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Abstract

This paper presents a method for automatically generating new designs from a set of existing objects of the same class using
machine learning. In this particular work, we use a custom parametric chair design program to produce a large set of chairs
that are tested for their physical properties using ergonomic simulations. Design schemata are found from this set of chairs
and used to generate new designs by placing constraints on the generating parameters used in the program. The schemata are
found by training decision trees on the chair data sets. These are automatically reverse engineered by examining the struc-
ture of the trees and creating a schema for each positive leaf. By finding a range of schemata, rather than a single solution, we
maintain a diverse design space. This paper also describes how schemata for different properties can be combined to gen-
erate new designs that possess all properties required in a design brief. The method is shown to consistently produce viable
designs, covering a large range of our design space, and demonstrates a significant time saving over generate and test using
the same program and simulations.

Keywords: Automatic Derivation; Design Schemata; Generation of Designs; Machine Learning

1. INTRODUCTION

In design we sometimes speak of the “design space”: the range
of all possible designs. To find a new design, we find a suitable
point in the space. In parametric generative design the design
space is fully described as an n-dimensional space (where n
is the number of parameters). This space may be entirely viable
or only partially viable (if some potential designs do not fulfill
the requirements of the brief). In the second case, we need to be
able to find the viable regions to produce new designs; this is
particularly difficult if the viable areas are small compared to
the design space. The viable regions may also be discontinu-
ous, preventing easy navigation from one to another. This is
the case in our chosen task of designing a chair.

Our proposed method of navigating the design space is to
build a list of rules that describe an area of the design space
that will produce a chair with a particular property. We call
each list a “schema.” This is equivalent to the knowledge
base a human designer would have for any design problem:
his or her preconceptions. For our case study, chair design,
we will look at properties such as comfort and stability to de-
fine these spaces. Crucially, we will define multiple schemata

for each property, allowing the variety of possible designs to
remain high. To create the schemata, we could manually
draw on expert knowledge, but instead we find the solutions
directly by testing chair models for their physical properties
and using decision trees to learn the schemata. Using machine
learning to constrain design parameters is not new; Dabbeeru
and Mukerjee (2011) in particular have explored similar
methods. This work extends theirs with its ability to deal
with complex design spaces and discontinuous viable regions.

Using predefined schemata is similar to designing based on
preconceptions, often seen as negative, reducing the creativity
of a designer’s output. However, in reality it is an important
part of design, where learning from experience allows a de-
signer to quickly find a viable area of the design space in which
he or she can explore new ideas. Other researchers have also
studied the use of schemata in design, both as a functional
part of the design process for human design teams (Lawson,
2004) and as a framework for an automated generative process
(Janssen, 2006). They both acknowledge that schemata have a
valuable role in enabling the design process, saving time and
allowing easy communication of complex ideas.

As well as mapping the design space, our method also has a
natural way of finding new designs. We do this by finding com-
binations of schemata that overlap in the design space. Any
design in this area will possess all the properties described
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by the overlapping schemata. To find viable overlapping sche-
mata, we include a method of removing any schema that
does not overlap with those of other properties, and therefore
will not be capable of producing new designs. The result of
this work is a method of automatically describing the relation-
ships between parameters in a manner that has a useful phys-
ical meaning. For example, we find a relationship between leg
material and leg width that has an impact on the physical
property of stability. By investigating the properties individu-
ally, we are able to use a much smaller data set than if we had
just divided our whole data set into “good” and “bad” chairs,
where the “good” chairs fulfilled all 17 criteria. In our data set
of 12,000 random designs, none of them exhibited all 17
properties. This means that our data set does not contain
any good chairs, but it does contain a significant number of
chairs with desirable properties.

While this work concerns itself with the generation of chair
designs from synthetic data sets, it is probable that a similar
framework could be used as a generative algorithm for any
multiobjective problem where a data set can be collected
for each desired property, and each property can be classified
into good or bad sets rather than requiring optimization.

We briefly describe the parametric ChairMaker that we use
to create the chair designs. The 33 parameters it uses are the
33 dimensions of our design space. A more in-depth descrip-
tion of the development of the ChairMaker, along with a full
list of the parameters used is given in Reed and Gillies
(2016a). In this section, we will also describe the properties
we require our chair to possess and the way in which we
have collected data on each property. In particular, we will
discuss a new ergonomic simulator that is able to automati-
cally test chair designs quickly, enabling the collection of a
large amount of data. Further detail can also be found in
Reed and Gillies (2016b).

The main focus of the paper is the extraction of the sche-
mata from the data using decision trees. We also describe
the process of combining schemata and show chair designs
resulting from this process.

2. PREVIOUS WORK ON GENERATING AND
EVALUATING DESIGNS

Our previous work has included developing a method of de-
signing chairs. This work has consisted of two main parts.
The first is a parametric chair generator that is able to create
a wide variety chairs from an input of 33 values. The paramet-
ric structure gives us a meaningful way of comparing chairs of
very different styles because we can consider the differences
in the input values. The second part was the development of
an ergonomic simulation program that could test a variety of
ergonomic properties directly from the input values. The ben-
efit of this program over existing ergonomic simulators is that
it is much faster and entirely automatic, allowing us to test
thousands of chairs (both good and bad) in a comparatively
short space of time, thus building large data sets. The output
of the system is a score for a variety of properties such as seat

comfort and sitting position. The property scores for the ergo-
nomics (and other measures detailed in this section) are used
to define classes for the chairs. For each property (e.g., seat
comfort) a chair is classified as either possessing this property
or not. It is these property classes that we will use in the next
section.

2.1. ChairMaker

The parametric chair generator was built in SketchUp (Trimble,
2015). A chair is constructed by positioning a number of cross
sections. These are then joined together and finished with a tex-
ture. Some of the parameters control the proportions such as
heights and widths (by changing the size and position of the
cross sections); these are continuous. Others select the cross sec-
tions and textures from predefined sets; these are discrete. There
are 33 parameters that are used in the generation of a chair.

The parametric structure gives us a wide design space con-
taining both good and bad designs. New chairs can be pro-
duced by randomly selecting parameter values. Examples
of the output are given in Figure 1.

2.2. Ergonomic measures

Because the primary function of a chair is to allow users to sit
comfortably in a position that enables them to carry out their
desired function, our first design problem is ergonomic. We
require a large quantity of samples (both good and bad) to
learn the function space. To gather this data, we use an ergo-
nomic simulation of a user. Analyzing real chairs would have
taken much longer and would have only given us examples of
viable chairs. There are existing ergonomic models available,
but they did not suit our purpose because we need to collect
large amounts of general data automatically from randomly
generated designs and the existing models are designed to
collect very precise data from a small number of designs.

We test each chair with a set of users with a range of differ-
ent body sizes. These simplified human body models were

Fig. 1. Random chairs produced by the ChairMaker program.
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built using proportion data from DINED (TU Delft, 2015), an
anthropometric database, and body mass data from “Biome-
chanics and Motor Control of Human Movement” (Winter,
2009).

A simplified chair model that uses 25 of the 33 parameters is
built, and the simulation positions the user in the chair. The user
sits at the back of the chair (not perching on the front). The legs
are positioned so that the height of the center of mass of the leg
is minimized. A range of possible positions is found, ensuring
that those with the legs passing through the chair or floor are ex-
cluded. The center of mass is found for the whole leg in each
possible position, and the minimum is chosen.

The back and neck are placed to minimize the effort re-
quired to stay in that position. Effort is increased if a joint
moves from the vertical without support from the chair
back. To make the posture more realistic, we also model a
muscle along the back; this muscle is relaxed in a slouched
position, and effort is increased proportionally when the
user leans further forward or sits vertically. If the chair pro-
vides little support, this results in the user sitting up, slouch-
ing slightly. If the chair offers support for the shoulders, then
the user leans back into the seat but keeps the head vertical. If
the slope of the chair back is too great to offer support for the
head, the user resumes the slouched position. Finally, if the
chair offers enough support for the head, the user sits against
the back at any angle. We show a range of positions that the
user will take in Figure 2, in which the user is seated on the
randomly generated chairs shown in Figure 1.

Once the user is seated, we can estimate the peak pressure
on the seat and back of the chair by finding the angles be-
tween the chair surface and a simplified body form. The pres-
sure in each 1 mm square is then found using f0cos2(u)
(SOLIDWORKS, 2015), where u is the contact angle shown
in Figure 3 and f0 is the force normalized so that the sum of
the squares add to the full force of the user’s body. If the
feet are resting on the floor, then the mass of the lower legs
is not used; likewise, if the user is leaning against the back,
some of the torso and head weight is applied to the back in-
stead of the seat. The highest value of the 1 mm square pres-
sure points is taken as the peak pressure.

To create the higher pressures under the hips, as seen in real
pressure maps (SCI Forum Report, 2004), we add a skeleton

layer, transferring the weight of the upper body from the
spherical hip bone and cylindrical leg bone to the leg surface
before finding the pressure between the leg and seat. This is
illustrated in Figure 3, which shows a cross section of the
leg and the direction of the forces.

Our method is much simpler than the usual method of fi-
nite element analysis (an early example being Todd and
Thacker, 1994, with a good overview in Zhu, 2013), but it
gives a good approximation of the range and distribution of
pressure found experimentally. It is less detailed than those
found by finite element analysis but much faster and therefore
ideal for our purpose. The detail in other simulations is re-
quired to predict the development of pressure sores in long-
term use (such as in a wheelchair), but this is not part of
our brief.

Example pressure maps are also shown in Figure 3; again,
these are for the chairs shown in Figure 1. Those on flat or
gently curved seats show a similar map to those in the litera-
ture with a peak under the hip bones. However, those on
tightly curved seats show very high peaks in unusual places,
and this indicates the seat causing pain. Some show very low
pressure, and this is because the user is reclining and the mass
of the torso is being supported by the seat back.

We collect a variety of information from these models to
produce our data sets. As well as the comfort (given by the
peak pressure and curvature of the spine), we also gather
data about the suitability of the chair for carrying out seated
tasks. For this work, we will choose a dining chair as our
brief, and therefore, the users need to be seated vertically
with their eyes forward, feet on the floor, and arms resting
comfortably by their side onto a table at 908.

2.3. Other data sets

2.3.1. Efficiency

When designing a chair, we want to ensure that it fulfills its
brief in an efficient manner. For example, a dining chair needs
to be suitably narrow to allow several of them to fit side by
side around a table. We therefore collect three measures to
test the efficiency of the design. These are width, length (in-
cluding the length of the seated user in case the seated posi-
tion has the legs stretched out too far), and excess recline.
The excess recline measures the angle between the spine
and the back of the chair. This prevents an unused back as
seen in some of the examples in Figure 2.

2.3.2. Leg measures

We introduce three property measures for the legs. These
look at the strength, connectivity, and stability of the legs.
To test the strength of the legs, we use a very simple measure
that looks at the cross section of the legs against the surface
finish. The wooden finishes were required to have a higher to-
tal leg cross-sectional area than the metal finishes. Uphol-
stered finishes for the legs were not considered sufficiently
strong for any cross-sectional area.

Fig. 2. Simulations of a model sitting on the chairs from Figure 1. The model
takes the most appropriate position for each chair, only using the back if it
offers enough support for the body and head.
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The connectivity property looks at how well the legs con-
nect to the seat. Curves representing the tops of the legs and
the side of the seat were created, and the percentage of the leg
top that overlapped with the seat was found. Those with an
overlap of less than 70% were considered to be bad. Finally,
the stability property ensures that the chair base covers a suf-
ficient area to prevent the chair overbalancing.

2.3.3. Manufacture

We used three measures that aimed to make the chair more
realistic with respect to manufacture. The choice of materials
has an impact on what forms can be made and what manufac-
turing techniques can be used. Our first two manufacture mea-
sures looked at the complexity of the seat and back forms by
considering the surface curvature of each. These two measures
were also multiplied by a material factor. The material factor
had a high value for difficult to shape materials such as
wood and a low value for easy materials such as plastic. This
removes complex forms in wood but allows them in plastic.

The third manufacture measure looks at the difficulty of as-
sembling the chair back. The back can be made of a number
of pieces, and these can be easy to assemble (wood or metal)
or difficult (plastic). As well as the number of pieces, we con-
sider the way they attach to the verticals. Thin verticals or a
single central vertical are considered difficult, while multiple
wide verticals are considered easy to assemble.

2.3.4. Aesthetics

When using only the objective data sets (comfort, practi-
cality, stability, efficiency, and manufacture), we received
feedback from others that the chairs looked strange and un-
usual. To overcome this, two further data sets were used to de-
termine color and proportion. We acknowledge that this data
is not ideal, because it will remove many aesthetically good
designs from the potential design space and some bad designs
may remain. However, the addition of these makes the chairs
produced more familiar and easier to relate to. If better data

sets become available, these can be substituted easily using
the schema method.

Proportions. Defining good proportions is a difficult task
because it is subjective. Rules have been proposed such as
the use of ratios w (the golden ratio, 1.6180 . . .) or 1:2
(used by Birkhoff in his aesthetic measures; Birkhoff,
1933), but their importance is disputed. It was decided that
we would focus on removing observed proportional traits
that were considered undesirable, but we would not try to
classify the chairs beyond this to prevent reducing the diver-
sity too far. With the help of a professional designer (an archi-
tect), some undesirable traits were identified.

One measure was found that was able to remove the major-
ity of the negative proportion traits. This measure looked at
the percentage of the possible area that was covered by the
seat, back, and legs. We find the possible areas by finding
the maximum width of the chair and the height of the back
and legs and length of the seat. We then want the seat,
back, and legs to fill a certain percentage of this area; we re-
quired 70% filled in this test.

Color. As with proportions, it is possible to find color the-
ory rules that claim to dictate colors that work together. How-
ever, we were unable to apply these to our work because we
had a finite set of materials, and it was found that we could not
find groups of these materials that fitted the rules.

It was decided that the best way to apply rules to the color
was to source good color palettes that had been approved by a
human eye. There are online repositories of these palettes, but
as with the color rules, these are not suitable for picking tex-
tures from a predefined set. For this we needed a wide range
of colors to compare against those in our textures. Therefore,
we opted to make our own palettes based on colors that ap-
pear in suitable photographs. Two photographs were used
in this paper to demonstrate the method, but many others
could be added to increase the possible combinations of col-
ors in the chairs.

Fig. 3. Assessing performance of chair designs in the ergonomic simulator. (Left) Cross-section of a leg showing how the force from the
upper and lower body is distributed onto the pressure map using a skeleton layer. (Right) Resulting pressure maps from the simulations of
chairs in Figure 2. Black indicates areas of very high pressure that would cause pain for the user.
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2.4. Evolutionary generation

An early version of the ChairMaker and the ergonomic mea-
sures have previously been used to generate new designs
using an evolutionary algorithm (Reed & Gillies, 2015). A
fitness function was learned from a test set of data using the
ergonomic measures only, and this was used to evolve a di-
verse set of viable designs. The method was reliable with reg-
ular convergence to the top fitness in a few seconds of run
time. The successful use of an established generation method
helps validate our chosen measures, and we now explore a
more robust algorithm to produce our designs.

However, increasing the complexity of the problem with
new parameters used in the ChairMaker and additional mea-
sures (stability and manufacture; aesthetics was not used) cre-
ated problems with the evolutionary algorithm. Increasing the
number of properties significantly reduced the diversity of the
evolved chairs with all the offspring appearing near identical.
The algorithm also failed to converge regularly when using
over 11 parameters.

3. GENERATION OF NEW DESIGNS USING
SCHEMA DRIVEN DESIGN

The machine learning method used in this work, as well as in
the earlier evolutionary algorithms, is decision trees. These
were used because they have dimensionality reduction built
into the algorithm and they are able to handle the discrete pa-
rameters used in the ChairMaker. However, for this work we
use another property of decision trees; they are a “white box”
algorithm. That is, we can see the decisions that lead to a data
point being classified. Decision trees therefore can be used to
map the design space, with each region defined by the deci-
sions that lead to that node.

Finding the regions of good chairs is required of all genera-
tive algorithms. The most basic algorithm, generate and test,
finds a chair by randomizing the parameters and then tests it
to see if it possesses the desired properties. If the design space
is large and the good regions are small, then this is not viable.
Our random set of 12,000 chairs tested using our ergonomic
simulator contained no good chairs with all 17 desired prop-
erties. In other words, sampling the design space 12,000
times did not locate a single good region.

More sophisticated algorithms, such as the evolutionary al-
gorithms, actively search for the good regions. However, as we
have fully mapped the space using decision trees, searching is
redundant because the decision tree can tell us where the good
regions are directly. The schema algorithm works by finding
the constraints that define good regions for each property and
then locating regions that are good for all 17 properties.

The constraints defining each good region are extracted di-
rectly from the decision trees. These can be seen as sets of
rules that describe a method for creating a chair with a particu-
lar property. For example, we could restrict our leg material
parameter to “wood” and the leg width parameter to be
“wide”; applying these rules gives our chair the property of

“sturdy legs.” We call such a set of rules a “schema” because
it provides a plan for our designs.

One strength of this method is that the rules are generated au-
tomatically from a data set and therefore do not rely on expert
knowledge. We also have multiple schemata for each property;
for example, in addition to wide wooden legs, we can also
achieve the property “sturdy legs” with narrow metal legs.
Having multiple schemata for each property keeps the design
space diverse and interesting. Multiple schemata from different
properties can be combined so that we are able to design chairs
that possess all of the properties that we require.

In this section, we will use Property 9 as an example. This
is the property that ensures good posture in our seated figures.
We use this as an example because it was found that it only
relies on two parameters (back height and back recline), al-
lowing us to illustrate the design space in two dimensions.

3.1. Finding a decision tree

Test data was generated using all of the measures described in
the previous section. Randomly generated chairs were tested
with the simulator and categorized into good or bad classes
for each property based on the simulation results. The classes
were chosen to correspond to our brief of a dining chair (e.g.,
ensuring the user was sitting up at an appropriate height to use
a table or desk), making sure that both good and bad classes
represented a significant proportion of the training set to en-
able training of the decision trees. We classify each property
separately. This means that a chair could be classified good
for seat pressure but bad for posture. Studying each property
separately allows us to find the parameters that affect that
property directly. It would have been impossible to train a
tree to find chairs with all 17 good properties with this data
set because none of the chairs were classified as good for
all 17 properties.

Individual trees were trained for each property, using the
ChairMaker parameters as the input variables and the classes
from the simulations as the labels. We use MATLAB to find
the decision trees because MATLAB allows the extraction of
information about the decision rules that are needed in the
production of the schemata. We use MATLAB version
R2014b and the function fitctree (Mathworks, 2014).

Overfitting is always a problem in machine learning, but it
is of particular concern for our method because superfluous
parameters in our schemata could cause problems later
when we combine schemata in the generative phase. The
problems would arise by creating apparent conflicts between
schemata where there are none. To prevent overfitting, we use
a property of decision trees that gives the relative importance
of the predictor variables; in MATLAB we find this using the
function predictorImportance(tree). This importance finds the
sum of the change in risk for each variable and divides by the
number of nodes.

For each property, we randomly sample one-third of the
data, train a tree, and find the importance values (rescaled
so the maximum value is 1). We do this 20 times, finding
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the minimum importance value of the 20 tests for each pa-
rameter. Only those parameters with a minimum importance
value over 0.005 are then used to create the tree from which
we will extract the schemata. We assume a “real” important
parameter will have a significant importance value for any
subset of the data but an over fitted parameter will have a
near zero importance for some subsets of the data.

For our example of Property 9, we find that only the param-
eters back height and back recline (parameter numbers 3 and
4) have an importance above the threshold; therefore, the final
tree is trained with only these parameters as input variables. In
Figure 4 we see the design space of Property 9. Each point is
one of the chairs in our data set, and the unfilled points are the
chairs classified as bad while the good chairs are shown filled.
A tree trained on this set is shown in Figure 5.

3.2. Schemata derivation

To derive the schemata from the trees, we much first find the
full range of each parameter, and this is then turned into a vec-
tor of possible values for that parameter. To do this we round
our continuous variables into a discrete list; however, we will
continue to refer to them as continuous because they will still
behave as such; for example, 0.4 is more similar to 0.5 than to
0.8 but (as an example of a discrete measure) cross section 4
is not necessarily more or less similar to cross section 5 than
to cross section 8. We find a range vector for each parameter;
for example, we have 33 vectors in total. As an example, the
vector for Parameter 3 is the numbers 0.0 to 1.6 in increments
of 0.1 and the vector for Parameter 4 is the numbers 0.3 to 3.0
in increments of 0.1.

To turn our parameter vector sets into schemata, we extract
information from the trained tree in MATLAB. Table 1 shows
the properties extracted from the tree and some of the data for
Property 9 in the format it is given. To demonstrate the
method, we will extract a schema from Property 9 using the
data in Table 1. The method can also be followed using the
tree in Figure 5. The method proceeds as follows:

† We first find a terminal node; in the extracted data this is
indicated by the letters “NaN” for the property “Cut-
Point.” Our example data has two terminal nodes: num-
bers 7 and 8.

† We then identify a positive terminal node. Node 7 has a
probability of 0.9987 that it is negative. Node 8, how-
ever, has a probability of 1 that it is positive. We choose
this as our first schema. In Figure 5 Node 8 is labeled
“Schema 1.”

† The parent of our terminal node is identified from the
value given by parent node. We see in Table 1 that the par-
ent of Node 8 is Node 4. This can also be seen in Figure 5.

† From the parent node, we find the decision parameter
and value. For Node 4 this is Parameter 3 (back recline)
and value 0.15. We also identify whether the decision is
greater or less than the value by observing if our terminal
node is the first or second child node listed for the par-
ent. The first child node is “less than,” the second is
“greater than or equal to.” In our example, we find that
we have “less than.”

† Putting together the information from the parent node,
we find that to reach Node 8, a point must have a value
of Parameter 3 that is less than 0.15. We therefore con-

Fig. 4. Example design space for Property 9 (back curvature). Each point is a chair from the test set with the corresponding values for back
recline and back height. Those that satisfy the property (have a comfortable back curvature) are shown filled. Those that are considered
uncomfortable are shown unfilled.
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strain Parameter 3 to satisfy this by removing all values
greater than 0.15 from the range vector. The range vector
is now [0.0, 0.1].

† The process is now repeated by treating Node 4 as our
terminal node. We find that its parent is Node 2, and
we must satisfy Parameter 4 less than 0.75. This reduces
the vector to [0.3, 0.4, 0.5, 0.6, 0.7].

† The process is now repeated by treating Node 2 as our
terminal node. We find that its parent is Node 1, and

we must satisfy Parameter 4 less than 0.65. This reduces
the vector to [0.3, 0.4, 0.5, 0.6].

† The process then stops as Node 1 is the root node.
† Schema 1 has been defined as constraining Parameters 3

and 4 to values in [0.0, 0.1] and [0.3, 0.4, 0.5 0.6], re-
spectively. All other parameters are unconstrained.

† As we see in Figure 5 there are nine positive nodes, each
producing a unique schema. The remaining extracted
data is not shown here.

Fig. 5. The tree trained using the data in Figure 4. Each node shows the decision at that node, or if the node is a terminal node, a labeled
schemata for positive nodes and a “0” for negative nodes. The numbered nodes represent the numbering system used in MATLAB and
correspond to the node data in Table 1.

Table 1. Example of data extracted from an actual decision tree trained in MATLAB on data for Property 9

tree.ClassProbability

MATLAB Tree Prop. tree.Parent tree.Children tree.CutVar tree.CutPoint Point at Node

Node Parent Node Child Nodes Decision Param. for Node Decision Value at Node Negative Positive

1 0 2 3 ‘03’ 0.65 0.6249 0.3751
2 1 4 5 ‘04’ 0.75 0.1899 0.8101
3 1 6 7 ‘03’ 0.85 0.9415 0.0585
4 2 8 9 ‘03’ 0.15 0.763 0.237
5 2 10 11 ‘03’ 0.55 0.0617 0.9383
6 3 12 13 ‘04’ 2.05 0.7302 0.2698
7 3 0 0 ‘04’ NaN 0.9987 0.0013
8 4 0 0 ‘04’ NaN 0 1
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

Note: The properties in the first row (tree.Parent, etc.) are the properties of the MATLAB ClassificationTree object that are extracted. The node numbers
system is illustrated in Figure 5.
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Each of the schema represents a distinct region of the de-
sign space. The nine schema shown in the tree in Figure 5
can be seen as regions in Figure 6.

3.3. Parameters to consider in schemata derivation

Unlike traditional classification, where it is important to have
high accuracy for both good and bad classes, here we are only
interested in the good class. If a good design is misclassified
as bad, then our design space will be reduced slightly but we
still have a large space from which to find our designs. How-
ever, if a bad design is misclassified as good, then we run the
risk of producing nonviable chairs. To ensure a low percent-
age of nonviable chairs, we can remove positive nodes that
have a high level of uncertainty, measured using the Class
Probability property from our Matlab trained tree (example
values can be seen in Table 1). This is an estimate that a point
assigned to that node has the node class.

We choose 0.85 as our bias level, with only those nodes
with 0.85 probability of being positive used as positive
leaves. For our example, we find that only the first nine sche-
mata fit this criteria. The other schemata are capable of pro-
ducing good designs, but the likelihood that they would produce
a nonviable chair is too high. The removed schemata are
shown in Figure 7 shaded in gray.

3.4. Incompatible schema

For each desired property, we now have a set of schemata that
is equivalent to a set of different solutions to the same design
problem. To produce a new design, we must solve all our

design problems by picking one solution from each property,
finding the intersection of the permitted parameters, and
creating a chair based on that specification.

Before we choose our schemata, we remove those that are
completely incompatible to reduce the possibility of a schema
combination where the intersection of one or more parame-
ters is empty. For example, any schema that has a reclined
back will be incompatible because several properties of the
dining chair require the user to be sat up straight. It is impor-
tant to note that we only want to remove a schema that con-
flicts with all the schemata of an entire property and therefore
has no possible combinations that would produce a viable
chair. Any schema that has at least one compatible match in
every property’s schema set will be kept.

Figure 8 shows the process in which the incompatible sche-
mata are removed. We demonstrate this with Properties 2, 8
and 9 because these are the properties that conflict with our ex-
ample Property 9. Each row and column is equivalent to one of
the schemata. If a schema is compatible with another, the cell is
white; if it is incompatible, then it is shown in gray. A full row of
gray (highlighted with diagonal lines) indicates that the schema
for that row is incompatible with any of those for the property.

We see that Property 9 has five rows and columns, represent-
ing the five schema that fulfilled our accuracy requirement.
However Schema 1 is incompatible with all the schemata for
Property 2. That is, the region described by Schema 1 does
not overlap with any of those described by the schemata for
Property 2. Likewise Schemata 3 and 4 are incompatible
with Property 8. Schemata from Properties 2 and 8 are also
found to be incompatible. Schemata 1, 3, and 4 are removed
from the set, along with the other highlighted schemata.

Fig. 6. Numbered schemata in the Property 9 design space with the numbers corresponding to the schemata in Figure 5. Each schemata is
produced by , or � constraints for each parameter, creating the rectangles.
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The process is then repeated as we find some of the sche-
mata from Property 8 are incompatible with the remaining
schemata from Property 9. The process is repeated until no
new incompatible schemata are found. Here we are left with
six schemata for Property 2, five for Property 8, and two

for our example Property 9. These two are Schemata 2 and
5 from our original tree.

In practice, we compare all 17 properties together. Once the
removal process is finished, we are left with 118 schemata
representing the 17 properties for which there is at least one

Fig. 7. Schemata with a high possibility of producing nonviable chairs are removed (in gray).

Fig. 8. Illustration of the removal of schemata that are incompatible with those from other properties. Each row and column correspond to a
single schema with each square representing the compatibility of the respective row schema and the column schema. A gray square indicates
incompatible schemata, that is, chairs could not be produced from this pair of schemata because the intersection of one or parameters would
be empty. The rows highlighted with diagonal lines show schemata that are incompatible with entire properties.
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valid combination for every schema. Using different proper-
ties will result in different schemata remaining.

3.5. Schema fusion

To create a new chair, we must chose a single schema for each
property. Each schema defines a region of the design space
that satisfies the property it represents. If we can find a point
that is in one schema for every property, it will satisfy all the
desired properties.

To find a new chair, we choose one schema at random, and
this can be from any property. We then find all the schemata
compatible with it. This will not include any others from the
same property because regions defined by the same tree never
overlap. A second random schema is chosen from this set.
The parameter intersection of the two schemata is found,
and this is our fused schema. The fused schema describes
an area that possesses the properties of both schemata.
Once again the compatible schema are identified.

The process then repeats; a new random schema is chosen
and the intersection between it and the fused schema is found.
The process continues until no compatible schemata remain.
This is because either all 17 properties are represented in the
fused schema or the fused schema becomes incompatible
with all others. A new chair can be produced if the fused
schema represents all 17 properties.

In a typical run of 1000, we get a successful fused schema
for around 120–150. The process for this number of trials

takes roughly 1 s in the MATLAB program. Therefore, over
100 chairs per second can be made with the schema method.

A chair is made from the fused schema by selecting a sin-
gle parameter value from each constrained vector. Because
the vector will often contain multiple values, we can make
several chairs from each fused schema.

4. RESULTS

We can see some of the designs created by the schema
method in Figure 9. There is a wide range of shapes and
styles, including both traditional and modern. This range
can also be seen in the diversity plot in Figure 10. This shows
the proportion of the parameter range from the random test set
that is still present in a generated set of 500 chairs. Most pa-
rameters show a high diversity, indicating that a significant
amount of the original range is still present. Of those that
show a significantly reduced diversity, the first four parame-
ters correspond to seat height, seat length, back recline, and
back height, and are therefore strongly restrained by the prac-
ticality design brief. Parameters 6 and 8 are seat and corner
width, respectively, and are likely constrained by the comfort
and proportion requirements. Finally, Parameters 23, 24, and
33 choose the textures, and these only contain values from the
chosen palette.

In Figures 11 and 12 we show the posture diagrams and
pressure maps for the chairs shown in Figure 9 produced by
the ergonomic simulation. We see that all the figures are sat
upright with their feet resting on the floor and hands easily
reaching desk height. The pressure maps show even distribu-

Fig. 9. Chairs produced with the schema method.

Fig. 10. Remaining diversity in the 33 generating parameters displayed in a set of 500 schema-generated chairs. Parameters with 100% use
the same range of the parameter as those in the randomly generated test set.

Fig. 11. Simulation of the seated posture in the chairs in Figure 9. Unlike the
random chairs in Figure 2, all the seat models are sat up and have their feet on
the floor with their arms resting easily at table height.
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tions for all the seats and that none of the seats possess the
high painful pressures, which would be shown in black.

4.1. Adding and removing data sets

The data sets that can be used with this method are not fixed.
New trees can be trained on additional data and schemata ex-
tracted in the same way. Once new schemata have been found,
we can repeat the conflicted schema deletion process and we
are left with those that pass our new design brief. Likewise,
we can remove the set of schemata for a particular trait if it
is no longer required, or swap a schema set for a new one if
better data becomes available (e.g., if it were possible to col-
lect ergonomic data on a large set of real chairs). If we decide
that some of the traits are not required, we can remove them.
For example, if we decide that our aesthetic assumptions are
too restrictive, we can remove them and use only the physical
property schemata to generate chairs like those shown in
Figure 13.

4.2. Chair sets

The range of chairs produced by this method shown so far
have been generated by a different fused schema for each
chair. However, because the fused schema will still contain
a range of values for some parameters, it is possible to create
a range of chairs from a single schema set. Figure 14 shows
three sets of chairs, each made with a single fused schema
with different parameter values randomly chosen from the re-

Fig. 12. Pressure maps for the chairs in Figure 9. Many have higher overall pressures than those seen in Figure 3 because all of the weight is
now supported by the seat rather than the back. However, here the pressure is better distributed and we see no black areas indicating very
high painful pressures.

Fig. 13. Chairs produced with the schema method without the aesthetic
schemata.

Fig. 14. Sets of chairs made from three final fused schemata but choosing
different parameters from the constrained range.
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maining range. The sets of chairs produced all appear to be
visually similar and belong to the same “family” of designs.
This suggests that shared schema choices could create a
shared visual reference or style.

5. CONCLUSION AND FUTURE WORK

We have shown that it is possible to use existing knowledge in
the automatic generation of new designs through the use of
schemata. We have also shown that it is possible to find these
schemata automatically through the use of decision trees and
data sets measuring various properties of our desired design
brief. We have presented a method of filtering and combining
these schemata to isolate regions of the design space in which
we can then create viable chair designs.

There are several directions in which this work could pro-
ceed. One question is the effect of taking risks with the sche-
mata. In this work we used a heavy bias to ensure no risks
were taken with the choice of schemata; schemata that were
known to be uncertain were removed. However, risks in de-
signs can lead to interesting innovations, and removing this
potential could be undesirable. Allowing the designs to in-
clude risky schemata could lead to more novel designs but
this will have to be combined with other assessment methods
such as direct testing or manual assessment to remove the
nonviable designs produced.

Another area of interest is the effect of the schema choice
on styles. Styles though history have arisen when groups of
designers have made the same design decisions, such as
choice of material or type of decoration, and we have seen
that our schemata can create similar families such as those
in Figure 14. The ChairMaker was built to enable chairs of
different styles to be created from the same set of parameters,
and we have seen that the method described in this paper can
generate viable chairs of different styles such as traditional or
modern. Currently the schemata are combined randomly, but
there is scope to investigate to what extent the choice of sche-
mata (and therefore parameters) affect the style.
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