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A priori attitude information can improve the success rate and reliability of Global Naviga-
tion Satellite System (GNSS) multi-antennae attitude determination. However, a priori attitude
information is nonlinear, and integrating a priori information into the objective function rig-
orously will increase the complexity of an ambiguity domain search, such as the Multivariate
Constrained-Least-squares Ambiguity Decorrelation Adjustment (MC-LAMBDA) method. In
this paper, a new method based on attitude domain search is presented to make use of the a
priori attitude angle information with high efficiency. First, the a priori information of pitch
and roll is integrated into the search process to derive the analytic search step for attitude angle,
and the integer candidates are determined by traversal search in the three-dimensional attitude
domain. Then, the objective function is parameterised with Euler angles, and a non-iterative
approximate method is utilised to simplify the iterative computation in calculating objective
function values. Experimental results reveal that compared to the MC-LAMBDA method, our
new method has the same success rate and reliability, but higher efficiency in making use of a
priori attitude information.
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1. INTRODUCTION. Global Navigation Satellite System (GNSS)-based full attitude
determination needs multiple non-collinear antennae (at least three) firmly mounted on a
platform’s body, and Integer Ambiguity Resolution (IAR) is key.

Existing IAR techniques can be mainly divided into two categories (Kim and Lan-
gley, 2000). The first category is a search technique in the ambiguity domain, such as
Least squares Ambiguity Search Technique (LSAST), Ambiguity search using Constraint
Equation (ARCE) and the Least-squares Ambiguity Decorrelation Adjustment (LAMBDA)
method. LSAST (Hatch, 1990) and ARCE (Park et al., 1996) divide integer ambiguities
into independent and dependent parts and perform a search using only the independent
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part. These methods have high computational efficiency, but there is no theoretical guide-
line to set the size of the search space which is critical to performance (Park and Teunissen,
2009). The most popular methods of the first category are based on the LAMBDA method
proposed by Teunissen (1995). For attitude determination, there is usually some a priori
information, such as baseline configuration and attitude angle provided by other sensors.
By utilising the a priori information, the reliability and success rate of GNSS attitude deter-
mination can be improved. However, the a priori information is nonlinear, and the standard
LAMBDA method can only be used for unconstrained or linearly constrained GNSS mod-
els. To utilise the baseline length constraint, Teunissen (2010) integrated the nonlinear
constraints of baseline length into an objective function and proposed a nonlinear con-
strained integer least square method (C-LAMBDA). By making use of the Monte Carlo
sampling method, Sun et al. (2017) directly used the quaternion probability distribution
to derive the probability density function of ambiguities, and then utilised the LAMBDA
method to fix the ambiguities. This method can realise ultra-short baseline constrained
multi-antennae attitude determination and the idea is novel, but the complex process of
Monte Carlo sampling affects its real-time performance. Giorgi et al. (2009) extended the
LAMBDA method for multi-antennae attitude determination and proposed the Multivariate
Constrained LAMBDA method (MC-LAMBDA), which is based on a complex and rigor-
ous non-ellipsoidal search strategy. The MC-LAMBDA method has high efficiency and
a high success-rate, and its performance has been demonstrated (Teunissen et al., 2011;
Giorgi, 2010; Giorgi et al., 2012).

With the development of this technique, highly accurate a priori information of pitch
and roll can be obtained by Micro-Electromechanical Systems-Inertial Measurement Unit
(MEMS-IMU)/GNSS integrated navigation systems (Alban, 2004; Buist, 2013; Eling et
al., 2013). Rigorously integrating this tight angular a priori information into the objective
function would strengthen the GNSS attitude model and benefit the reliability and avail-
ability of GNSS single-epoch full attitude determination, but it generates a new problem:
the inefficiency of search in the ambiguity domain. This tight angle-related term in the
objective function makes the ambiguity-related term become a very small amount, even
for the correct ambiguities (see Figure 3). Under these conditions, a non-ellipsoidal search
strategy cannot help us to accelerate the search, and the first category may be unsuitable
for real-time application.

The second IAR search technique category is a technique in the coordinate domain, and
it can directly use angular a priori information to compress the search space and acceler-
ate the search. The well-known method based on this category is the Ambiguity Function
Method (AFM) (Counselman and Gourevitch, 1981) The poor efficiency of AFM hinders
its real-time application and to improve this, Knight (1994) proposed a new method for
instantaneous ambiguity resolution, which realised AFM in the attitude domain rather than
the coordinate domain and achieved high reliability and efficiency with a priori informa-
tion of attitude. Cellmer et al. (2010) and Cellmer (2012; 2013) proposed the Modified
Ambiguity Function Approach (MAFA) which was based on a cascade adjustment with
successive linear combinations of L1 and L2 carrier phase observations and a simple search
procedure. The efficient use of multi-frequencies ensured MAFA had a good real-time per-
formance. To ensure the necessary condition to obtain a correct solution of MAFA, Nowel
et al. (2018) proposed a new method to apply a search procedure in MAFA, which calcu-
lated the search step and region based on the size of Voronoi cell, calculating empirically
rather than analytically. Cellmer et al. (2018) determined the search region based on the
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confidence level and further analysed the search step of MAFA through simulation, and
the search step is suggested to be 0.5λ in this paper. Given a constant ultra-short baseline
length constraint, Chen and Sun (2016) used the nominal accuracy of attitude and a regula-
tor to calculate the search step, and then search the optimal ambiguity vector corresponding
to coordinate points by making use of only phase observations. This method improved the
efficiency of AFM and realised single frequency and single epoch attitude determination
in urban environments. However, these methods mentioned above improve AFM in many
ways, but they do not have the analytical search step and do not establish a search model
for multi-antennae attitude determination.

In this contribution, we emphasise the efficient use of nonlinear a priori information
of pitch and roll in a multi-antennae attitude model and propose a reliable multivariate
constrained attitude determination method based on attitude domain search. The analyti-
cal attitude search step is derived by utilising a priori information of pitch and roll, and
all the integer candidates are determined by traversal search in the three-dimensional atti-
tude domain. This makes our method theoretically more efficient and more rigorous. A
non-iterative approximate method is proposed to simplify the iterative computation in cal-
culating an objective function value which is due to nonlinear a priori information. This
simplification further decreases the computation load.

This paper is organised as follows. First, a GNSS multi-antennae attitude model is intro-
duced. Second, the a priori information of pitch and roll is rigorously integrated into the
objective function of the GNSS multi-antennae attitude model, and how the tight a priori
information affects the efficiency of the search technique in the ambiguity domain is anal-
ysed. Third, a model of attitude domain search and an analytical method to calculate the
search step are proposed. In addition, a modified strategy to simplify the iterative compu-
tation in calculating the objective function value is given. Finally, we report on static and
dynamic tests, and both tests indicate the high efficiency, high reliability and high success
rates of our proposed method.

2. THE MULTI-ANTENNAE GNSS ATTITUDE MODEL. We consider a set of n + 1
antennae (n independent baselines) simultaneously tracking the same t + 1 satellites on
a single frequency. The model of multi-antennae attitude determination was given by
Teunissen (2008) as:

[P1 P2 · · · Pn] = GRA P1 P2 · · · Pn ∈ R
t×1, G ∈ R

t×3, A ∈ R
3×n, R ∈ O

3×3 (1)

[�1 �2 · · ·�n] =
1
λ

GRA + [N 1 N 2 · · · N n] �1 �2 · · · �n ∈ R
t×1,

N 1 N 2 · · · N n ∈ Z
t×1

(2)

where �1, �2 · · ·�n, P1, P2 · · · Pn are the phase and code Double Difference (DD) obser-
vations derived at each baseline, G is the matrix of DD line-of-sight vectors, N 1, N 2 · · · N n
are vectors of integer ambiguities for each baseline, λ is the wavelength, A is the matrix
of baseline coordinates in the body frame, R is the orthogonal matrix which describes the
relative orientation between the body and East-North-Up (ENU) frames, O

3×3 denotes the
set of 3 × 3 matrices of which the column vectors form an orthonormal span, R

a×b denotes
the set of a × b matrices of which the entries are real-valued and Z

t×1 denotes the set of
t × 1 matrices of which the entries are integers.

https://doi.org/10.1017/S0373463318000784 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463318000784


486 HONGTAO WU AND OTHERS VOL. 72

Figure 1. Definition of the body frame and attitude angle.

R can be parameterised with attitude angles as:

R =

⎡
⎣sin θ cos β sin θ sin β sin γ + cos θ cos γ sin θ sin β cos γ − cos θ sin γ

cos θ cos β cos θ sin β sin γ − sin θ cos γ cos θ sin β cos γ + sin θ sin γ

sin β − cos β sin γ − cos β cos γ

⎤
⎦ (3)

where θ , β, γ stand for heading, pitch and roll (see Figure 1).
R can be rewritten as:

R =

⎡
⎣r11 r12 r13

r21 r22 r23
r31 r32 r33

⎤
⎦ (4)

In theory, if all the entries of first and second column of R are known, the heading, pitch
and roll can be calculated according to the following equations:

θ = arctan
(

r11

r21

)
β = arcsin(r31) γ = −arcsin

(
r32

cos β

)
(5)

To measure full attitude, one needs at least two non-collinear baselines (three antennae).
If there are only three antennae available, the dimensions of A and R are transferred into
2 × 2 and 3 × 2.

Equations (1) and (2) can be written as:

P = BM (6)

� =
1
λ

BM + N (7)

where � = vec ([�1 �2 · · · �n]), P = vec ([P1 P2 · · · Pn]), N = vec ([N 1 N 2 · · · N n]),
B = AT ⊗ G, M = vec(R), ⊗ is Kronecker product and vec is the operator which stacks the
columns of a matrix below each other.

3. AMBIGUITY DOMAIN SEARCH WITH TIGHT ANGULAR A PRIORI INFOR-
MATION. Without regard for angular a priori information, Giorgi et al. (2009) used
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the least-squares principle to derive the objective function of multi-antennae attitude
determination as:

C1(N ) =
∥∥∥N − N̂

∥∥∥2

QN̂ N̂

+
∥∥∥vec(R̂(N ) − �

R(N ))
∥∥∥2

QR̂(N )R̂(N )

(8)

with:
�

R(N ) = arg min
R∈O3×3

∥∥∥vec(R̂(N ) − R)
∥∥∥2

QR̂(N )R̂(N )

(9)

where N̂ is the float solution of the integer ambiguity vector, R̂(N ) is the linear least-
square solution conditioned on the knowledge of N and QN̂ N̂ , QR̂(N )R̂(N ) are the variance-
covariance (v-c) matrices of N̂ and R̂(N ) respectively. The first term in Equation (8) can
be seen as an ambiguity-related term, and the second term can be seen as an orthogonal
matrix-related term.

We assume the a priori information of pitch and roll are uncorrelated, and the noise
is a white Gaussian distribution with zero mean. Taking the a priori information as an
observation (Gong et al., 2015), the objective function with a priori information of pitch
and roll can be given as:

C2(N ) =
∥∥∥N − N̂

∥∥∥2

QN̂ N̂

+
∥∥∥vec(R̂(N ) − �

R(N ))
∥∥∥2

QR̂(N )R̂(N )

+

∥∥∥ �

β − β̂

∥∥∥
σ 2

β

+

∥∥ �

γ − γ̂
∥∥2

σ 2
γ

(10)

with:

�

R(N ) = arg min
R∈O3×3

⎛
⎜⎝

∥∥∥vec(R̂(N ) − R)
∥∥∥2

QR̂(N )R̂(N )

+

∥∥∥ �

β − β̂

∥∥∥2

σ 2
β

+

∥∥ �

γ − γ̂
∥∥2

σ 2
γ

⎞
⎟⎠ (11)

where β̂, γ̂ stand for a priori measurements of pitch and roll, σ 2
β , σ 2

r are the variance of
β̂, γ̂ and

�

β, �

γ are pitch and roll derived by
�

R(N ). Let the third term and fourth term be
called angle-related terms.

Although Equation (8) uses nonlinear baseline configuration constraints rigorously, it
causes a potential drawback for a search technique in the ambiguity domain - an increased
numerical complexity (Teunissen, 2012). It is well-known that Giorgi (2010) overcame this
drawback through a non-ellipsoidal search strategy which is based on the use of an easy-to-
evaluate bounding function. Its key point is to set a small enough χ2 through the bounding
function, and then enumerate all the candidates in the 	(χ2) Equation (12) to minimise
C1(N ):

	(χ2) =
{

N ∈ Z
nt×1

∣∣ C(N ) ≤ χ2} (12)

with:

C(N ) =
∥∥∥N − N̂

∥∥∥2

QN̂ N̂

(13)

The real search space without angular a priori information can be expressed as:

	1(χ2) =
{

N ∈ Z
nt×1

∣∣ C1(N ) ≤ χ2} (14)

The final search procedure for a non-ellipsoidal search strategy is implemented in 	(χ2),
and 	(χ2) does not consider the orthogonal matrix-related term in the objective function
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Figure 2. Illustration of search spaces and the pseudo candidate: 	(χ2) is the search space considering
only ambiguity-related factors, 	1(χ2) is the real search space without considering a priori angular
information, 	2(χ2) is the real search space fully considering a priori angular information and the black
points are the pseudo candidates.

C1(N ), so it enlarges the search space (see Figure 2(a)). Fortunately, without a priori angle
information, for the correct ambiguities, the ambiguity-related term in C1(N ) is a large
weight (see Figure 2), and discarding the orthogonal matrix-related term would not enlarge
the search space obviously, and the efficiency of non-ellipsoidal search strategy should be
excellent. But influenced by the accurate angular a priori information, this situation would
be changed.The real search space with angular a priori information can be expressed as:

	2(χ2) =
{

N ∈ Z
nt×1

∣∣ C2(N ) ≤ χ2} (15)

Due to the angle-related term in Equation (10), the first ambiguity-related term of
Equation (10) for correct ambiguities is usually a small weight (see Figure 3).

Figure 2 shows the value of C(N ), C1(N ), C2(N ) calculated from the correct ambiguities
for the first 100 epochs’ data of the static test described in Section 4. C(N ) is the value of
the ambiguity-related term, and C1(N ) and C2(N ) are respectively the objective function
values without and with angular a priori information.

As shown in Figure 3, even if one sets χ2 with the correct ambiguities, the size of 	(χ2)
is still very large, and there will be many pseudo candidates which are in 	(χ2), but not in
	2(χ2) (see Figure 2(b)). This means that the nonlinear least-square problem Equation (11)
has to be evaluated many times, and would be very time-consuming.

As analysed above, the rigorous inclusion of a priori information of attitude angle will
decrease the efficiency of the search in the ambiguity domain. First, the ambiguity-related
term C(N ) becomes a small weight in the objective function C2(N ), and it makes it impos-
sible to find a small enough χ2 to ensure there are not too many pseudo candidates in
	(χ2). Second, the evaluation of nonlinear least-square problem Equation (11) involves
iteration, and it further increases the computation load.

In contrast to the search technique in the ambiguity domain, the search technique in the
coordinate domain search can use a priori information of attitude to compress the search
space directly and overcomes the problem.

4. AMBIGUITY SEARCHING ALGORITHM IN THE ATTITUDE DOMAIN.
4.1. Search model in attitude domain. From Equation (3), the vector M can be

parametrised with the attitude angle as:

M = M (θ , β, γ ) (16)
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Figure 3. Demonstration of the small weight of the first ambiguity-related term in Equation (10) for correct
ambiguities. The value of C(N ) is much smaller than C2(N ) and nearly equal to C1(N ).

For the DD carrier phase equation, the integer ambiguities can be denoted as the
following simplified equation:

N = � − 1
λ

BM (θ , β, γ ) (17)

Typically, the error of carrier phase measurement is less than 0·25 cycles, and thus
Equation (17) can be expressed as

N = round
(

� − 1
λ

BM (θ , β, γ )
)

(18)

where round is a function of rounding to the nearest integer value.
Equation (18) indicates that the integer ambiguities can be seen as the function of atti-

tude. Taking no account of the computation load, one can enumerate every possible attitude
angle to determine ambiguity candidates through Equation (18).

4.2. An analytic method to calculate search step. In the classic AFM approach, to
satisfy the necessary condition that the final solution is exactly at the point of candidates,
the search step is suggested to be less than 0·1λ (Han and Rizos, 1996). In our method, the
ambiguity candidates are determined by searching in the attitude domain and there is no
need to satisfy the condition above.

If a search technique is implemented in the attitude domain with a certain search step,
the constant search space of attitude is transformed into a group of discrete searching points
(θ̄ , β̄, γ̄ ) (see Figure 4). The true attitude must be in a cube formed by the searching points.
This cube is called here the “correct cube”, and there are eight search points which lie
at the corners of the correct cube (see Figure 5). Assuming 
θ , 
β, 
γ are the search
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Figure 4. Illustration of transforming constant search space to discrete searching points. The cube in (a)
is the constant search space of attitude and the black points in (b) are the search points after discretisation,
and the red point is the true attitude.

Figure 5. Illustration of correct cube. The red point is the true attitude, the black points are the search points of
the correct cube, and the correct cube can be divided into eight small cubes.

steps of heading, pitch and roll, the size of the correct cube is 
θ × 
β × 
γ , and it can
be divided into eight small cubes which are of size 0·5
θ × 0·5
β × 0·5
γ . Each small
cube has one search point, and the point which is closest to the true attitude is the search
point corresponding to the small cube which contains the true attitude. This point is named
here the “closest point” (see Figure 5), and it can be denoted as (θ + k1
θ , β + k2
β, γ +
k3
γ ), where k1, k2, k3 are the scale factors. No matter where the location of true attitude
is, k1, k2, k3 must satisfy |k1| ≤ 0·5, |k2| ≤ 0·5, |k3| ≤ 0·5.

To ensure the closest point to determine the correct ambiguities through Equation (18),
the ambiguity change caused by the closest point must be less than half one cycle, and this
restriction can be expressed as:

∥∥∥∥1
λ

Bij M (θ + k1
θ , β + k2
β, γ + k3
γ ) − 1
λ

Bij M (θ , β, γ )
∣∣∣∣ ≤ 0·5 (19)
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where (θ , β, γ ) is the true attitude, i denotes the i-th baseline in the multi-antennae model,
and j denotes the j -th DD observation equation of the i-th baseline.

It should be noted that when ξ ≤ 10◦, cos(ξ ) ≈ 1, sin(ξ ) ≈ ξ . Assuming 
θ , 
β, 
γ ≤
10◦ one can derive the Equation as follows:

M (θ + k1
θ , β + k2
β, γ + k3
γ ) − M (θ , β, γ )

=
∂M (θ , β, γ )

∂θ
k1
θ +

∂M (θ , β, γ )
∂β

k2
β +
∂M (θ , β, γ )

∂γ
k3
γ (20)

By substituting Equation (20) into Equation (19), this restriction of search step
Equation (19) can be rewritten as:∣∣∣∣Bij

∂M (θ , β, γ )
∂θ

k1
θ + Bij
∂M (θ , β, γ )

∂β
k2
β + Bij

∂M (θ , β, γ )
∂γ

k3
γ

∣∣∣∣ ≤ 0·5λ (21)

If one calculates search step 
θ , 
β 
γ as Equation (22), restriction Equation (21) can
be satisfied absolutely.


θ ≤ 1

max
(∥∥∥∥Bij

∂M (θ , β, γ )
∂θ

∥∥∥∥
2

) 0·5λ

3|k1| 
β ≤ 1

max
(∥∥∥∥Bij

∂M (θ , β, γ )
∂β

∥∥∥∥
2

) 0·5λ

3|k2|


γ ≤ 1

max
(∥∥∥∥Bij

∂M (θ , β, γ )
∂γ

∥∥∥∥
2

) 0·5λ

3|k3| (22)

where max(•) means to get the maximum from a discrete series, and i = 1, 2 · · · n; j =
1, 2 · · · t.

Due to |k1| ≤ 0·5, |k2| ≤ 0·5, |k3| ≤ 0·5, a tighter upper-limit of search step can be
derived as:


θ ≤ λ/3

max
(∥∥∥Bij

∂M (θ ,β,γ )
∂θ

∥∥∥
2

) 
β ≤ λ/3

max
(∥∥∥Bij

∂M (θ ,β,γ )
∂β

∥∥∥
2

)


γ ≤ λ/3

max
(∥∥∥Bij

∂M (θ ,β,γ )
∂γ

∥∥∥
2

) (23)

Unfortunately, the true attitude angles are unknown, and one cannot directly calculate
the search step through Equation (23), but the tight a priori information of pitch and roll
can help us to evaluate the upper-limit of search step Equation (23).

Taking 
θ for example, ∂M (θ ,β,γ )
∂θ

can be rewritten as:

∂M (θ , β, γ )
∂θ

= U(β, γ )
[

sin θ

cos θ

]
(24)

with:

U(β, γ ) =
[

0 − cos β 0 − cos γ − sin β sin γ 0 sin γ − sin β cos γ 0
cos β 0 0 sin β sin γ − cos γ 0 sin β cos γ sin γ 0

]T

(25)
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Assuming εβ , εγ are the error of β̂, γ̂ , and |εβ | ≤ 5◦, |εγ | ≤ 5◦, similarly to Equation (20),
U(β, γ ) can be rewritten as:

U(β, γ ) = U(β̂, γ̂ ) +
∂U(β, γ )

∂β

∣∣∣∣
β=β̂,γ =γ̂

εβ +
∂U(β, γ )

∂γ

∣∣∣∣
β=β̂,γ =γ̂

εγ (26)

where β̂, γ̂ are a priori measurements of pitch and roll.

Due to
∥∥∥∥
[

sin θ

cos θ

]∥∥∥∥
2

= 1, inequality Equation (27) can be derived by using norm theory:

∥∥∥∥Bij
∂M (θ , β, γ )

∂θ

∥∥∥∥
2

≤
∥∥∥Bij U(β̂, γ̂ )

∥∥∥
2

+
∥∥∥∥
[
εβ

εγ

]∥∥∥∥
2

∥∥[
UT

1BT
ij UT

2BT
ij
]∥∥

2 (27)

where: U1 = ∂U(β,γ )
∂β

∣∣∣
β=β̂,γ =γ̂

, U2 = ∂U(β,γ )
∂γ

∣∣∣
β=β̂,γ =γ̂

and one makes use of the norm theory

‖AB‖2 ≤ ‖A‖2‖B‖2, ‖A + B‖2 ≤ ‖A‖2 + ‖B‖2.

Assuming, J θ
ij =

∥∥∥Bij U(β̂, γ̂ )
∥∥∥

2
+

∥∥∥∥
[
εβ

εγ

]∥∥∥∥
2

∥∥[
UT

1BT
ij UT

2BT
ij
]∥∥

2, the upper-limit of 
θ

can be rewritten as:


θ ≤ 1

max
(

J θ
ij

) λ

3
(i = 1, 2, · · · n; j = 1, 2, · · · t) (28)

Similarly, the upper-limit of 
β, 
γ can be derived as follows (detail in the Appendix).


β ≤ 1

max
(

J β
ij

) λ

3

γ ≤ 1

max
(

J γ

ij

) λ

3
(i = 1, 2 · · · n; j = 1, 2 · · · t) (29)

With the upper-limit of εβ , εγ , the search step of attitude angle according to Equations (28)
and (29) can be calculated, and then the search grids in the search space of attitude can be
established. All the integer ambiguity candidates can be determined by the search points
through Equation (18).

4.3. Modified strategy to fix ambiguities. After determining all the integer ambiguity
candidates, the principle of total least-squares is used to fix the correct ambiguities. The
objective function can be expressed as:

H (N ,
�

M ) = ‖� − B
�

M/λ − N‖2
Qφ

+ ‖P − B
�

M‖2
QP

+
‖ �

β − β̂‖2

σ 2
β

+
‖ �

γ − γ̂ ‖2

σ 2
γ

Q� ∈ R
nt×nt, QP ∈ R

nt×nt (30)

with:
�

M = vec(arg min
R∈O3×3

H (N , vec(R))) (31)

where Qφ , QP are the v-c matrices of �, P respectively.
Generally, the iteration should be involved in solving the nonlinear least-squares

problem Equation (31), and it decreases the efficiency of computation.
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To improve efficiency, in this section, we propose a non-iterative approximation method
to simplify the iteration in calculating the objective function. The objective function
Equation (30) can be parameterised with an attitude angle as:

H (N , �

η(N )) = ‖L − F(N , �

η(N ))‖2
Q (32)

with:
�

η(N ) = arg min
η

‖L − F(N , η)‖2
Q (33)

where F(N , η) = vec
([

BM (θ , β, γ )/λ + N BM (θ , β, γ ) β γ
])

, Q = diag(Q�, QP,
σ 2

β , σ 2
γ ), η =

[
θ β γ

]T L = vec
([

� P β̂ γ̂
])

.
By the parameterisation, the nonlinear constrained least-squares Equation (31) is

transformed into nonlinear unconstrained least-squares Equation (33).
In theory, solving Equation (33) still involves the iteration, but if the initial value is close

enough to η(N ), an analytical and approximate solution of η(N ) can be derived through
least squares estimation.

For every candidate N , the orthogonal constraint of R is disregarded and the linear least-
squares solution M 0(N ) is derived by a DD phase observation equation, and the rough
attitude solution η0(N ) is calculated by Equation (5).

For the correct candidate, considering the high precision of carrier phase measurement,
η0(N ) must be close enough to �

η(N ) (for example, assuming the baseline length is 1 m and
the error of relative position is less than 10 cm, the deviation of attitude is less than 5◦ or
0·1 radian), and F(N , η) can be linearized as follows:

L = F(N , η) = F(N , η0(N )) + K
η(N ) (34)

where the high-order error has been neglected and 
η(N ) = η̄(N ) − η0(N ),

K =
(

∂F
∂η

)T
∣∣∣∣
η=η0(N )

.

Then η̄(N ) can be calculated as:

η̄(N ) = η0(N ) + (K TQ−1K )−1K TQ−1 (
L − F(N , η0(N ))

)
(35)

Due to only small errors, η̄(N ) is the approximate solution of �

η(N ), and the value of
H (N , η̄(N )) is nearly equal to H (N , �

η(N )), H (N , �

η(N )) ≈ H (N , η̄(N )).
For the incorrect ambiguity candidates, Equation (35) is still used to calculate η̄(N ), but

because of the larger error caused by the incorrect integer ambiguities, η̄(N ) is no longer
the approximate solution of �

η(N ). It should be noted that �

η(N ) is the least-squares solution
for Equation (33), and the objective function value of �

η(N ) is minimal. Thus, the value of
H (N , η̄(N )) is equal to or greater than H (N , �

η(N )), H (N , �

η(N )) ≤ H (N , η̄(N )).
As analysed above, the value H (N , η̄(N )) of correct ambiguities is still minimal and

correct ambiguities can be still fixed by minimising Equation (32) with η̄(N ). Figure 6
shows the objective function value of the correct ambiguities for the first 100 epoch data of
the static test described in Section 5 calculated from η0(N ), �

η(N ) and η̄(N ).
As shown in Figure 6, the objective function value calculated from η̄(N ) Equation (35) is

nearly equal to that of �

η(N ). This means that η̄(N ) has an equal performance to �

η(N ) in fix-
ing the ambiguity candidate, but is more efficient than �

η(N ), because of the simplification
of iteration in Equation (33).
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Figure 6. The value of the objective function calculated from η0(N ),
�
η(N ) and η̄(N ).

The steps of our new method are then as follows:

Step 1: Determine the search step and region and establish the search grids.
1. Make use of a priori information of pitch and roll to determine the attitude search

region. The search space of attitude is heading ±180◦, pitch β̂ + 5σβ , roll γ̂ ±
5σγ .

2. Compute the attitude search step 
θ , 
β, 
γ according to Equations (28)
and (29), establish the search grids in the search space with 
θ , 
β, 
γ , and
find all the search points (θ̄ , β̄, γ̄ ) in the search space.

Step 2: Determine all the ambiguity candidates and calculate the objective function.
1. Make use of all the search points (θ̄ , β̄, γ̄ ) to determine the integer ambiguity

candidates through Equation (18).
2. Calculate η0(N ), η̄(N ) for every candidate, and substitute η̄(N ) for �

η(N ) to
evaluate the objective function value Equation (32).

Step 3: Select one candidate N that returns the smallest value for the objective
function as a fixed solution.

As long as the ambiguity candidate is fixed, the final high precision attitude can be
derived by solving the non-linear least squares Equation (33).

5. TEST VERIFICATION AND ANALYSIS. In order to test the performance of the
method proposed in this paper, static and dynamic experiments were carried out on 23 June
2017 and 17 January 2018 respectively in Xi’an, China, with a 10◦ cut off elevation angle.

5.1. Static experiment. In the static experiment, three NovAtel OEM628 (NovAtel
Inc, Calgary, Canada) receivers were used to collect frequency L1 carrier phase data and
Coarse/Acquisition (C/A) code data with a sampling interval of 1 s, which can provide
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Figure 7. The antennae step-up and the relative placement: O-XYZ is the body frame and M is the main
antenna, A1 and A2 are the auxiliary antennae.

measurement precision of about 2 mm (1σ ) for L1 carrier phase and about 20 cm (1σ ) for
C/A code measurement. Three NovAtel 702-GGG antennae were mounted on the roof of
the scientific research building. Data was recorded from 23 June 2017 to 24 June 2017 for
63,488 s. The two baselines were 1·389 m and 1·376 m long, forming an angle of 62·603◦.
Their coordinates in the body frame are shown in Figure 7.

The data collected was post processed using Matlab 2010a, and the computer used had
an AMD Athlon(tm) X2 215 processor running at 2·70 GHz with 2 GB RAM. The accurate
attitude of the baselines in the ENU frame was heading 214·951◦, pitch 3·076◦ and roll
0·374◦. In order to simulate the a priori information of pitch and roll obtained by other
sensors, we added white Gaussian distribution noise with zero mean to the true value and
set its standard deviation to 1◦. The attitude search space was heading ±180◦, pitch ±5◦

and roll ±5◦.
The integer ambiguity vector was resolved at every epoch. We compared our new

method with two methods based on search techniques in the ambiguity domain as follows.
True ambiguities for every epoch were solved by using the accurate baselines attitude.

Method 1: Standard MC-LAMBDA method without considering any angular a priori
information.

Method 2: Modified MC-LAMBDA method which integrates the a priori information
of pitch and roll into the objective function.

A non-ellipsoidal search strategy (Giorgi and Teunissen, 2010) was applied in the search
process of these two methods.

Table 1 shows the success rate for each method as a function of the number of satellites
available. Due to considering only the baselines configuration constraint, the success rate
of method 1 begins to decrease when the number of available satellites is less than six,
and it gets the ambiguity resolution wrong in over 10 epochs. In contrast from method
1, method 2 and this paper’s new method consider not only the baselines configuration
constraint but also a priori information of pitch and roll to strengthen the model of GNSS
attitude determination and achieve a success rate of 100% in the experiments, even when
only five satellites are available.

The average time that was required for resolving integer ambiguities was measured
using Matlab 2010a (see Table 2). The number of ambiguity candidates for the three
methods and the number of pseudo candidates are reported in Table 2.
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Table 1. Success rate comparison for three methods as a function of the number of satellites available.

Method 1 Method 2 The new method

Available Success Success Success Success Success Success
satellites Epochs Epochs Rate Epochs Rate Epochs Rate

8 35909 35909 100% 35909 100% 35909 100%
7 23291 23291 100% 23291 100% 23291 100%
6 2927 2925 99·3% 2927 100% 2927 100%
5 1361 1350 99·1% 1361 100% 1361 100%

Total 63488 63475 99·9% 63488 100% 63488 100%

Table 2. Average computation time and average number of ambiguity candidates for the three methods.

Average computation Average number of Average number of
Method Epochs time/s ambiguity candidates pseudo candidates

Method 1 63488 0·014 2 13
Method 2 63488 0·506 7 1016
The new method 63488 0·049 587 /

Table 3. Average computation time at different noise levels.

STD of a priori information
of pitch and roll 1◦ 2◦ 3◦ 4◦

Method 2 0·506s 0·178s 0·096s 0·049s
The new method 0·049s 0·114s 0·286s 0·554s

As shown, the efficiency of the standard MC-LAMBDA (method 1) is excellent when
utilising a non-ellipsoidal search strategy, and the average number of pseudo candidates
is only 13. When the a priori information of pitch and roll is integrated into the objective
function (method 2), the efficiency of MC-LAMBDA becomes worse. On average, there
are over 1,000 pseudo candidates. The average computation time of method 2 is about 0·5 s.
In contrast to the search technique in the ambiguity domain, a priori information of attitude
angle is used to compress the search space directly in our new method. The average number
of candidates is not too high. Due to fewer candidates and the non-iterative approximate
method which simplified the evaluation in Equation (33), our new method is a little slower
than method 1, but much faster than method 2. The average computation time of our new
method is less than 0·1 s.

In order to test how the noise level of pitch and roll affects the performance of our
method, we set different Standard Deviations (STD) for pitch and roll and measured the
average computation time of method 2 and our new method. The attitude search space was
still heading ±180◦, pitch ±5σβ and roll ±5σγ . As shown in Table 3, when increasing
the noise level, the efficiency of method 2 clearly improves, while the performance of our
new method becomes worse. Pitch and roll provided by a MEMS-IMU/GNSS integrated
navigation system is fairly accurate, and σβ , σr are generally less than 2◦. Under these
conditions, the new method still performs better than method 2.

5.2. Dynamic test. The dynamic test took place on 17 January 2018, in the west of
Xi’an. Three NovAtel 702-GGG antennae were placed on the roof of the experimental
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Figure 8. Dynamic experimental scene and the antennae set-up: O-XYZ is the body frame and M, A1 and A2
are the main and the auxiliary antennae.

Table 4. The single-epoch success rate and average computation time.

Success Success Average computation
Method Epochs Epochs rate time/s

Method 1 896 804 89·7% 0·012
Method 2 896 896 100% 0·713
The new method 896 896 100% 0·053

Figure 9. The trajectory of the dynamic test.

vehicle (see Figure 8(a)). The two antennae at the front were connected to two NovAtel
OEM628 receivers and the antenna at the back was connected to a NovAtel SPAN-CPT
single Enclosure GNSS/Inertial Navigation System (INS) Receiver which can provide the
original measurements of Global Positioning System (GPS) and a priori information of
pitch and roll through integration (the standard deviation is pitch 0·02◦ and roll 0·02◦). Car-
rier phase data of frequency L1 and C/A code data was collected with a sampling interval
of 1 s. During the first 335 s, the experimental vehicle stood still to calibrate the alignment
error of the INS. The two baselines’ coordinates in the body frame are shown in Figure 8(b).

The collected data was processed with three methods as for the static test. The length
and the included angle of the two baselines were used to check whether the integer ambigu-
ities were fixed correctly. The single-epoch success rate and the average time consumption
are reported in Table 4. Due to the higher noise levels (than the static test), without a priori
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Figure 10. The length and included angle of baselines estimated via GNSS.

Figure 11. The attitude angle estimated via GNSS.
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information of pitch and roll (method 1), the MC-LAMBDA method is not capable of pro-
viding the correct ambiguities from a single-epoch set of observations for more than 90%
of the time, whereas the additional a priori information improves the fixing rate of MC-
LAMBDA and our new method. 100% of the epochs were correctly resolved. Comparing
the average computation time, the new method is still much faster than method 2, and much
shorter than 0·1 s. The average computation time for method 2 is more than 0·5 s, and its
real-time performance is the worst. The results are consistent with the static test.

The trajectory of the experimental vehicle is shown in Figure 9; this was obtained by
antenna pseudo-range positioning,

The baseline and attitude results resolved by our method are shown in Figure 10 and
Figure 11.

Figure 10 shows that the length and included angle of the two baselines are measured
as 1·218 m, 1·560 m and 39·04◦, which corresponds to the a priori information; Figure 11
shows that when moving, heading changes correspond to the vehicle moving track, the
pitch is about 2◦, the roll is about −2◦ and the maximum floating value is about 2◦ corre-
sponding to the uneven ground. The experiment result indicates that length and included
angle of the two baselines, and full attitude of the vehicle were all measured correctly,
which is due to the correctly fixed ambiguities.

6. CONCLUSIONS. This paper fully considers the a priori information of baselines
configuration, pitch and roll. Based on a search technique in the attitude domain, a fast and
reliable new method for full attitude determination is proposed.

In contrast to more conventional search techniques, this paper’s new method performs
a search procedure in the attitude domain and the ambiguity candidates are sought in a
constant three-dimensional attitude domain with an analytic search step. Angular a priori
information was used to compress the search space and avoid a large number of pseudo
candidates and a non-iterative method is presented to simplify the computation of nonlinear
least squares problems caused by the nonlinear a priori information. Experimental results
show that the new method can achieve a very high success rate and high efficiency. A final
dynamic vehicle experiment further verifies the reliability of this new method.

Although the good performance of the new method has been demonstrated, it is still
necessary to validate our new method through a dynamic test with an accurate attitude
reference. In addition, the pseudorange is not considered in the search process of our new
method. In the absence of any a priori attitude information, the search space will be very
large, and the real-time performance of our new method will decrease dramatically. How
to make use of pseudorange to improve our method will be a focus in further research.

FINANCIAL SUPPORT

This work is supported by National Natural Science Foundation of China (Grant No. 61601506).

REFERENCES

Alban, S. (2004). Design and performance of a robust GPS/INS attitude system for automobile applications. Ph.D.
Thesis, Stanford University.

Buist, P.J. (2013). Multi-platform integrated positioning and attitude determination using GNSS. Ph.D. Thesis,
Delft University of Technology.

https://doi.org/10.1017/S0373463318000784 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463318000784


500 HONGTAO WU AND OTHERS VOL. 72

Cellmer, S., Wielgosz, P. and Rzepecka, Z. (2010). Modified ambiguity function approach for GPS carrier phase
positioning. Journal of Geodesy, 84(4), 264–275.

Cellmer, S. (2012). A graphic representation of the necessary condition for the MAFA method. IEEE Transactions
on Geoscience & Remote Sensing, 50(2), 482–488.

Cellmer, S. (2013). Search procedure for improving Modified Ambiguity Function Approach. Survey Review,
45(332), 380–385.
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APPENDIX

DERIVATION OF THE UPPER LIMIT OF SEARCH STEP OF PITCH AND ROLL

We introduce the matrix as follows:

D(β, γ ) =
[− sin β 0 0 cos β sin γ 0 0 cos β cos γ 0 0

0 − sin β 0 0 cos β sin γ 0 0 cos β cos γ 0

]T
(A1)

D′(β, γ ) =
[
0 0 cos β 0 0 sin β sin γ 0 0 sin β cos γ

]T (A2)

and ∂M (θ ,β,γ )
∂β

can be rewritten as:

∂M (θ , β, γ )
∂β

= D(β, γ )
[

sin θ

cos θ

]
+ D′. (A3)

As for Equation (22), we can derive Equation (A4) as∥∥∥∥Bij
∂M (θ , β, γ )

∂β

∥∥∥∥
2

≤
∥∥∥Bij D(β̂, γ̂ )

∥∥∥
2

+
∥∥∥Bij D′(β̂, γ̂ )

∥∥∥
2

+
∥∥∥∥
[
εβ

εγ

]∥∥∥∥
2

∥∥∥[
DT

1 BT
ij DT

2 BT
ij

]∥∥∥
2

+
∥∥∥∥
[
εβ

εγ

]∥∥∥∥
2

∥∥[
Bij D′

1 Bij D′
2
]∥∥

2 (A4)

where D1 = ∂D(β,γ )
∂β

∣∣∣
β=β̂,γ =γ̂

, D2 = ∂D(β,γ )
∂γ

∣∣∣
β=β̂,γ =γ̂

, D′
1 = ∂D′(β,γ )

∂β

∣∣∣
β=β̂,γ =γ̂

,

D′
2 =

∂D′(β,γ )
∂γ

∣∣∣
β=β̂,γ =γ̂

.

Assuming J β
ij =

∥∥∥Bij D(β̂, γ̂ )
∥∥∥

2
+

∥∥∥Bij D′(β̂, γ̂ )
∥∥∥

2
+

∥∥∥∥
[
εβ

εγ

]∥∥∥∥
2

∥∥∥[
DT

1 BT
ij DT

2 BT
ij

]∥∥∥
2

+∥∥∥∥
[
εβ

εγ

]∥∥∥∥
2

∥∥[
Bij D′

1 Bij D′
2
]∥∥

2, the upper limit of 
β can be expressed as:


β ≤ 1

max
(

J β
ij

) λ

3
(i = 1, 2 · · · n : j = 1, 2, ...t) (A5)

Similarly, we introduce the matrix as follows:

E(β, γ ) =
[

0 0 0 sin β cos γ sin γ 0 − sin β sin γ cos γ 0
0 0 0 − sin γ sin β cos γ 0 − cos γ − sin β sin γ 0

]T
(A6)

E′(β, γ ) =
[
0 0 0 0 0 − cos β cos γ 0 0 cos β sin γ

]T (A7)

and ∂M (θ ,β,γ )
∂γ

can be rewritten as:

∂M (θ , β, γ )
∂γ

= E(β, γ )
[

sin θ

cos θ

]
+ E′. (A8)

Thus, Equation (A9) can be derived:∥∥∥∥Bij
∂M (θ , β, γ )

∂γ

∥∥∥∥
2

≤
∥∥∥Bij E(β̂, γ̂ )

∥∥∥
2

+
∥∥∥Bij E′(β̂, γ̂ )

∥∥∥
2

+
∥∥∥∥
[
εβ

εγ

]∥∥∥∥
2

∥∥∥[
ET

1 BT
ij ET

2 BT
ij

]∥∥∥
2

+
∥∥∥∥
[
εβ

εγ

]∥∥∥∥
2

∥∥[
Bij E′

1 Bij E′
2
]∥∥

2 (A9)
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where E1 = ∂E(β,γ )
∂β

∣∣∣
β=β̂,γ =γ̂

, E2 = ∂E(β,γ )
∂γ

∣∣∣
β=β̂,γ =γ̂

, E′
1 = ∂E′(β,γ )

∂β

∣∣∣
β=β̂,γ =γ̂

,

E′
2 = ∂E′(β,γ )

∂γ

∣∣∣
β=β̂,γ =γ̂

.

Assuming J γ
ij =

∥∥∥Bij E(β̂, γ̂ )
∥∥∥

2
+

∥∥∥Bij E′(β̂, γ̂ )
∥∥∥

2
+

∥∥∥∥
[
εβ

εγ

]∥∥∥∥
2

∥∥∥[
ET

1 BT
ij ET

2 BT
ij

]∥∥∥
2

+∥∥∥∥
[
εβ

εγ

]∥∥∥∥
2

∥∥[
Bij E′

1 Bij E′
2
]∥∥

2, the upper limit of 
γ can be expressed as:


γ ≤ 1

max
(

J γ
ij

) λ

3
(i = 1, 2 · · · n; j = 1, 2 · · · t) (A10)
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