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ABSTRACT

The new Solvency II Directive and the upcoming IFRS 17 regime bring sig-
nificant changes to current reporting of insurance entities, and particularly in
relation to valuation of insurance liabilities. Insurers will be required to valuate
their insurance liabilities on a risk-adjusted basis to allow for uncertainty inher-
ent in cash flows that arise from the liability of insurance contracts. Whilst most
European-based insurers are expected to adopt the Cost of Capital approach to
calculate reserve risk margin — the risk adjustment method commonly agreed
under Solvency II and IFRS 17, there is one additional requirement of IFRS 17
to also disclose confidence level of the risk margin.

Given there is no specific guidance on the calculation of confidence level,
the purpose of this paper is to explore and examine practical ways of es-
timating the risk margin confidence level measured by Probability of Suffi-
ciency (PoS). The paper provides some practical approximation formulae that
would allow one to quickly estimate the implied PoS of Solvency II risk mar-
gin for a given non-life insurance liability, the risk profile of which is speci-
fied by the type and characteristics of the liability (e.g. type/nature of busi-
ness, liability duration and convexity, etc.), which, in turn, are associated
with

• the level of variability measured by Coefficient of Variation (CoV);
• the degree of Skewness per unit of CoV; and
• the degree of Kurtosis per unit of CoV2.

The approximation formulae of PoS are derived for both the standalone class
risk margin and the diversified risk margin at the portfolio level.
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1. INTRODUCTION

In the integrated actuarial and financial valuation, liabilities are generally eval-
uated using the market-consistent valuation, which ultimately is equivalent to
taking theBest Estimate1 and adding aRiskMargin on top of it either implicitly
or explicitly (see Babbel et al., 2002; Bühlmann, 2004; Møller and Steffensen,
2007; Wüthrich et al., 2007). In an ideal situation when the market is complete,
the liabilities are fully hedgeable and their market-consistent value can be in-
ferred directly from capital markets using a replicating portfolio approach, or
equivalently, a mark-to-market approach. In such a case of perfect hedge, the
market-consistent value is nothing but a risk-adjusted expected value of future
liability cashflows taken under a unique equivalent martingale measure. Such
a risk-adjusted mean value of future liability cashflows would then implicitly
allow for a risk margin. However, in reality, insurance risks are non-hedgeable
in their nature and perfect replication is impossible as there is no established
deep liquid market for trading insurance liabilities, or equivalently, insurance
markets are incomplete. In this situation, there is no unique equivalent martin-
gale measure and the valuation suffers from an overabundance of alternatives.
One of the natural ways of arriving at themarket-consistent value of liabilities in
incomplete markets is to use various optimal hedging techniques that minimise
the variance of the payoff risk. Examples of optimal hedging include mean-
variance hedging, quantile hedging, indifference pricing (see Møller and Stef-
fensen, 2007) and minimum-entropy martingale transform (see Møller, 2004).

Another alternative way of arriving at the market-consistent value of non-
headgeable liabilities in insurance markets is to use a mark-to-model approach
under which the liabilities could be transferred to awilling rational counterparty
at a price that would fully reflect themarket/buyer’s perception of risk. The price
for assuming risk from insurance liability portfolio transfer comes in the form
of an economic risk margin that is explicitly calculated and stacked on top of
the best estimate. In this case, the risk margin is equivalent to the “current exit
value” defined by the IASB (see IASB, 2007) as “The amount the insurer would
expect to pay at the reporting date to transfer its remaining contractual rights and
obligations immediately to another entity”.

Under both the new Solvency II Directive and the upcoming IFRS 17
regime,2 insurers will be required to evaluate their insurance liabilities on a
market-consistent basis allowing for uncertainty inherent in cash flows that
arise from the liability of insurance contracts. In particular, Solvency II man-
dates the so-called Cost of Capital (CoC) approach under which the market-
consistent risk margin is calculated as the hypothetical cost of regulatory cap-
ital necessary to runoff or transfer all liabilities following the financial distress
of the insurer. Whilst in principle the use of any market-consistent valuation
approach is allowed under the IFRS 17, in view of Solvency II it is expected
that most European-based insurers will adopt the CoC approach to calculat-
ing reserve risk margin. However, the IFRS 17 introduces additional complex-
ity to the market-consistent valuation requirements compared to Solvency II
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— it also requires to disclose the confidence level to which the risk margin
corresponds.

The notion of the confidence level of risk margin is not new and has been
in use in actuarial practice in various forms, mainly for setting risk margin with
reference to the level of prudence in liability valuation. It also resonates with
some traditional approaches to allowing for reserve uncertainty/variability in
liability valuation. For example, in Australia, the non-life technical provisions
are required by APRA3 (see APRA Prudential Standards GPS 310, 2010) to be
set with the minimum of 75% of Probability of Sufficiency (PoS),4 in which case
the implied risk margin is the difference between the 75th percentile of liabil-
ity distribution profile and the central estimate.5 In general, the PoS itself is a
measure of prudence in liability valuation:

• PoS below 50% indicates the technical provisions are set below the central
estimate (under-reserved position);

• PoS of 50% to 60% indicates the technical provisions are set approximately
at the level of central estimate (weak prudence);

• PoS of around 75% indicates that technical provisions are set so that likely
(i.e. up to 1-in-4 years) reserve deteriorations above the central estimate are
fully absorbed by the technical provisions (adequate prudence); and

• PoS above 75% indicates that the technical provisions could also absorb
some of unlikely reserve deteriorations above the central estimate (strong pru-
dence).

Given that there is no specific guidance on the calculation of confidence level,
the purpose of this paper is to examine the risk margin confidence (prudence)
measured by PoS. The paper provides some practical approximation formulae
that would allow one to quickly estimate the implied PoS of Solvency II risk
margin for a given non-life insurance liability, the risk profile of which is speci-
fied by the type and characteristics of the liability (e.g. type/nature of business,
liability duration and convexity, etc.), which, in turn, are associated with the
following:

• the level of variability measured by Coefficient of Variation (CoV);
• the degree of Skewness per unit of CoV, i.e. Skewness-to-CoV (SC) ratio; and
• the degree of Kurtosis per unit of CoV2, i.e. Kurtosis-to-CoV2 (KCsq) ratio.

The approximation formulae of PoS are derived for both the standalone class
risk margin and the diversified risk margin at the portfolio level.

The structure of this paper is as follows. In Section 2, we define and out-
line the notions of reserve risk, its profile and risk margin, and provide the key
assumptions made in this research.

In Section 3, we focus on providing practical approximation formulae for
PoS of Solvency II riskmargin of a standalone reserving class. Here, the PoS, be-
ing an inverse-quantile measure of the risk profile of the single reserving class, is
approximated using the two specific approximations: (1) theCornish–Fisher (C-
F) approximation (see Fisher and Cornish, 1960); and (2) the Bohman-Esscher
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(B-E) approximation (see Bohman and Esscher 1963, 1964). The C-F approxi-
mation is the quantile approximation of the non-normal distribution by a poly-
nomial of a standard normal quantiles utilising the distribution’s moments. The
C-F type of approximation formulae for PoS are derived separately for two
different cases: (1) when utilising only CoV and skewness of the non-normal
distribution; and (2) when utilising its CoV, skewness and kurtosis. The B-E
approximation is the inverse-quantile (distribution) approximation of the non-
normal distribution by a transformed Gamma distribution utilising the CoV
and skewness of the non-normal distribution. The obtained PoS approxima-
tions are compared by analysing their quality. The results of the approximation
quality analysis revealed that in most practical situations the approximations
utilising CoV and skewness only, like B-E and C-F Quadratic approximations,
are of fairly good quality, and that only in very rare extreme situations, when the
reserve risk profile is overly skewed and leptokurtotic, the kurtosis also becomes
a significant driver of the quality of approximation.

In Section 4, we provide approximations of PoS of Solvency II risk margin
of a portfolio consisting of multiple reserving classes. In general, the derivation
of the distribution of aggregate risk at the portfolio level is to a large extent
associated with dependence modelling uncertainty (see, e.g., Embrechts and Ja-
cobsons, 2016). In this paper, we consider a Gaussian dependence structure for
aggregating risks6 and estimate the first four moments of the aggregate reserve
risk profile using the Fleishman approximation7 (see Fleishman, 1978). The de-
rived moments are further used to approximate the PoS of the diversified risk
margin at the portfolio level by utilising formulae obtained in Section 3.

In Section 5, we discuss practical implementations of the PoS approxima-
tions and provide numerical examples. Finally, brief conclusions are given in
Section 6.

2. RESERVE RISK PROFILE AND RISK MARGIN - BACKGROUND AND
GENERAL ASSUMPTIONS

2.1. Reserve risk profile characteristics

Reserve risk and its carrier. Under Solvency II, the “risk” is generally defined
as a possibility of having adverse performance result (insurance, investment, or
company’s overall result) that results in “low capital performance” (i.e. a return
on capital below the shareholders opportunity CoC) and/or erosion of current
shareholders value (i.e. capital consumptions).8 In particular, the reserve risk
is the risk that provisions for past exposures will be inadequate to meet the
ultimate costs when the business is run off to extinction. The risk of reserves
developing other than expected (booked provisions) is significant for non-life
insurers, especially for long tail lines of business. Here, the reserve provisions
are generally booked at the Best Estimate (BE) plus Risk Margin, where the
risk margin plays the role of safety load reflecting the uncertainty in reserve
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best estimate. The role of the risk margin is further explained in greater detail
in Section 2.2.

The risk is often distinguished from its carrier, which is defined as a random
variable. In the case of reserve risk, its carrier is naturally defined as the reserve
value, which is random due to random nature of claims frequency and severity
and also random time lags between (a) the date the insurance event occurs and
the date it is reported; and (b) the date it is reported and the date it is eventually
settled. Because these time lags, along with underlying claim frequencies and
severities, are stochastic, booked claims liabilities have substantial risk that their
actual value realised in the future will adversely deviate from the expected value
(booked provisions).

Assumption 1. It is the distribution of the reserve risk carrier that characterises
the reserve risk, and in this paper it is referred to as the “reserve risk profile”.

Reserve risk profile: differentiation by type of business class. In practice, non-life re-
serving actuaries often use CoV as themeasure of riskiness ofmodelled reserves.
For example, personal lines likemotor and home are short tail business lines and
exhibit relatively lower CoV when compared to long tail classes like commercial
liability. However, CoV alone cannot explain all the characteristics of the reserve
risk profile, and thus higher moments of reserve distribution like skewness and
kurtosis would be required to properly capture (a) the degree of asymmetry of
odds towards adverse reserve realisations, and (b) heavy-tailedness of the reserve
distribution.

In general, the parametric distributions commonly used in insurance for re-
serving and loss modelling are of a special type:

• they are often defined by two parameters— the scale parameter and the shape
parameter; and

• their shape is totally driven by a single parameter — their shape parameter.

Equivalently, those two-parameter distributions are such, that when scaled by
their mean (location), would have a unique fixed location (unit mean) and vari-
able shape dependent on the shape parameter only, i.e. the distribution of the
following random variable Y is a single-parameter distribution and its shape is
defined by the shape parameter of X:

Y = 1
mX

X = 1 + CoVX · X̃, (1)

where X̃ = X−mX
mX CoVx

andmX and CoVX are the mean and CoV of X, respectively.
In this paper, we focus only on the class of two-parameter distribu-

tions with single shape parameter and denote it by SSP. Examples of two-
parameter distributions of SSP type include9 Gamma, Inverse-Gaussian
(Wild), Log-Normal, Dagum, Suzuki, Exponentiated-Exponential (Verhulst),
Inverse-Gamma (Vinci), Birnbaum–Saunders, Exponentiated-Fréchet and
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Log-Logistic. It should be noted that not all two-parameter distributions are
of SSP type, and an immediate example of that would be the Log-Gamma dis-
tribution defined on the positive real line each of the two parameters of which
would drive both the location/scale and the shape of the distribution at the same
time.

As illustrated above in (1), for any distribution of SSP type its shape in gen-
eral and its CoV in particular are defined by the distribution’s shape parameter
only. Also, it is a known fact from the Distribution Analysis of the Probability
Theory that any analytical cumulative distribution function can be expanded
using the C-F expansion (cf. Fisher and Cornish, 1960), which utilises the dis-
tribution’s skewness, kurtosis10 and other relative moments of higher order to
fully explain its shape. In the case of random variable X̃, the shape of its dis-
tribution is completely explained by the skewness, kurtosis and other relative
moments of higher order of X. This implies that all relative moments of third
order and higher of any distribution of SSP type are completely defined by its
shape parameter.

Therefore, the distinctive features of the distributions of SSP type are as
follows:

• their shape parameter is a function of CoV;
• their any higher order statistic is fully determined by the shape parameter and

hence is a function of CoV, and in particular
– relative skewness measured by SC ratio is a function of CoV;
– relative kurtosis measured by KCsq ratio is a function of CoV2;

• if the SSP distribution belongs to a certain parametric family (e.g. Log-
Normal, Gamma or any other parametric family from SSP), then scaling
it by its mean preserves the parametric family it belongs to and its shape
parameter, i.e. if X ∼ Fu,v with mean mX and standard deviation sX, scale
parameter u and shape parameter v, then Y = 1

mX
X ∼ Fu′,v with mean 1 and

standard deviation CoVX.

The latter feature also implies that

Fu,v(x) = Fu′,v

(
x
mX

)
. (2)

The SSP distributions can be split into three main categories:

• Moderately skewed distributions (1.5 < SC � 3)
– Gamma;
– Suzuki — the distribution admits only CoV � 53%;
– Inverse-Gaussian11 (Wald);
– Exponentiated-Exponential (Verhulst) for CoV > 40%;

• Significantly skewed distributions (3 < SC � 4)
– Log-Normal for CoV � 100%;
– Exponentiated-Exponential (Verhulst) for CoV ∈ (30%, 40%);
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• Extremely skewed distributions (SC > 4)
– Inverse-Gamma (Vinci), includes Inverse-Chi-Squared;
– Birnbaum–Saunders;
– Log-Logistic (Fisk);
– Exponentiated-Exponential (Verhulst) for CoV < 30%;
– Exponentiated-Fréchet.

The parametric distribution commonly used in reserving is the Log-Normal
distribution (e.g., see Bateup and Reed, 2001; FINMA, 2006; Taylor, 2006;
CEIOPS, 2010). Its skewness and kurtosis are respectively defined by corre-
sponding ratios:

SC = 3 + CoV2 > 3, (3)

KCsq = 16 + 15CoV2 + 6CoV4 + CoV6 > 16. (4)

However, the Log-Normal distribution, whilst being suitable for modelling a
wide range of skewed medium- to heavy-tailed risk profiles, is still not the best
one for modelling risk profiles with low skewness and light tail or excessively
high skewness and heavy tail.

Assumption 2. This paper considers the following four distributional Domains
of Attraction (DoAs) each induced by one (centre of DoA) of the four known
SSP parametric distributions denoted as PD set — Gamma, Inverse Gaussian,
LogNormal and Inverse Gamma, and representing a range of practically feasible
reserve distributions with SC (KCsq) ratio comparable to that of its centre:

• Gamma DoA — for modelling reserve risk profiles with relatively low skew-
ness and light tail, i.e. with SC ratio close to 2.0;

• Inverse-Gaussian (Wald) DoA — for modelling reserve risk profiles with
moderate skewness and tailedness, i.e. with SC ratio close to 3.0;

• Log-Normal DoA— for modelling reserve risk profiles with medium to large
skewness and heavy-tailedness, i.e. with SC ratio taking values from the range
of 3.0 to 3.8;

• Inverse-Gamma (Vinci) DoA — for modelling reserve risk profiles with ex-
cessively large skewness and heavy-tailedness, i.e. with SC ratio taking values
from the range of 3.8 to 6.

All the four PD induced DoAs together in principle cover a fairly wide range of
practically feasible reserve risk profiles with SC ratio ranging from 2 to 6 (e.g.,
see Salzmann et al., 2012; Guy Carpenter, 2014). It is assumed that any reserve
risk profile with volatility CoV, relative skewness SC and relative kurtosis KCsq
could be located in the system of CoV-SC (KCsq) coordinates with respect to
the PD parametric distributions — centres of the four DoAs considered. This
is the key assumption of reserve risk profile characterisation that is further used
in the derivation of PoS approximation formulae in Sections 3 and 4.
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TABLE 1

SC AND KCSQ RATIOS FOR THE FOUR PARAMETRIC DISTRIBUTIONS.

PD Distribution SC Ratio as a Function of CoV KCsq Ratio as a Function of CoV2

Gamma 2 6
Inverse-Gaussian
(Wald)

3 15

Log-Normal 3 + CoV2 ∈ (3, 4), CoV < 100% 16 + 15CoV2 + 6CoV4 + CoV6 > 16

Inverse-Gamma
(Vinci)

4
1−CoV2 > 4, CoV < 100% 30(1− 1

5 CoV
2)

(1−CoV2)(1−2CoV2)
> 30, CoV � 70%

TABLE 2

DIFFERENTIATION OF RESERVE RISK PROFILE BY TYPE OF RESERVE CLASS.

Type of Reserving Class

Skewness Example of Reserving
Duration CoV Range (SC Ratio) PD Induced DoA Class
Short Tail 6%–12% 1.9 to 2.1 Gamma Motor (ex Bodily Injury)
Short Tail 10%–16% 2.0 to 3.0 Gamma, Inverse-Gaussian (Wald) Home
Short Tail 10%–18% 2.9 to 3.1 Inverse-Gaussian (Wald), Log-Normal Comm Property/Fire, Comm Accident
Long Tail 12%–25% 3.0 to 3.5 Log-Normal Motor Bodily Injury, Marine
Long Tail 18%–50% 3.0 to 4.0 Log-Normal, Inverse-Gamma (Vinci) Workers Comp, Prof Liab, Comm Liab
Long Tail 25%–70% >4 Inverse-Gamma (Vinci) Asbestos and Other Long Tail Books

The statistical characteristics of the PD parametric distributions (centres of
the four proposed PD induced DoAs) are provided in Table 1. Their SC and
KCsq ratios are functions of CoV and CoV2, respectively, and exist for all prac-
tically feasible reserve risk profiles, i.e. when CoV � 70%.

We further use the four PD induced DoAs to illustrate how reserve risk pro-
files could be differentiated by type of business/reserving class using CoV and
SC. This is presented in Table 2. Here, one would expect that in practice feasible
reserve risk profiles have volatility measure CoV in the range of 6% to 70% and
relative skewness SC in the range of 2 to 6. These ranges can be supported both
directly and indirectly by numerous academic research and empirical studies in
reserving (e.g., see Salzmann et al., 2012; Guy Carpenter, 2014).

The graphs of Skewness and Kurtosis as functions of CoV derived from SC
and KCsq ratios are provided in Figures 1 and 2. Here, any particular reserve
risk profile with skewness S = SC × CoV and kurtosis K = KCsq × CoV2

can be located in the system of CoV-S(K) coordinates with respect to the four
PD parametric distributions. These graphs demonstrate monotonic increase
in the level of Skewness and Kurtosis for a given level of CoV when moving
sequentially across the PD set of four proposed parametric distributions from
Gamma to Inverse-Gamma.

https://doi.org/10.1017/asb.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.12


PROBABILITY OF SUFFICIENCY OF SOLVENCY II RESERVE RISK MARGINS 745

Reserve Risk Profile

•

FIGURE 1: Skewness as a function of CoV: reserve risk profile vs. four PD parametric distributions.

Reserve Risk Profile

•

FIGURE 2: Kurtosis as a function of CoV: reserve risk profile vs. four PD parametric distributions.

Aggregate reserve risk profile. The derivation of the distribution of aggregate
risk at the portfolio level is in general not a trivial task and to a large extent is
associatedwith dependencemodelling uncertainty. InEmbrechts and Jacobsons
(2016), the authors studied the lower and upper bounds of the quantile estimate
of the aggregate risk distribution and showed how wide the interval estimate
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could be when the uncertainty in the choice of the most appropriate dependence
structure is taken into account.

Assumption 3. The choice of the most appropriate dependence structure should
be determined through the use of adequate calibration process. However, this
paper does not focus on the calibration of the most appropriate dependence
structure for aggregating reserve risk, but rather assumes that in practice the
Gaussian dependence structure is likely to be reasonable, if not the most ap-
propriate one, for aggregating reserve risk, given the confidence levels we are
looking at do not include extreme quantiles.

It is also assumed that the matrix of Kendall’s tau correlation coefficients, R,
is available and used to calibrate the Gaussian copula. This means that the rank
correlation (Kendall tau) between classes i and j , ri j = R(i, j), is transformed
to the corresponding linear correlation coefficient ρi j in the following way:

ρi j = sin
(π

2
ri j
)

. (5)

Assumption 4. It is assumed in this paper that, in practice, any reserve risk profile
is characterised sufficiently well by its finite moments of up to the fourth order,
i.e. mean (best estimate), CoV, skewness and kurtosis. In particular, the random
reserve value, X, can be expressed through its centralised and normalised copy:

X = BEX · (1 + CoVX · X̃) , (6)

where X̃ = X−BEX
BEX·CoVX

is a non-normal random variable with zero mean and
unit standard deviation. The random variable X̃ is then approximated using
the Fleishman approximation:

X̃ = aZ+ b(Z2 − 1) + cZ3, Z∼ N (0, 1), (7)

where the Fleishman coefficients a, b and c are calibrated by matching the sec-
ond, third and fourth moments of X̃ to 1 (standard deviation), γ (skewness)
and ι + 3 (absolute or non-centralised kurtosis), respectively. Please note that γ

and ι are also skewness and kurtosis of X as they are invariant12 with respect to
translation and scaling. In Section 4, the paper considers two different cases of
Fleishman approximation:

1. approximation using skewness only, i.e. X̃ = aZ+ b(Z2 − 1); and
2. approximation using skewness and kurtosis, i.e. X̃ = aZ+b(Z2−1)+cZ3.

The calibration of Fleishman coefficients in the first approximation is straight-
forward and can be analytically expressed, whereas the coefficients of the second
approximation are numerically pre-computed and tabulated in the appendices
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for a given level of CoV and the skewness and kurtosis expressed as functions
of CoV.

These are the key assumptions used in the derivation of characteristics of
aggregate reserve risk profile outlined in Section 4. The work done in Section
4 could be further extended to other types of copula structures. For example,
the recent research work by Gijbels and Herrmann (2014) provides some useful
insight into the approximation of distribution of sum of random variables with
copula-induced dependence structure. This can be utilised in order to alter the
approximation formulae for PoS of risk margin at the aggregate reserve risk
level already obtained in Section 4 to allow for the use of other non-Gaussian
dependence structures.

2.2. Reserve risk margin and its level of confidence

Risk margin. The risk margin of the non-hedgeable insurance liabilities is
similar to what is called “available solvency margin” (or capital requirements)
under Solvency II. Both represent a form of safety load and are important and
necessary to ensure the overall sufficiency of the solvency assessment. However,
the role the risk margin plays is quite distinctive from that of “available solvency
margin”. The riskmargin reflects the uncertainty in the best estimates of reserves,
whereas the actual volatility of reserving process (reserve risk) is fully absorbed
by capital requirements. This can be illustrated by decomposing themean square
error of estimating the unknown true unbiased mean of reserves, BE, by its best
estimate, B̂E, provided by a reserving actuary:

E

[(
BE − B̂E

)2] = E

[((
BE − E

[
B̂E
])+ (

E
[
B̂E
]− B̂E

))2]
= (

BE − E
[
B̂E
])2 + 2E

[(
BE − E

[
B̂E
]) (

E
[
B̂E
]− B̂E

)]
+ E

[(
E
[
B̂E
]− B̂E

)2]
= bias2 + Var

[
B̂E
]

= bias2 + E
[
Var

[
B̂E |F]]+ Var

[
E
[
B̂E |F]] , (8)

where bias = BE − E
[
B̂E
]
; F = σ {M,BE} is the information filtration (σ -

algebra) generated by a set of models M and a set of true parameters BE. The
first term in (8), mean squared bias, is a matter of insurance supervisor’s at-
tention and its minimisation is regulated in Pillar II of Solvency II. The second
term is the expected variability of reserve risk process, which is fully captured by
the Solvency II capital requirements, and the latter term is the volatility of the
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mean best estimate, which represents the uncertainty in the true best estimate of
reserve and the choice of the most appropriate actuarial model. Therefore, this
latter term is captured by the risk margin.

The role the risk margin plays in measuring reserve best estimate uncertainty
perfectly resonates with the role it plays in the market-consistent valuation of
reserves in which the risk-adjusted (market-consistent) expected value of future
liability cashflows would implicitly allow for a risk margin.

As was already mentioned in Section 1, the market-consistent value of non-
hedgeable liabilities in incomplete insurance markets can be obtained by using
either (1) various optimal hedging techniques that minimise the variance of the
payoff risk (e.g., seeMøller, 2004;Møller and Steffensen, 2007) or, alternatively,
(2) a mark-to-model approach under which the liabilities could be transferred
to a willing rational counterparty at a price that would fully reflect the mar-
ket/buyer’s perception of risk. The price for assuming risk from insurance lia-
bility portfolio transfer comes in the form of an economic risk margin that is
explicitly calculated and stacked on top of the best estimate. In this case, the
risk margin is equivalent to the current exit value defined by IASB (see IASB,
2007) as “The amount the insurer would expect to pay at the reporting date to
immediately transfer its remaining contractual rights and obligations to another
entity”.

Under the upcoming Solvency II, the prescribed approach to calculating risk
margin of non-hedgeable insurance liabilities is the CoC approach. Under the
CoC approach, themargin for uncertainty in liability valuation is directly linked
to the market price for assuming reserve risk from insurance liability portfolio
transfer by a willing third party (cf. Strommen, 2006). This market price is mea-
sured by the cost of regulatory capital required to runoff all liabilities. Exactly in
such a context the CoC approach was first introduced in the Swiss Solvency Test
(SST) in 2004 (cf. SST, 2004; SCOR, 2008; Sandström, 2011). The derivation of
CoC risk margin entails (for details please refer to Sandström, 2011):

• projecting the Solvency Capital Requirements (SCR) net of diversification
benefits for non-hedgeable risks from time t = 1 to full runoff;

• calculating the capital charge at the end of each projection year by multiply-
ing SCRt by the CoC charge ct; and

• taking the total present value of projected capital charges to determine the
overall CoC risk margin.

Assumption 5. It is not the aim of this paper to provide the derivation of the
CoC risk margin as it is assumed here that it is pre-calculated and provided
by reserving and/or capital actuaries at both single class level and the portfolio
level. The CoC risk margins are assumed to be expressed as a percentage of
reserve best estimate BE and denoted by

• ηi — relative risk margin for i th standalone reserving class expressed as a
percentage of i th class’s best estimate BEi ; and

https://doi.org/10.1017/asb.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.12


PROBABILITY OF SUFFICIENCY OF SOLVENCY II RESERVE RISK MARGINS 749

• η� — relative risk margin for the portfolio of multiple reserving classes ex-
pressed as a percentage of portfolio’s best estimate BE� .

In practice, the relative risk margin of booked technical provisions does not
exceed 30% (e.g., see IAA, 2009). We use this as an assumption of practical
feasibility of η throughout the paper.

Level of confidence: measurement and approximation. The IFRS level of confidence
of the Solvency II risk margin is measured by PoS. For a given random reserve
value X with best estimate BEX, level of variability CoVX and risk margin ηX
the PoS is defined as

PoS = P [X � BEX · (1 + ηX)] = α. (9)

To solve for unknown level of PoS, α, one would need first to invert PoS by
taking Value at Risk (VaR) of X at α

VaRα(X) = BEX · (1 + ηX) , (10)

and then express VaRα(X) through the VaR of centralised and normalised copy
of X, X̃ = X−BEX

BEX·CoVX
, and solve the following equation for α

BEX · (1 + CoVX · VaRα

(
X̃
)) = BEX · (1 + ηX) , (11)

or equivalently the equation

VaRα

(
X̃
) = ηX

CoVX
. (12)

It should be noted that the linearity of VaR transformation used in equation
(11) holds for any distribution.

The (12) indicates that the level of PoS is dependent only on the relative risk
margin ηX (the risk margin per unit of BEX) and the level of variability of X
measured by CoVX, and thus is invariant with respect to BEX — the location
of the risk profile of X.

Assumption 6. To solve for PoS level, α, this paper suggests inverting (12) by
using the following approximations:

1. the C-F approximation of VaRα

(
X̃
)
derived from the C-F expansion se-

ries13 of the quantiles of the random variable X via its finite cumulants14
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and the standard normal quantiles:

VaRα(X̃) ≈ zα + γX
z2α − 1

6

+C1

(
ιX
z3α − 3zα

24
− γ 2

X
2z3α − 5zα

36

)
(13)

+C2

(
−γXιX

z4α − 5z2α + 2
24

+ γ 3
X
12z4α − 53z2α + 17

324

)
,

where the coefficients C1 and C2 are binary switches and take values from
{0, 1} defining the following specific cases of C-F approximation:

• C1 = C2 = 0 – second-order Cornish-Fisher (or, equivalently, first-order
Normal Power) approximation utilising only skewness γX of X;

• C1 = 1 and C2 = 0 — third-order C-F (or, equivalently, second-order
Normal Power) approximation utilising skewness γX and kurtosis ιX of
X; and

• C1 = C2 = 1 — fourth-order C-F approximation utilising skewness γX
and kurtosis ιX of X;
here, the PoS level, α, is recovered by solving a C-F polynomial equation
for standard normal quantile zα and mapping it to α = 
 (zα); and

2. the B-E approximation of PoS level, α, in the form of an inversion
VaRα

(
X̃
) �→ α using the incomplete Gamma function

α ≈ 1
�(s)

s+√
s q∫

0

ys−1e−y dy, (14)

where q = VaRα

(
X̃
) = ηX

CoVX
and s = 4

γ 2
X
, which is equivalent to using

a Gamma distribution FY(y) with Y ∼ Gamma (s, 1) evaluated at y =
s + √

s q.

We denote the set of the proposed PoS approximations above byA and will use
this notation throughout the paper.

The above approximations were proposedmainly for their ability to estimate
the reserve distribution quantiles using relative moments of the reserve distri-
bution — i.e. the reserve risk characteristics that may often be available at hand
to reserving actuaries, and that what makes them attractive from the practical
point of view. However, in general, when it comes to estimating VaR, these are
not the only methods of distribution quantile approximation available, there
are also other alternatives. Below lists these alternatives briefly outlining their
features and explaining why they were not chosen in this paper.

• TheHaldane method (see Haldane, 1938; Pentikäinen, 1987) and theWilson–
Hilfertymethod (seeWilson andHilferty, 1931; Pentikäinen, 1987)—used to
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approximate the distribution quantile using CoV and skewness of the distri-
bution. These approximation methods are based on (a) Symmetrisation and
(b) Normal Approximation — here (a) transforms a random variable into a
symmetric random variable, and (b) then applies Normal approximation to
it. It should be noted that the C-F approximations are also based on us-
ing symmetrisation and Normal approximation. As was shown in Daykin
et al. (1994), these twomethods are as good as Normal Power approximation
(i.e. second order C-F approximations) for a reasonable wide range of quan-
tiles and all practically feasible values of skewness. However, like for Normal
Power, their quality of approximation for a fairly high quantiles in the tail
of distribution would rapidly deteriorate when skewness exceeds unity, or at
most the value 1.2. Given that, it was decided to go with more known C-F
approximation.

• The GPD method — used to approximate the distribution quantiles above a
certain threshold. This approximation is based on the result from the Extreme
Value Theory (see Christoffersen, 2011; Embrechts et al., 2011; Embrechts
et al., 2015), which states that for a large enough threshold the distribution
of excess losses above the threshold can be approximated by a Generalised
ParetoDistribution (GPD). Thismethod is sensible and reliable when applied
to estimating high quantile values only up in the tail of the distribution — in
practice, it would be applied to quantiles with the return period of at least
1-in-20 years. On the other hand, reserve technical provisions are booked at
the level between 50th and 90th, or 95th percentile at most, making it difficult
to reliably apply the GPD method to estimating the PoS level of the reserve
risk margin.

• The Hill method — an alternative to the GPD method used to estimate high
quantiles up in the tail of the distribution. Like in the case of the GPD
method, it is reliable when applied to estimating quantiles above a large
enough threshold, but also additionally assumes that the tail of the distri-
bution above the chosen threshold is a regularly varying (or a power-law)
function (see Christoffersen, 2011; Embrechts et al., 2011, 2015). Again, it is
the choice of a fairly high threshold (i.e. above 95th percentile) required for
this method to be sensible that prevents it from being suitable for estimating
PoS levels of the reserve risk margin, or, equivalently, effective probability
percentages of the reserve technical provisions booked, which in practice do
not exceed 95%.

Obviously, the chosen approximations are not without drawbacks. For ex-
ample, the main known shortcoming of the C-F approximation is that its qual-
ity deteriorates as one moves to extreme quantile values up in the tail of the
distribution and/or when the distribution becomes excessively skewed and/or
leptokurtic (e.g., see Kotz et al., 1994; Christoffersen, 2011). One thing that as-
sures the applicability of the C-F approximations to estimating PoS levels in
reserving is that in reality the reserve technical provisions are generally booked
at the level ranging from 50th to 90th percentile. It is the non-extreme nature of
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these percentiles that provides such assurance. However, there is still a chance
that it may not be as ideal as one would wish in the case when dealing with exces-
sively skewed/leptokurtic reserve risk profiles, hence raising the question about
its quality, and this is what we would like to test in this paper. With respect to
the B-E approximation developed by Bohman and Esscher in their 1963–1964
seminal papers Bohman and Esscher (1963) and Bohman and Esscher (1964),
it is somewhat more promising, as, according to Seal (1977), it is superior to the
C-F approximations of second and third order (as per our definition of the C-F
approximation above), and its quality is not impacted by the level of skewness.

3. POS APPROXIMATIONS AND THEIR QUALITY - STANDALONE RESERVING
CLASS

This section focuses on the following two things:

• providing explicit analytical formulae for the four proposed approximations
of PoS level of reserve risk margin of a standalone reserving class; and

• analysing their quality.

Since the B-E approximation is the only approximation that explicitly defines
the PoS estimate, our focus is then on providing explicit formula for estimating
PoS level with the three C-F approximations:

1. “C-F Quadratic” — second-order C-F (or first-order Normal Power) ap-
proximation;

2. “C-F Cubic”— third-order C-F (or second-order Normal Power) approx-
imation; and

3. “C-F Quartic”— fourth-order C-F approximation.

This is done in Sections 3.1–3.3. The quality of obtained C-F approximations
along with the B-E approximation is then analysed in Section 3.4.

3.1. First-order normal power approximation (C1=C2=0)

The first-order Normal Power approximation of VaRα

(
X̃
)
utilises only skew-

ness γX of X:

VaRα(X̃) ≈ zα + γX
z2α − 1

6
. (15)

Let q = ηX
CoVX

. Then, to find unknown zα, we solve the quadratic equation

zα + γX
z2α − 1

6
= q, or equivalently

z2α + 6
γX

zα −
(

6
γX
q + 1

)
= 0. (16)

https://doi.org/10.1017/asb.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.12


PROBABILITY OF SUFFICIENCY OF SOLVENCY II RESERVE RISK MARGINS 753

There is only one real positive root of the quadratic equation (16) and it is equal
to

ẑα = − 3
γX

+
√

9

γ 2
X

+ 6
γX
q + 1. (17)

The PoS level, α, is then found as follows

α̂ = 
(̂zα). (18)

3.2. Second-order Normal Power approximation (C1=1,C2=0)

The second-order Normal Power approximation of VaRα

(
X̃
)
utilises both

skewness γX and kurtosis ιX of X:

VaRα(X̃) ≈ zα + γX
z2α − 1

6
+ ιX

z3α − 3zα
24

−γ 2
X
2z3α − 5zα

36
. (19)

To find unknown zα, we solve the following cubic equation

zα + γX
z2α − 1

6
+ ιX

z3α − 3zα
24

− γ 2
X
2z3α − 5zα

36
= q,

or equivalently

az3α + bz2α + czα + d = 0, (20)

where ⎧⎪⎪⎨⎪⎪⎩
a = 1

24 ιX − 1
18γ

2
X,

b = 1
6γX,

c = 1 + 5
36γ

2
X − 1

8 ιX,

d = − 1
6γX − q.

(21)

The roots of the cubic equation (20) can be found using the Cardano’s formula
(see, e.g., Abramowitz and Stegun, 1972)⎧⎪⎨⎪⎩

x1 = M+ N − b
3a ,

x2 = −M+N
2 − b

3a + i
√
3

2 (M− N) ,

x3 = −M+N
2 − b

3a − i
√
3

2 (M− N) ,

(22)
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where

M= 3

√
P +

√
P2 + Q3, (23)

N = 3

√
P −

√
P2 + Q3, (24)

where

P = 9abc − 27a2d − 2b3

54a3
, (25)

Q = 3ac − b2

9a2
. (26)

The existence of real roots of the cubic equation (20) and their quantity are
dependent on the sign of cubic discriminant

D = P2 + Q3. (27)

We consider three cases of D:

1. if D > 0, then there exists only one real root and it is equal to M+N− b
3a ;

2. if D = 0, then all three roots are real, and at least two are the same and
equal to −M+N

2 − b
3a ; and

3. if D < 0, then all three roots are real and unequal.

In the latter case, when D < 0, the three real roots can also be expressed trigono-
metrically: ⎧⎪⎨⎪⎩

x1 = 2
√−Q cos

(
ϕ

3

)− b
3a ,

x2 = 2
√−Q cos

(
ϕ

3 + 2π
3

)− b
3a ,

x3 = 2
√−Q cos

(
ϕ

3 + 4π
3

)− b
3a ,

(28)

where ϕ = arccos( P√
−Q3

).
In any case, the root ẑα is then the largest of all real roots of the cubic equa-

tion (20). The PoS level, α, is then found as follows

α̂ = 
(̂zα). (29)

The functional analysis of the roots of the cubic equation (20) can be done by
analysing its discriminant D. As was assumed earlier in Section 2, both skewness
and kurtosis are functionally related to the CoV of the random variable X. In
particular, these functional relations will take a certain form as the distribution
of X is assumed to be adhered to one of the four types of parametric distribu-
tions defined in Section 2. By taking this into account, we conclude that the
discriminant D is simply an analytical function of the coefficient of variation
CoVX and the relative risk margin ηX. The function D (CoVX, ηX) is analysed

https://doi.org/10.1017/asb.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.12


PROBABILITY OF SUFFICIENCY OF SOLVENCY II RESERVE RISK MARGINS 755

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.05

0.10

0.15

0.20

0.25

0.30

CoV

R
is

k
M

ar
gi

n

Gamma

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.05

0.10

0.15

0.20

0.25

0.30

CoV

R
is

k
M

ar
gi

n

Inverse−Gaussian

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.05

0.10

0.15

0.20

0.25

CoV

R
is

k
M

ar
gi

n

Log−Normal

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.05

0.10

0.15

0.20

0.25

0.30

CoV

R
is

k
M

ar
gi

n

Inverse−Gamma

FIGURE 3: Contour graph of the discriminant D.

on the range of feasible/practical values of CoVX and ηX:

R = {(CoVX, ηX) | 0% � CoVX � 70% , 0% � ηX � 30% } .

The Figure 3 depicts the contour graph of D surface for each of the four
parametric distributions from PD. The discriminant D changes its sign from
positive to negative at the contour graph when moving from left to right. This
is the case for Gamma and Inverse-Gamma distributions, although for most
practical situations — CoV < 20% and η > 5% for Gamma, and CoV < 50%
for Inverse-Gamma, the discriminant D has a positive value. The contour
graph for Inverse-Gaussian and Log-Normal distributions is empty, indicat-
ing that D on R is positive and hence there exists only one real root of cubic
approximation.

3.3. Fourth-order Cornish–Fisher approximation (C1=C2=1)

The fourth-order C-F approximation of VaRα

(
X̃
)
utilises both skewness γX and

kurtosis ιX of X and in addition to the terms of the second-order Normal Power
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approximation (19) involves terms containing z4α:

VaRα(X̃) ≈ zα + γX
z2α − 1

6
+ ιX

z3α − 3zα
24

− γ 2
X
2z3α − 5zα

36
− γXιX

z4α − 5z2α + 2
24

+ γ 3
X
12z4α − 53z2α + 17

324
. (30)

To find unknown zα, we solve the following quartic equation

q = zα + γX
z2α − 1

6
+ ιX

z3α − 3zα
24

− γ 2
X
2z3α − 5zα

36
− γXιX

z4α − 5z2α + 2
24

+ γ 3
X
12z4α − 53z2α + 17

324
,

or equivalently

az4α + bz3α + cz2α + dzα + e = 0, (31)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a = 1
27γ

3
X − 1

24γXιX,

b = 1
24 ιX − 1

18γ
2
X,

c = 1
6γX + 5

24γXιX − 53
324γ

3
X,

d = 1 + 5
36γ

2
X − 1

8 ιX,

e = − 1
6γX + 17

324γ
3
X − 1

12γXιX − q.

(32)

The roots of the quartic equation (31) can be found using the Ferrari’s method
(see, e.g., Abramowitz and Stegun, 1972, or for the detailed description of a
unifying approach to solving quartic equations please refer to Shmakov, 2011):

x = −p ±
√
p2 − 8t

4
, (33)

where

p = b
a

±
√
b2

a2
− 4c

a
+ 4y, (34)

t = y∓
√
y2 − 4e

a
, (35)
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where y is the largest root of the cubic resolvent

y3 − c
a
y2 +

(
bd
a2

− 4e
a

)
y+

(
4ce
a2

− b2e
a3

− d2

a2

)
= 0. (36)

The root ẑα is then the largest of all real roots of the quartic equation (31) from
(0, 1). The PoS level, α, is then found as follows:

α̂ = 
(̂zα). (37)

3.4. Analysis of quality of approximations

This subsection provides the analysis of the quality of the four types of PoS
approximations proposed. Specifically, the analysis was performed using nu-
merical computations and comparing each type of PoS approximation to the
theoretical value of PoS derived from a given parametric distribution from PD.

Given the parametric distribution (CDF) Fu,v ∈ PD15 and the PoS ap-
proximation A ∈ A,16 the following comparison is made for each pair
of coefficient of variation CoV and risk margin η from the range R′ =
{(CoV, η) | 0% � CoV � 50%, 0% � η � 30% } ⊂ R:

P̂oSA vs. PoSF = Fu′,v(1 + η),

where Fu′,v is assumed to be normalised so that its mean is one and standard
deviation is CoV, and thus the scale parameter u′ is a function of shape pa-
rameter v (as per (2) and the explanations provided on page 742). To compute
Fu′,v(1 + η), the following analytical formulae were used:

• Inverse-Gaussian distribution
� X ∼ IG

(
ν
θ
, ν2

θ

)
with cumulative distribution function Fθ,ν(x) =



(

θ x−ν√
θ x

)
+ e2ν 


(
− θ x+ν√

θ x

)
;

� ν = 1
CoV2 ;

� θ ′(ν) = ν;
• Log-Normal distribution

� X ∼ LN(μ, σ ) = 

(
ln x−μ

σ

)
with cumulative distribution function

Fμ,σ (x);

� σ 2 = ln
(
CoV2 + 1

)
;

� μ′(σ ) = − 1
2σ

2;
• Gamma distribution

� X ∼ Gamma(α, β) with cumulative distribution function Fβ,α(x) =
�(α)−�

(
α, x

β

)
�(α)

;

� α = 1
CoV2 ;

� β ′(α) = 1
α
;
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• Inverse-Gamma distribution
� X ∼ InvGamma(α, β) with cumulative distribution function Fβ,α(x) =

�(α,
β

x )
�(α)

;

� α = 1
CoV2 + 2;

� β ′(α) = α − 1;
� Fβ,α(x) = 1 − CDFY

( 1
x

)
, where Y ∼ Gamma

(
α, 1

β

)
.

The results of the analysis are provided in the following four subsections.
There, �% error of PoS approximation A is defined as

�% = PoSF − P̂oSA
P̂oSA

· 100%.

The quality of the four approximations in scope is analysed17 with reference to
the absolute value of their corresponding relative error, |�|%. In particular, the
approximations have been ranked in ascending order of |�|% values, and also
highlighted/labelled in such a way that when ranked it is also visible to which of
the following four bands of adherence quality each approximation belongs to:

• band 1: |�| � 1%;
• band 2: 1% < |�| � 2.5%;
• band 3: 2.5% < |�| � 5%; and
• band 4: |�| > 5%.

Specifically, each approximation name would be highlighted in a specific colour
and have a bracketed number attached to it indicating what band of adherence
quality it belongs to. The following table provides the mapping of colour keys
and bracketed numbers to the four bands as used in Tables 3, 4, 5, and 6:

Band Bracketed Number Colour Key
|�| � 1% 1

1% < |�| � 2.5% 2
2.5% < |�| � 5% 3

|�| > 5% 4

3.4.1. Summary of analysis results. The results (see Tables 3, 4, 5, and 6) of the
analysis of quality of the four proposed PoS approximations show that across
the whole range of parametric distributions from PD in most cases the B-E
approximation is at least at par with, if not superior to, any of the three C-F
approximations. In particular, in such cases it would be either “the best approx-
imation”, or if not “the best”, then still falling into the band of highest adherence
quality (i.e. band 1). However, there are a few situations— exactly 17 out of 240
analysed cases where the B-E approximation, whilst neither being “the best” nor

https://doi.org/10.1017/asb.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.12


P
R
O
B
A
B
IL

IT
Y

O
F
SU

F
F
IC

IE
N
C
Y

O
F
SO

LV
E
N
C
Y

II
R
E
SE

R
V
E
R
ISK

M
A
R
G
IN

S
759

TABLE 3

ANALYSIS OF QUALITY OF APPROXIMATIONS: SUMMARY RESULTS FOR ESTIMATING GAMMA DISTRIBUTION.

η = 5% η = 5%

CoV Best 2nd Best 3rd Best 4th Best Best 2nd Best 3rd Best 4th Best

5% B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1]
10% B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1]
15% B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1]
20% B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1]
25% B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1]
30% B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1]
35% B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[2] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1]
40% B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[2] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[2]
45% B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[3] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[2]
50% B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[3] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[3]

η = 15% η = 20%

CoV Best 2nd Best 3rd Best 4th Best Best 2nd Best 3rd Best 4th Best
5% B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1]
10% B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1]
15% B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1]
20% B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1]
25% B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1]
30% B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1]
35% B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1]
40% B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1]
45% B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[2] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1]
50% B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[2] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[2]
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TABLE 3

CONTINUED.

η = 25% η = 30%

CoV Best 2nd Best 3rd Best 4th Best Best 2nd Best 3rd Best 4th Best

5% B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1]
10% B-E[1] C-F Quartic[1] C-F Cubic[1] C-F Quadr[1] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1]
15% B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1]
20% B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1]
25% B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1]
30% B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1]
35% B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1]
40% B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1]
45% B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1]
50% B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[2] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[2]
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TABLE 4

ANALYSIS OF QUALITY OF APPROXIMATIONS: SUMMARY RESULTS FOR ESTIMATING INVERSE-GAUSSIAN DISTRIBUTION.

η = 5% η = 10%

CoV Best 2nd Best 3rd Best 4th Best Best 2nd Best 3rd Best 4th Best

5% C-F Cubic[1] C-F Quartic[1] B-E[1] C-F Quadr[1] C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1]
10% C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1] C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1]
15% C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[1] C-F Cubic[1] C-F Quartic[1] B-E[1] C-F Quadr[1]
20% B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1] C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1]
25% B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[2] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1]
30% B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[3] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[2]
35% B-E[1] C-F Quadr[1] C-F Cubic[1] C-F Quartic[3] B-E[1] C-F Cubic[1] C-F Quadr[2] C-F Quartic[3]
40% B-E[1] C-F Quadr[1] C-F Cubic[2] C-F Quartic[4] B-E[1] C-F Cubic[1] C-F Quadr[2] C-F Quartic[3]
45% B-E[1] C-F Quadr[1] C-F Cubic[2] C-F Quartic[4] B-E[1] C-F Cubic[2] C-F Quadr[2] C-F Quartic[4]
50% B-E[1] C-F Quadr[1] C-F Cubic[2] C-F Quartic[4] B-E[1] C-F Quadr[2] C-F Cubic[2] C-F Quartic[4]

η = 15% η = 20%

CoV Best 2nd Best 3rd Best 4th Best Best 2nd Best 3rd Best 4th Best
5% C-F Cubic[1] C-F Quartic[1] B-E[1] C-F Quadr[1] C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[1]
10% C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1]
15% C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1] C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1]
20% C-F Cubic[1] C-F Quartic[1] B-E[1] C-F Quadr[1] C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1]
25% C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1] C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1]
30% B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[2] C-F Quartic[1] C-F Cubic[1] B-E[1] C-F Quadr[2]
35% B-E[1] C-F Cubic[1] C-F Quadr[2] C-F Quartic[2] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[2]
40% B-E[1] C-F Cubic[1] C-F Quadr[2] C-F Quartic[2] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[2]
45% B-E[1] C-F Cubic[1] C-F Quadr[2] C-F Quartic[3] B-E[1] C-F Cubic[1] C-F Quartic[2] C-F Quadr[2]
50% B-E[1] C-F Cubic[2] C-F Quadr[2] C-F Quartic[3] B-E[1] C-F Cubic[2] C-F Quadr[2] C-F Quartic[2]

https://doi.org/10.1017/asb.2017.12 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/asb.2017.12


762
E
.D

A
L
M
O
R
O

A
N
D

Y
.K

R
VA

V
Y
C
H

TABLE 4

CONTINUED.

η = 25% η = 30%

CoV Best 2nd Best 3rd Best 4th Best Best 2nd Best 3rd Best 4th Best

5% C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[1] C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[1]
10% C-F Quadr[1] C-F Quartic[1] C-F Cubic[1] B-E[1] C-F Cubic[1] C-F Quadr[1] B-E[1] C-F Quartic[1]
15% C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[1] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1]
20% C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[1] C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[1]
25% C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1] C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[1]
30% C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[2] C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[1]
35% C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[2] C-F Cubic[1] B-E[1] C-F Quartic[2] C-F Quadr[2]
40% C-F Quartic[1] B-E[1] C-F Cubic[1] C-F Quadr[2] C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[2]
45% B-E[1] C-F Quartic[1] C-F Cubic[1] C-F Quadr[2] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[2]
50% B-E[1] C-F Quartic[1] C-F Cubic[1] C-F Quadr[2] B-E[1] C-F Quartic[1] C-F Cubic[1] C-F Quadr[2]
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TABLE 5

ANALYSIS OF QUALITY OF APPROXIMATIONS: SUMMARY RESULTS FOR ESTIMATING LOG-NORMAL DISTRIBUTION.

η = 5% η = 10%

CoV Best 2nd Best 3rd Best 4th Best Best 2nd Best 3rd Best 4th Best

5% C-F Cubic[1] C-F Quartic[1] B-E[1] C-F Quadr[1] C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1]
10% C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1] C-F Cubic[1] C-F Quartic[1] B-E[1] C-F Quadr[1]
15% B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1] C-F Quartic[1] C-F Cubic[1] B-E[1] C-F Quadr[1]
20% B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[2] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1]
25% B-E[1] C-F Quadr[1] C-F Cubic[1] C-F Quartic[2] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[2]
30% B-E[1] C-F Quadr[1] C-F Cubic[1] C-F Quartic[3] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[2]
35% C-F Quadr[1] B-E[1] C-F Cubic[2] C-F Quartic[4] B-E[1] C-F Quadr[1] C-F Cubic[2] C-F Quartic[3]
40% C-F Quadr[1] B-E[1] C-F Cubic[2] C-F Quartic[4] B-E[1] C-F Quadr[1] C-F Cubic[2] C-F Quartic[4]
45% C-F Quadr[1] B-E[2] C-F Cubic[3] C-F Quartic[4] B-E[1] C-F Quadr[1] C-F Cubic[3] C-F Quartic[4]
50% C-F Quadr[1] B-E[2] C-F Cubic[3] C-F Quartic[4] C-F Quadr[1] B-E[2] C-F Cubic[3] C-F Quartic[4]

η = 15% η = 20%

CoV Best 2nd Best 3rd Best 4th Best Best 2nd Best 3rd Best 4th Best

5% C-F Cubic[1] C-F Quartic[1] B-E[1] C-F Quadr[1] C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1]
10% C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1]
15% C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1] C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1]
20% C-F Quartic[1] C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1]
25% B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[1] C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1]
30% B-E[1] C-F Cubic[1] C-F Quartic[2] C-F Quadr[2] C-F Quartic[1] B-E[1] C-F Cubic[1] C-F Quadr[2]
35% B-E[1] C-F Cubic[2] C-F Quadr[2] C-F Quartic[2] B-E[1] C-F Quartic[1] C-F Cubic[1] C-F Quadr[2]
40% B-E[1] C-F Quadr[2] C-F Cubic[2] C-F Quartic[3] B-E[1] C-F Cubic[2] C-F Quartic[2] C-F Quadr[2]
45% B-E[1] C-F Quadr[2] C-F Cubic[3] C-F Quartic[3] B-E[1] C-F Quadr[2] C-F Cubic[2] C-F Quartic[3]
50% B-E[1] C-F Quadr[2] C-F Cubic[3] C-F Quartic[4] B-E[1] C-F Quadr[2] C-F Cubic[3] C-F Quartic[3]

https://doi.org/10.1017/asb.2017.12 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/asb.2017.12


764
E
.D

A
L
M
O
R
O

A
N
D

Y
.K

R
VA

V
Y
C
H

TABLE 5

CONTINUED.

η = 25% η = 30%

CoV Best 2nd Best 3rd Best 4th Best Best 2nd Best 3rd Best 4th Best

5% C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[1] C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[1]
10% C-F Quadr[1] C-F Quartic[1] C-F Cubic[1] B-E[1] C-F Cubic[1] C-F Quadr[1] B-E[1] C-F Quartic[1]
15% C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[1] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1]
20% C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[1] C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[1]
25% C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1] C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[1]
30% C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[2] C-F Cubic[1] B-E[1] C-F Quadr[2] C-F Quartic[2]
35% B-E[1] C-F Quartic[1] C-F Cubic[1] C-F Quadr[2] C-F Cubic[1] B-E[1] C-F Quartic[2] C-F Quadr[2]
40% C-F Quartic[1] B-E[1] C-F Cubic[2] C-F Quadr[2] B-E[1] C-F Cubic[1] C-F Quartic[2] C-F Quadr[2]
45% B-E[1] C-F Quartic[1] C-F Cubic[2] C-F Quadr[2] B-E[1] C-F Quartic[1] C-F Cubic[2] C-F Quadr[2]
50% B-E[1] C-F Quartic[2] C-F Quadr[2] C-F Cubic[3] B-E[1] C-F Quartic[1] C-F Cubic[2] C-F Quadr[3]
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TABLE 6

ANALYSIS OF QUALITY OF APPROXIMATIONS: SUMMARY RESULTS FOR ESTIMATING INVERSE-GAMMA DISTRIBUTION.

η = 5% η = 10%

CoV Best 2nd Best 3rd Best 4th Best Best 2nd Best 3rd Best 4th Best

5% C-F Cubic[1] C-F Quartic[1] B-E[1] C-F Quadr[1] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1]
10% C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1] C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1]
15% B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[2] C-F Quartic[1] C-F Cubic[1] B-E[1] C-F Quadr[1]
20% B-E[1] C-F Quadr[1] C-F Cubic[1] C-F Quartic[3] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[2]
25% C-F Quadr[1] B-E[1] C-F Cubic[2] C-F Quartic[4] B-E[1] C-F Quadr[2] C-F Cubic[2] C-F Quartic[3]
30% C-F Quadr[1] B-E[2] C-F Cubic[3] C-F Quartic[4] B-E[1] C-F Quadr[2] C-F Cubic[3] C-F Quartic[3]
35% C-F Quadr[1] B-E[2] C-F Cubic[4] C-F Quartic[4] C-F Quadr[1] B-E[2] C-F Cubic[4] C-F Quartic[4]
40% C-F Quadr[1] B-E[3] C-F Cubic[4] C-F Quartic[4] C-F Quadr[1] B-E[2] C-F Quartic[4] C-F Cubic[4]
45% C-F Quadr[2] B-E[3] C-F Quartic[4] C-F Cubic[4] C-F Quadr[1] B-E[3] C-F Quartic[4] C-F Cubic[4]
50% C-F Quadr[3] B-E[4] C-F Quartic[4] C-F Cubic[4] C-F Quadr[1] B-E[4] C-F Quartic[4] C-F Cubic[4]

η = 15% η = 20%

CoV Best 2nd Best 3rd Best 4th Best Best 2nd Best 3rd Best 4th Best

5% C-F Cubic[1] C-F Quartic[1] B-E[1] C-F Quadr[1] C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[1]
10% C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[1] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1]
15% C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[1] C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[1]
20% C-F Quartic[1] C-F Cubic[1] B-E[1] C-F Quadr[2] C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Quadr[2]
25% B-E[1] C-F Quartic[1] C-F Cubic[2] C-F Quadr[2] B-E[1] C-F Cubic[1] C-F Quartic[1] C-F Quadr[2]
30% B-E[1] C-F Quadr[2] C-F Quartic[2] C-F Cubic[2] C-F Quartic[1] B-E[1] C-F Cubic[2] C-F Quadr[2]
35% B-E[1] C-F Quadr[2] C-F Quartic[3] C-F Cubic[3] B-E[1] C-F Quartic[1] C-F Quadr[2] C-F Cubic[3]
40% B-E[2] C-F Quadr[2] C-F Quartic[3] C-F Cubic[4] B-E[1] C-F Quartic[2] C-F Quadr[2] C-F Cubic[4]
45% C-F Quadr[2] B-E[3] C-F Quartic[4] C-F Cubic[4] B-E[2] C-F Quadr[2] C-F Quartic[2] C-F Cubic[4]
50% C-F Quadr[1] B-E[3] C-F Quartic[4] C-F Cubic[4] C-F Quadr[2] C-F Quartic[3] B-E[3] C-F Cubic[4]
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TABLE 6

CONTINUED.

η = 25% η = 30%

CoV Best 2nd Best 3rd Best 4th Best Best 2nd Best 3rd Best 4th Best

5% C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[1] C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[1]
10% C-F Quadr[1] C-F Cubic[1] B-E[1] C-F Quartic[1] C-F Cubic[1] C-F Quadr[1] B-E[1] C-F Quartic[1]
15% C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[1] B-E[1] C-F Cubic[1] C-F Quadr[1] C-F Quartic[1]
20% C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[2] C-F Cubic[1] B-E[1] C-F Quadr[1] C-F Quartic[2]
25% C-F Cubic[1] B-E[1] C-F Quadr[2] C-F Quartic[2] C-F Cubic[1] B-E[1] C-F Quadr[2] C-F Quartic[2]
30% B-E[1] C-F Cubic[2] C-F Quartic[2] C-F Quadr[2] B-E[1] C-F Cubic[1] C-F Quadr[2] C-F Quartic[3]
35% B-E[1] C-F Quartic[2] C-F Quadr[3] C-F Cubic[3] B-E[1] C-F Cubic[2] C-F Quadr[3] C-F Quartic[3]
40% B-E[1] C-F Quartic[2] C-F Quadr[3] C-F Cubic[4] B-E[1] C-F Quadr[3] C-F Quartic[3] C-F Cubic[3]
45% C-F Quartic[1] B-E[2] C-F Quadr[3] C-F Cubic[4] B-E[1] C-F Quartic[3] C-F Quadr[3] C-F Cubic[4]
50% C-F Quartic[1] B-E[2] C-F Quadr[3] C-F Cubic[4] B-E[2] C-F Quartic[3] C-F Quadr[3] C-F Cubic[4]
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TABLE 7

THE CASES WHERE THE B-E APPROXIMATION IS OUTPERFORMED BY THE C-F APPROXIMATIONS.

Rank of Quality Band of Best Approx &
Case # Distribution η CoV Approx B-E Approx Quality Band

1 Log-Normal 5% 45% 2nd Best 2 C-F Quadratic [1]
2 Log-Normal 5% 50% 2nd Best 2 C-F Quadratic [1]
3 Log-Normal 10% 50% 2nd Best 2 C-F Quadratic [1]
4 Inverse-Gamma 5% 30% 2nd Best 2 C-F Quadratic [1]
5 Inverse-Gamma 5% 35% 2nd Best 2 C-F Quadratic [1]
6 Inverse-Gamma 5% 40% 2nd Best 3 C-F Quadratic [1]
7 Inverse-Gamma 5% 45% 2nd Best 3 C-F Quadratic [2]
8 Inverse-Gamma 5% 50% 2nd Best 4 C-F Quadratic [3]
9 Inverse-Gamma 10% 35% 2nd Best 2 C-F Quadratic [1]
10 Inverse-Gamma 10% 40% 2nd Best 2 C-F Quadratic [1]
11 Inverse-Gamma 10% 45% 2nd Best 3 C-F Quadratic [1]
12 Inverse-Gamma 10% 50% 2nd Best 4 C-F Quadratic [1]
13 Inverse-Gamma 15% 45% 2nd Best 3 C-F Quadratic [2]
14 Inverse-Gamma 15% 50% 2nd Best 3 C-F Quadratic [1]
15 Inverse-Gamma 20% 50% 3rd Best 3 C-F Quadratic [2]
16 Inverse-Gamma 25% 45% 2nd Best 2 C-F Quartic [1]
17 Inverse-Gamma 25% 50% 2nd Best 2 C-F Quartic [1]

falling into band 1, can be outperformed by either (1) C-FQuadratic (first-order
Normal Power) approximation; or (2) C-F Quartic approximation.

These 17 cases are summarised and provided in Table 7.
As can be seen from Table 7 above, the B-E approximation fails to be

“the best” only in extreme situations of reserve risk profile with high volatil-
ity (i.e. CoV) and/or excessive relative skewness (i.e. SC ratio). In most cases
(15 out of 17), it is outperformed by the C-F Quadratic (or equivalently Nor-
mal Power) approximation, and only in two cases, when used for highly volatile
(CoV � 45%) and excessively skewed (SC � 5) Inverse-Gamma reserve dis-
tribution along with the relative risk margin of 25%, it is outperformed by the
C-F Quartic approximation. Out of those two cases, it really comes down to
one case — the case 17 of the Inverse-Gamma distribution with CoV = 50%,
for which the absolute value of relative delta error of the B-E approximation is
about 2.2%, as for the case 16 the relative delta error is just above 1%, giving the
B-E approximation the adherence quality close to that of band 1 (see the de-
tailed outputs of the analysis of quality of PoS approximations corresponding
to cases 16 and 17 in Appendix C).

It should also be noted that there are two caseswhere theB-E approximation,
whilst being “the best approximation”, falls into band 2 of adherence quality.
Again, those are rather extreme cases of the Inverse-Gamma distribution with
relatively high volatility (CoV � 45%) and excessive skewness (SC � 5).
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4. POS APPROXIMATIONS — PORTFOLIO OF MULTIPLE RESERVING CLASSES

This section focuses on providing approximation formulae for PoS of diversified
risk margin of the portfolio of multiple reserving classes. As indicated in Section
2, we assume that the centralised and normalised copy of reserve value Xi of the
i th class, X̃i , is estimated by the Fleishman polynomial structure of a standard
normal random variable. In particular, we consider the following two different
cases:

• Xi ∼ P2(Zi ) = ai Zi + bi
(
Z2
i − 1

)
— suitable for estimating skewness of the

reserving portfolio risk profile when the risk margin is approximated using
skewness only;

• Xi ∼ P3(Zi ) = ai Zi +bi
(
Z2
i − 1

)+ ci Z3
i — suitable for estimating skewness

and kurtosis of the reserving portfolio risk profile when the risk margin is
approximated using both skewness and kurtosis.

The coefficients of polynomials P2 and P3 are calibrated using the method of
moments by matching the second and third moments of P2(Zi ) and the second,
third and fourthmoments of P3(Zi ) to 1 (standard deviation of X̃i ), γi (skewness
of Xi ) and ιi + 3 (non-centralised or absolute kurtosis18 of Xi ), respectively.

The coefficients of P2 can be analytically expressed by solving the following
system of equations: {

1 = a2i + 2b2i ,
γi = 6a2i bi + 8b3i

. (38)

The system (38) is reduced to {
ai =

√
1 − 2b2i ,

γi = 6bi − 4b3i
(39)

from where we get{
ai =

√
1 − 2b2i ,

bi = a real root of cubic equation in (39).
(40)

From (39) it follows that |bi | � 1√
2
and thus 0 � γi � 2

√
2, which may indi-

cate that it is not suitable for the types of reserve risk profile that are adhering
to Inverse-Gamma parametric distribution and have CoV above 50%. The dis-

criminant D of cubic equation in (39) is equal to γ 2
i
64 − 1

8 and is negative for
γi < 2

√
2, indicating that there are three real roots as defined in (28): “root 1”

x1, “root 2” x2 and “root 3” x3. By analysing those roots as functions of γi , we
could eliminate the roots, which fall outside the interval of admissible values of
bi , (− 1√

2
, 1√

2
). Figure 4 shows that there is only one suitable root for bi and that

is “root 3”, which equals
√
2 cos(ϕ

3 + 4π
3 ).
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FIGURE 4: Real roots of cubic equation in (39).

The coefficients of P3 are calibrated numerically. Their values are pre-
computed and tabulated in Appendix A for different levels of CoV and the four
parametric distributions (DoAs) from PD.

4.1. Estimation of skewness and kurtosis of reserving portfolio

We define the total reserve value across the portfolio of m reserving classes as

X� =
m∑
i=1

Xi , (41)

where each i th class reserve value is approximated by Fleishman polynomial of
a standard normal random variable

Xi ≈ BEi · (1 + CoVi · P3(Zi )) . (42)

It is clear that BE� = ∑m
i=1 BEi . It should be noted that setting ci = 0 reduces

the problem to simply approximating Xi ≈ BEi · (1 + CoVi · P2(Zi )).
As set up in Assumption 3 in Section 2 all the standlone reserve risk profiles

interacts between each other according to a Gaussian dependence structure and
that the linear correlations ρi j (coefficients of a Gaussian copula) are derived
from the pre-calibrated rank correlation assumptions.

The aim of this subsection is to compute the second, third and fourth central
moments of the reserving portfolio distribution and derive their corresponding
coefficient of variation CoV� , skewness γ� and kurtosis ι� . Then those values
would be further used to compute SC and KCsq ratios to determine the domain

https://doi.org/10.1017/asb.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.12


770 E. DALMORO AND Y. KRVAVYCH

of attraction to one of the four parametric distributions from PD and then es-
timate the PoS of the diversified risk margin η� at the portfolio level by using
the approximation formulae already derived in Section 3.

Coefficient of Variation. We compute the variance of X� :

Var[X� ] = E

⎡⎣( m∑
i=1

σi · P3(Zi )

)2
⎤⎦

=
m∑
i=1

σ 2
i · E

[
P2
3 (Zi )

]+ 2
∑
i j

σiσ j · E
[
P3(Zi )P3(Zj )

]
=

m∑
i=1

σ 2
i + 2

∑
i j

σiσ j · E
[
P3(Zi )P3(Zj )

]
, (43)

where σi = BEi · CoVi , and E
[
P2
3 (Zi )

] = 1 as the Fleishman polynomial co-
efficients are calibrated so that the polynomial has unit variance. The following
components of the formula (43) above are derived in Appendix B and provided
here

E
[
P3(Zi )P3(Zj )

] = ρi j
(
aia j + 2bib jρi j + 3

(
ai c j + a j ci

)
+3ci c j

(
3 + 2ρ2

i j

))
. (44)

When P2 polynomial is used, i.e. ci = 0, then this component is reduced to

E
[
P3(Zi )P3(Zj )

] = ρi j
(
aia j + 2bib jρi j

)
. (45)

Then, CoV2
� is equal to

CoV2
� = Var[X� ]

BE2
�

=
m∑
i=1

w2
i CoV

2
i + 2

∑
i j

wi w j CoVi CoV j · E
[
P3(Zi )P3(Zj )

]
, (46)

where wi = BEi
BE�

.
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Skewness. We compute the third central moment of X� :

E
[
(X� − BE�)3

] = E

⎡⎣( m∑
i=1

σi · P3(Zi )

)3
⎤⎦

=
m∑
i=1

σ 3
i · γi + 3

∑
i j

σ 2
i σ j · E

[
P3(Zi )

2P3(Zj )
]

+ 6
∑
i jk

σiσ jσk · E
[
P3(Zi )P3(Zj )P3(Zk)

]
, (47)

where E[P3
3 (Zi )] = γi , as the Fleishman polynomial coefficients are calibrated

so that the polynomial has skewness γi for i th standalone risk profile. In formula
(47), the summation term with multiple 3 has (

m
2 ) different sub-terms, and the

summation term with multiple 6 is relevant if m � 3 and has (
m
3 ) different sub-

terms.
The following components of the formula (47) are derived in Appendix B

and provided here only for the partial case when P2 is used, i.e. ci = 0:

E
[
P3(Zi )

2P3(Zj )
] = 2ρi j

(
2aia j bi + (

a2i + 4b2i
)
b jρi j

)
(48)

E
[
P3(Zi )P3(Zj )P3(Zk)

] = 2
(
a jakbiρi jρik + a jaibkρ jkρik

+aiakb jρi jρik
)+ 8bib j bkρi jρikρ jk. (49)

The skewness γ� is then calculated as follows

γ� = E
[
(X� − BE�)3

]
(BE� CoV�)3

. (50)

Kurtosis. To compute the fourth central moment of X� , we use the Multi-
nomial formula and apply the expectation operator:

E
[
(X� − BE�)4

] = E

⎡⎣( m∑
i=1

σi · P3(Zi )

)4
⎤⎦

=
∑

n1+n2+···+nm=4

(
4

n1, n2, . . . , nm

)
E

[
m∏
k=1

σ
nk
k · P(Zk)nk

]
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=
m∑
i=1

σ 4
i · (ιi + 3) + 4

∑
i j

σ 3
i σ j · E

[
P3(Zi )

3P3(Zj )
]

+ 6
∑
i j

σ 2
i σ 2

j · E
[
P3(Zi )

2P3(Zj )
2]

+ 12
∑
i jk

σ 2
i σ jσk · E

[
P3(Zi )

2P3(Zj )P3(Zk)
]

+ 24
∑
i jkl

σiσ jσkσl · E
[
P3(Zi )P3(Zj )P3(Zk)P3(Zl)

]
(51)

where E
[
P4
3 (Zi )

] = ιi + 3, as the Fleishman polynomial coefficients are cal-
ibrated so that the polynomial has absolute19 kurtosis value of ιi + 3 for i th
standalone risk profile. The components of the portfolio skewness formula (51)
are derived in Appendix B. Their formulaic expressions are too long to be pre-
sented here.

The kurtosis ι� is then calculated as follows:

ι� = E
[
(X� − BE�)4

]
(BE� CoV�)4

− 3. (52)

5. PRACTICAL IMPLEMENTATIONS AND NUMERICAL ILLUSTRATIONS

This section discusses some ideas of practical implementation of the PoS ap-
proximations and provides numerical illustrations.

5.1. Notes on practical implementations

PoS approximation — standalone risk margin. From the analysis of quality of the
four proposed PoS approximations performed in Section 3.4, it is evident that
there are two that stand out — (1) B-E approximation; and (2) C-F Quadratic
(or equivalently Normal Power) approximation. Both are generally of highest
quality and very simple to use when compared to the other two: C-F Cubic
and C-F Quartic approximations. In particular, the B-E approximation in most
cases is either ranked as “the best approximation” or, if not “the best”, then
still falling into the highest quality band and at the same time being superior to
others due to its extreme simplicity. There were a few situations where the B-E
approximation is neither being “the best” nor falling into the highest quality
band and the C-F Quadratic approximation would serve as “the best approx-
imation”. It should also be noted that very occasionally the B-E approxima-
tion can be outperformed by the C-F Quartic approximation. However, the loss
in its adherence quality is insignificant and its relative error of approximation
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FIGURE 5: Locating reserve risk profile — illustration.

does not exceed 2.2%, making it still possible to use the B-E approximation by
ultimately fine tuning it (see the implementation algorithm below) using fairly
reasonable error reducing correction factors.

So, when it comes to practical implementation, the choice of the most suit-
able PoS approximation would then ideally be limited to those two approxima-
tions — B-E and C-F Quadratic.

Given the above, one could easily implement the estimation of PoS level in
Excel using the following algorithmic steps:

1. For a given reserve X for which its risk profile FX is characterised by its
best estimate BEX, coefficient of variation CoVX and skewness γX, com-
pute SCX to identify the relative location of the reserve risk profile FX with
respect to the four parametric distributions from PD. Let FX be located
between two known parametric distributions F1 and F2 from PD (see Fig-
ure 5). Here, the location would be determined by computing the SC ratio
for the parametric distributions from PD given the CoV(= CoVX) level
and comparing them against SCX.

2. For given reserve volatility level CoVX and risk margin ηX identify the best
PoS approximation out of the two — B-E and C-F Quadratic, by taking
the following steps:
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• for each adjacent parametric distribution Fi , i = 1, 2, calculate both
– exact PoS value, PoSi , using the value of Fi (1 + ηX) defined in Section

3.4 (see the formulae for exact PoS value of each of the four parametric
distributions from PD); and also

– its estimate, P̂oSA,i , based on the PoS approximation A from
{B-E, C-F Qudratic}, using formulae (14), (17) and (18), and also as-
suming γi = SCi (CoVX) · CoVX with SCi being defined in Table 1 on
page 744;

• use the above values to compute the relative error of approximation�A,i =
PoSi−P̂oSA,i

P̂oSA,i
;

• the best PoS approximation A∗ is then such that has the smallest sum of
absolute values of relative error on the two adjacent curves, i.e.

A∗ = arg min
A∈{B-E, C-F Qudratic}

∣∣�A,1
∣∣+ ∣∣�A,2

∣∣ .
3. For A∗ and the two adjacent parametric distributions F1 and F2 from PD,

calculate corresponding correction factors gi = 1 + �A∗,i at (CoVX, ηX),
and then find the correction factor gX for reserve risk profile FX by interpo-
lating between the two factors gi , i = 1, 2. Here, the interpolation is done
in relation to linear proximity of SCX(CoVX) ratio to analogous ratios of
F1 and F2 curves at CoVX, i.e.

gX = g1 + SCX − SC1

SC2 − SC1
· (g2 − g1) .

4. Given the chosen PoS approximation A∗, compute the estimated PoS level,
P̂oSA∗,X of risk margin ηX of reserve risk profile FX with volatility CoVX
and relative skewness SCX, and then adjust it by multiplying it by the cor-
rection factor gX obtained in the preceding step to get the final estimate
P̃oSA∗,X.

It is quite possible to have a situation where a particular reserve risk pro-
file is in the DoA induced by Inverse-Gamma, but yet relatively more skewed
than Inverse-Gamma. In that case, the above algorithm would not quite work,
as the reserve risk profile would be outside the range of the four parametric
distributions from PD, and one would need to use extrapolation to find the
corresponding correction factor. To avoid extrapolation and make the above
algorithm work, one may introduce another parametric distribution of SSP
type that is relatively more skewed than the given reserve risk profile, thus al-
lowing to locate the reserve risk profile between itself and Inverse-Gamma dis-
tribution. One of the examples of such SSP distribution is Log-Logistic (Fisk)
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(
)

Gamma Inverse−Gaussian Log−Normal

Inverse−Gamma Log−Logistic

FIGURE 6: Log-Logistic distribution in the CoV-Skewness system of coordinates.

distribution with the following characteristics:

CDF: CDFLL(x) = Fβ,α(x) = 1
1+( x

α )
−β , x > 0, α > 0, β > 0;

Mean: MLL = βπ

α
csc

(
π
α

)
, α > 1;

CoV: CoVLL = sin
(

π
α

) √ 2α csc( 2π
α )

π
− csc2

(
π
α

)
, α > 2;

SC ratio: SCLL = csc( π
α ) [2π2 csc3( π

α )−6απ csc( π
α ) csc( 2π

α )+3α2 csc( 3π
α )]

[π csc2( π
α )−2α csc( 2π

α )]2
, α > 3.

(53)

The location of Log-Logistic distribution in the CoV-Skewness system of
coordinates with respect to the four parametric distributions from PD is illus-
trated in Figure 6.

To compute the exact value of PoS for a reserve risk profile with Log-Logistic
distribution, one would need to get the reserve risk profile CDF normalised by
its mean evaluated at 1 + ηX, i.e. compute Fβ ′ (̂α),̂α(1 + ηX), where

α̂ = arg solve
α>3

{CoVLL(α) = CoVX} ; (54)

β ′ = α̂

π
sin
(π

α̂

)
. (55)

The parameter α̂ in (54) can be easily found using Excel solver.
To compute the PoS estimate using the approximation A ∈

{B-E, C-F Qudratic}, one would need to use volatility CoVLL set at CoVX and
skewness γLL = SCLL (̂α) · CoVLL.

PoS approximation — risk margin of reserve portfolio. The implementation of PoS
approximation of diversified risk margin η� of a portfolio consisting of m
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reserving classes is rather straightforward and can be easily done in Excel. The
idea is to compute volatility CoV� and skewness γ� at the portfolio level using
the known characteristics (best estimate, coefficient of variance and skewness)
of each reserving class. Then, the obtained values CoV� and γ� are used to get
the PoS estimate of η� using the algorithm defined on page 774 in the preceding
subsection.

To compute CoV� and γ� , one would need to use formulae (46)–(45) and
(47)–(50), respectively. In there, the Fleishman coefficients a� � and b� � are calcu-
lated using formula (40), with b� � being the third root of cubic equation defined
in (39). The correlation coefficients ρ� � are computed from the given rank cor-
relations r� � between reserving classes using formula (5).

5.2. Numerical illustrations

PoS approximation — standalone risk margin. Consider the reserve X for which
its risk profile FX is characterised by its volatility CoVX = 36% and skewness
γX = 1.4. It is assumed that its technical provision is booked using the risk
margin η = 11%. The following demonstrates how the PoS estimate can be
derived using the algorithm defined on page 774 in Section 5.1.

1. The implied SCX = γX
CoVX

= 3.8889 and therefore the risk profile FX is
located between the two known parametric distributions: Log-Normal (F1)
and Inverse-Gamma (F2), as

SCLN=3 + 0.362=3.1296 < SCX = 3.8889 <SCIGa = 4
1 − 0.362

= 4.5956;

2. For given reserve volatility level CoVX and risk margin ηX, we follow
the step 2 of the algorithm defined on page 774 in Section 5.1 to identify
the best PoS approximation out of the two—B-E and C-F Quadratic. The
following table summarises the calculation results and helps us conclude

Approxim PoS Reserve PoS PoS PoS (exact) PoS (Exact) gLN gIGa �LN �IGa

Type Risk Profile LN IGa LN IGa

B-E 69.773% 68.300% 71.118% 68.207% 70.268% 0.998631 0.988037 −0.137% −1.196%
C-F Quadr 68.587% 67.528% 69.486% 68.207% 70.268% 1.010057 1.011252 1.006% 1.125%

that B-E approximation is the best as |−0.137%|+|−1.196%| = 1.333% <

2.131% = |1.006%| + |1.125%|.
3. Knowing that the best PoS approximation A∗ is B-E, we proceed to find

the correction factor for our reserve risk profile by interpolating the corre-
sponding correction factors for Log-Normal and Inverse-Gamma curves
obtained in the table above from the previous step:

gX = gLN + SCX − SCLN

SCIGa − SCLN
· (gIGa − gLN) = 0.993144.
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FIGURE 7: Numerical example: PoS estimate of standalone risk margin.

4. We compute the B-E estimate of PoS level of risk margin ηX of reserve risk
profile FX with volatility CoVX and relative skewness SCX. This has already
been outputted in the table above in step 2, and equals P̂oSX = 69.773%.
This estimate is then adjusted by the correction factor gX obtained in the
preceding step, and is equal to

P̃oSX = gX × P̂oSX = 69.294%.

The above steps are visualised in Figure 7.

6. CONCLUSIONS

The upcoming IFRS 17 brings one additional specific requirement to disclose
confidence level of Solvency II reserve risk margins. This is no doubt an im-
portant requirement, and to be compliant with it in the future, insurers would
need to start making the necessary preparations by estimating the effort needed
to implement and accommodate this new upcoming regulatory requirement.
However, at the moment, this is somewhat a remote issue for the majority of
insurers as they are currently busy getting used to the requirements of the newly
introduced Solvency II regime, and also because the IFRS 17 will commence
only in early 2021.

In this paper, we take the first step in the actuarial research space and look
out for practical ways of implementing this new requirement. In particular, we
propose a distribution-free approach to estimating IFRS confidence level of
Solvency II reserve risk margins in a “standard formula” style. Here, the risk
margin confidence level measured by PoS is estimated by using only the key
characteristics of the reserve risk profile: (1) the level of variability measured

https://doi.org/10.1017/asb.2017.12 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.12


778 E. DALMORO AND Y. KRVAVYCH

by coefficient of variation; (2) skewness; and, if necessary, (3) kurtosis. The
PoS approximation formulae are derived for both the standalone reserving
class risk margin and the diversified risk margin at the portfolio level. The
quality of obtained PoS approximations was analysed, and it was shown that in
most practical situations the approximations utilising CoV and skewness only,
like B-E and C-F Quadratic approximations, are of fairly good quality, and
that, only in very rare extreme situations when the reserve risk profile is overly
skewed and leptokurtotic, the kurtosis becomes also a significant driver of the
quality of approximation.

The CoV, skewness and kurtosis are invariant with respect to reserve
risk profile location, i.e. the reserve best estimate, and hence are universal in
categorising reserve risk profiles. By relating skewness and kurtosis to CoV level,
we could trace the “statistical DNA” of reserve risk profiles to be able to locate
them in the system of the four known parametric distributions that in principle
cover a wide range of reserve risks. The four parametric distributions are used
to derive correction factors to be applied to their corresponding distribution-
free approximation of PoS to arrive at the theoretical value of PoS. Knowing
the correction factors of the known parametric distributions that are in close
proximity to the particular reserve risk profile, and also the distribution-free ap-
proximation of PoS of the reserve risk profile, allows us to arrive at the ultimate
PoS approximation of fairly high quality.
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NOTES

1. TheBest Estimate is defined as a probability-weighted average (mean) of the present value of
future liability cash flows. This estimate is unbiased, i.e. calculated with no prudence or optimism.

2. IFRS 17 is an upcoming International Financial Reporting Standard that is anticipated to
be released in 2017. It will replace current IFRS 4 standard on accounting for insurance contracts
and has an expected effective date of January 1, 2021.

3. Australian Prudential Regulation Authority.
4. More specifically, APRA Prudential Standards GPS 310 stipulate that the risk margin of a

particular liabilitymust be the greater of (a) half of the estimated standard deviation of the liability;
and (b) the margin that provides 75% of PoS to meet the liability. As was shown in Taylor (2006),
assuming log-normality of the reserve risk, the minimum APRA risk margin would be equivalent
to 75th PoS level for most practically feasible values of reserve volatility, and turn to “half of the
standard deviation” only in rare extreme situations.
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5. In general, the statistical central estimate could be mean, mode or median. However, under
APRA requirements, the central estimate is unbiasedmean of insurance liabilities and is equivalent
to Solvency II notion of best estimate.

6. The idea of applying a Gaussian dependence structure in reserve risk aggregation was ear-
lier employed in Dal Moro (2013) and Dal Moro (2014) when deriving the moments of aggregate
reserve risk across a multivariate log-normal reserve risk profile. This paper applies a Gaussian de-
pendence structure to any multivariate distribution and derives the four moments of the aggregate
reserve risk profile by using C-F and Fleishman approximations.

7. Fleishman approximation is a polynomial of a standard normal variable allowing to approx-
imate non-normal distributions by utilising their moments of up to the fourth order.

8. For example, see Krvavych (2013).
9. Please refer to Kleiber and Kotz (2003), Nadarajah and Kotz (2006), Nadarajah (2011),

Marshall and Olkin (2007) and Wolfram Documentation Center.
10. Here, kurtosis is regarded as excess-kurtosis and thus is defined via the fourth- and second-

order cumulants of the reserve distribution.
11. It should be noted that the standard (Tweedie) parameterisation IG(μ, λ) is not of SSP

type. However, the distribution can be reparameterised to become of SSP type by setting μ = ν
θ

and λ = ν2

θ
(e.g., see Marshall and Olkin, 2007). In this case, ν is the unique shape parameter.

12. Skewness and Kurtosis are, respectively, γ (X) = κ3(X)

κ
3/2
2 (X)

and ι(X) = κ4(X)

κ2
2 (X)

and are invariant

with respect to centralisation and standardisation of X. Here, κn(X) is the nth cumulant of X.
13. The detailed derivation of the C-F expansion can be found in Fisher and Cornish (1960)

and Lee and Lee (1992). This paper assumes that the VaRα

(
X̃
)
can be well approximated by the

moments of X of up to fourth order.
14. This requires existence of finite moments of reserve risk profile. It is assumed that in prac-

tice, reserving losses, including large liability losses, would realistically be bounded from above,
therefore ensuring existence of finite moments.
15. PD was defined on page 743.
16. A was defined on page 750.
17. The detailed outputs of the analysis of quality of PoS approximations are provided in Ap-

pendix C.
18. As per our definition ι is defined via the fourth- and second-order cumulants and thus rep-

resents excess-kurtosis (used in the C-F expansion).
19. As per our definition ι is defined via the fourth- and second-order cumulants and thus rep-

resents excess-kurtosis (used in the C-F expansion). The fourth centralised moment of P2(Zi ) is
simply the absolute kurtosis, hence ι is translated by 3.
20. Disclaimer: The views and opinions expressed in this article are those of the authors and do

not reflect the official policy or position of SCOR and PwC.
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SALZMANN,R.,WÜTHRICH,M. andMERZ,M. (2012)Highermoments of the claims development
result in general insurance. ASTIN Bulletin, 42, 355–384.
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APPENDIX A: TABULATED FLEISHMAN
COEFFICIENTS

The Fleishman coefficients of the polynomial P3(Z) = aZ+ b
(
Z2 − 1

)+ cZ3 of a standard
normal random variable Z are calibrated in such a way that
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TABLE A1

FLEISHMAN COEFFICIENTS FOR THE FOUR PARAMETRIC DISTRIBUTIONS FROM PD.

Gamma Inverse-Gaussian

CoV a b c a b c

5% 0.7821269 0.0114362 0.0679523 0.7816586 0.0171455 0.0680652
10% 0.7814394 0.0228591 0.0680955 0.7795694 0.0342187 0.0685466
15% 0.7802942 0.0342555 0.0683341 0.7760992 0.0511486 0.0693467
20% 0.7786927 0.0456123 0.0686680 0.7712656 0.0678665 0.0704621
25% 0.7766366 0.0569165 0.0690971 0.7650925 0.0843071 0.0718882
30% 0.7741280 0.0681552 0.0696211 0.7576098 0.1004096 0.0736193
35% 0.7711696 0.0793157 0.0702400 0.7488526 0.1161185 0.0756483
40% 0.7677644 0.0903856 0.0709533 0.7388605 0.1313843 0.0779670
45% 0.7639159 0.1013527 0.0717609 0.7276770 0.1461641 0.0805664
50% 0.7596281 0.1122051 0.0726623 0.7153487 0.1604223 0.0834364

Log-Normal Inverse-Gamma

CoV a b c a b c

5% 0.7815348 0.0171566 0.0681015 0.7806977 0.0228912 0.0683124
10% 0.7790443 0.0343063 0.0686994 0.7755591 0.0458618 0.0695806
15% 0.7748059 0.0514359 0.0697200 0.7664274 0.0689512 0.0718487
20% 0.7686882 0.0685194 0.0711998 0.7523662 0.0921107 0.0753724
25% 0.7605075 0.0855125 0.0731893 0.7318810 0.1151398 0.0805574
30% 0.7500289 0.1023471 0.0757533 0.7027094 0.1376087 0.0880106
35% 0.7369696 0.1189283 0.0789696 0.6615037 0.1587849 0.0986036
40% 0.7210045 0.1351332 0.0829261 0.6033250 0.1776160 0.1135503
45% 0.7017757 0.1508147 0.0877178 0.5206582 0.1928308 0.1345288
50% 0.6789048 0.1658095 0.0934413 0.4009040 0.2031524 0.1640103

E
[
P2
3 (Z)

] = a2 + 6ac + 15c2 = 1;

E
[
P3
3 (Z)

] = 2b
(
a2 + 24ac + 105c2 + 2

) = γ ;

E
[
P4
3 (Z)

] = 24
[
ac + b2

(
1 + a2 + 28ac

)
+c2 (12 + 48ac + 141b2 + 225c2

)] = ι + 3.

(A1)

For a given risk profile with level of variability CoV, we find the corresponding values of
γ (CoV) and ι(CoV) and solve the system of equations (A1).

The Table A1 provides calibrated Fleishman coefficients for each of the four parametric
distribution from PD at different levels of CoV.

If necessary, the Fleishman coefficients can be pre-computed at much higher resolution
of CoV and PD.
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APPENDIX B: DERIVATION OF
SKEWNESS AND KURTOSIS AT THE

PORTFOLIO LEVEL

The derivation of approximations of skewness and kurtosis of the aggregate reserve risk is
based on the assumption that standalone reserve risk profiles are approximated with the
Fleishman polynomial of a standard normal random variable and follow a Gaussian depen-
dence structure. This implies a multivariate normal distribution and calculating moments
of multivariate polynomial function of a multivariate normal distribution. In particular, the
components of skewness and kurtosis approximation formulae for the reserve risk portfolio
are of the following types:

E
[
P3(Zi )

ni P3(Zj )
n j P3(Zk)nk P3(Zl)nl

]
with ni , n j , nk, nl � 0 and ni + n j + nk + nl � 4. This reduces to calculating high-order
moments of the multivariate standard normal distribution:

E
[
Zni
i Z

n j
j Znk

k Znl
l

]
with ni , n j , nk, nl � 0 and ni+n j+nk+nl � 12. Themultivariate standard normalmoments
for which ni + n j + nk + nl is odd are equal to zero. When ni + n j + nk + nl is even the high-
order moment of a multivariate standard normal is then calculated using Isserlis’s Formula.
The Isserlis’ Formula is defined and used to compute high-order moments of multivariate
standard normal random variables in Isserlis (1918).

APPENDIX C: ANALYSIS OF QUALITY
OF APPROXIMATIONS — DETAILED

OUTPUTS

This appendix provides a small sample of detailed outputs from the analysis of quality of PoS
approximations. In particular, the detailed outputs for Inverse-Gamma under the assumption
of η = 25% are tabulated and visualised below in Table C1 and Figure C1. These outputs
cover cases 16 and 17 analysed in Section 3.4 and discussed on page 767.

The full set of detailed outputs from the analysis of quality of PoS ap-
proximations can be downloaded from https://drive.google.com/open?id=
0B6piPKdUSkYISWRWMEkzZ3VlWmc (please refer to Appendix C therein).
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TABLE C1

POS OF INVERSE-GAMMA DISTRIBUTION WITH η = 25%: ACTUAL VS. APPROXIMATED.

C-F C-F C-F B-E Quadr Cubic Quartic
Parametric B-E Quadr Cubic Quartic Approx Approx Approx Approx
Distrib Approx Approx Approx Approx � % � % � % � %

CoV =
5% 0.99999 0.99999 0.99999 0.99999 0.99999 −0.00011 −0.00013 −4.49E−06 −0.00019
10% 0.98718 0.98734 0.98719 0.98702 0.98701 −0.01624 −0.00105 0.01561 0.01743
15% 0.93988 0.93873 0.93694 0.93923 0.93482 0.12176 0.31309 0.06859 0.54147
20% 0.89132 0.88801 0.88330 0.89129 0.87966 0.37334 0.90813 0.00335 1.32569
25% 0.85446 0.84968 0.84134 0.85757 0.83886 0.56338 1.55924 −0.36220 1.86051
30% 0.82852 0.82373 0.81114 0.83863 0.81279 0.58121 2.14276 −1.20554 1.93471
35% 0.81068 0.80780 0.79017 0.83336 0.79790 0.35640 2.59508 −2.72188 1.60092
40% 0.79855 0.79984 0.77619 0.84143 0.79004 −0.16040 2.88109 −5.09551 1.07793
45% 0.79044 0.79845 0.76755 0.86226 0.78565 −1.00354 2.98097 −8.32981 0.60879
50% 0.78513 0.80273 0.76312 0.89143 0.78236 −2.19240 2.88467 −11.92440 0.35398
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FIGURE C1: PoS of Inverse-Gamma distribution with η = 25%: delta error. (a) � %. (b) |�| %.
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