sa,Ineo F (1 — glnx)dy, Ing. 4.2)
x q q

Part of the change in Ji is acoustical, but part is due to the radial gradient of the
unperturbed state. To isolate the acoustical portion, we subtract d,,Jo+ to obtain

X —1 go cglnx
x+D/2 ¢

sl =+ Ory Iny

v e e
— =0y InA+ —09,,Incy F ? —clnx | 9,,Ing. 4.3)
X q

Equation (4.3) is exact within the quasi-one-dimensional approximation we have adopted.
It therefore provides a point of comparison for the linearized wave amplitude equation
derived below.
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5. Linear acoustics: wave amplitude and luminosity

At this point we focus on linear perturbations and expand to leading order in §x = x — 1

dE8Ts = £y 8x50 T o 8xdyy Iny — v, InA
o

dc dc
+ —0,IncoF| — —codx |y Ing. 6.1
q q

The first term, due to gravity, can be rewritten using y go/co = —cody, In Po.

We now express the perturbations in terms of 8J4 using v = (6J4+ +68J-)/2 and
(8¢)/q = (8J4 — 8J_)/2 = codx + O(8x?). The term involving dr, Ingq is zero to leading
order, and the rest can be written compactly, using y Py = pocg and §J4 —46J_ =
+£(8J+ — 8J%), as

dE8JL=5J1 By, In + 8J 0,y INVZ, (5.2)

1
v/ PocoA
where Z = poco/A is the characteristic acoustic impedance. The first term represents
the inward or outward propagation of an acoustic disturbance, while the second term
encapsulates a conversion between it and the counter-propagating disturbance in the
process of reflection, which is catalyzed by gradients of Z.
Equation (5.2) is simplified in terms of a new variable, the wave amplitude

Ri=+/Apoco 6J+. (5.3)

In linear theory this quantity evolves along C* only due to reflection

dER+=R4d, InVZ, (5.4)

so it is effectively conserved so long as reflection is negligible. This wave amplitude
equation provides a means to solve linear acoustics in the general problem by the method
of characteristics. As we shall see, it also provides a connection to Lighthill’s approximate
invariant and to the wave luminosity. Moreover, it provides a useful means to approximate
nonlinear acoustics as well.

5.1. Quasi-simple waves: equipartition and Lighthill’s invariant

A ‘simple wave’ in the planar homogeneous problem is one in which one wave family has
constant amplitude, so that every physical quantity is determined by the other’s amplitude.
The analogous situation in the general problem is the case |¢| < 1, where e = R+ /R4 =
8J=/8J+ measures the relative amplitude of the counter-propagating wave. We call this a
‘quasi-simple’ wave. From the definition J,

1 —¢dc éc

v=+=+ — = +—, (5.5)

14+¢gq q
where the limit holds for |¢| — 0. To linear order, quasi-simple waves obey the condition
8P = % pocov for equipartition between kinetic and thermal energy perturbations, as well
as the relation v/co = £6x.

Motions can be decomposed into quasi-simple waves whenever wave reflection is
negligible. By (5.4), this includes any environment in which Z is constant or varies only
over many wavelengths; see § 5.4.

Lighthill (1978) identified §P/ V/Z as an adiabatic invariant in the high-frequency limit.
Lighthill’s invariant is equivalent to our =R 4 /2, to linear order, within a quasi-simple
wave in which R+ = 0.
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5.2. Wave luminosity

We may relate R+ to a linear estimate for the energy flow carried by the wave, i.e. the
instantaneous wave luminosity

L+ = 3RE = jApoco(8J+)°. (5.6)

We define L,,+ to be positive, regardless of the direction of propagation. The coefficient
1/4 arises because equipartition implies a total wave energy v’ per unit mass, whereas
(8J1)% = 4v? when v = %8¢/q.

The evolution of wave luminosity along a characteristic follows directly from (5.4)

dInLys =3, InZ. (5.7)

The net acoustic luminosity L£,, is the difference between outward and inward wave
luminosities

5
L= Lyy — Ly = Apocosv ~ AvsP, (5.8)
q

where the last approximation, which holds to linear order, follows from P/Py = (c/ co)?4
and y P = pc?. Equation (5.8) specifies £,, as the rate of work done against the pressure
perturbation.

5.3. Wave reflection: low-frequency limit

Equation (5.4) describes reflection, a process we depict in figure 1. It must, therefore,
recover the known high- and low-frequency limits of this process.

In the low-frequency limit, we use the fact that dX = (xc)~'d; £ 3y, but (xc) 19, is
negligible relative to d,, in this limit. Equation (5.4) becomes

3y Re=R= 0, INVZ, (5.9)

for which the solution is R4 = av/Z &+ b/~/Z for constants a and b. Consider an
outward-propagating disturbance that encounters a zone separating a uniform inner region
1 (impedance Z1) from a uniform outer region 2 (impedance Z;). The incident and reflected
wave amplitudes are R4 1 and R_ 1, respectively; the transmitted amplitude is R+ 2; but
there is no inward wave in the outer region: R_» = av/Z — b/~/Z, =0, so a/b = Z,.
One then finds that

Rin Zi+24

= . 5.10
Ry Zi—2 (510)
The ratio of incident to reflected wave luminosities is therefore
L 71 + Z»)?
w1 (Z1+22) 5.11)

Lo—1 (Z1 = 2%

which is the classical result for reflection at a discontinuity in Z (e.g. Campos 1986).

5.4. Wave reflection: high-frequency limit

We consider again the problem of a wave emanating outward from small r and
encountering a change in Z. Knowing in advance that reflection is minimal at high
frequencies for which the wavelength of oscillation is much shorter than the scale of
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Figure 1. A schematic of wave reflection computed via the method of characteristics using (5.4). Right- and
left-going characteristics (thin blue and red lines) cross a zone of varying sound speed and density within
which the impedance varies, while P and A are constant. A right-going acoustic pulse (purple and blue zone,
depicting positive R ) encounters the region of varying impedance, generating a reflected pulse (yellow and
red zone, depicting negative values of R_). The pulse is assumed to be weak enough that the perturbation to
the wave speed is negligible.

changes in Z, we apply an iterative procedure in which reflection is neglected at zeroth
order (d;gRS(_)) = 0; R = 0) and subsequent iterations obey dj(;Ri) = R(;”aro InVZ.

We label outward and inward characteristics by the time #;+ at which they cross a
fiducial radius rg;. Along the outward ones, #(ry) = t;+ + 7, where T = f r:;’ dr(’) /(xc) is the

propagation time; and along inward ones, #(r9) = #;— — 7. Focusing on linear amplitudes,
for which the perturbation to the wave speed can be ignored, we take 7 — 79(rg) =
S drg/eo(rp).

For the problem at hand, we consider outward-propagating oscillations at frequency w:
RS(F)) = kel®i+, where k is a constant amplitude and the real part is implied. The first-order
reflected wave satisfies

dfRY = RY8, InVZ = ke, InVZ, (5.12)
and has zero amplitude at ro = co. We use the relation ¢t = f;_ — 10, appropriate to the
inward characteristic, to eliminate ¢

d R = kel@t-=25, 1nV/Z. (5.13)
Integrating along the in-going characteristic with the constraint that RY =0atr= oo,
1 - i
RY (rg) = ke~ / e 20y, n JZ(r) dr; (5.14)
o

915 A32-8


https://doi.org/10.1017/jfm.2021.63

https://doi.org/10.1017/jfm.2021.63 Published online by Cambridge University Press

One-dimensional acoustics in inhomogeneous atmospheres

and changing integration variables from r¢ to 7¢ using dry = c¢o dry,

. 00 . ’
R@mﬂzmmpf e 2%, In \[Z(x)) drg. (5.15)

70

In this form, we recognize that the reflected amplitude is related to the Fourier transform
of 9;,In+/Z(19) evaluated at frequency 2w. The adiabatic invariance of R4 at high
frequencies, therefore, arises from the fact that this Fourier amplitude is very small when
the wave frequency is much higher than the characteristic frequencies of the reflecting
structure. Although (5.15) is only the first step in an iterative solution to (5.4), it is
increasingly accurate in the high-frequency limit because of the diminishing amplitude
of the reflected wave.

6. Nonlinear acoustics

Our applications of interest involve the nonlinear effects of wave self-distortion, shock
formation and shock evolution. So, we now consider wave motion in the nonlinear regime.
We begin by demonstrating the existence of nonlinear solutions to certain problems in
the high-frequency limit. We then evaluate the nonlinear error associated with Lighthill’s
proposal that the linear invariant may be used to approximate nonlinear problems. Finally,
we consider the validity of Lighthill’s shock formation criterion.

6.1. Nonlinear solutions

In certain cases, we can find nonlinear solutions. The nonlinear equation (4.3) is integrable
provided, first, that reflections are negligible so a travelling wave can self-consistently be
considered quasi-simple (85 = 0, so v = +8c¢/q), either by virtue of the high-frequency
limit or because Z is constant; and second, that the environmental variables (A, pg, co)
obey some power law relationship while ¢ is constant.

For a quasi-simple wave, (4.3) becomes

dr8j.=wa 0y, INA + Wy 9y In po + Wedyy Inco + wydy, Ing, (6.1)

where §j,. = 8J1/co is the normalized perturbation,

8.
Wiz—g%;@ 6.2)
1
WMzi;mf”W—ﬁx (6.3)
N
Wer = 2wt — % (6.4)
and
8j+ ( 2qz> 2q ~(+g/ay o (£ 2 —(+a/q
Wer = —— [1 = = |+ =50 =f Y+ | — — —f Infy, (6.5)
e 2 y2) = 2 * g v*
where we define
fi=14+ géji. (6.6)

Adding the requirements that ¢ is constant, and that there exist power law relationships
between A, pp and co so that their logarithmic derivatives are linearly related,
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renders the problem integrable. Let X(ry) be any function of position, and let A(rp) o
X(ro)*, po(ro) o< X(ro)*e and co(rg) o< X(ro)*e for constants ku, k, and k.. Then, (6.1) is
solved when the quantity

8j+ .
X(ro) exp [ / ' doj ] 6.7)

kawat + kpwpt + kewet

is conserved along the active characteristics — that is, along C™ if the wave is travelling
outward, or along C~ if it is inward. (Note, the integral diverges as its arbitrary lower
bound tends to zero, although expression (6.7) converges in this limit.)

For a concrete example, consider the case of a uniform fluid in which only A varies
along the channel. This corresponds to X(rg) = +/A(rp), ka = 2, and k, = k. = 0 above.
Using (6.7) and the above definitions, we see that

8+ 8\ dsJ
VA exp / £ 227) 2 (6.8)
2 ¢o 8J

is conserved along C* in this case. When the nonlinear term is negligible, this implies that
R+ is conserved along C* in the high-frequency limit. The novel element is a nonlinear
correction to the effective wave amplitude, which also modifies the propagation speed.

The conservation of Ry for small-amplitude perturbations in this example is not
surprising, given our linear results in § 5. Indeed, one can reconstruct this linear result
from (6.7) by noting that wo+ = wy+ = —§j. /2 and wer = —38j, /2 to first order in §j .,
while wy+ = 0 to the same order.

A counterexample is the special case in which Apocg is independent of rp (i.e. kg +
k, + 3ke = 0), for which the conservation of R+ would imply that §j is constant. In
this case, the denominator in (6.7) is zero to linear order in §j; the nonlinear terms then
imply that §j, varies logarithmically with X(ro9) even for small perturbations. Because
the conservation of R+ can be understood in terms of energy conservation, and because
our numerical experiments for this case are consistent with the hypothesis that R+ is
conserved for small perturbations, we defer a full analysis to later work.

6.2. Nonlinear error incurred by fixing the linear adiabatic invariant

The essence of Lighthill’s proposal is that an adiabatic invariant derived from linear
acoustics, such as R, remains a useful approximate invariant for nonlinear acoustics.
It can therefore be used to evaluate wave self-distortion, shock formation, and weak shock
evolution.

We have already seen that the nonlinear invariant of (6.7), when it exists, reduces to
R+ when nonlinear terms are negligible (at least, when A ,oocg varies with rg). To address
the more general case in which we cannot obtain a nonlinear solution, we compare the
nonlinear equation for dfg]i, (4.3), with what one would derive from (5.4). To leading
order in v/co and éx, the residual is

v8xd,, InA £ co(1 + q) ()29, Infco(1 + g)*/2py 1, (6.9)
which for quasi-simple waves (6v = %codx to leading order) further simplifies to
+ co(1 + q)(8%) 29y, IN[AY Do (1 + 90>y 1. (6.10)

In addition to being second order in éx and v/cg, this is proportional to logarithmic
gradients of the background quantities. From this we infer that, if the background
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quantities vary on a scale H, a waveform with peak velocity vy that is predicted from
(5.4) will be spoiled by nonlinear distortions after it has propagated a distance ~ coH/v;.
However, shock formation occurs after only ~ c¢g/v; wavelengths (co1/v1, using ‘A’ here
to mean wavelength rather than wave speed), so the relative nonlinear error at the wave
peak is only of order A/H at shock formation.

6.3. Shock formation

We turn to the criterion for shock formation. Importantly, shocks form within waves at
local maxima of the compression rate — at or near nodes of v, rather than its peaks.
However, nonlinear distortion, which is of order v/cg, is zero at the node. Lighthill’s
criterion for shock formation is derived by assuming that the invariant from linear theory
(e.g. our R*) is conserved along C* characteristics. So long as wave reflection is also
negligible and the medium is otherwise still, so that the conditions for a quasi-simple
wave are met, Lighthill’s criterion for shock formation is exact.

For example, there is no reflected amplitude at the leading edge of a wave travelling
into a still medium so long as Z is continuous. Lighthill’s criterion is, therefore, exact
for the formation of a ‘head’ shock forming at the wave’s leading edge. To reinforce this
point, we demonstrate in appendix A that Lighthill’s proposal reproduces the differential
equation obtained in the ‘wavefront expansion’ technique (Whitham 1974) for identifying
the shock criterion at a head shock. As reflection is negligible in the high-frequency
limit, Lighthill’s criterion is also essentially exact for internal and ‘tail’ shocks within
high-frequency waves.

Even if the background is acoustically active, the only effect at a node of J is to change
the wave speed by (1 — g)J+/2. As the average of this quantity is close to zero, it has little
effect on the C* trajectories whose crossing indicates shock formation.

On the other hand, significant wave reflection reduces the strength of gradients within
the wave. Internal and ‘tail’ shocks can, therefore, be delayed or eliminated by sufficiently
strong reflection. Of course, the reflected wave may also create its own shock.

7. Numerical tests

We present three numerical tests covering the phases before, at, and after shock formation.
We use the hydrodynamics code FLASH4.6 (Fryxell et al. 2000) set to use the HLLC
Riemann solver with fifth-order reconstruction. The spherical simulation domain (A =
47r?) spans 1 < r/ ro,; < 3 with uniform radial resolution. The initial fluid pressure is
constant, but the density increases as po oc r* such that Z is constant. We adopt an ideal
gas equation of state with y = 5/3. Variations in pressure, density, and velocity related by
v = dc/q are applied at the inner boundary to generate an outward-travelling wave.

First, we test the prediction that there is no wave reflection in a region of uniform
impedance, so wave luminosity should be conserved along characteristics. Here, we
introduce one period of a sinusoidal wave (which starts in compression), and set its
velocity amplitude to 1073¢y at the inner boundary. We choose w so the acoustic
wavelength is twice the density scale height (twice r/4) at the inner boundary; however, the
drop in cg causes the wavelength to be significantly smaller than /4 at the outer boundary.
Figure 2 shows the normalized instantaneous wave luminosity L,,+ from four simulations
with resolution that increases relative to a base resolution of N = 8192 cells. Wave
maxima and minima both display peaks of L,,;, which are slightly higher at the maxima.
We see that the deviations from constant luminosity in the wave maxima (minima)
decrease with increasing spatial resolution to a maximum of 0.02 % (0.4 %) for the highest
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Figure 2. Wave pattern (¢) and normalized instantaneous wave luminosity (a,b) of a single sinusoidal
transient wave propagating in a spherical (A o %), constant-pressure background in which density increases as
po(r) o< rg such that the impedance is constant. Multiple snapshots are over-plotted to indicate the transient’s
progression. Each coloured line represents a different simulation resolution, where the number of uniformly
spaced grid cells is listed in units of the base resolution N = 8192. The velocity perturbation is small, less than

10~3¢g over the domain. Panel () provides an expanded view of panel (b) to show how the small deviations
from perfect wave luminosity conservation depend on numerical resolution.

resolution simulation. The numerical results support the conclusion that luminosity is
conserved along characteristics, across nearly two orders of magnitude variations in
background density, for a wave travelling in a fluid with constant impedance.

Next, we check Lighthill’s proposition that mildly nonlinear wave distortion can be
accurately predicted using the linear adiabatic invariant. Using the same background
profile and initialization strategy, and adopting the highest resolution, we increase the
amplitude of the sinusoidal wave to 10~2¢y while doubling the wave frequency, so that
shock formation occurs within the domain. In figure 3, we compare numerical and
analytical predictions for the form of the wave pulse at the time of shock formation.
The two agree very well, at least at the level estimated in § 6.2, despite the fact that the
wave has traversed over two orders of magnitude in background density from the point of
initialization.
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Figure 3. Analytical estimate (blue curve, obtained by conserving R4 along Ct characteristics) and
numerical result (black dots) for a wave at the point of shock formation. The wave amplitude is initialized to
10~2¢g and the wavelength is initially /2. Other aspects of the simulation match those in the highest-resolution
runs shown in figure 2. From initialization to shock formation, the wave has traversed a range of densities
varying by a factor of 3.41* = 135.

For a final demonstration, we show in figure 4 that the adiabatic invariance of ‘R4 can
be used to adapt Whitham’s equal-area method to weak shock evolution within a varying
background. Here, a wave train is introduced for which the initial waveform is a ‘reverse
sawtooth’ with a linear rise and sudden decline in R (f9). The waveform converts to
a ‘forward sawtooth’ at the point of shock formation. After shock formation, the wave
dissipates in a manner we discuss in detail in a companion paper (Matzner & Ro 2021).
Notably, the leading or ‘head’ shock decays distinctly more slowly than the ‘internal’
shocks that form within the wave train.

8. Summary and conclusions

Our primary findings are as follows:

(1) The linearized equations of hydrodynamics are compactly expressed (5.4) in terms
of wave amplitudes R, which interact in the presence of variations of the
impedance.

(i1) In the context of ‘quasi-simple’ waves (§5.1) — those in which one wave family
is absent and not regenerated by reflection — the conservation of Ry or R_
is consistent with the invariant proposed by Lighthill (1978), and also with the
conservation of wave luminosity (§ 5.2).
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Figure 4. One snapshot of shock evolution within a wave with an initial ‘reverse sawtooth’ waveform. The
simulation matches analytical predictions for the shock formation radius (orange vertical line) and for the
velocity amplitudes of the head shock and internal shocks (blue and black dashed lines, respectively) to high
accuracy. These predictions, discussed in depth in a companion paper (Matzner & Ro 2021), rely on the
adiabatic invariance of R.

(iii) Familiar results about the dynamics of reflection follow directly from the amplitude
equation (§5.3). In particular, wave reflection is strongly suppressed in the
high-frequency limit.

(iv) Lighthill’s proposition amounts to the statement that linear conservation laws may be
extrapolated into the mildly nonlinear regime, providing a simple means to calculate
wave self-distortion and shock formation, as well as weak shock dissipation by
Whitham’s equal-area method. We validate this method and delimit its validity.
In the high-frequency limit, the nonlinear error is minimal at the point of shock
formation (§ 6.2). Because there is no nonlinear error at the wave node, Lighthill’s
criterion for shock formation is exact so long as the shock forms at a node and
reflection is negligible, as it is for ‘head’ shocks, and for any shocks generated within
high-frequency waves (§ 6.3).

(v) Going beyond linearized theory, we find that nonlinear solutions are available in a
restricted class of problems (§ 6.1). In the example considered, the novel element is a
nonlinear correction to the wave amplitude, which leads to a modified phase speed.

In a companion work (Matzner & Ro 2021), we use these findings to predict the
evolution of shock strength and shock dissipation in the context of super-Eddington
outbursts of evolved massive stars. There, we provide useful formulae for the
shock-deposited heat, and we evaluate the potential of head shocks to eject matter from
the stellar surface.
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Appendix A

We wish to demonstrate the differential equation involved in identifying shock formation
by the ‘wavefront expansion method’ (Whitham 1974) is reproduced by Lighthill’s
proposition — i.e. by assuming that R, or equivalently L, is conserved along C*
characteristics, and that the equipartition condition holds.

The velocity downstream of an outward-travelling wavefront located at ry (¢) is, to first
order,

v =1+ &y, (A1)

where £ = r — ro(¢) is the distance behind the wavefront, vi = 9,v is the partial spatial
derivative of v, and vy = 0 for a static background. (Here, r and ro+ do not refer to
the same fluid element.) Note that d;§ = —co and 9,& = 1. We may neglect reflection
in the vicinity of the wavefront as the upstream fluid is considered to be undisturbed in
the wavefront expansion technique (see § 6.3). Given that counter-propagating waves are
negligible, equipartition holds (§¢ = gv) and characteristics travel at the speed

+1
u+c:c0+”Tgvl. (A2)
From (5.6) and (A1), the wave luminosity of a characteristic is
Ly+ = E*Apocovy, (A3)
with partial derivatives
dLy+ = EApocov1(—2couv1 + 28v)), (A4)
0rLy+ = EApocovy (§v10, In(Apoco) + 2v1). (AS)

Substituting (A2)—(AS) into (5.7) and retaining lowest-order terms (acceptable because of
a vanishing nonlinear error; see § 6.2) yields the Ricatti equation for v;

C +1
0=uv + 303, In(Apoco)v + Vva, (A6)

previously obtained by Tyagi & Sujith (2005) and Ro & Matzner (2017) using the
wavefront expansion technique.
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