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Viscoelastic liquid curtains: experimental results
on the flow of a falling sheet of polymer solution
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We experimentally investigate the extensional flow of a sheet – or curtain – of
viscoelastic liquid falling freely from a slot at constant flow rate under gravity.
Extruded liquids are aqueous solutions of flexible polyethylene oxide (PEO) and of
semi-rigid partially hydrolysed polyacrylamide (HPAM) with low shear viscosities.
Velocimetry measurements reveal that the mean velocity field U(z) (where z is the
distance from the slot exit) does not reduce to a free fall. More precisely, we show
that the liquid falls initially with sub-gravitational accelerations up to a distance
from the slot which scales as gτ 2

fil (where g is gravity and τfil is the extensional
relaxation time of the liquid) due to the stretching of polymer molecules. Beyond
this elastic length, inertia dominates and the local acceleration reaches the asymptotic
free-fall value g. The length of the sub-gravitational part of the curtain is shown
to be much larger than the equivalent viscous length ((4η/ρ)2/g)1/3 for Newtonian
liquids of density ρ and dynamic viscosity η which is usually small compared to
the curtain length. By analogy with Newtonian curtains, we show that the velocity
field U(z) rescales on a master curve. Besides, the flow is shown to be only weakly
affected by the history of polymer deformations in the die upstream of the curtain.
Furthermore, investigations on the curtain stability reveal that polymer addition
reduces the minimum flow rate required to maintain a continuous sheet of liquid.

Key words: polymers, thin films, viscoelasticity

1. Introduction
In extensional flows of polymeric liquids, strong elastic stresses may arise due to

the stretching of polymer molecules (Petrie 1979; Bird et al. 1987). These stresses can
significantly impact the flow of a Newtonian solvent after adding a small amount of
high molecular weight polymer molecules. Polymer additives are for example used
to reduce the drag in turbulent pipe flows (Virk 1975), to increase the flow rates
of hose streams in firefighting (Chen et al. 1998) and to suppress the splashing of
droplets impacting on rough solid surfaces in pesticide spraying, spray coating and
inkjet printing (Crooks & Boger 2000).

The influence of elasticity has also been investigated in industrial processes involving
free-surface extensional flows such as fibre spinning (Papanastasiou et al. 1987) and
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Viscoelastic liquid curtains 359

film casting (Alaie & Papanastasiou 1991; Satoh, Tomiyama & Kajiwara 2001). These
techniques aim at producing plastic tubes or sheets respectively. In film casting, a
polymer melt is extruded through a slot die and the resulting liquid sheet is cooled
before reaching a rotating drum where it is collected. Alaie & Papanastasiou (1991)
report that viscoelastic films thin more rapidly at the slot exit than Newtonian films
with the same viscosity. The liquids involved are generally so viscous that gravity
and inertia are negligible, i.e. the force exerted by the rotating drum, which stretches
the liquid in the flow direction, dominates the process.

Curtain coating is a similar process which aims at depositing a material layer
of uniform thickness on a solid surface. It has been intensively investigated on
geometries and situations of increasing complexity (Miyamoto & Katagiri 1997).
A simple technique consists in pumping the desired liquid at constant flow rate from
a reservoir to a precision head drilled with a long thin slot along its lower face. The
sheet – or curtain – of coating liquid falls vertically from the slot before impacting
a solid substrate moving horizontally underneath at constant speed. Contrary to
film casting, the sheet dynamics is generally dominated by gravity since the liquids
involved in curtain coating are much less viscous.

To date, although the structure of the flow is well understood in film casting,
i.e. for viscoelastic sheets in the absence of gravity and inertia, very few authors
have addressed the issue of the possible influence of viscoelasticity in the context of
curtain coating. The existing works mostly focus on the stability of the sheet. For
example, Gugler, Beer & Mauron (2010) and Becerra & Carvalho (2011) showed
that increasing the apparent extensional viscosity of the liquid reduces the minimum
flow rate required to maintain a stable curtain. Karim et al. (2018b) reported that
the curtain flow of low viscosity polymer solutions with millisecond-scale extensional
relaxation times was well captured by a free fall, i.e. U = (U2

0 + 2gz)1/2 where U is
the mean vertical velocity of the liquid, U0 is the initial velocity at the slot exit, z is
the distance from the slot exit and g is the gravitational acceleration. However, to the
best of our knowledge, no similar measurements were performed on solutions with
larger relaxation times. Consequently, the influence of viscoelasticity on the curtain
flow remains an open question.

The structure of the flow is well documented for Newtonian liquid curtains.
Investigations started in the 1960s when Taylor proposed, in the appendix of Brown
(1961), the following one-dimensional force balance equation

U
dU
dz
= g+

4ηU
ρ

d
dz

(
1
U

dU
dz

)
, (1.1)

where ρ and η are respectively the liquid density and dynamic viscosity. This equation
was found to capture the experimental results by Brown (1961) and an analytical
solution was found by Clarke (1966, 1968). The main result is that viscous dissipation
only affects the liquid velocity within a distance from the slot exit which scales as

zv = ((4η/ρ)2/g)1/3, (1.2)

(‘v’ for ‘viscous’) with a prefactor which is a decreasing function of the initial
velocity U0 and which is of order 7 for small initial velocities U0�

√
gzv. The liquid

initially falls with sub-gravitational accelerations for z � zv, i.e. UdU/dz < g, and
finally reaches an asymptotic free-fall regime of constant acceleration g for z� zv.
However, the length of the sub-gravitational regime is generally much smaller than
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the length Lc of the curtain, i.e. zv�Lc. Typical orders of magnitude are zv= 0.01 cm
for water of viscosity η = 10−3 Pa s and zv = 1 cm for pure glycerin of viscosity
η = 1 Pa s, while a typical curtain falls over a distance Lc = 10 cm. Hence, for low
viscosity Newtonian liquids, the flow is often approximated by a free fall.

To date, the length of the sub-gravitational regime remains unknown in the case of
viscoelastic curtains. This gap in the literature might lead some authors to assume,
incorrectly, that the flow of viscoelastic curtains or jets can be approximated by a
free fall based on the small value of the viscous length zv. In this paper, we aim at
filling this gap by investigating experimentally the influence of viscoelasticity on the
curtain flow. Low viscosity polymer solutions are extruded from a slot die at constant
flow rate and the liquid falls onto a motionless solid surface. We show that the liquid
falls with sub-gravitational accelerations up to a distance from the slot which scales as
ze= gτ 2

fil (‘e’ for ‘elastic’) which can be much larger than zv, where τfil is the polymer
extensional relaxation time. By analogy with Newtonian curtains, we show that the
velocity field U(z) rescales on a master curve. Besides, the flow is shown to be only
weakly affected by the history of polymer deformations upstream of the curtain. We
also confirm that adding polymer stabilises the curtain by reducing the minimum flow
rate required to maintain a continuous sheet.

This manuscript is organised as follows. Sections 2 and 3 describe respectively
the experimental set-up and the rheology of the polymer solutions. The experimental
results are given in § 4, followed by a theoretical treatment in § 5. The role of
pre-shear upstream of the curtain is investigated in § 6 and the role of viscoelasticity
in curtain stability is investigated in § 7.

2. Materials and methods
2.1. Polymers and preparation of the solutions

Experiments are performed with aqueous solutions of two high molecular weight
polymers with different rheological behaviours. For each curtain experiment, M= 5 kg
of solution is required.

We use solutions of polyethylene oxide (PEO) of molecular weight Mw =

8 × 106 g mol−1. The solvent is a Newtonian aqueous solution of polyethylene
glycol (PEG) of low molecular weight Mw = 8000 g mol−1 which is used as a
thickener (Dontula, Macosko & Scriven 1998; Becerra & Carvalho 2011; Karim et al.
2018b). Both polymers are provided by Sigma-Aldrich (refs 372838 and P2139). In
most solutions, the PEG concentration is [PEG] = 20 wt% and the corresponding
solvent viscosity is ηs = 0.017 Pa s. The PEO concentration ranges between 0 (pure
solvent) and 0.4 wt%. A 5 kg solution is prepared by first adding the desired mass
of PEO (20 g for a 0.4 wt% PEO concentration) to 3 kg of pure water. The granular
polymer particles are slowly added into the vortex created by a mechanical stirrer
which is then used for 15 h to ensure homogeneous mixing. Finally, another solution
of 1 kg of PEG and 1 kg of water is prepared and the two solutions are mixed.
The final solution is shaken for about 2 h before use. Following a similar protocol,
other solutions are prepared with a higher PEG concentration [PEG] = 40 wt%. The
corresponding solvent viscosity is ηs = 0.14 Pa s.

We also use solutions of partially hydrolysed polyacrylamide (HPAM). This
polyelectrolyte is provided by SNF Floerger (ref Floset 130 VG). Molecular weight is
estimated to be approximately Mw = 15–20× 106 g mol−1 and the hydrolysis degree
is close to 30 %. At equilibrium in water, HPAM molecules are swollen due to
repulsive electrostatic charges along the chain backbone and behave as semi-rigid
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FIGURE 1. (Colour online) Schematic of the hydraulic loop (a) and of the slot die (b).

rods, in contrast to PEO molecules which behave as flexible coils. HPAM rigidity
can be tuned by adding salt to the solution (Cartalos & Piau 1992; Kawale et al.
2017). As salt is added, the repulsive interactions are screened and HPAM molecules
become more flexible, i.e. their radius of gyration decreases (Zhang et al. 2008;
Chen et al. 2012). In order to investigate the influence of polymer conformation on
the curtain flow, we use aqueous solutions of fixed polymer concentration [HPAM]
= 0.1 wt% and various salt concentrations [NaCl] ranging between 0 and 10 wt%.
A 5 kg solution is prepared by adding 5 g of HPAM powder to 5 kg of pure water
and shaking for 15 h to ensure homogeneous mixing. The desired mass of salt is
finally added and the final solution is shaken for a few minutes before use. The
solvent viscosity is ηs = 0.001 Pa s.

As will be commented in § 3.4, mechanical degradation can occur during shaking,
as is expected from the use of a mechanical stirrer which is a high shear-rate mixing
technique. This can result in a lower average molecular weight Mw. Hence, the
rheological behaviour of any new solution has to be characterised independently.

For a given solvent, density ρ and surface tension γ , which is measured by a
pendant drop method (Daerr & Mogne 2016), were found not to depend on polymer
concentration. Values are

(i) ρ = 1000 kg m−3 and γ = 72 mN m−1 for HPAM solutions.
(ii) ρ = 1026 kg m−3 and γ = 62 mN m−1 for PEO solutions with 20 wt% PEG

solvent.
(iii) ρ = 1070 kg m−3 and γ = 53 mN m−1 for PEO solutions with 40 wt% PEG

solvent.

2.2. The hydraulic loop
Most of the curtain experiments were conducted with the hydraulic loop sketched in
figure 1(a). The polymer solution is pumped from a reservoir with a peristaltic pump
up to a constant level tank, from which it flows down to a slot die (approximately
2 m below the tank) by gravity. The liquid then falls vertically from the slot down
to a tank, forming a rectangular curtain of width l= 14.5 cm and length Lc ranging
from 15 cm up to 200 cm. To avoid sheet retraction due to surface tension, the liquid
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is guided between two wires (cooking strings) held vertically with loads on the tank
surface. The liquid then flows back to the reservoir, thus closing the loop. The liquid
mass flow rate Q feeding the die is controlled by a valve and is measured directly
by weighing; Q is lower than the flow rate imposed by the pump, and the liquid
excess flows directly from the constant level tank to the reservoir. This ensures that
the liquid level is constant over time. The pulsations caused by the peristaltic pump
vanish when the liquid enters the constant level tank, which ensures that the die is
fed by a stationary flow. We define the linear flow rate (volumetric flow rate per unit
width) as q≡Q/ρl.

2.3. The die
In figure 1(b) we present the geometry of the die. The liquid enters on both sides of a
hollow box of width 2A= 14 mm and then flows through a slot of length Ls= 10 cm,
width l and thickness 2a= 1 mm. The contraction ratio is A/a= 14. The air inside the
die is evacuated using a small hole on top of the box. Once the die is full of liquid,
the hole is closed. The slot consists of two flat walls which were carefully designed to
ensure a constant separation distance. The wall edges are bevelled to prevent wetting
of the liquid when leaving the slot. The initial curtain thickness 2h(z = 0) is thus
expected to be equal to 2a. Equivalently, the initial mean velocity of the curtain at
the slot exit U0≡U(z= 0) is expected to be equal to the mean velocity Us= q/2a in
the slot.

2.4. Flow visualisation
We measure the velocity field of the curtain in the x–z plane using the particle image
velocimetry (PIV) technique. Polymer solutions are seeded with solid polyamid
particles (PSP) of diameter 50 µm and density 1.03 g cm−3 (provided by Dantec
Dynamics) at a concentration of 0.04 wt% corresponding to a volume fraction of
4 × 10−4. We have checked that these tracers had no influence on the rheology of
the solutions. The curtain is illuminated with a white continuous light source and
is filmed with a high-speed camera. Note that, due to the finite size of the PIV
correlation windows, the first value U1 =U(z1) of the velocity field is measured at a
distance z = z1 ≈ 2.5 mm below the slot exit. We do not measure the y dependence
of the flow field with the technique described in this section.

In figure 2(a), we show a superposition of eleven successive curtain images for
a 0.2 wt% PEO solution with 20 wt% PEG solvent. Note that the falling velocity
decreases down to 0 when approaching the vertical immobile guides (not visible
in figure 2a). This is the consequence of boundary layers developing along both
guides. We measure that PEO and HPAM curtains are only affected within less than
2 cm from the guides at z = 20 cm from the slot. Therefore, the image correlation
algorithm is applied to a domain restricted to the dashed rectangle in figure 2(a).
As also observed by Karim et al. (2018a), this effect is much more pronounced
for highly viscous Newtonian liquids such as pure glycerin (η ≈ 1 Pa s), for which
the boundary layer reaches a size of approximately 4 cm at z = 20 cm, and honey
(η≈ 10 Pa s) for which it invades the whole curtain at z= 10 cm.

Once a curtain is formed, images of the flow are recorded during 2 s. An example
of velocity field obtained by processing a pair of successive images is given in
figure 2(b) for a 0.2 wt% PEO solution with 20 wt% PEG solvent. We measure that
the x component of the velocity field is 0, as expected. Therefore, we plot the z
component U(x, z, t) against x for various distances z from the slot at an arbitrary
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FIGURE 2. (Colour online) Example of PIV measurement for a 0.2 wt% PEO solution
with 20 wt% PEG solvent after 10 min in the hydraulic loop. (a) Superposition of eleven
successive PIV images where some tracers are highlighted for clarity. Due to edge effects,
the correlation algorithm is applied to a domain restricted to the dashed rectangle. (b) The
z-component of the velocity field, i.e. U(x, z, t), against the horizontal coordinate x at
different distances z from the slot at an arbitrary time t. The curtain length is Lc= 30 cm
and the linear flow rate is q= 2.3 cm2 s−1.

time t. Since the flow is fairly independent of x, U is averaged along x to give 〈U〉x
which is a function of z and t. Repeating this procedure for different image pairs
shows that the flow is stationary. Therefore, 〈U〉x is averaged over 40 image pairs,
equally spaced in time, and we finally obtain U(z) ≡ 〈〈U〉x〉t. The curtain flow is
stationary and translation invariant along x for most of the data presented in this
paper. However, some exceptions are observed, as will be investigated in a separate
section for clarity (see § 4.2).

2.5. Experimental limitation: the accessible range of flow rates

For a given liquid, the maximum accessible flow rate Qmax feeding the die (when
the valve is completely open) can either be determined by the maximum flow rate
achievable by the pump (for this liquid) or by the dissipation in the slot. In the
latter case, Qmax decreases when increasing the polymer concentration since the liquid
viscosity increases. On the other hand, the die has to be fed with a minimum flow
rate Qmin in order to form a continuous curtain. We observe that Qmin decreases
with increasing the polymer concentration, as will be discussed in § 7. The resulting
range of accessible flow rates Qmin–Qmax goes from 5–10 g s−1 for large polymer
concentrations to 20–80 g s−1 for low polymer concentrations. In the latter case, the
convenient range is closer to 50–80 g s−1 since many holes may puncture the curtain
at low flow rates.

For these reasons, the experiments presented in this manuscript are performed with
flow rates Q ranging from 6 g s−1 for large polymer concentrations to 60 g s−1 for
low polymer concentrations, i.e. the mean velocity Us = q/2a = Q/2aρl in the slot
ranges between 0.04 m s−1 and 0.4 m s−1.
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3. Rheology of polymer solutions
In this section, we present two distinct series of shear and extensional rheology

measurements. First, in order to characterise the polymer solutions, we performed
purely rheological measurements on various PEO solutions with 20 wt% PEG solvent
and on 0.1% HPAM solutions with various salt concentrations at T = 20 ◦C. The
PEO solutions are obtained by dilution of a 0.2 wt% stock solution (except for 0.3
and 0.4 wt% solutions which are prepared independently) while HPAM solutions
were obtained by addition of different salt weight fractions to samples of a 0.1 wt%
HPAM stock solution. The rheological characterisation of these solutions is presented
in §§ 3.1–3.3. Then, the rheological characterisation of the specific 5 kg solution used
in curtain experiments (including PEO solutions with 40 wt% PEG solvent) will be
commented separately in § 3.4.

3.1. Shear rheology
For shear rheology measurements, we use a strain-controlled rheometer (ARES-G2)
from TA Instruments equipped with a cone-plate geometry of radius R1 = 25 mm,
angle θ1 = 0.04 rad and truncation gap 0.055 mm. Temperature is controlled by a
Peltier device. We measure the apparent shear viscosity η = σ12/γ̇ as well as the
first normal stress difference N1 = σ11 − σ22, where γ̇ is the shear rate and σij are
the stress tensor components; 1 and 2 are respectively the direction of the flow and
the direction of the velocity gradient. Note that it was impossible to perform satisfying
small amplitude oscillatory shear (SAOS) measurements due to low solution viscosity,
as also reported by other authors (Rodd et al. 2005; Oliveira, Yeh & McKinley 2006).

When measuring the apparent shear viscosity η(γ̇ ), the shear rate γ̇ is first increased
from 10−3 s−1 to γ̇max (typically 100 s−1) and then decreased. The overlap of both
data sets indicates negligible degradation at high shear rates. Measuring η(γ̇ ) for a
given value of γ̇ requires a minimum sampling time of 10 s to ensure steady state
is achieved. γ̇max is chosen to be close to the shear rate marking the onset of elastic
instabilities where apparent shear thickening is observed (Larson 1992). Unstable data
are removed, as well as data below the minimum measurable torque Tmin= 0.5 µN m,
which correspond to η < 3Tmin/(2πR3

1γ̇ ) (Ewoldt, Johnston & Caretta 2015). Results
are presented in figure 3. Data are fitted by a Carreau law

η= η0

[
1+

(
γ̇

γ̇c

)a1
](n−1)/a1

, (3.1)

where η0 is the zero-shear viscosity, γ̇c is the shear rate at which shear thinning starts,
a1 is an exponent that encodes the sharpness of the transition and n is the degree of
shear thinning; a1 is always close to 2 and other parameters are presented in table 1.

PEO solutions with 20 wt% PEG solvent have a constant shear viscosity (n= 1) up
to [PEO] = 0.04 wt% beyond which shear thinning appears. Shear-thinning behaviour
is much more pronounced for unsalted HPAM solutions but is drastically reduced
when adding salt. Note that fitting with a Carreau law fails for [NaCl] = 0 wt%
and 0.01 wt% and that the Newtonian plateau is beyond the low-torque limit of the
rheometer. Therefore, the corresponding values of η0 reported in table 1 are merely
orders of magnitude.

Normal stress measurements are performed using a specific step-by-step protocol
similar to Casanellas et al. (2016) to circumvent the instrumental drift of the normal
force. Each step consists in imposing a given step shear rate γ̇ and then imposing a
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[PEG] [PEO] c/c∗ η0 ηp n 1/γ̇c α1 Ψ τfil ηE b
(wt%) (wt%) (Pa s) (Pa s) (s) (Pa sα1 ) (s) (Pa s)

20 0.001 0.012 0.017 0.0002 1.0 — — — 0.005 3× 101 1× 105

20 0.002 0.025 0.017 0.0003 1.0 — — — 0.013 9× 101 1× 105

20 0.01 0.12 0.018 0.001 1.0 — 2 0.0009 0.070 4× 102 1× 105

20 0.02 0.25 0.020 0.003 1.0 — 2 0.0016 0.13 6× 102 9× 104

20 0.04 0.49 0.023 0.006 1.0 — 2 0.0024 0.19 1× 103 8× 104

20 0.1 1.2 0.045 0.028 0.92 0.36 2 0.0079 0.41 2× 103 4× 104

20 0.2 2.5 0.18 0.16 0.82 3.1 2 0.026 0.78 5× 103 2× 104

20 0.3 3.7 0.40 0.38 0.73 4.0 1.7 0.12 1.1 6× 103 8× 103

20 0.4 4.9 1.2 1.2 0.62 5.9 1.4 0.63 1.3 7× 103 3× 103

[HPAM] [NaCl] c/c∗ η0 ηp n 1/γ̇c α1 Ψ τfil ηE b
(wt%) (wt%) (Pa s) (Pa s) (s) (Pa sα1 ) (s) (Pa s)
0.1 0 6.7 2× 102 2× 102 0.16 7× 102 0.64 4.1 0.4 1× 103 3× 100

0.1 0.01 — 6× 101 6× 101 0.24 5× 102 0.70 2.3 0.3 8× 102 1× 101

0.1 0.1 — 0.40 0.40 0.48 7.7 0.93 0.36 0.15 5× 102 6× 102

0.1 1 — 0.023 0.022 0.70 0.50 1.0 0.058 0.081 4× 102 9× 103

0.1 10 — 0.0087 0.0077 0.82 0.22 — — 0.068 4× 102 3× 104

TABLE 1. Rheological parameters of PEO solutions with 20 wt% PEG solvent (top)
and salted (NaCl) HPAM solutions (bottom) at T = 20 ◦C. Concentrations are in weight
fraction. Shear parameters: η0, n, γ̇c, α1 and Ψ are such that the shear viscosity η(γ̇ )
and the first normal stress difference N1(γ̇ ) are captured by (3.1) and (3.2) (γ̇c is not
measurable when n = 1 and N1 is not always measurable). Values of c/c∗ are shown,
where c= ρ[X] (X refers to PEO or HPAM) and c∗ is the critical overlap concentration
which is c∗ = 0.83 kg m−3 for PEO solutions and c∗ = 0.15 kg m−3 for the unsalted
HPAM solution. ηp = η0 − ηs where ηs is the solvent viscosity which is respectively
0.017 Pa s (top) and 0.001 Pa s (bottom). We use ηp = ηs[η]c to determine ηp for the
two smallest PEO concentrations (dilute regime) since the difference between η0 and ηs
is too small to be measured directly, where [η] = 0.93 m3 kg−1 is the intrinsic viscosity.
Extensional parameters (CaBER): τfil is the extensional relaxation time and ηE is the
terminal extensional viscosity. b = (ηE − 3ηs)/(2ηp) is the effective value of the finite
extensibility parameter.

zero shear rate. Subtracting the two plateau values of the first normal stress difference
gives access to the real value of N1(γ̇ ) after removing the contribution of fluid inertia
to the normal force (Macosko 1994). Results are presented in figure 4. Normal stress
measurements are restricted to a narrow range of shear rates due to the limited
resolution of the rheometer and to the onset of elastic instabilities at large shear rates
(Larson 1992). No measurements are possible for solutions exhibiting no measurable
values of N1 below the onset of elastic instabilities.

Within the measurement window, data can be fitted with a power law

N1(γ̇ )=Ψ γ̇
α1 . (3.2)

Values of Ψ and α1 are reported in table 1. We find α1 = 2 for most PEO solutions,
except for the two largest concentrations. This result is consistent with the Oldroyd-B
constitutive model which predicts N1 = 2ηpτ γ̇

2 where τ is the relaxation time and
ηp = η0 − ηs is the polymer contribution to the zero-shear viscosity. Therefore, when
α1 = 2, we can define a shear relaxation time Ψ/2ηp. Note that a more general
definition is N1/(2(η− ηs)γ̇

2).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

38
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.389


366 A. Gaillard, M. Roché, S. Lerouge, C. Gay, L. Lebon and L. Limat

102

101

100

10-1

10-2

10-3

Sh
ea

r v
isc

os
ity

 ˙
 (P

a 
s)

101 103

Low torque limit

100 102

˙ = ˙0[1 + (©/©c)a1](n-1)/a1

10-3 10-110-210-4

Shear rate © (s-1).

0.4 wt%

0.1 wt%
0.04 wt%

0.2 wt%
0.3 wt%

[PEG] = 20 wt%
[PEO] = 

Water

0.02 wt%
0.002 wt%
0 wt%

[HPAM] = 0.1 wt%
[NaCl] = 

Water

0 wt%
0.01 wt%
0 .1 wt%
1 wt%
10 wt%

. .

FIGURE 3. (Colour online) Apparent shear viscosity η(γ̇ ) for PEO solutions with 20 wt%
PEG solvent and for HPAM solutions at T = 20 ◦C. Data are fitted with a Carreau law
(3.1). The low-torque limit is shown.
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FIGURE 4. (Colour online) First normal stress difference N1(γ̇ ) for PEO solutions with
20 wt% PEG solvent and for HPAM solutions at T = 20 ◦C. Data are fitted with a power
law (3.2).

Note that N1 decreases when adding salt to a HPAM solution, although chains
become more flexible. This can be explained by the fact that normal stresses arise
due to both single chain deformability and chain–chain interactions and that salt
addition reduces the radius of gyration of the HPAM chains (Zhang et al. 2008;
Chen et al. 2012), thus resulting in lower interactions.
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FIGURE 5. (Colour online) (a) Minimum filament radius R as a function of time t − ts
(where ts marks the abrupt transition to a cylindrical filament shape) for PEO solutions
with 20 wt% PEG solvent and for HPAM solutions at T = 20 ◦C. (b) Four images of a
filament of a 0.3 wt% PEO solution during the thinning process. These four steps are
reported on the corresponding R(t) curve in (a).

3.2. Extensional rheology
Since the curtain flow is extensional, we performed extensional rheology measurements
using the well-documented filament thinning technique (Anna & McKinley 2001;
McKinley 2005). We have built a simple capillary breakup extensional rheometer
(CaBER) which was used following the slow retraction method (SRM) described
by Campo-Deano & Clasen (2010) in order to minimise the unwanted fluid inertia
effects inherent to the classical step-strain plate separation protocol (Rodd et al. 2005).
A droplet of liquid is placed between two horizontal plates of radius Rd = 1.5 mm.
The lower plate is kept fixed and the upper plate is moved upward with a manual
translation stage until the liquid bridge connecting the two end drops becomes
unstable and starts necking. The initial and final plate separation distances are
typically L0 ≈ 1.5 mm and Lf ≈ 3.5 mm, which gives initial and final aspect ratios
Λ0 = L0/(2Rd)≈ 0.5 and Λf = Lf /(2Rd)≈ 1.2. The average rate of plate separation is
0.5 mm s−1. The evolution of the filament connecting the two end drops is observed
with a high magnification objective mounted on a high-speed camera.

Figure 5 shows the evolution of the minimum filament radius R as a function
of time t for PEO and HPAM solutions, along with raw images at four stages of
thinning. Solutions are tested at room temperature T = 20 ◦C. Each filament undergoes
the following steps. First (step 1 in figure 5b), the liquid bridge slowly necks until
abruptly transitioning to a slender filament shape (step 2). During this transition,
elastic stresses become dominant due to rapid stretching of polymer molecules
(Amarouchene et al. 2001). The filament then thins exponentially, as predicted from
the multimode FENE-P model which gives (Entov & Hinch 1997)

R(t)/R̄0 = (GR̄0/2γ ) exp (−t/3τ1), (3.3)

where G is the elastic modulus, τ1 is the longest relaxation time of the spectrum
and R̄0 is the minimum filament radius after cessation of stretching in the classical
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step-strain plate separation protocol (Anna & McKinley 2001). The exponential
regime is fitted by R(t)∝ exp (−t/3τfil) where we define τfil as the liquid extensional
relaxation time. In this regime, the polymer chains undergo progressive unravelling
under homogeneous uniaxial elongational flow with constant extension rate ε̇ ≡

−(2 dR/dt)/R = 2/3τfil. The filament remains perfectly cylindrical until polymer
chains reach their maximum extension, allowing local pinching that typically occurs
near the end drops (step 3). The filament then undergoes a Rayleigh–Plateau-like
instability commonly referred to as ‘blistering instability’ (Sattler, Wagner & Eggers
2008; Sattler et al. 2012; Eggers 2014) where tiny drops are separated by micrometric
sub-filaments (step 4). In steps 3 and 4, R refers to the radius of the pinched region
and to the radius of the sub-filaments respectively.

Repeating this experiment for a given liquid shows reproducible results for PEO and
salted HPAM solutions. We checked that experimental parameters such as the rate of
plate separation had no impact on the measured value of τfil, as also reported by Miller,
Clasen & Rothstein (2009) for polymer solutions. However, unsalted HPAM solutions
showed less reproducible results. One possible explanation is that solutions of rigid
polymers are analogous to particle suspensions which are known to be affected by
random fluctuations in the particle concentration along the filament (McIlroy & Harlen
2014; Mathues et al. 2015). Values of τfil are reported in table 1 with a number of
significant digits which reflects the precision of the measurement.

Considering a perfectly cylindrical filament with negligible inertia and gravity, the
Laplace pressure γ /R is balanced by both solvent and polymeric stresses. The force
balance equation writes 3ηsε̇ + (σp,zz − σp,rr) = γ /R where σp,zz and σp,rr denote the
axial and radial components of polymeric stresses. Defining the apparent extensional
viscosity as ηapp ≡ (σzz − σrr)/ε̇ = 3ηs + (σp,zz − σp,rr)/ε̇, it can therefore be estimated
using

ηapp =−γ /(2 dR/dt). (3.4)

Figure 6 shows ηapp as a function of the total deformation accumulated by fluid
elements, which is given by the Hencky strain

ε(t)≡
∫ t

0
ε̇(t∗) dt∗ =−2 ln [R(t)/R0], (3.5)

where R0 is the minimum bridge radius when the bridge starts necking. Finitely
extensible nonlinear elastic (FENE) dumbbell models predict that ηapp reaches a
plateau value known as the terminal extensional viscosity ηE when polymer chains
are fully extended (Bird et al. 1987). It can be written as ηE = 3ηs+ 2bηp (McKinley
2005) where b1/2 is the ratio of the polymer size at full extension to its size in the
coiled state at equilibrium, or equivalently b= 3NK where NK is the number of Kuhn
steps of the chain (Tirtaatmadja, McKinley & Cooper-White 2006). Knowing ηs and
ηp from shear measurements and estimating ηE from extensional measurements, we
estimate b using b = (ηE − 3ηs)/(2ηp) as a definition. Of course, for semi-dilute
solutions, b has to be seen as an effective value since the FENE models do not take
into account any chain–chain interaction. Values of ηE and b are reported in table 1.
The finite extensibility parameter b ranges between 103 and 105 for flexible PEO and
salted HPAM solutions but is only of order 100–101 for semi-rigid unsalted HPAM
solutions.
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FIGURE 6. (Colour online) Apparent extensional viscosity ηapp (3.4) as a function of
the Hencky strain ε (3.5) for PEO solutions with 20 wt% PEG solvent and for HPAM
solutions at T = 20 ◦C.

3.3. Interpretation of the rheological data
Values of the critical overlap concentration c∗ can be calculated from the data of
table 1 and estimated from theoretical expressions. A detailed discussion is presented
in § A.1 and values of c/c∗ are reported in table 1, where c = ρ[X] (X refers to
PEO or HPAM). In § A.2, we compare the CaBER extensional relaxation time τfil
and the shear relaxation time Ψ/2ηp. Values of the relaxation time and of the finite
extensibility parameter b are compared to theoretical expressions and some scalings
are extracted from the data of table 1.

3.4. Mechanical degradation of polymer solutions and adequate protocols
During preparation (see § 2.1) of a 5 kg curtain solution, degradation of the polymer
chains may occur during shaking since mechanical stirrers produce high shear rates.
This is particularly true for PEO solutions since we measured that the relaxation
time of two independently prepared solutions of same PEO concentration could vary
by a factor of up to 3 (while HPAM solution are much more reproducible). Note
that authors working with smaller samples use generally more gentle techniques such
as magnetic stirrers or roller mixers which require longer preparation times. Hence
the rheological data presented in the previous sections, which correspond to specific
solutions with a particular preparation history, cannot be used as a reference for
all other solutions. Therefore, rheological measurements are performed on any new
solution.

Mechanical degradation of the polymer chains also occur in the hydraulic loop
described in § 2.2. Irreversible scission of the polymer molecules occurs at each
passage through the pump (which was found to be the principal source of degradation)
and the rheological properties of the solution hence vary with time. Therefore, it
would be incorrect to correlate curtain data with the rheological properties of the
initial fresh solutions. In order to overcome this problem, we use two different
experimental protocols.
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FIGURE 7. (Colour online) Dependence of the extensional relaxation time τfil (a) and of
the zero-shear viscosity η0 (b) on the number of laps nlap through the hydraulic loop for
PEO solutions with 20 wt% PEG solvent (table 2) and for HPAM solutions (table 3 (top));
nlap is estimated by tdQ/M where td is the time spent since the start of the experiment, Q
is the mass flow and M = 5 kg is the mass of the solution. Since solutions are extruded
at different flow rates (see § 2.5), values at a given time td correspond to different values
of nlap. For each liquid, τfil and η0 are normalised by the initial values before degradation,
i.e. at td = 0.

For the first protocol, we take advantage of degradation by proceeding as follows.
A newly prepared solution is placed in the reservoir and the pump is turned on at time
td = 0. Filling the loop and setting the desired flow rate takes about 1 min. A first
PIV measurement is performed, and we immediately collect a sample of the solution
from the die. Without changing any external parameter, this procedure is repeated
at times td = 10, 20, 40, 60 and 100 min. We therefore obtain six velocity profiles
U(z) corresponding to six degradation degrees of a given initial solution, which can
be unambiguously correlated to the rheological properties of the six corresponding
samples. For simplicity, the solution corresponding to the first measurement is called
the fresh solution and is referred to as td = 0. Note that the flow rate Q has to
be regularly readjusted because it increases naturally over time due to a decreasing
dissipation in the slot.

For a solution of total mass M=5 kg flowing with mass flow Q, the number of laps
through the loop is nlap≈ tdQ/M. We show in figure 7 the extensional relaxation time
τfil (a) and the zero-shear viscosity η0 (b) as a function nlap for PEO solutions with
20 wt% PEG solvent and for HPAM solutions. Values are normalised by the initial
value at td= 0. For PEO solutions, τfil decreases by a factor of up to 10 after 100 min.
of circulation. In contrast, HPAM chains are more resistant since they deteriorate at a
much lower rate. Besides, we observe that η0 only decreases for PEO solutions which
exhibit shear-thinning behaviour.

The detailed rheological parameters of all the solutions presented in figure 7
are given in tables 2 and 3 (top) (see appendix B). Shear-thinning PEO solutions
become less shear thinning during degradation. Note that an extra HPAM solution is
presented in table 3 (bottom); starting from a fresh unsalted HPAM solution, five PIV
measurements are performed at arbitrary times, each measurement corresponding to a
particular salt concentration which is achieved by adding salt to the solution. Samples
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are again collected at each step and rheological measurements are performed on each
sample.

A second protocol is used when investigating the role of external parameters such
as the curtain length (§ 4.3), the flow rate (§ 4.4) or the die geometry (§ 6.3). In this
case, solutions must have the exact same rheological properties for each measurement.
Instead of using the peristaltic pump, the liquid is poured manually from a bucket
directly into a tank placed at two metres above the die and drilled with a hole on
its lower side. A constant flow rate is ensured by keeping a constant liquid level
in the tank. This degradation-free protocol was used with the PEO solutions with
40 wt% PEG solvent presented in table 4 (which have a fairly constant shear viscosity
and large extensional relaxation times), and with the PEO solution of table 5 (see
appendix B). We checked that the rheological parameters were the same before and
after an experiment.

Curtain experiments are performed at room temperature, which could vary
between 20 ◦C and 30 ◦C from day to day. Since temperature is not imposed in our
‘home made’ CaBER rheometer, the extensional rheology measurements are always
performed a few minutes after curtain experiments and in the same room to measure
the relevant extensional parameters. For the liquids of tables 4 and 5, the temperature
of the curtain room was imposed for shear rheology measurements. However, for
the liquids of tables 2 and 3, shear rheology measurements were performed at a
temperature T = 20 ◦C which was not necessarily the room temperature. We measured
on similar solutions that the variation of the viscosity parameters η0, n and γ̇c is very
weak within this temperature range (the zero-shear viscosity η0 typically decreases
by a factor of only 1.1 when raising the temperature from 20 ◦C to 30 ◦C, while n
and γ̇c remain unchanged). Hence, we can reasonably use the 20 ◦C values reported
in tables 2 and 3. However, values of the first normal stress difference could vary
significantly (by a factor 2). Hence, values of α1 and Ψ are only reported for the
liquids of tables 4 and 5. These values will be used for investigating die swell (§§ 4.6
and 6.1) and the impact of die geometry on the curtain flow (§ 6.3).

4. Observations
4.1. A dramatic shift towards sub gravity accelerations

To identify the specificity of polymer solutions in the context of curtain flows, we
have performed a first series of experiments with three different liquids. The first one
[1] is the Newtonian 20 wt% PEG solvent of viscosity η = 0.017 Pa s. The second
one [2] is a fresh (td = 0) 0.2 wt% PEO solution with 20 wt% PEG solvent (table 2).
Its zero-shear viscosity is η0 = 0.12 Pa s, ten times larger than the pure solvent [1].
The third one [3] is pure glycerin, a Newtonian liquid with a measured viscosity
η= 1.5 Pa s, a hundred times larger than the shear viscosity of liquid [1], and density
ρ = 1250 kg m−3. Note that we used a different setup for glycerin since, due to a
strong viscous dissipation in the hydraulic loop, the maximum accessible flow rate is
well below the minimum flow rate required to create a continuous curtain. Glycerin
is placed in a reservoir connected to the die and a large enough flow rate is enforced
by applying a constant air flow on the top of the reservoir.

In figure 8, we plot the square U2 of the falling velocity of these liquids
as a function of the distance z from the slot. All three curtains have the same
length Lc = 30 cm and start from comparable initial velocities U1 ranging between
0.07 m s−1 for glycerin [3] and 0.2 m s−1 for the PEG solvent [1]. We recall that
U1 =U(z1) is the liquid velocity at z1 ≈ 2.5 mm from the slot exit (see § 2.4) while
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FIGURE 8. (Colour online) Square U2 of the falling velocity as a function of the distance
z from the slot for two Newtonian curtains [1] and [3], a 20 wt% PEG solution and pure
glycerin of viscosities η= 0.017 Pa s and η= 1.5 Pa s respectively, and for a fresh (td =

0 min) 0.2 wt% PEO solution [2] with 20 wt% PEG solvent of zero-shear viscosity η0=

0.12 Pa s (table 2). The curtain length is Lc = 30 cm and the initial velocity U1 at z1 ≈

2.5 mm from the slot exit is 0.2 m s−1, 0.13 m s−1 and 0.07 m s−1 for liquids [1], [2]
and [3] respectively. The local acceleration of the liquid is U dU/dz.

U0 = U(z = 0) is the liquid velocity at the slot exit. The local acceleration of the
liquid is given by U dU/dz which is half the local slope of the U2(z) curve. For both
Newtonian curtains [1] and [3], we observe that this acceleration is equal to g far
from the slot exit. More precisely, the fall of the low viscosity Newtonian liquid [1]
is very well captured by a free fall, i.e. U2

= U2
0 + 2gz, whereas the acceleration of

glycerin reaches the asymptotic value g at about 10 cm from the slot. These results
are in agreement with the theory of viscous Newtonian curtains (1.1) according
to which viscous forces are negligible far downstream from the slot. Indeed, the
length of the sub-gravitational part of the flow is of order zv = ((4η/ρ)2/g)1/3 (1.2),
respectively 0.077 cm and 1.4 cm for liquids [1] and [3], with a prefactor which
is approximately 7 for low initial velocities U0�

√
gzv (Brown 1961; Clarke 1968).

For glycerin, we measured U0= 0.05 m s−1 which gives U0/
√

gzv ≈ 0.14< 1. Hence,
according to the theory, the length of the sub-gravitational part of the flow should be
approximately 7zv ≈ 10 cm which is in agreement with the experimental results.

In contrast, the PEO solution falls at much lower velocities than the two others,
despite the fact that its zero-shear viscosity is one order of magnitude smaller than the
viscosity of glycerin. More precisely, the acceleration at z = 14 cm from the slot is
U dU/dz= 2.5 m s−2 < g despite the fact that the viscous length zv = ((4η0/ρ)

2/g)1/3
is only 0.28 cm based on the zero-shear viscosity. Therefore, viscoelastic curtain flows
are not captured by the Newtonian curtain theory.

4.2. Unstable flow for the most shear-thinning solutions
We mention here that the curtain flow is not always stationary and translation invariant
in the x horizontal direction (like in figure 2). Indeed, for some solutions, the curtain
flow is unstable and presents a time-dependent varicose mode along x, i.e. the velocity
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FIGURE 9. (Colour online) Example of PIV measurement for a degraded (td = 20 min)
0.1 wt% unsalted HPAM solution (table 3). (a) Superposition of six successive PIV
images. The correlation algorithm is applied to a domain restricted to the dashed rectangle.
(b) z-component of the velocity field, i.e. U(x, z, t), against the horizontal coordinate x at
different distances z from the slot at an arbitrary time t. The curtain length is Lc= 30 cm
and the linear flow rate is q= 3.1 cm2 s−1.

of the liquid and the curtain thickness depend on x. This is illustrated by the vertical
dark and bright stripes in figure 9(a) for an unsalted HPAM solution (bright and dark
stripes correspond to flow regions with velocities respectively larger and smaller than
the average velocity). This is one of the most extreme cases of unstable curtain flow.
The wavelength and the typical time of evolution of the pattern are of the order of a
few centimetres and a few tens of seconds, respectively. The corresponding velocity
field U(x, z, t) is presented in figure 9(b) at an arbitrary time t. For example, at
a distance z = 16 cm from the slot, the liquid velocity ranges between 0.6 m s−1

and 1 m s−1 which corresponds to a variation of ±25 % around the average value
〈U〉x = 0.85 m s−1. The time variation of the average velocity 〈U〉x is presented in
figure 10(a): it is fairly independent of time. Hence, we can reasonably define an
average flow U(z)= 〈〈U〉x〉t obtained after averaging 〈U〉x over time, as presented in
figure 10(b).

As salt is added to an initially unsalted HPAM solution, the amplitude of the
instability decreases. It disappears for [NaCl] > 1 wt%. Besides, for PEO solutions
with 20 wt% PEG solvent (table 2), the curtain flow is weakly unstable for the
highest concentration [PEO] = 0.4 wt%. However, as the polymer chains break
due to mechanical degradation, the amplitude of the velocity variation decreases. It
disappears for td > 40 min. All other solutions in table 2 produce a stable curtain,
as well as every PEO solution with 40 wt% PEG solvent (table 4). In this paper,
whatever the curtain, stable or unstable, we focus on the mean flow U(z)= 〈〈U〉x〉t.

Here is more information on this instability, see Gaillard (2018) for details.
Visualisations using a transparent die reveal that it appears to be generated at the
contraction upstream of the slot. It is known that viscoelastic liquids can exhibit
interesting nonlinear dynamics in both axisymmetric and planar contraction flows
depending on the value of the Reynolds and Weissenberg number Wi (McKinley et al.
1991; Purnode & Crochet 1996; Rothstein & McKinley 1999; Nigen & Walters 2002;
Boger & Walters 2012). Using the definition of Rodd et al. (2005, 2007) Wi= τfilUs/a,
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FIGURE 10. (Colour online) (a) Velocity 〈U〉x averaged over x versus time t (for a 2 s
PIV movie) and at different distances z from the slot. Time t = 0 s corresponds to the
data of figure 9(b). (b) Velocity 〈〈U〉x〉t averaged over x and t versus z. The big coloured
dots correspond to the values of (a).

the maximum value attained in our experiments is Wi= 400. For solutions which are
not too shear thinning, we observe the presence of small corner and lip vortices, as
well as divergent streamlines at high flow rates, but no instabilities. Both phenomena
are well documented. Within our experimental range of rheological parameters and
flow rates, the only solutions producing a modulated curtain have a degree of shear
thinning n < 0.72 or, equivalently, an effective finite extensibility b < 3 × 103. For
these solutions, the flow upstream of the contraction plane is unsteady, asymmetric
and three dimensional. For unsalted HPAM solutions, we observe jet-like structures
of fast portions of liquid moving in a much slower surrounding, thus leading to the
curtain modulation along x (thick and fast bands of liquid in the curtain correspond
to overfed regions upstream of the slot). Three dimensional destabilisation of a planar
contraction flow of polymer solution due to shear-thinning effects have also been
reported by Chiba, Sakatani & Nakamura (1990) and Chiba, Tanaka & Nakamura
(1992). However, to our knowledge, this particular instability and its consequences on
the downstream curtain has not been mentioned in the literature. A more complete
description and characterisation of this instability is left for a future work. Note that
different scenarios leading to the destabilisation of viscoelastic liquid sheets have
been investigated (Graham 2003).

4.3. The influence of the curtain length
To investigate the role of the curtain length Lc on the flow, we perform experiments
with Lc ranging from 15 cm to 200 cm. The experimental set-up is modified: after
extrusion, the liquid is stopped at the desired distance Lc from the slot by a horizontal
plastic plate and finally falls into a reservoir. The vertical wires guiding the flow pass
through two small holes drilled on the plastic plate to ensure that all the liquid is
stopped. The camera only records the first 32 cm of the fall. Only the most elastic
solutions could form a 2 m continuous curtain. On the other hand, curtains made of
solutions with low polymer concentration usually break before reaching the plastic
plate. Near the breaking zone, some curtains may even adopt a sinuous flag-like
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FIGURE 11. (Colour online) Velocity field U(z) for z 6 32 cm for curtains of lengths Lc
ranging between 15 cm and 200 cm. The liquid falls onto a motionless horizontal plate
(see inset on the right) and reaches a maximum velocity at a distance zm from the slot.
The liquids are respectively 0.2 wt% (a) and 0.024 wt% (b) PEO solutions with 40 wt%
PEG solvent (table 4). They are respectively extruded at flow rates q = 0.40 cm2 s−1

and 0.98 cm2 s−1. The liquid velocity U1 at z1 ≈ 2.5 mm from the slot is respectively
0.02 m s−1 and 0.06 m s−1.

motion. We suspect that this is due to the shear instability with the surrounding air
described by Dombrowski & Johns (1963) and Villermaux & Clanet (2002).

For these experiments, we use the PEO solutions with 40 wt% PEG solvent
presented in table 4 along with the degradation-free protocol presented in § 3.4 to
ensure that Lc is the only varying parameter for a given solution. We only consider
the curtains reaching the plastic plate without breaking. Some results are presented
in figure 11 for [PEO] = 0.2 wt% (a) and [PEO] = 0.024 wt% (b). In the first
case, longer curtains fall clearly faster than shorter ones, i.e. the velocity U is larger
at a any distance z from the slot. The liquid vertical velocity has to vary from the
imposed initial velocity U(0) = U0 at the slot exit to U(Lc) = 0 when impinging
onto the motionless plastic plate where the curtain flow turns into a plane stagnation
flow. Everyday experience with jets of tap water suggests that the presence of a
horizontal solid surface only affects the liquid flow within a few millimetres before
impact. However, for the liquid of figure 11(a) with extensional relaxation time
τfil = 1.1 s, the presence of the plate clearly affects the flow on a much larger scale:
for Lc = 37 cm, the liquid velocity first increases and reaches a maximum value at
z = zm ≈ 25 cm before decreasing, i.e. the curtain starts to get thicker at a distance
Lc − zm ≈ 12 cm from the impact. As the plate is moved downwards, the flow
field near the slot exit converges towards a universal behaviour which is no longer
influenced by the presence of the plate: there is no difference between Lc = 150 cm
and Lc= 200 cm within the first 32 cm of the fall in figure 11(a). This is even more
visible for the solution used in figure 11(b) which has a lower extensional relaxation
time τfil = 0.17 s since the liquid velocity U(z) is almost the same for all curtain
lengths, except for Lc = 15 cm.

4.4. The influence of the flow rate
To investigate the role of the flow rate, we perform experiments using the degradation-
free protocol presented in § 3.4 to ensure that q is the only varying parameter for
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FIGURE 12. (Colour online) (a) Velocity field U(z) for the PEO solution of table 5
extruded at flow rates q= 0.45 cm2 s−1 and 1.4 cm2 s−1. The liquid velocity U1 at z1 ≈

2.5 mm from the slot is respectively 0.047 m s−1 and 0.082 m s−1. (b) Local acceleration
U dU/dz at an arbitrary distance z= 16 cm from the slot versus initial velocity U1. The
curtain length is Lc = 50 cm.

a given solution. The test liquid is the PEO solution presented in table 5 which is
close to (but not exactly the same as) the degraded (td = 100 min) 0.4 wt% PEO
solution with 20 wt% PEG solvent presented in table 2. The liquid is extruded at
different flow rates q ranging between 0.45 cm2 s−1 and 1.4 cm2 s−1. In figure 12(a),
we report the velocity field U(z) for these two flow rates; U increases slightly faster
when increasing the flow rate. To quantify this effect, values of the liquid acceleration
U dU/dz at an arbitrary distance z= 16 cm from the slot are reported in figure 12(b)
as a function of the initial velocity U1 measured at z ≈ 2.5 mm from the slot exit.
The local acceleration is increased by a factor 1.2 when U1 is increased by a factor
1.7. The same trend is observed for all solutions, including HPAM solutions (results
not shown).

4.5. The influence of the rheological properties
To investigate the role of the rheological properties, we show in figure 13(a) the
square U2(z) of the velocity field for the six 0.1 wt% PEO solutions with 20 wt%
PEG solvent presented in table 2. These measurements are performed with the
degradation protocol presented in § 3.4 and each solution corresponds to a specific
degradation time. All six curtains share the same initial velocity U1 ≈ 0.17 m s−1 at
z1 ≈ 2.5 mm from the slot and the same curtain length Lc = 30 cm. These specific
solutions are almost non-shear thinning (n≈ 0.96) and have similar shear viscosities.
In particular, the three last solutions have the same values of both η0 = 0.029 Pa s
and ηp = 0.012 Pa s. However, we observe that the liquid acceleration increases with
degradation time. This suggests that neither η0 nor ηp does fully control the curtain
flow and that other rheological parameters are to be taken into account to rationalise
the curtain data. The same conclusion can be drawn for the 0.02 wt% and 0.004 wt%
PEO solutions of table 2 for which degradation has no impact on the shear viscosity
(results not shown).

In figure 13(b), we plot the square U2(z) of the velocity field for various PEO
and HPAM solutions from tables 2 and 3 (bottom). The curtain length is Lc= 30 cm
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FIGURE 13. (Colour online) Dependence of the velocity field U(z) on the rheological
properties of the solution. (a) U2(z) for the 0.1 wt% PEO solutions with 20 wt% PEG
solvent (table 2) for all degradation times td = 0 to 100 min. All solutions are almost
Boger fluids of comparable zero-shear viscosity η0 ≈ 0.03 Pa s and have comparable
initial velocities U1 ≈ 0.17 m s−1 at z1 ≈ 2.5 mm from the slot. A free fall is shown
for comparison. (b) U2(z) for five pairs of solutions [1], [2], [3], [4] and [5] from
tables 2 and 3 (bottom) which are referred to as follows: [P0.2, td 60] corresponds to a
0.2 wt% PEO solution (with 20 wt% PEG solvent) with degradation time td = 60 min
and [H0.1, salt 1] corresponds to a 0.1 wt% HPAM solution with salt concentration
[NaCl] = 1 wt%. Within each pair, both solutions share similar initial velocities U1 and
comparable extensional relaxation times ranging between τfil = 0.0073–0.008 s [1] and
τfil = 0.38–0.5 s [5]. The curtain length is Lc = 30 cm for both figures.

and we choose five pairs of solutions such that both solutions within each pair share
comparable extensional relaxation times τfil and initial velocities U1. The results
suggest that the liquid fall is mostly influenced by the value of τfil since the flow of
both solutions within each pair is very similar. More precisely, the flow of solutions
[1], which have low extensional relaxation times τfil ≈ 8 ms, is well captured by a
free fall with constant acceleration g = 9.81 m s−2, whereas solutions with larger
values of τfil fall with an increasing sub-gravitational acceleration U dU/dz(z) 6 g.
These results are consistent with the recent results of Karim et al. (2018b) who also
measured free falls for curtains made of PEO solutions with extensional relaxation
times τfil 6 7.3 ms.

Note that η0 and ηp vary significantly for the pair [3] in figure 13(b). This example
reinforces the idea that shear viscosity does not fully control the curtain flow. The
flexibility of the polymer chains also appears to play no major role since values of
the effective finite extensibility b (and of the degree of shear thinning n) are very
different for the solutions of pair [5]. To confirm these ideas, we gather all the data
corresponding to Lc= 30 cm in figure 14 where the acceleration at a given (arbitrary)
distance z = 18 cm from the slot is plotted against τfil. We observe a good collapse
of the data although neighbouring points in the plot can correspond to very different
values of the other rheological parameters. This result confirms that curtain data can
be fairly rationalised using only the extensional relaxation time τfil measured from
CaBER experiments. The deviations can be explained by the differences in flow rates:
curtains extruded at lower flow rates have a slightly lower acceleration (§ 4.4). Note
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FIGURE 14. (Colour online) Dimensionless acceleration [U dU/dz]/g at z= 18 cm from
the slot against polymer extensional relaxation time τfil in lin–lin (a) and log–log (b) scales
for all the solutions of tables 2 (PEO) and 3 (HPAM), for which the curtain length is
always Lc=30 cm, and for all PEO the solutions of table 4 when the curtain length is also
Lc = 30 cm. Note that another 0.4 wt% PEO solution with 20 wt% PEG solvent was
prepared and that the curtain flow was measured at td = 0, 5, 10 and 20 min in order
to fill the high relaxation time region of the curve.

that some of the data in figure 14 correspond to the unstable curtains mentioned in
§ 4.2 and blend with the stable curtain data, which suggests that this instability does
not affect significantly the average velocity field U(z)= 〈〈U〉x〉t.

According to figure 14(b), solutions with relaxation times τfil 6 10 ms have an
acceleration U dU/dz= g at z= 18 cm from the slot exit. In fact, for some of these
solutions, the local liquid acceleration is less than g close to the slot and reaches
the free-fall value g at z < 18 cm. This is reminiscent of the flow of pure glycerin
reported in figure 8, which suggests that g is also the asymptotic value of the liquid
acceleration for viscoelastic curtains. However, due to the finite length of the curtain,
many liquids are stopped before reaching the free-fall behaviour. This is particularly
true for solutions with high relaxation times τfil ≈ 1 s which fall with very low
accelerations U dU/dz≈ 0.1 m s−2

� g at z= 18 cm from the slot exit.

4.6. Die swell
We recall that the first value U1=U(z1) measured by PIV corresponds to the velocity
at z1 ≈ 2.5 mm from the slot exit, whereas the mean velocity in the slot can be
estimated as Us = q/2a where q is the measured linear flow rate and 2a is the slot
thickness. Values of both Us and U1 are reported in tables 2–4 for the corresponding
curtains experiments. We observe that U1 is systematically smaller than Us, except for
HPAM curtains, and that the ratio ξ =Us/U1 is up to 2 and increases with polymer
concentration. Observations with the naked eye confirm that the curtain rapidly swells
at the slot exit. This is not due to a wetting effect, as expected from the design of
the die where the wall edges are bevelled (figure 1b).

In order to estimate the velocity profile U(z) in this region, we can use the
particle tracking velocimetry (PTV) technique within the first millimetres of the
flow, i.e. we track the position of singles particles after leaving the slot. Image
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FIGURE 15. (Colour online) (a) Velocity field U(z) at the slot exit measured from single
particle tracking velocimetry (PTV) for the PEO solution of table 5 extruded at different
flow rates q ranging between 0.45 and 1.4 cm2 s−1. The curtain swells since the mean
velocity decreases from U0 at z = 0 to U(zd) at a distance zd from the slot exit; U0
is estimated by extrapolation the PTV data. The PIV velocity fields are also shown for
comparison, the first value U1 corresponding to z1 ≈ 2.5 mm. To guide the eye, z1, zd,
U0, U1 and U(zd) are shown for the data corresponding to q = 1.4 cm2 s−1. (b) The
corresponding values of U0 and U(zd) are plotted against the mean velocity Us = q/2a
inside the slot.

processing is performed ‘manually’. Results are presented in figure 15(a) for the
PEO solution of table 5 extruded at different flow rates. The liquid velocity first
decreases from U0 = U(z = 0) at the slot exit to a minimum value at z = zd before
finally increasing, where zd increases from 1.5 to 4 mm when increasing the flow rate,
which is reminiscent of the delayed die swell effect (Delvaux & Crochet 1990; Boger
& Walters 2012). PIV measurements are not able to capture this behaviour since
cross-correlation is computed over millimetric windows. However, a superposition of
the PIV velocity profiles in figure 15(a) shows an acceptable agreement between the
first value U1 measured from PIV and the minimum velocity U(zd) measured from
particle tracking: U(zd)= U1 with less than 15 % error. The values of U0 and U(zd)
are reported in figure 15(b) as a function of the mean velocity Us in the slot. As
expected, U0=Us. Besides, the swelling ratio ξ =Us/U(zd) increases when increasing
the flow rate. In the following, zd and U(zd) are approximated by z1 and U1 for the
sake of simplicity.

5. Theoretical description of the curtain flow
5.1. General overview of the problem

Before focusing on the theoretical description of the curtain flow, we would like to
give in this section a general overview of the different types of flows involved in
this problem. We first provide a qualitative description before focusing specifically
on Newtonian liquids and viscoelastic liquids. The liquid first experiences a planar
contraction of ratio A/a at the slot entrance (figure 1b). The mean liquid velocity on
the centre line y= 0 switches from about q/2A in the hollow box to Us= q/2a inside
the slot in a characteristic time a/Us, where q is the linear flow rate and 2a is the slot
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FIGURE 16. (Colour online) Sketch of an infinitely long viscoelastic curtain (cross-
sectional view). During the swelling at the slot exit, the mean liquid velocity U and the
mean normal stress difference ∆ = σzz − σyy averaged over the curtain thickness switch
respectively from Us and ∆s to U1 and ∆1 at z1 ≈ 2.5 mm from the slot exit. The local
vertical velocity field u(y, z) switches from a Poiseuille flow inside the slot to a plug flow
at a distance z=L∗e from the slot. In parallel, the mean velocity field U(z) is characterised
by a transition from a sub-gravitational regime to an asymptotic free-fall regime at a
distance z= z∗e from the slot.

thickness. Then, a Poiseuille flow is established in the slot due to the development of
a viscous boundary layer along the walls. At the slot exit, the wall boundary condition
switches to a free-surface boundary condition, i.e. zero shear stress at the liquid–air
interface. Hence, due to viscous diffusion, the Poiseuille flow switches to a plug flow,
as illustrated in figure 16. Here U is the mean vertical velocity averaged over the
curtain thickness. After initial swelling at the slot exit, the curtain thickness decreases
since fluid particles are now accelerated by gravity. Since the liquid may develop
some resistance to gravitational forces, the local mean acceleration U dU/dz may be
initially less than g. The asymptotic free-fall regime where U dU/dz = g is reached
when inertia overcomes the resistance of the liquid.

For Newtonian liquids, a fully developed Poiseuille flow is expected to be established
after a distance from the entrance of the slot which scales as Lv = ρUsa2/η = Re a
with a prefactor typically less than one (Kays, Crawford & Weigand 2005) where
Re = ρUsa/η is the Reynolds number. Lv is also the characteristic length scale
of the transition from Poiseuille to plug. More precisely, the plug flow is fully
established at a distance L∗v = PvLv from the slot, where Pv is a dimensionless
prefactor. In the case of axisymmetric laminar capillary jets, Sevilla (2011) shows
that Pv is a function of the Weber number We = ρU2

s a/γ where a is the injector
radius, and gives Pv(We = 10) ≈ 0.2. Furthermore, the mean acceleration effectively
reaches the asymptotic free-fall value g at a distance z∗v = Fvzv (‘v’ for ‘viscous’)
from the slot where zv = ((4η/ρ)2/g)1/3 and where the prefactor Fv is a decreasing
function of the initial curtain velocity (Brown 1961; Clarke 1968). In other words,
U dU/dz(z= z∗v)≈ g. Ignoring the prefactors, the ratio between the Poiseuille to plug
and sub-gravitational to free-fall transition lengths is

Lv
zv
= Re

a
zv
=

Usa2ρ5/3g1/3

42/3η5/3
, (5.1)

which means that liquids of large viscosity (Lv/zv� 1) exhibit a long sub-gravitational
plug flow whereas liquids of low viscosity (Lv/zv� 1) fall with a mean acceleration
g while exhibiting velocity gradients along the thickness direction.
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We now focus on the viscoelastic liquids used in our experiments. For all solutions,
the time scale a/Us of the planar contraction is shorter than the extensional relaxation
time τfil. Hence, the polymer molecules undergo a rapid strain of Hencky strain
ε ≈ ln (A/a)= 2.6 (3.5). Significant extensional stresses may arise due to this sudden
polymer elongation. However, the time Ls/Us spent by the liquid inside the slot is
generally longer than τfil. Therefore, the polymeric stress developed by the liquid at
the slot entrance is expected to relax towards the asymptotic Poiseuille flow value
before leaving the slot. Moreover, since the Reynolds number ranges between 0.03
and 10 based on the zero-shear viscosity η0, the viscous length Lv ranges between
0.01 mm and 5 mm which is much smaller than the slot length Ls = 10 cm. This
suggests that a fully developed Poiseuille flow is established long before the slot exit,
as confirmed by direct visualisation.

Using analogous notations for viscoelastic curtains, let z∗e (‘e’ for ‘elastic’) be
the distance from the slot at which the local acceleration of the liquid reaches the
asymptotic value g. We showed in §§ 4.1 and 4.5 that this transition length can be
much larger than what could be expected from the theory of Newtonian curtains, i.e.
z∗e� z∗v, and that it was mainly determined by the value of the extensional relaxation
time τfil of the polymer solution. Of course, regardless of the liquid rheology, this
discussion only makes sense if the curtain length is larger than this transition length,
i.e. Lc > z∗e or Lc > z∗v, otherwise the curtain flow would turn into a plane stagnation
flow before reaching the free-fall regime.

Direct visualisation of the y dependence of the curtain flow is quite difficult.
Therefore, to estimate the length L∗e at which the plug flow is fully established in
the case of viscoelastic liquids, we visualised the flow of some PEO solutions when
issuing from a nozzle of diameter 1 mm. For the degraded (td = 100 min) 0.1 wt%
PEO solution with 20 wt% PEG solvent (table 2), we measure L∗e ≈ 1.2 cm although
the transition to free fall is out of frame in curtain experiments, i.e. z∗e > 18 cm.
Hence, provided that the order of magnitude of L∗e is comparable in the curtain,
we can reasonably assume that the plug flow is established much sooner than the
free-fall regime, i.e. L∗e/z

∗

e � 1. We mention here that our measurements suggest an
influence of elasticity on the Poiseuille to plug transition: L∗e is larger than what
could be expected from the theory of Newtonian curtains. Further analysis is required
to characterise this effect.

In this paper, we focus on the transition from the sub-gravitational regime to the
free-fall regime. In particular, we wish to characterise the sub-gravitational regime in
the case of a viscoelastic curtain and to express z∗e as a function of the parameters of
the problem.

5.2. A master curve for Newtonian curtains
As we will now show, the velocity field U(z) of an infinitely long Newtonian curtain
collapses on a master curve which, to the best of our knowledge, had not been clearly
identified in the literature so far. This analytical description of Newtonian curtains will
be a useful guide when describing the analogous case of viscoelastic curtains.

In 1961, Taylor proposed in the appendix of Brown (1961) the one-dimensional
force balance equation (1.1) for the steady curtain flow of a Newtonian liquid
of density ρ and dynamic viscosity η. Surface tension is neglected and the gas
surrounding the liquid is assumed to be dynamically passive. This equation is valid
for slender curtain, i.e. dh/dz� 1 where 2h is the curtain thickness. Aidun (1987) and
Ramos (1996) derived this equation rigorously from a long-wave approximation of the
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Navier–Stokes equation using the aspect ratio a/Lc� 1 as a small parameter, where
2a and Lc are respectively the slot thickness and the curtain length. Equation (1.1)
can be put into non-dimensional form when rescaling by

z̄= z/zv,
Ū =U/Uv,

}
zv =

(
(4η/ρ)2

g

)1/3

, Uv =
√

gzv = (4ηg/ρ)1/3. (5.2a−c)

We obtain
ŪŪ′ = 1+ Ū′′ − Ū′2/Ū, (5.3)

where ′ denotes spatial derivation d/dz̄. The general solution of this equation was
found by Clarke (1966, 1968) and is given by

Ū(z̄)= 2−1/3

[(
Ai′(Z)+CBi′(Z)
Ai(Z)+CBi(Z)

)2

− Z

]−1

, Z = 2−1/3(z̄+ k), (5.4)

where Ai and Bi are the Airy functions (Abramowitz & Stegun 1964) and C and k
are integration constants that are to be determined from the upstream and downstream
boundary conditions. The upstream boundary condition is simply

Ū(z̄= 0)≡ Ū0 =U0/Uv = ρU0zv/4η, (5.5)

where the initial liquid velocity U0 at the slot exit can be chosen experimentally
by varying the flow rate. Three types of downstream boundary conditions can be
chosen depending on the particular experimental conditions (Ramos 1996). As shown
in figure 17(a), the type of downstream boundary condition depends on the value
of C in Clarke’s solution (5.4). Imposing an arbitrarily large velocity at a given
distance Lc from the slot corresponds to a film casting experiment where the liquid
is collected by a drum rotating at a constant arbitrary angular velocity. This case
corresponds to C > 0 where Clarke’s solution diverges in finite time. On the other
hand, the boundary condition U(Lc)= 0 leads to the transition to a plane stagnation
flow where the liquid spreads onto a motionless horizontal solid plate placed at z=Lc
from the slot. In the latter case, which corresponds to C< 0, the liquid velocity first
increases due to gravitational forces and reaches a maximum value at a distance zm
from the slot before finally decreasing down to 0 when approaching the stagnation
point at z= Lc. According to figure 17(a), the presence of the solid plate only affects
the flow significantly within a distance from the plate which is of order Lc − zm.
In figure 17(b), we present L̄c − z̄m = (Lc − zm)/zv against the dimensionless curtain
length L̄c = Lc/zv for various initial velocities. These results suggest that Lc − zm is
always less of equal to 2.3zv. However, as pointed out by Ramos (1996), the slender
approximation is not justified near the stagnation point where the transverse velocity
component becomes larger than the axial one. In this case, although solution (5.4)
may be valid far enough from the impingement zone, a two-dimensional analysis
is required when focusing on this zone. We can however reasonably assume that
the presence of the solid plate only affects the flow within a distance before impact
which is of order zv.

According to the previous results, if the curtains length is Lc� zv, the flow close
to the slot is universal and is not influenced by the downstream boundary condition.
Therefore, in order to characterise this universal flow far from the impingement zone,
we can use the following boundary condition

lim
z̄→∞

ŪŪ′ = 1, (5.6)
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FIGURE 17. (Colour online) (a) Clarke’s solution (5.4) for C=−102 [1], C=−10−1 [2],
C =−10−3.5 [3], C =−10−7 [4], C =−10−12 [5], C = 0 [6] and C =+10−12 [7], where
k is chosen to ensure that the initial velocity is Ū0= 10−3 for each curve. Solutions with
C< 0, C= 0 and C> 0 correspond to different types of downstream boundary condition,
respectively a plane stagnation flow for C < 0 (where Ū(L̄c) = 0 when impacting a flat
solid plate at a distance Lc= L̄czv from the slot), an infinite curtain which converges to a
free fall for C= 0, and a film casting experiment for C> 0 (where the velocity imposed
by the rotation speed of the drum can be arbitrarily large). When C < 0, the presence
of the solid plate only affects the flow within a (dimensionless) distance from the plate
which is of order L̄c − z̄m where dŪ/dz̄(z̄ = z̄m) = 0. (b) L̄c − z̄m against L̄c for different
initial velocities Ū0. Since varying k for a given C only translates the curve along the
z̄-axis in (5.4), L̄c − z̄m does not depend on k. Hence, all the curves in (b) corresponding
to different values of Ū0 can be deduced from each other by simple translation along the
L̄c-axis.

which ensures that the flow would converge asymptotically to a free fall with constant
acceleration g for a curtain of infinite length. This boundary condition corresponds to
C= 0 in solution (5.4) (figure 17a). It is the case discussed by Clarke (1966, 1968).
In curtain coating, note that the liquid falls onto a horizontal solid surface moving
horizontally at constant speed, which breaks the symmetry of the problem. However,
we can reasonably assume that the flow far from the impingement zone is also not
influenced by this boundary condition.

Analytical solutions Ū(z̄) are shown in figure 18(a) for C= 0 and initial velocities
Ū0 ranging between 0 and 2. The curves are similar. In fact, they all rescale on a
unique master curve after translation along the z̄ axis. Indeed, let Mv (‘M’ for ‘Master
curve’) be the particular solution corresponding to Ū0 = 0. We have

Mv(z̄)= 2−1/3

[(
Ai′(Z)
Ai(Z)

)2

− Z

]−1

, Z = 2−1/3(z̄+ k0), (5.7)

where Ai(2−1/3k0)= 0 which gives k0 ≈−2.94583. Of course, achieving a curtain of
zero initial velocity with infinite initial thickness is not physically possible. Yet, we
can easily demonstrate that any physical solution with initial velocity Ū0 > 0 writes

Ū(z̄)=Mv(z̄+M−1
v (Ū0)), (5.8)
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FIGURE 18. (Colour online) (a) Dimensionless velocity field Ū(z̄) for an infinitely long
curtain made of a Newtonian liquid ((5.4) for C=0), starting from various initial velocities
Ū0 ranging between 0 and 2. All the curves for Ū0 > 0 collapse on the master curve Mv

corresponding to Ū0 = 0 after translation of each curve along the z̄ axis by a distance
M−1
v (Ū0) (5.8). (b) Confirmation with the experimental velocity field of the pure glycerin

curtain of figure 8 where Ū0 = 0.14. The master curve Mv is characterised by an initial
(sub-gravitational) viscous regime and an asymptotic (free-fall) inertial regime (5.9).

where M−1
v is the functional inverse of Mv. Indeed, since z̄ does not appear explicitly

in (5.3), if Mv is a particular solution, then z̄ 7→ Mv(z̄ + const.) is also a solution.
Since expression (5.8) is the only one satisfying both the upstream (Ū(z̄ = 0) = Ū0)
and downstream (ŪŪ′→ 1) boundary conditions, it is the only solution. Hence, any
solution Ū(z̄) with initial velocity Ū0 > 0 will collapse on the master curve Mv(z̄)
after translation along the z̄ axis by a distance M−1

v (Ū0) on the right. For the glycerin
curtain in figure 8, we have Ū0 = 0.14 and M−1

v (Ū0) = 0.55. Therefore, shifting the
dimensionless profile Ū(z̄) by a distance 0.55 on the right makes the experimental
data collapse on the master curve, as shown in figure 18(b).

The master curve is characterised by two regimes:

Mv(z̄)=

{
z̄2/2 z̄� 1: viscous regime,√

2(z̄− sv,0) z̄� 1: inertial regime,
(5.9)

where sv,0≈ 2.8. The initial viscous regime (z̄� 1) corresponds to a balance between
gravity and viscous forces where inertia is negligible in (1.1). As the liquid velocity
increases, we enter into an intermediate inertio-viscous regime where none of the
terms of (1.1) can be neglected. Finally, inertia dominates over viscous forces for z̄�1
and the local acceleration reaches the asymptotic free-fall value. The exponent and
prefactor of the viscous regime can be found by injecting Ū = Kz̄α in (5.3) where
inertia is neglected. We find that α = 2 and K = 1/2 is the only possible solution.

For real curtains with non-zero initial velocity U0, according to (5.8) and (5.9),
the viscous regime only exists if U0 is much smaller than Uv, i.e. Ū0 � 1. This is
illustrated in figure 19(a,b) where we plot the local extension rate Ū′(z̄) and the local
acceleration ŪŪ′(z̄) for C= 0 and initial velocities Ū0 ranging between 0 and 10. For
low values of Ū0, Ū′ first increases (viscous regime) before finally decreasing (inertial
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FIGURE 19. (Colour online) Dimensionless extension rate Ū′(z̄) (a) and acceleration
ŪŪ′(z̄) (b) for an infinitely long curtain made of a Newtonian liquid ((5.4) for C = 0),
starting from various initial velocities Ū0 ranging between 0 and 10. The master curve Mv

has an inflection point at z̄≈ 1.37, where the elongation rate reaches a maximum value
M′v(1.37) ≈ 0.616, and reaches the asymptotic free-fall regime at z̄ = Fv,0 ≈ 7.56 since
MvM′v(Fv,0)= 0.95, where 0.95 is an arbitrary value close to 1.

regime). However, as Ū0 increases, Ū′ becomes a monotonous decreasing function.
Equivalently, the acceleration at the slot exit ŪŪ′(0) goes from 0 for Ū0 = 0 to 1
for Ū0 � 1, in which case inertia dominates over viscous forces even close to the
slot. In practice, we can assume that the flow of a Newtonian curtain is very well
approximated by a free fall Ū2

= Ū2
0 + 2z̄ if Ū0 > 10. Physically, it can be explained

by considering Ū0 as a Reynolds number based on zv (5.5).
In the case of a negligible initial velocity U0 � Uv, according to (5.8) and (5.9),

the viscous regime of the flow (z� zv) writes

Ū(z̄)=
1
2

(
z̄+
√

2Ū0

)2

. (5.10)

This regime has not received much attention in the literature since achieving such
a flow experimentally is quite difficult. Indeed, zv has to be of the order of a few
centimetres, which implies using a liquid of dynamic viscosity η> 101 Pa s. Besides,
in addition to the difficulty of achieving a large enough flow rate to maintain a
continuous curtain, one must use a die of large width l in order to avoid the edge
effects due to the presence of the vertical guides (§ 2.4). Finally, the curtain length
Lc has to be larger than zv to observe the universal behaviour which is not affected
by the downstream boundary condition.

Regardless of the value of the initial velocity, in the inertial regime, again using
(5.8) and (5.9), the dimensionless velocity field writes

Ū(z̄)=
√

Ū2
0 + 2(z̄− sv), (5.11)

where sv = sv,0 + Ū2
0/2 − M−1

v (Ū0). In his early experiments, Brown (1961) found
sv = 2. For negligible initial velocities U0 � Uv, this regime is observed for z� zv.
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For large initial velocities U0�Uv, it is observed immediately after the slot exit. In
fact, since sv goes to 0 for U0�Uv, we indeed recover the free-fall expression.

We can now derive an expression of the length z∗v of the sub-gravitational part of
the curtain introduced in § 5.1. Let us define this length as U dU/dz(z= z∗v)= 0.95g
where 0.95 is an arbitrary value close to 1. For Ū0= 0, let Fv,0 be such that MvM′v(z̄=
Fv,0)=0.95. We obtain Fv,0≈7.56 (figure 19b). Therefore, according to (5.8), we have

z∗v = Fvzv, Fv = Fv,0 −M−1
v (Ū0), (5.12a,b)

where the prefactor Fv is a decreasing function of the initial velocity. This result
holds if Fv > 0, i.e. if Ū0 6 Mv(Fv,0) ≈ 3.23. For numerical applications, note that
Fv ≈ 2.34 (3.23− Ū0) with an error less than 0.65. This result had not been derived
in the literature so far since the master curve had not been explicitly identified.

5.3. General force balance equation
As will be presented in § 5.4, many aspects of the Newtonian curtains theory presented
in the previous section are analogous to the description of viscoelastic curtains. Hence,
in order to find the appropriate length and velocity scales of viscoelastic curtains,
let us first generalise the Newtonian force balance equation (1.1) to any continuous
material.

A slice of curtain between altitudes z and z+dz travels a distance dz=U dt between
times t and t+ dt. Its momentum per unit curtain width is 2hρU dz. We consider the
gravitational force 2hρg dz and the contact forces 2h(z)πzz(z) and 2h(z+ dz)πzz(z+ dz)
acting respectively on the upper and lower side, where π is the mean stress tensor.
Using the flow rate conservation

2hU = q= 2aUs, (5.13)

along with dz=U dt, we obtain

U
dU
dz
= g+

U
ρq

d(2hπzz)

dz
. (5.14)

This equation can be derived rigorously from a long-wave approximation of the
Cauchy equation and is valid for slender curtain, i.e. dh/dz� 1. Note that the mean
quantities can be written as

U =
1
h

∫ h

0
u dy and πzz =

1
h

∫ h

0
π∗zz dy, (5.15a,b)

where u(y, z) and π∗zz(y, z) are respectively the vertical component of the local
velocity field and the z-normal component of the local stress tensor π∗. Let us write
π∗ij = −P∗δij + σ

∗

ij for the local tensor and πij = −Pδij + σij for the mean tensor. For
example, in the Newtonian case, we have σ ∗zz = 2η∂u/∂z and σ ∗yy = 2η∂v/∂y where v
is the transverse component of the local velocity field, which gives σzz = 2η dU/dz
and σyy = −2η dU/dz for an incompressible flow. Neglecting surface tension and
using the slender curtain approximation, we can assume that πyy =−Pa where Pa is
the atmospheric pressure (Brown 1961). This leads to P(z) = Pa + σyy and therefore
πzz=−Pa+ (σzz− σyy). Normalising pressure such that Pa= 0, and defining the mean
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normal stress difference ∆≡ σzz − σyy, we can finally write the general force balance
equation

U
dU
dz
= g+

U
ρ

d
dz

(
∆

U

)
. (5.16)

This equation is valid for any continuous material. In the case of a Newtonian liquid,
we have ∆ = 4η dU/dz and we recover (1.1). In the case of a viscoelastic liquid,
a more general constitutive equation must be used to close the system. Note that
(5.16) can reasonably be used for the curtains presented in this paper since the local
slenderness ratio |dh/dz| is less than one. The data of figure 15 are a typical example
where dh/dz goes from +0.1 at z= 0 to a minimum value of about −0.06 after die
swell, and is of order −10−4 at z= 20 cm from the slot.

We know from the experimental results of § 4.5, that the extensional relaxation
time τfil of the solution is of primary importance for the description of the curtain
flow. Indeed, when considering any constitutive model for the transient evolution
of the stress components, the relaxation time emerges as a natural time scale. For
example, for a purely planar extensional flow of extension rate ε̇, the single mode
Oldroyd-B model gives τU dσp,zz/dz+σp,zz(1− 2τ ε̇)= 2ηpε̇ where σp,zz is the z-normal
component of the polymeric part of the stress tensor. However, we can use (5.16)
to find the appropriate scalings of viscoelastic curtain flows without specifying any
particular form of the constitutive equation. First, we write (5.16) in a Lagrangian
form where we introduce time

t=
∫ z

0
dz∗/U(z∗). (5.17)

We obtain
dU
dt
= g+

1
ρ

d
dt

(
∆

U

)
, (5.18)

which can be integrated into

U −U1 = g(t− t1)+
1
ρ

(
∆

U
−
∆1

U1

)
, (5.19)

where subscript 1 refers to any altitude z1. Introducing τfil which is the natural time
scale of the polymers, we obtain the dimensionless force balance equation

U −U1

gτfil
=

t− t1

τfil
+

∆

ρgUτfil
−

∆1

ρgU1τfil
. (5.20)

This equation suggests that the natural velocity scale of the flow is gτfil. Multiplying
by the natural time scale τfil, we obtain the natural length scale of the flow gτ 2

fil. We
introduce the following notations

Ue = gτfil, ze = gτ 2
fil =U2

e/g. (5.21a,b)

The characteristic length scale ze can also be derived by simple physical arguments.
If a polymer molecule follows a free-fall trajectory U ∝

√
2gz, it experiences a

spatially decreasing strain-rate field ε̇ = dU/dz ∝
√

g/2z. It is known that polymer
chains go through the coil–stretch transition when they are stretched faster that their
natural relaxation rate, i.e. when τfil ε̇ is larger than 1/2 if taking τfil as the relevant
polymer relaxation time (De Gennes 1974). Therefore, when considering the free-fall
expression of ε̇(z), the polymer chains are expected to exhibit large extensional
viscosities as long as z< ze = gτ 2

fil (without prefactor).
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5.4. A master curve for viscoelastic curtains
By analogy with Newtonian curtains, we can now use the scaling (5.21) to identify
the master curve of the viscoelastic curtain flow. First, we plot U(z)/Ue as a function
of (z− z1)/ze where z1 ≈ 2.5 mm (not shown). We obtain similar curves which, like
in figure 18(a), seem to rescale on a unique master curve after translation along the
horizontal axis. Indeed, when shifting each curve by a certain dimensionless distance
zshift, we obtain a good collapse of the velocity profiles with less than 20 % error, as
shown in figure 20(a) in log–log scale. Our experimental data cover seven decades in
z/ze. We introduce dimensionless variables

ẑ= z/ze, Û =U/Ue. (5.22a,b)

The master curve Me(ẑ) is characterised by two regimes,

Me(ẑ)=

{
Kẑα ẑ� 1: elastic regime,√

2 (ẑ− se,0) ẑ� 1: inertial regime,
(5.23)

where K = 1.3± 0.2 and α= 0.92± 0.02. Note that we only consider in figure 20(a)
the experimental data which are presumably not influenced by the downstream
boundary condition. This includes the unstable HPAM curtains mentioned in § 4.2,
showing that the instability does not affect the average velocity field. This result
also confirms that the shear rheology parameters such as η0, ηp and n play no major
role in the description of the curtain flow, as well as the flexibility parameter b. We
measure that M2

e reaches an oblique asymptote of equation M2
e = 2(ẑ − se,0) in the

free-fall regime where se,0 = 6± 2.
The value of zshift, which is specific to each experimental velocity curve, is presented

in figure 20(b) as a function of the dimensionless initial velocity Û1 =U1/Ue where
U1 = U(z1). We measure that zshift ≈ (Û1/K)1/α for low initial velocities Û1� 1 and
that zshift≈ Û2

1/2 for large initial velocities Û1�1, which suggests that zshift=M−1
e (Û1).

Finally, we can write that

Û(ẑ)=Me(ẑ− ẑ1 +M−1
e (Û1)), (5.24)

which is completely analogous to the Newtonian curtain flow since (5.8) also gives
Ū(z̄) = Mv(z̄ − z̄1 + M−1

v (Ū1)) for any altitude z1 > 0. However, since the die swell
flow for 0< z< z1 is not captured by (5.23), equation (5.24) is only valid for z > z1.
In particular, Û(ẑ) 6=Me(ẑ+M−1

e (Û0)) where Û0 =U0/Ue.
According to (5.23) and (5.24), the elastic regime only exists if U1 is much smaller

than Ue, i.e. Û1� 1. In that case, according to these equations, the elastic regime of
the flow (z� ze) writes

Û(ẑ)=K(ẑ− ẑ1 + (Û1/K)1/α)α, (5.25)

and corresponds to negligible inertia in the force balance equation (5.16). Note that
only two curtains exhibit such a fully developed elastic regime: the 0.2 and 0.11 wt%
PEO solutions with 40 wt% PEG solvent (table 4). For these solutions, the curtain
flow is the same within the first 30 cm of the fall for both Lc = 1.5 m and 2 m
which suggests that the flow has become independent of the downstream boundary
condition (figure 11a). However, ze = gτ 2

fil is respectively ze = 12 m and ze = 4.5 m.
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FIGURE 20. (Colour online) (a) Master curve of viscoelastic curtains. Dimensionless
velocity field U(z)/gτfil against (z− z1)/gτ 2

fil + zshift in log–log scale, where z1 ≈ 2.5 mm,
and where each curve is translated by a distance zshift in order to rescale all the data
on a single curve. The master curve Me is characterised by an initial (sub-gravitational)
elastic regime and an asymptotic (free-fall) inertial regime (5.23). (b) When plotting zshift
against U1/gτfil, we find that zshift = M−1

e (U1/gτfil). We only consider the curtain flows
which are presumably not influenced by the downstream boundary condition. For the PEO
solutions with 40 wt% PEG solvent of table 4, we only take the longest curtains, for
example Lc = 200 cm for the data of figure 11(a). Besides, for the PEO and HPAM
solutions of tables 2 and 3 (top) which correspond to curtains of length Lc = 30 cm, we
show the velocity profile for z< 20 cm only for the solutions with extensional relaxation
times τfil 6 0.2 s since the experiments reported in § 4.3 suggest that the effect of the
downstream boundary condition is out of frame.

Hence, we are not in the ideal limit Lc � ze. Therefore, it is not excluded that the
data corresponding to the elastic regime in figure 20(a) are still a bit sensitive to the
downstream boundary condition. If so, a curtain of length Lc� ze would potentially
exhibit an elastic regime with a value of α closer to 1, in which case the flow would
simply write U=U1+K(z− z1)/τfil. Of course, achieving such curtains is very difficult
since they would probably break before reaching the free-fall regime due to the shear
instability mentioned in § 4.3.

Note that the transition to plane stagnation flow discussed in § 4.3 for viscoelastic
curtains is analogous to the Newtonian case. In both figures 11 and 17, the liquid
velocity first increases, reaches a maximum value at some distance zm from the slot
and finally decreases down to U(Lc)= 0. Provided that the analogy remains true, we
speculate that the presence of the plate affects the viscoelastic curtain flow within a
distance from the plate which is of order ze.

Regardless of the value of the initial velocity, in the inertial regime, again using
(5.23) and (5.24), the dimensionless velocity field writes

Û(ẑ)=
√

Û2
1 + 2(ẑ− ẑ1 − se), (5.26)

where se = se,0 + Û2
1/2 − M−1

e (Û1). In the case of a negligible initial velocity
U1� Ue, this regime is reached for z� ze. On the other hand, for initial velocities
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1

1.2 ẑa
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FIGURE 21. (Colour online) (a) Dimensionless extension rate τfil dU/dz(z) and
(b) dimensionless acceleration U dU/dz(z)/g versus (z − z1)/ze + zshift for the curtains of
figure 20. The master curve Me reaches the asymptotic free-fall regime at z/ze about
Fe,0 = 12± 5 since MeM′e(Fe,0)= 0.95, where 0.95 is an arbitrary value close to 1.

U1� Ue, inertia dominates over elastic forces even close to the slot and the flow is
well approximated by a free fall U2

=U2
1 + 2g(z− z1) since se goes to zero.

In figures 21(a) and 21(b), we present respectively the dimensionless extension rate
ε̇τfil where ε̇ = dU/dz and the dimensionless acceleration [U dU/dz]/g as a function
of ẑ − ẑ1 + zshift. The experimental data collapse on master curves which correspond
to M′e and MeM′e respectively, where ′ denotes spatial derivation d/dẑ. According to
figure 21(a), the extension rate is of the order of 1/τfil in the elastic regime z �
ze. More precisely, ε̇τfil weakly decreases and is initially larger than the coil–stretch
transition value 1/2. This result is reminiscent of the filament thinning experiment
described in § 3.2 for which ε̇τfil = 2/3 in the elastic regime. Physically, polymer
chains are therefore expected to unravel in the elastic regime since τfilε̇ = O(1), and
to return progressively to a coil state in the inertial regime where τfilε̇� 1.

We can now give a physical argument for the absence of finite extensibility effects
in the curtain flow. First we need to estimate the total Hencky strain εe accumulated
by the polymer chains in the elastic regime. We use the following high estimation

εe − ε1 ≈

∫ t(ze)

t(z1)

ε̇ dt=
∫ ze

z1

dU/U = ln[U(ze)/U1]. (5.27)

We assume that the Hencky strain after swelling ε1 is less than εe since polymer
chains are expected to unravel more in the curtain extensional flow than in the slot
shear flow. Using (5.25) and taking α= 1 for simplicity, i.e. U(z)≈U1+K(z− z1)/τfil,
we find U(ze)≈U1 + KUe assuming z1� ze. Finally, we get εe ≈ ln(1+ K/Û1). This
value has to be compared to the critical Hencky strain ε∗ above which the polymer
deformation saturates to its maximum value. It can be estimated from CaBER data
shown in figure 6. We get ε∗ ≈ 6 for PEO and salted HPAM solutions and ε∗ ≈ 4
for unsalted HPAM solutions. The condition for no finite extensibility effect writes
εe� ε∗, i.e. polymer chains must not reach their maximum length during the elastic
regime. After injecting the estimation of εe, the condition becomes Û1�K/(exp(ε∗)−1)
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which is 2 × 10−3 for PEO and salted HPAM solutions and 2 × 10−2 for unsalted
HPAM solutions. This condition is fulfilled in most experiments (see values of Û1 in
figure 20b) and the finite extensibility parameter b does therefore not play a major
role.

We now propose a simple model for the elastic regime exponent α. Since polymer
chains are highly stretched in the elastic regime, one can expect that the extensional
viscosity scales as ηe ∝ ε̇

m with m � 1, assuming that we are at the vicinity of
the coil–stretch transition, as predicted by the FENE models (Herrchen & Öttinger
1997; Larson 1999). Taking an approach similar to the Newtonian case, we inject
U ∝ zα in the force balance equation (5.16) where we neglect inertia and take
∆= ηeε̇∝ (dU/dz)m+1

∝ z(α−1)(m+1). We get that α= 1+ 1/(m+ 1) is the only possible
solution, which approaches α = 1 for m� 1. This is close to the experimental value
α= 0.92. However, since the transient extensional viscosity ηe(ε̇, ε), which is actually
a function of both the local extension rate and the total strain accumulated by the
polymer molecules, has no reason to reach the steady value anywhere in the elastic
regime (i.e. where t� τfil, which is equivalent to z� ze = gτ 2

fil), a better treatment of
the problem lies in the use of a full constitutive equation. This is left for a future
work.

Finally, we can derive an expression of the length z∗e of the sub-gravitational part of
the curtain introduced in § 5.1. Let us define this length as U dU/dz(z= z∗e)= 0.95g
where 0.95 is an arbitrary value close to 1 and let Fe,0 be such that MeM′e(ẑ=Fe,0)=

0.95. We obtain Fe,0= 12± 5 (figure 21b). Therefore, according to (5.24), we have

z∗e = Feze, Fe = Fe,0 + ẑ1 −M−1
e (Û1), (5.28a,b)

where the prefactor Fe is a decreasing function of the initial velocity.

5.5. Inelastic viscous curtains versus low viscosity elastic curtains
In the previous sections, we have characterised the curtain flow of both Newtonian
and viscoelastic liquids. In particular, the lengths of the sub-gravitational parts of the
curtains are given respectively by zv and ze (5.2) and (5.21) with prefactors which
are decreasing functions of the initial velocity. For a given viscoelastic liquid with
zero-shear viscosity η0, density ρ and extensional relaxation time τfil, we define a
dimensionless number

El=
(

ze

zv

)1/2

=
τfilg2/3

(4η0/ρ)1/3
(5.29)

which measures the relative importance of elastic to viscous effects in the curtain
flow. The general definition of the elasticity number is El=Wi/Re= τfilη/(ρL2) where
Wi= τfilU/L and Re= ρUL/η are respectively the Weissenberg and Reynolds numbers
and U and L are characteristic velocity and length scales of the flow. Hence, (ze/zv)1/2
is an elasticity number based on the viscous length L= zv. Values of El are reported in
tables 2–4. As expected, it is larger than one since ze� zv in our experiments, except
for solutions with low polymer concentrations exhibiting a free fall, for which both ze

and zv are less than a few millimetres. Therefore, elasticity dominates over viscosity
in our experiments. However, when adding polymer molecules to a viscous Newtonian
solvent with a large value of zv, we can expect a transition from the viscous regime
described in § 5.2 with exponent 2 (5.10) to the elastic regime described in § 5.4 with
exponent α = 0.92 (5.25) when El becomes larger than one.
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6. Elastic stress at the slot exit
In this section, we address the question of the origin of the elastic stress in the

curtain. In the previous section, we have assumed that it comes mostly from the
extensional stretching of polymer molecules in the curtain, especially in the elastic
regime where τfilε̇ =O(1). However, one other possible origin lies is the initial shear
deformation (or ‘pre-shear’) of polymer molecules in the slot, which may lead to
unrelaxed stress on top of the curtain. We start this discussion by investigating the
die swell ratio.

6.1. The die swell ratio
The liquid swells at the slot exit due to the recovery of the elastic strain imparted
into the die. In the theory of Tanner (1970, 2005), and Huang & White (1979), the
swelling ratio is

ξ =
Us

U1
=

[
1+

3−m
m+ 1

(
N1

2σ

)2

w

]1/4

, (6.1)

where N1= σ
∗

zz− σ
∗

yy and σ = σ ∗yz are respectively the normal stress difference and the
shear stress, m is such that N1 ∝ σ

m, and subscript w indicates that N1 and σ are to
be taken at the wall of the slot, i.e. at y= a. Note that σ ∗ is the local stress tensor.
This formula, which was developed for melts, has also been used in the context of
polymer solutions (Allain, Cloitre & Perrot 1997). Let us compare the experimental
data presented in figure 15 for the PEO solution of table 5 with Tanner’s prediction
(6.1). Since the wall shear rate γ̇w ∼ Us/a is larger than the shear rate γ̇c = 3 s−1 at
which shear thinning starts, the Carreau law (3.1) can be reduced to an Ostwald power
law σ =K0γ̇

n with K0 = η0/γ̇
n−1
c and the wall shear rate can be simplified to

γ̇w =
2n+ 1

n
Us

a
, (6.2)

which ranges between 290 and 900 s−1. We can therefore use the parameters of
table 5 since shear rheology measurements are performed for shear rates up to
500 s−1 for this liquid, which is close to γ̇w.

The experimental die swell ratio ξ is shown in figure 22 along with the predictions
of (6.1) and (6.2). The theory clearly overpredicts the die swell ratio. This is not
surprising since the unconstrained recovery theory of Tanner is only valid if the
extruded sheet is load free, i.e. in the absence of tensile stress. A correction has
been proposed in the context of fibre spinning (White & Roman 1976) (which is
equivalent to film casting) but not in the context of free jets or curtains subjected to
gravity only. The die swell ratio is generally assumed to be only slightly modified by
gravity for free jets (Richardson 1970). However, in the planar case, Huang & White
(1979) report significant discrepancies between Tanner’s theory and their experimental
results when extruding melts from slit dies into ambient air, like in figure 22. They
report that Tanner’s law was recovered when extruding into a bath of silicone oil
with the same density, in which case the curtain no longer necks down after swelling
due to gravity (i.e. h and U are constant). In the latter case, according to the force
balance equation (5.16) without inertia, ∆ must therefore be constant. In the theory of
Tanner, it is assumed that most fluid particles ‘rapidly’ switch from the state of fully
developed flow in the slot to a state of zero stress measured relative to atmospheric
pressure as datum. Here, ‘rapidly’ means that the time needed to clear the exit zone
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FIGURE 22. (Colour online) Comparison between the experimental die swell ratio ξ =
Us/U1 for the data of figure 15 and the values predicted by Tanner’s unconstrained
recovery theory (6.1) where we use (N1)w = N1(γ̇w) = Ψ γ̇

α1
w and (σ )w = σ(γ̇w) = K0γ̇

n
w

where γ̇w is the wall shear rate (6.2). Since N1 ∝ σ
m, we use m= α1/n.

is short compared to the polymer relaxation time, i.e. Usτfil/a� 1 which is the case
in figure 22. In other words, the mean normal stress difference ∆ defined in § 5.3 by

∆=
1
h

∫ h

0
(σ ∗zz − σ

∗

yy) dy, (6.3)

switches from a value ∆s inside the slot to a value ∆1 = ∆(z1) after swelling
(figure 16) which is ∆1 = 0 in the absence of gravity. The discrepancy in figure 22
suggests that ∆1 6= 0 in the presence of an axial tension due to gravity.

These results suggest that the elastic stress imparted into the die may have an effect
on the curtain flow downstream. In order to quantify this effect, we now compare the
value of the mean normal stress difference ∆s inside the die and ∆1 after swelling.

6.2. Mean normal stress difference before and after swelling
We find ∆s can be estimated analytically. We consider a shear-thinning fluid following
an Ostwald power law σ =K0γ̇

n for simplicity. Assuming a fully developed Poiseuille
flow, the local velocity inside the slot is

u(y)=Us
2n+ 1
n+ 1

(1− (|y|/a)1+1/n). (6.4)

Using N1 =Ψ γ̇
α1 and γ̇ = du/dy, we find

∆s =
1
a

∫ a

0
N1 dy=

n
α1 + n

(
2n+ 1

n

)α1

Ψ

(
Us

a

)α1

. (6.5)

Now we show how to obtain the value of the mean normal stress difference ∆1
after swelling based on the Lagrangian force balance equation derived in § 5.3. We can
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reasonably assume that ∆ becomes negligible in the asymptotic free-fall regime where
the extension rate goes to 0 (figure 21a). Hence, according to (5.20) (where we choose
to start from z1 ≈ 2.5 mm), the curtain velocity U reaches an oblique asymptote of
equation

(U −U1)/gτfil = (t− t1)/τfil − Ae, (6.6)

where
Ae =∆1/ρgU1τfil =∆1/ρU1Ue = ∆̂1/Û1, (6.7)

where ∆̂1=∆1/∆e and ∆e= ρgze= ρU2
e = ρ(gτfil)

2 which is the natural scaling for ∆
in the force balance equation (5.16) for a low viscosity elastic liquid. To estimate Ae,
we plot (U−U1)/gτfil as a function of (t− t1)/τfil, as shown in figure 23(a) for some
liquids with extensional relaxation times τfil ranging between 0.008 s and 0.68 s. Since
we could not always observe the asymptotic free-fall regime, we use the master curve
Me identified in figure 20(a) to extend the experimental data and we fit the free-fall
regime by an oblique asymptote to obtain the value of Ae (figure 23a). In order to
validate this method, we performed an additional experiment where a long curtain is
observed at various vertical positions to obtain a more complete velocity field U(z)
for τfil = 0.1 s. Unfortunately, the curtain spontaneously breaks at z ≈ 100 cm due
to the shear instability mentioned in § 4.3 and we can still not observe the free-fall
regime since z∗e ≈ 120 cm. However, the flow for z 6 100 cm fits perfectly onto the
master curve Me, and the data presented in figure 23(a) are comparable to the data
corresponding to almost the same liquid observed for z 6 20 cm, which validates the
method presented here to estimate Ae.

Values of Ae are presented in figure 23(b) for various solutions as a function of the
dimensionless initial velocity Û1=U1/Ue. For Û1 6 1, the experimental data are well
captured by

Ae ≈ 1.4Û−0.2
1 , (6.8)

which, according to (6.7), gives finally

∆1 ≈ 1.4ρg1.2U0.8
1 τ

1.2
fil . (6.9)

A different behaviour is observed for Û1 > 1. The slope switches from −0.2 to
approximately −2.

As we now show, this result is analogous to Newtonian curtains. Since die swell
can be neglected (Tanner 2000), the mean normal stress difference instantaneously
switches from ∆s = 0 inside the slot to a value ∆0 =∆(z= 0)= 4η dU/dz(z= 0) at
the slot exit. In dimensionless form, we obtain ∆̄0 = Ū′(z̄= 0) where ∆̄=∆/∆v and
∆v=ρgzv=ρU2

v =ρ(4ηg/ρ)2/3 which is the natural scaling for ∆ in the force balance
equation (5.16) for a viscous Newtonian liquid. Equation (5.10) gives ∆̄0 = (2Ū0)

1/2

for Ū0� 1, i.e. ∆0= 2
√

2ρ(gU0η/ρ)
0.5. We can also define Av =∆0/ρU0Uv = ∆̄0/Ū0,

and we obtain Av =
√

2Ū−1/2
0 for Ū0 � 1 where the exponent −0.5 is larger (in

absolute value) than the exponent −0.2 found in the viscoelastic case. Note that for
Ū0� 1, in which case the curtain flow is a free fall even close to the slot, we have
∆̄0 = 1/Ū0 and Av = Ū−2

0 , which is analogous to the Û1 > 1 part of the curve of
figure 23(b).

In order to get more information about the physical meaning of ∆1, we can use the
integrated force balance equation (5.19) which we write here in its Eulerian form for
more clarity

2h1∆1 − 2h∆= ρq(U1 −U)+ 2ρg
∫ z

z1

h(z∗) dz∗, (6.10)
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FIGURE 23. (Colour online) (a) (U − U1)/gτfil versus (t − t1)/τfil, where subscript 1
refers to the altitude z1 ≈ 2.5 mm and t is the Lagrangian time (5.17), for five liquids.
Liquid 1: degraded (td = 100 min) 0.02 wt% PEO solution with 20 wt% PEG solvent
(table 2), liquid 2: degraded (td = 60 min) 0.1 wt% PEO solution with 20 wt% PEG
solvent (table 2), liquid 3: degraded (td = 100 min) 0.4 wt% PEO solution with 20 wt%
PEG solvent (table 2), liquid 4: 0.11 wt% PEO solution with 40 wt% PEG solvent
(table 4). The curtain length Lc is 30 cm for liquids 1, 2 and 3 and is 200 cm for
liquid 4. Liquid 5: liquid close to liquid 3 for Lc = 100 cm and observed at various
vertical positions to obtain a more complete velocity field U(z). The experimental data
are extended with the master curve Me (figure 20) and the free-fall regime is fitted by
(6.6). (b) Values of Ae versus U1/Ue =U1/gτfil for some of the liquids of figure 20.

where 2h1 = 2h(z1)= q/U1. In the elastic regime z� ze, the inertia term is negligible
and the weight of the curtain between z1 and z is supported by the difference between
the contact forces 2h1∆1 and 2h∆ acting respectively on the upper and lower side.
This shows that ∆1 is the mean normal stress difference which is necessary to bear
the weight of the sub-gravitational part of the curtain. We can derive the previous
results by neglecting inertia and returning to the Lagrangian description. We obtain in
the elastic regime t� τfil

∆1/U1 −∆/U ≈ ρg(t− t1). (6.11)

Assuming that ∆ becomes negligible at the transition to free fall (t ≈ τfil) and that
t1� τfil, we find that ∆1 ∝ ρgU1τfil with a prefactor Ae which must be a decreasing
function of the dimensionless initial velocity Û1 since the length of the sub-
gravitational part of the curtain is z∗e = Feze where Fe is a decreasing function of
Û1. In particular, as expected from the discussion about Tanner’s theory, ∆1 = 0 in
the absence of gravity.

For the experiments presented so far, using (6.5) and (6.7), we obtain

∆1

∆s
=

[
n

α1 + n

(
2n+ 1

n

)α1
]−1 AeρgτfilU1

Ψ (Us/a)α1
. (6.12)

Estimating Ae by the method presented in this section, we find ∆1/∆s =O(1). More
precisely, it decreases from 2.5 to 0.5 for the liquid of table 5 used in figures 15
and 22 when increasing the flow rate, and it is equal to 0.6 ± 0.1 for all PEO
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solutions with 40 wt% PEG solvent of table 4. In the latter case, the elastic stress
rapidly decreases when leaving the slot as the polymer chains undergo a rapid strain
ε = ln(U1/Us)=−ln(ξ) < 0 during swelling. However, in the presence of gravity, the
sheet is not load free and the swelling ratio is less than expected since some elastic
stress ∆1 6= 0 has to bear the weight of the sub-gravitational part of the curtain. In
other words, the polymer chains cannot recover their equilibrium shape after swelling.

A question which remains unanswered is the link between ∆1 and ∆s. Since the
experiments presented so far indicate that ∆1/∆s =O(1), one might think that ∆1 is
intrinsically linked to ∆s. If so, the origin of the polymeric stress would lie in the
shear deformation of the polymer chains in the slot, in which case the length z∗e of
the sub-gravitational regime would be a function of ∆s. In particular, a curtain of
vanishing slot velocity Us would exhibit no sub-gravitational elastic regime (although
U1� gτfil) since ∆s, and therefore ∆1, would be arbitrarily small. However the fact
that we find ∆1/∆s=O(1) might also be a coincidence. To answer this question, we
need to compare the flow of two curtains made of the same liquid but with radically
different values of ∆s. According to (6.5) and (6.9), changing the slot thickness
2a while keeping the same initial velocity U1 is a good solution: if ∆1 does not
change while ∆s changes, it means that the origin of the polymeric stress lies in the
extensional deformation of polymer molecules once in the free-surface curtain. If so,
the description of the flow provided in § 5.4 is universal and the master curve Me

does not depend on the pre-shear history upstream of the curtain.

6.3. The influence of the die geometry
In order to check if ∆1 is intrinsically linked to ∆s or not, i.e. whether or not the
curtain flow is affected by the history of polymer deformations upstream of the curtain,
we compare the flow of two curtains of same length made of the same liquid (table 5)
and extruded from different dies. The first curtain is extruded from the slot die of
figure 1(b) where the slot thickness is 2a= 1 mm. The flow rate is q= 1.4 cm2 s−1,
the mean velocity is Us = q/2a = 0.14 m s−1 in the slot and U1 = 0.085 m s−1 at
z1 = 2.5 mm from the slot exit, after an initial swelling of ratio ξ =Us/U1 = 1.6> 1.
The second curtain is formed using a second ‘die’ presented in figure 24(a) where
the liquid flows freely along an inclined plane before forming a vertical curtain when
falling off the edge. Imposing a flow rate q?= 0.85 cm2 s−1 < q, we measure that the
thickness of the liquid layer flowing down the plane is 2a? = 2.5 mm > 2a, which
gives a mean velocity U?

s = q?/2a? = 0.034 m s−1 < Us. We measure that the mean
vertical velocity is U?

1 = 0.088 m s−1
≈ U1 at 3 mm from the edge of the plane.

Therefore, the thickness of the liquid rapidly decreases by a factor ξ ? = U?
s /U

?
1 =

0.39< 1 at the edge of the plane.
As presented in figure 24(b), the flows of these two curtains are slightly different.

The liquid velocity, which is initially comparable since U?
1 ≈ U1, increases a bit

faster when falling off the edge of the plane than when being extruded from the slot.
Therefore, the flow of the curtain falling of the inclined plane does not perfectly
collapse on the master curve Me identified in figure 20(a). Let us estimate ∆s and
∆1 for these two curtains.

We find ∆s≈ 690 Pa for the slot die. For the inclined plane, we estimate the mean
normal stress difference ∆?

s developed by the liquid when flowing down the plane
using (6.5) where a is replaced by 2a? since the flow is a semi-Poiseuille. We find
∆?

s ≈ 1.6 Pa which is much less than ∆s. Hence, this change in die geometry reduces
the elastic stress upstream of the curtain by a factor ∆?

s/∆s ≈ 2 × 10−3
� 1. Hence,
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FIGURE 24. (Colour online) (a) Sketch of a curtain formed when a liquid layer of
thickness 2a? falls off the edge of an inclined plane with mass flow Q. A grid of straws
is used to homogenise the flow in the x direction and the linear flow rate is q = Q/ρl
where l is the curtain width. Guides are used to avoid sheet retraction. (b) Using the
PEO solution of table 5, comparison of the squared velocity field U2(z) of the curtain
formed using the inclined plane and using the slot die of figure 1(b). Both curtains start
with comparable initial velocities U1 and share the same length Lc = 50 cm. The typical
shear rate is Us/a = 280 s−1 in the slot but is only U?

s /2a? = 14 s−1 along the inclined
plane, i.e. 20 times less.

the effect of ∆s on the curtain flow identified in figure 24(b) is actually very weak.
Indeed, despite a much different flow upstream of the curtain, the curtain flows are
quite comparable. Therefore, the mean normal stress difference ∆1 developed a few
millimetres below slot or below the edge of the plane respectively must be comparable
in both experiments. Using the method described in § 6.2, we find Ae≈ 3.4 for the slot
die and A?e ≈ 2.1 for the inclined plane. In the latter case, note that this estimation is
based on comparisons with other curtain flows from the slot die since the master curve
can not be used to extend the experimental data. We find respectively ∆1 ≈ 460 Pa
and ∆?

1 ≈ 300 Pa which are indeed comparable, i.e. ∆?
1/∆1 ≈ 0.6. For the slot die,

the polymeric stress decreases during swelling and ∆1/∆s≈ 0.7< 1. However, for the
inclined plane, the polymeric stress increases during the contraction at the edge of the
plane and ∆?

1/∆
?
s ≈ 180> 1. In fact, in both cases, the polymer molecules undergo a

rapid strain ε = ln(U1/Us) which is −0.50< 0 for the slot and which is 0.95> 0 for
the inclined plane. According to figure 6, such strains can indeed cause significant
modifications of the polymeric stress.

To summarise, the mean normal stress difference switches from a value ∆s inside
the die to a value ∆1 at the die exit, where ∆1 is of order ρgU1τfil independently
of the flow history inside the die, with a prefactor Ae which is a decreasing function
of the initial velocity. However, since the flow is slightly modified when changing
∆s, the prefactor also depends on the die geometry and is an increasing function of
∆s. The length z∗e of the sub-gravitational regime is of order gτ 2

fil with a prefactor Fe

which is a decreasing function of the initial velocity and which is also an increasing
function of ∆s. In simple words, polymeric stresses in the curtain are mostly due to
the extensional stretching of polymer molecules in the curtain (where τfilε̇ = 0(1) in
the elastic regime), with a small correction due to the ‘pre-shear’ in the die.
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t = 0 s t = 0.03 s t = 0.1 s

Ît = 15 ms
5 cm

Hole

x

y

Water
20 wt % PEG

(a) (b)

FIGURE 25. (Colour online) (a) Time evolution of a hole forming spontaneously in a
curtain of 20 wt% PEG solvent with flow rate q = 3.3 cm2 s−1 and length Lc = 30 cm.
The hole is advected by the flow (self-healing). (b) Image superposition.

7. Curtain stability

In this section, we investigate the influence of viscoelasticity on the stability of
the curtain in terms of spontaneous hole opening events. The unstable curtain flows
described in § 4.2 are not considered in this section.

7.1. Dynamics of hole opening
In figure 25(a,b), we show the time evolution of a hole forming spontaneously in a
Newtonian curtain of 20 wt% PEG solvent. Such a hole can be initiated by impurities
in the liquid such as bubbles which are inevitably generated in the hydraulic loop.
The hole in figure 25 is advected by the flow while growing in size and the liquid is
collected in a rim. According to Taylor (1959) and Culick (1960), if capillary forces
are only balanced by inertia, the local retraction speed of the hole in the reference
frame of the moving liquid is

V =
√
γ /ρh, (7.1)

where ρ and γ are the liquid density and surface tension and h(z) is the local
half-thickness of the curtain. In the case of a Newtonian liquid of dynamic viscosity
η, Savva & Bush (2009) showed that the retraction speed of the sheet when a hole
initiated in a motionless sheet of constant thickness goes from 0 to V in a time which
increases as the Ohnesorge number Oh= η/(4hργ )1/2 increases. Capillary forces are
initially balanced by viscous forces before inertia finally dominates. Based on similar
results, Sünderhauf, Raszillier & Durst (2002) concluded that increasing the liquid
viscosity stabilises the curtain since the dynamics of hole opening is slowed down
temporarily. Karim et al. (2018b) recently measured the retraction speed of the sheet
when a hole is initiated in curtains made of low viscosity PEO solutions. They report
that the ratio of the local retraction speed to the local Taylor–Culick velocity decreases
when the local Ohnesorge number increases for Oh ranging between 0.22 and 0.43.
This ratio was 0.95 for the solution with the highest extensional relaxation time
τfil= 0.16 s and the authors conclude that elastic stresses slow down the hole opening
process.

In the case where both viscous and elastic effects can be neglected, the part of the
liquid rim corresponding to the upper edge of the hole retracts at velocity V −U in
the reference frame of the laboratory, where V is calculated based on the local curtain
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FIGURE 26. (Colour online) (a) Different regimes observed when increasing the flow rate
from 0 to 6 cm2 s−1 for the degraded (td= 100 min) 0.1 wt% PEO solution with 20 wt%
PEG solvent (table 2). (b) Critical flow rate qc (above which any hole is advected by the
flow) and minimum flow rate qmin (required to maintain a continuous curtain for more
than 30 s), divided by qγ = (4aγ /ρ)1/2, against the extensional relaxation time τfil for the
five degraded (td = 100 min) PEO solutions with 20 wt% PEG solvent (table 2). qγ =
3.5 cm2 s−1 and curtain length is Lc = 30 cm.

thickness 2h(z) and where U(z) is the local velocity of the surrounding liquid. This
local competition can be written in terms of a Weber number

We=
(

U
V

)2

=
ρhU2

γ
=
ρqU
2γ

, (7.2)

which can be less than one close to the slot and become larger than one downstream.
Therefore, if a hole opens at an altitude where We> 1, i.e. where advection is faster
than the hole opening process, it will be carried away by the flow, as in figure 25. This
process is often referred to as self-healing. However, if a hole opens in the unstable
part of the curtain where We< 1, the upper edge of the hole propagates upwards and
stops when reaching the slot whereas the lower end propagates downwards, in which
case the curtain is finally split into two parts delimited by a rim which takes the form
of an arch. The latter scenario is not possible if the Weber number is larger than one
everywhere, i.e. if the initial velocity Us= q/2a at the slot exit is larger than the value
of V at the slot exit. Equivalently, the linear flow rate q has to be larger than a critical
value

qγ = (4aγ /ρ)1/2. (7.3)

This description does not take die swell into account and one could argue that U1
is the velocity which has to be larger than V . This gives a larger critical flow rate
qγ = (4aξγ /ρ)1/2 where ξ =Us/U1 is the die swell ratio.

7.2. Critical flow rate
In figure 26(a), we show the different regimes observed when increasing the flow rate.
First (step 1), droplets are periodically emitted from equally spaced spots along the
slot. In the case of a polymer solution, these drops can be connected by filaments
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(Clasen et al. 2009). Then, the liquid falls in the form of equally spaced continuous
jets (step 2). The transition from dripping to jetting is described by Clanet & Lasheras
(1999) in the case of a single jet issuing from a nozzle. The distance between two
jets is typically captured by the value 2π

√
2(γ /ρg)1/2 = 2.2 cm expected from the

Rayleigh–Taylor instability theory (Fermigier et al. 1992; Brunet, Flesselles & Limat
2007). As the flow rate is further increased, neighbouring jets merge and form thicker
jets until the arches are finally advected and a continuous sheet of liquid suddenly
emerges from the slot (step 3) at a critical flow rate qc which is measured. Values
of the ratio qc/qγ are reported in figure 26(b) for the five degraded (td = 100 min)
PEO solutions with 20 wt% PEG solvent (table 2). Results are reproducible and are
plotted against the extensional relaxation time τfil. We measure that qc/qγ ≈ 0.8 for all
solutions. This shows that the arches indeed detach from the slot when the extrusion
velocity becomes of the order of the Taylor–Culick velocity and suggests that elastic
forces have a negligible influence on the retraction speed of the hole. The discrepancy
may be due to the weight of the rim which pulls arches downwards. Rim weight
effects in liquid curtains are for example discussed by Roche et al. (2006). Taking
die swell into account, we obtain a value of qc/qγ closer to 0.7.

7.3. Minimum flow rate
Starting from q> qc, nothing special happens when decreasing the flow rate below qc
and the curtain generally remains continuous for a long time. However, since holes
are continuously generated in the curtain, the curtain will finally break when a hole
eventually opens close enough to the slot where We < 1, i.e. where the upper edge
of a hole propagates upwards. Hence, as proposed by Becerra & Carvalho (2011), we
define the minimum flow rate qmin above which the liquid sheet remains continuous
for more than a certain amount of time, for example 30 s since liquid deposition on a
substrate takes a few seconds in curtain coating. We measure qmin as follows. Starting
from a continuous curtain, the flow rate q is decreased step by step, each step lasting
30 s, until the curtain breaks at q= qmin. We obtain reproducible values of qmin. The
ratio qmin/qγ is reported in figure 26(b). Values of qmin decrease from 1.3 cm2 s−1 for
the pure solvent to 0.58 cm2 s−1 for the 0.4 wt% PEO solution, i.e. qmin decreases by
a factor 2.2. Therefore, curtain coating can be performed at lower flow rates when
adding polymer molecules to the liquid, as already shown by Becerra & Carvalho
(2011) and Karim et al. (2018b) with similar measurements.

The value of qmin is linked to the frequency of spontaneous hole opening events
in the curtain. Holes are mostly generated far from the slot where the curtain is
thin. Curtains are indeed often continuous close to the slot but constantly punctured
downstream, as is commonly observed in water fountains. The frequency of hole
opening events must depend on the concentration of impurities in the liquid, which
is not controlled in our experiment. We measure that this frequency decreases
when increasing the extensional relaxation time of the solution. Typically, for the
0.02 wt% PEO solution with 20 wt% PEG solvent (table 2) extruded at flow rate
q = 1.7 cm2 s−1 with curtain length Lc = 30 cm, the frequency of spontaneous hole
opening events decreases from approximately one hole per minute before degradation
(td = 0 min) to ten holes per second after td = 100 min of degradation, most of them
being generated more than 10 cm below the slot. In the latter case, the velocity field
U(z) for z< 20 cm can only be measured after raising the flow rate to 3.4 cm2 s−1.
Indeed, the hole opening frequency decreases when increasing the flow rate since the
curtain becomes thicker everywhere.
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We conclude that polymer addition greatly enhances the stability of the curtain. This
result can be interpreted as a greater resistance of the liquid sheet to bubble bursting
within the liquid. We speculate that two liquid layers separating a bubble on both sides
from the ambient air undergo an extensional flow and are therefore more difficult to
break due to the elastic stresses arising from the stretching of polymer molecules, like
in the filament thinning experiment where breaking is inhibited by the presence of
polymer molecules. This interpretation is consistent with the experiments conducted
by Karim et al. (2018b) which consist of applying a local disturbance on the curtain
with an air jet blown through a needle. Indeed, since Newtonian curtains break much
more easily than viscoelastic curtains, the authors concluded that the growth rate of
any disturbance leading to the formation of a hole is delayed by polymer addition.

8. Summary and discussion
In this paper, we present the first intensive experimental investigation of the role

of viscoelasticity in the extensional flow of a sheet – or curtain – of low viscosity
liquid falling freely from a slot at constant flow rate. Contrary to film casting,
gravity is the only source of axial tension. The mean liquid velocity U(z), where
z is the distance from the slot exit, is measured for polymer solutions with various
rheological behaviours. We show that the flow is mostly influenced by the value
of the extensional relaxation time of the polymers, characterised by the time τfil
measured with a CaBER rheometer. If the liquid initial velocity U1 at the slot exit
(after die swell) is such that U1 � gτfil, gravity is initially balanced by the elastic
stresses arising from the stretching of polymer molecules. In this elastic regime, the
liquid acceleration U dU/dz is less than the gravitational acceleration g. However,
inertia finally dominates over elasticity far from the slot and the liquid acceleration
reaches the asymptotic free-fall value g. Polymer molecules initially unravel in the
elastic regime since τfil dU/dz= O(1), and return progressively to a coil state in the
inertial free-fall regime where τfil dU/dz� 1. The length of the sub-gravitational part
of the curtain is z∗e = Feze where ze = gτ 2

fil and where Fe is a decreasing function of
U1/gτfil. In particular, the flow is a free fall even close to the slot if U1� gτfil. When
considering the flow far from the impingement zone, we show that the velocity field
U(z) rescales on a master curve, like for Newtonian liquids of dynamic viscosity η
and density ρ where the flow is initially dominated by viscous dissipation if the initial
velocity is less than Uv =

√
gzv where zv = ((4η/ρ)2/g)1/3. We show that the flow is

only weakly influenced by the history of polymer deformations in the die upstream
of the curtain. More precisely, the polymeric stresses in the curtain are mostly due to
the extensional stretching of polymer molecules in the curtain, with a small correction
due to the ‘pre-shear’ in the die. In particular, the mean normal stress difference ∆
switches from a shear value ∆s inside the slot to an extensional value ∆1=AeρgU1τfil
after swelling which is needed to bear the weight of the sub-gravitational part of the
curtain, where Ae is a decreasing function of U1/gτfil. Furthermore, we show that
polymer addition reduces the minimum flow rate required to maintain a continuous
curtain and greatly diminishes the frequency of spontaneous hole opening events.
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Appendix A. Interpretation of the rheological data in table 1
A.1. Determination of the concentration regimes
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FIGURE 27. (Colour online) Some data for the PEO solutions with 20 wt% PEG solvent of
table 1. (a) Evolution of the polymer contribution to the zero-shear viscosity ηp= η0− ηs
(divided by the solvent viscosity ηs) with polymer concentration [PEO]. (b) Comparison
of the different relaxation time estimations: Ψ/2ηp (shear measurements for quadratic
normal stress differences N1=Ψ γ̇

2), τfil (CaBER) and τZ=0.024 s (Zimm theory, equation
(A 1)) against dimensionless polymer concentration c/c∗ where c = ρ [PEO] and where
c∗ = 0.83 kg m−3 is the critical overlap concentration.

In order to characterise the different concentration regimes of PEO solutions
with 20 wt% PEG solvent, we show in figure 27(a) the evolution of the polymer
contribution to the zero-shear viscosity ηp = η0 − ηs with polymer concentration.
The evolution is initially linear in the dilute regime and ηp = ηs[η]c where c = ρ
[PEO] is the polymer concentration and [η] is the intrinsic viscosity. We measure
[η] = 0.93 m3 kg−1. The Mark–Houwink–Sakurada (MHS) equation [η] = 0.072M0.65

w
reported by Tirtaatmadja et al. (2006) for PEO solutions in water/glycerol mixtures
gives [η] = 2.2 m3 kg−1, which is comparable to the measured value within the
experimental uncertainty reported by the authors. Besides, the discrepancy can be
attributed to the mechanical breaking of polymer chains during sample preparation
which results in a lower average molecular weight Mw. According to the Zimm theory,
the intrinsic viscosity scales as [η] ∝M3ν−1

w where ν is the solvent quality exponent
which is such that the equilibrium radius of gyration of the chains scales as Rg∝Mν

w.
Hence, the MHS equation gives ν = 0.55 which is between the theta solvent value
ν = 0.5 and the good solvent value ν = 0.6. Using the expression of the critical
overlap concentration c∗= 0.77/[η] by Graessley (1980), we obtain c∗= 0.83 kg m−3

(equivalently 0.081 wt%). This value is consistent with the onset of shear-thinning
behaviour. Solutions are semi-dilute for c> c∗, as shown by the first slope change in
figure 27(a). A second slope change is observed for the most concentrated solution,
thus indicating a transition from the semi-dilute unentangled regime to the semi-dilute
entangled regime at a concentration ce≈ 3 kg m−3 (equivalently 0.3 wt%). According
to Rubinstein & Colby (2003), the different scalings are ηp ∝ c1/(3ν−1) for c∗ < c< ce

and ηp∝ c3/(3ν−1) for c> ce. Note that the data in figure 27(a) are better described by
the theta solvent exponents 2 and 6 (ν = 0.5) rather than the ν = 0.55 exponents 1.54
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[PEO] td η0 ηp n 1/γ̇c τfil ηE b El Us U1

(wt%) (min) (Pa s) (Pa s) (s) (s) (Pa s) (m s−1) (m s−1)

0.004 0 0.017 0.0006 1.0 — 0.010 1× 102 8× 104 1.1 0.22 0.20
0.004 10 0.017 0.0006 1.0 — 0.0073 7× 101 5× 104 0.83 0.29 0.26
0.004 20 0.017 0.0006 1.0 — 0.0050 5× 101 4× 104 0.57 0.33 0.29
0.004 40 0.017 0.0006 1.0 — 0.0036 3× 101 2× 104 0.41 0.32 0.28
0.004 60 0.017 0.0006 1.0 — 0.0029 3× 101 2× 104 0.33 0.32 0.27
0.004 100 0.017 0.0006 1.0 — 0.0024 2× 101 2× 104 0.27 0.33 0.28

0.02 0 0.019 0.002 1.0 — 0.060 4× 102 1× 105 6.5 0.38 0.27
0.02 10 0.019 0.002 1.0 — 0.030 2× 102 5× 104 3.3 0.34 0.27
0.02 20 0.019 0.002 1.0 — 0.018 2× 102 5× 104 2.0 0.34 0.26
0.02 40 0.019 0.002 1.0 — 0.015 1× 102 2× 104 1.6 0.34 0.27
0.02 60 0.019 0.002 1.0 — 0.010 1× 102 2× 104 1.1 0.34 0.27
0.02 100 0.019 0.002 1.0 — 0.008 1× 102 2× 104 0.87 0.34 0.28

0.1 0 0.037 0.020 0.96 0.14 0.23 1× 103 2× 104 20 0.26 0.14
0.1 10 0.035 0.018 0.95 0.13 0.15 8× 102 2× 104 13 0.29 0.17
0.1 20 0.034 0.017 0.95 0.11 0.085 6× 102 2× 104 7.6 0.25 0.17
0.1 40 0.030 0.013 0.96 0.050 0.064 6× 102 2× 104 6.0 0.25 0.17
0.1 60 0.029 0.012 0.96 0.029 0.041 3× 102 1× 104 3.9 0.25 0.18
0.1 100 0.029 0.012 0.95 0.025 0.026 3× 102 1× 104 2.5 0.25 0.19

0.2 0 0.12 0.10 0.85 1.3 0.28 2× 103 1× 104 17 0.21 0.12
0.2 10 0.084 0.067 0.88 0.50 0.20 1× 103 1× 104 13 0.23 0.13
0.2 20 0.075 0.058 0.88 0.33 0.15 1× 103 1× 104 10 0.25 0.13
0.2 40 0.063 0.046 0.90 0.25 0.10 1× 103 1× 104 7.3 0.27 0.16
0.2 60 0.054 0.037 0.91 0.10 0.06 6× 102 1× 104 4.6 0.30 0.18
0.2 100 0.053 0.036 0.91 0.083 0.05 6× 102 1× 104 3.9 0.29 0.18

0.4 0 1.2 1.2 0.62 6.7 1.2 6× 103 3× 103 33 0.17 0.089
0.4 10 0.68 0.66 0.67 2.5 0.51 3× 103 2× 103 17 0.19 0.097
0.4 20 0.48 0.46 0.69 1.4 0.38 2× 103 2× 103 14 0.16 0.088
0.4 40 0.33 0.31 0.72 0.71 0.26 2× 103 3× 103 11 0.19 0.10
0.4 60 0.25 0.23 0.74 0.40 0.20 2× 103 4× 103 9.2 0.18 0.10
0.4 100 0.20 0.18 0.77 0.29 0.12 1× 103 3× 103 6.0 0.17 0.10

TABLE 2. Rheological parameters of the PEO solutions with 20 wt% PEG solvent used
in curtain experiments, where td is the time of degradation. The first columns are similar
to table 1 and the solvent viscosity is ηs = 0.017 Pa s. El is the Elasticity number
(5.29), Us= q/2a is the extrusion velocity where q is the linear flow rate and U1=U(z1)
is the liquid velocity measured at z1 ≈ 2.5 mm from the slot, i.e. after swelling.

and 4.62 which were experimentally observed by Zell et al. (2010) and Casanellas
et al. (2016) for PEO solutions in water/glycerol mixtures.

The MHS equation for aqueous unsalted solutions of HPAM molecules with
hydrolysis degree 30 % is [η] = 0.022M0.74 (Wu et al. 1991; Kawale et al. 2017). We
obtain [η] ≈ 5.0 m3 kg−1 and therefore c∗ = 0.77/[η] ≈ 0.15 kg m−3 (equivalently
0.015 wt%), as well as ν = 0.58. Hence, c/c∗ ≈ 6.7 for HPAM solutions without salt
and polymer molecules are probably in the semi-dilute entangled regime. Since c∗

increases when adding salt (Chen et al. 2012), salted solutions are expected to be
less entangled.
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[NaCl] td η0 ηp n 1/γ̇c τfil ηE b El Us U1

(wt%) (min) (Pa s) (Pa s) (s) (s) (Pa s) (m s−1) (m s−1)

0 0 1× 102 1× 102 0.20 8× 102 0.4 2× 103 1× 101 2 0.29 0.29
0 10 1× 102 1× 102 0.20 8× 102 0.4 2× 103 7× 100 2 0.31 0.30
0 20 1× 102 1× 102 0.20 8× 102 0.3 1× 103 3× 100 2 0.31 0.31
0 40 1× 102 1× 102 0.20 8× 102 0.3 1× 103 3× 100 2 0.28 0.31
0 60 1× 102 1× 102 0.20 8× 102 0.3 1× 103 3× 100 1 0.29 0.31
0 100 1× 102 1× 102 0.20 8× 102 0.2 1× 103 3× 100 1 0.31 0.31

0.1 0 0.61 0.61 0.49 2× 101 0.24 1× 103 8× 102 8.2 0.33 0.33
0.1 10 0.61 0.61 0.49 2× 101 0.19 8× 102 7× 102 6.5 0.28 0.30
0.1 20 0.61 0.61 0.49 2× 101 0.16 8× 102 7× 102 5.4 0.29 0.30
0.1 40 0.61 0.61 0.49 2× 101 0.15 8× 102 7× 102 5.1 0.29 0.32
0.1 60 0.61 0.61 0.49 2× 101 0.14 5× 102 4× 102 4.8 0.28 0.30
0.1 100 0.61 0.61 0.49 2× 101 0.12 5× 102 4× 102 4.1 0.27 0.29

0 1× 102 1× 102 0.20 8× 102 0.4 1× 103 3× 100 2 0.12 0.12
0.01 8× 101 8× 101 0.25 8× 102 0.4 8× 102 5× 100 2 0.13 0.12
0.1 0.70 0.70 0.47 20 0.19 5× 102 4× 102 6.2 0.13 0.14
1 0.025 0.024 0.71 0.71 0.077 6× 102 1× 104 7.6 0.12 0.12
10 0.0088 0.0078 0.81 0.25 0.050 4× 102 3× 104 7.0 0.14 0.13

TABLE 3. Rheological parameters of the salted (NaCl) 0.1 wt% HPAM solutions used in
curtain experiments, where td is the time of degradation (top) which is unknown for the
last liquid (bottom) where salt is added after each PIV measurement. The first columns are
similar to table 1 and the solvent viscosity is ηs= 0.001 Pa s. El is the Elasticity number
(5.29), Us= q/2a is the extrusion velocity where q is the linear flow rate and U1=U(z1)
is the liquid velocity measured at z1 ≈ 2.5 mm from the slot, i.e. after swelling.

[PEO] η0 ηp n 1/γ̇c α1 Ψ τfil ηE b El Us U1

(wt%) (Pa s) (Pa s) (s) (Pa sα1 ) (s) (Pa s) (m s−1) (m s−1)

0.2 0.70 0.56 0.90 2.0 1.8 0.25 1.1 7× 103 6× 103 37 0.040 0.020
0.11 0.35 0.21 0.95 0.56 2 0.040 0.68 4× 103 1× 104 28 0.057 0.029
0.048 0.21 0.07 1 — 2 0.014 0.42 2× 103 2× 104 21 0.073 0.040
0.024 0.17 0.03 1 — 2 0.005 0.17 9× 102 2× 104 9.1 0.098 0.060

TABLE 4. Rheological parameters of the PEO solutions with 40 wt% PEG solvent used
in curtain experiments. The first columns are similar to table 1 and the solvent viscosity
is ηs = 0.14 Pa s. El is the Elasticity number (5.29), Us = q/2a is the extrusion velocity
where q is the linear flow rate and U1 = U(z1) is the liquid velocity measured at z1 ≈

2.5 mm from the slot, i.e. after swelling.

A.2. Discussion on the rheological parameters
The CaBER extensional relaxation time τfil is compared in figure 27(b) with the
relaxation times Ψ/2ηp calculated for PEO solutions exhibiting quadratic first
normal stress differences N1 = Ψ γ̇

2 (i.e. in the dilute and semi-dilute unentangled
regimes). Both quantities are plotted against c/c∗. While τfil increases with polymer
concentration, Ψ/2ηp decreases since ηp increases faster than Ψ which scales as
Ψ ∝ c0.72 in the dilute regime and Ψ ∝ c1.5 in the semi-dilute unentangled regime.
The link between the first normal stress coefficient Ψ and the CaBER extensional
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[PEG] [PEO] η0 ηp n 1/γ̇c α1 Ψ τfil ηE b El
(wt%) (wt%) (Pa s) (Pa s) (s) (Pa sα1 ) (s) (Pa s)

20 0.4 0.21 0.19 0.81 0.4 2 0.0029 0.16 1× 103 3× 103 7.8

TABLE 5. Rheological properties of the liquid used as a reference for the investigations on
die swell (§§ 4.6 and 6.1), and on the role of flow rate (§ 4.4) and die geometry (see § 6.3).
All these experiments were performed the same day. This liquid is close to (but not exactly
the same as) the degraded (td=100 min) 0.4 wt% PEO solution with 20 wt% PEG solvent
presented in table 2. Density is ρ = 1026 kg m−3, surface tension is γ = 62 mN m−1,
solvent viscosity is ηs = 0.017 Pa s and El is the Elasticity number (5.29).

relaxation time τfil is far from obvious. An intensive study by Zell et al. (2010)
involving semi-dilute PEO solutions in water–glycerol mixtures has been dedicated
to this topic. The authors also report that Ψ ∝ c1.5 for c∗ < c < ce, as well as
values of τfil much larger than Ψ/2ηp. Our experiments suggest that τfil ∝ c0.84,
which is in agreement with the exponents found by Zell et al. (2010). The authors
also report an empirical relation Ψ ∝ τ 2

fil where, surprisingly, the prefactor does not
depend on polymer concentration. Our experimental results follow the same quadratic
dependence in the semi-dilute regime with a prefactor 0.06 Pa which is comparable
to the prefactor reported by the authors.

Both relaxation times are compared in figure 27(b) with the Zimm (longest)
relaxation time which is given by (Tirtaatmadja et al. 2006)

τZ =
1

ζ (3ν)
[η]Mwηs

NAkBT
, (A 1)

where ζ is the Riemann zeta function, NA is Avogadro’s number and kB is the
Boltzmann constant. The prefactor is 0.38 for ν = 0.5 and 0.46 for ν = 0.55 and the
corresponding values of τZ are respectively 0.020 s and 0.024 s. The fact that τfil is
larger than τZ in the dilute regime (c < c∗) has been reported by Tirtaatmadja et al.
(2006) and discussed by Clasen et al. (2006). The interpretation is that polymer
chain–chain interactions (neglected in the Zimm model) are not negligible during
the filament thinning process since τfilε̇ = 2/3 which is larger than the coil–stretch
transition value 1/2 (De Gennes 1974). The polymer chains are therefore highly
extended and may overlap. Clasen et al. (2006) suggested that there must be an
effective critical overlap concentration in extensional measurements which is orders
of magnitude smaller than the conventional coil overlap concentration c∗. Furthermore,
the authors show that τfil is larger than the longest relaxation time measured from
small amplitude oscillatory shear (SAOS) experiments since intermolecular interactions
are less important. The authors conclude that τfil is an effective relaxation time which
is relevant in strong extensional flows. CaBER experiments have indeed been used
to determine the relevant polymer time scale in many elongational flows including
spraying (Keshavarz et al. 2015), jetting (Clasen et al. 2009) contraction (Rodd
et al. 2005, 2007) and coating (curtain) flows (Becerra & Carvalho 2011; Karim
et al. 2018b). Note that we measure values of τfil lower than τZ for the two most
dilute PEO solutions, as also reported by Clasen et al. (2006). The interpretation is
that, for very dilute solutions, polymeric stress may be insufficient to maintain the
elastocapillary balance leading to (3.3) and to allow an unambiguous determination
of the longest relaxation time. Another possible interpretation is that our estimation
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of τZ is incorrect due to mechanical degradation during sample preparation which
leads to a lower average molecular weight Mw.

We can compare the experimental values of the finite extensibility parameter b to
the microscopic expression (Clasen et al. 2006)

b= 3
[

j(sin (θ/2))2Mw

C∞Mu

]2(1−ν)

, (A 2)

which involves the C–C bond angle θ = 109◦, the number of bonds j of a monomer
unit with molar mass Mu and the characteristic ratio C∞. For PEO, j= 3 and C∞= 4.1
(Brandrup et al. 1989). Therefore, using ν = 0.55 gives a value b= 8.8× 104 which
is very close to the values measured for dilute PEO solutions. Using ν = 0.5 gives a
larger value b= 2.7× 105.

Some scalings can be extracted from the data of table 1. According to Stelter et al.
(2002), the terminal extensional viscosity ηE is proportional to τfil with a prefactor
which is larger for flexible polymers than for rigid polymers. Our data indeed suggest
ηE ∝ τfil with a prefactor 8× 103 Pa for solutions of flexible chains such as PEO and
salted HPAM and with a lower prefactor for unsalted HPAM solutions. The data of
table 1 also suggest a link between the degree of shear thinning n and the effective
value of the finite extensibility parameter b. Indeed, solutions of flexible polymers
correspond to large values of b with n close to 1 while shear-thinning solutions
correspond to low values of b. For both PEO and HPAM solutions we find the
following empirical formula: n≈ 0.16b0.17 for b< 5× 104 and n= 1 for b > 5× 104.
This link is not predicted by dilute polymer solutions models such as the FENE-P
model which gives η− ηs∝ γ̇

−2/3 at large shear rates, i.e. n= 1/3 for all values of b.

Appendix B. Rheology of curtain solutions
The rheological parameters of the polymer solutions used in curtain experiments are

presented in tables 2–5.

REFERENCES

ABRAMOWITZ, M. & STEGUN, I. A. 1964 Handbook of Mathematical Functions: With Formulas,
Graphs, and Mathematical Tables, vol. 55. Courier Corporation.

AIDUN, C. K. 1987 Mechanics of a free-surface liquid film flow. J. Appl. Mech. 54 (4), 951–954.
ALAIE, S. M. & PAPANASTASIOU, T. C. 1991 Film casting of viscoelastic liquid. Polym. Engng

Sci. 31 (2), 67–75.
ALLAIN, C., CLOITRE, M. & PERROT, P. 1997 Experimental investigation and scaling law analysis

of die swell in semi-dilute polymer solutions. J. Non-Newtonian Fluid Mech. 73 (1-2), 51–66.
AMAROUCHENE, Y., BONN, D., MEUNIER, J. & KELLAY, H. 2001 Inhibition of the finite-time

singularity during droplet fission of a polymeric fluid. Phys. Rev. Lett. 86 (16), 3558–3561.
ANNA, S. L. & MCKINLEY, G. H. 2001 Elasto-capillary thinning and breakup of model elastic

liquids. J. Rheol. 45 (1), 115–138.
BECERRA, M. & CARVALHO, M. S. 2011 Stability of viscoelastic liquid curtain. Chem. Engng

Process. 50 (5), 445–449.
BIRD, R. B., ARMSTRONG, R. C., HASSAGER, O. & CURTISS, C. F. 1987 Dynamics of Polymeric

Liquids: Kinetic Theory, vol. 2. Wiley.
BOGER, D. V. & WALTERS, K. 2012 Rheological Phenomena in Focus, vol. 4. Elsevier.
BRANDRUP, J., IMMERGUT, E. H., ABE, E. A. G. A. & BLOCH, D. R. 1989 Polymer Handbook,

vol. 7. Wiley.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

38
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.389


Viscoelastic liquid curtains 407

BROWN, D. R. 1961 A study of the behaviour of a thin sheet of moving liquid. J. Fluid Mech. 10
(2), 297–305.

BRUNET, P., FLESSELLES, J.-M. & LIMAT, L. 2007 Dynamics of a circular array of liquid columns.
Eur. Phys. J. B 55 (3), 297–322.

CAMPO-DEANO, L. & CLASEN, C. 2010 The slow retraction method (SRM) for the determination
of ultra-short relaxation times in capillary breakup extensional rheometry experiments. J. Non-
Newtonian Fluid Mech. 165 (23-24), 1688–1699.

CARTALOS, U. & PIAU, J. M. 1992 Creeping flow regimes of low concentration polymer solutions
in thick solvents through an orifice die. J. Non-Newtonian Fluid Mech. 45 (2), 231–285.

CASANELLAS, L., ALVES, M. A., POOLE, R. J., LEROUGE, S. & LINDNER, A. 2016 The stabilizing
effect of shear thinning on the onset of purely elastic instabilities in serpentine microflows.
Soft Matt. 12 (29), 6167–6175.

CHEN, E. B., MORALES, A. J., CHEN, C. C., DONATELLI, A. A., BANNISTER, W. W. &
CUMMINGS, B. T. 1998 Fluorescein and poly(ethylene oxide) hose stream additives for
improved firefighting effectiveness. Fire Technol. 34 (4), 291–306.

CHEN, P., YAO, L., LIU, Y., LUO, J., ZHOU, G. & JIANG, B. 2012 Experimental and theoretical
study of dilute polyacrylamide solutions: effect of salt concentration. J. Mol. Model. 18 (7),
3153–3160.

CHIBA, K., SAKATANI, T. & NAKAMURA, K. 1990 Anomalous flow patterns in viscoelastic entry
flow through a planar contraction. J. Non-Newtonian Fluid Mech. 36, 193–203.

CHIBA, K., TANAKA, S. & NAKAMURA, K. 1992 The structure of anomalous entry flow patterns
through a planar contraction. J. Non-Newtonian Fluid Mech. 42 (3), 315–322.

CLANET, C. & LASHERAS, J. C. 1999 Transition from dripping to jetting. J. Fluid Mech. 383,
307–326.

CLARKE, N. S. 1966 A differential equation in fluid mechanics. Mathematika 13 (1), 51–53.
CLARKE, N. S. 1968 Two-dimensional flow under gravity in a jet of viscous liquid. J. Fluid Mech.

31 (3), 481–500.
CLASEN, C., BICO, J., ENTOV, V. M. & MCKINLEY, G. H. 2009 Gobbling drops: the jetting–dripping

transition in flows of polymer solutions. J. Fluid Mech. 636, 5–40.
CLASEN, C., PLOG, J. P., KULICKE, W.-M., OWENS, M., MACOSKO, C., SCRIVEN, L. E., VERANI,

M. & MCKINLEY, G. H. 2006 How dilute are dilute solutions in extensional flows? J. Rheol.
50 (6), 849–881.

CROOKS, R. & BOGER, D. V. 2000 Influence of fluid elasticity on drops impacting on dry surfaces.
J. Rheol. 44 (4), 973–996.

CULICK, F. E. C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31 (6), 1128–1129.
DAERR, A. & MOGNE, A. 2016 Pendent_drop: an ImageJ plugin to measure the surface tension

from an image of a pendent drop. J. Open Res. Softw. 4 (1), e3.
DE GENNES, P.-G. 1974 Coil-stretch transition of dilute flexible polymers under ultrahigh velocity

gradients. J. Chem. Phys. 60 (12), 5030–5042.
DELVAUX, V. & CROCHET, M. J. 1990 Numerical simulation of delayed die swell. Rheol. Acta 29

(1), 1–10.
DOMBROWSKI, N. & JOHNS, W. R. 1963 The aerodynamic instability and disintegration of viscous

liquid sheets. Chem. Engng Sci. 18 (3), 203–214.
DONTULA, P., MACOSKO, C. W. & SCRIVEN, L. E. 1998 Model elastic liquids with water-soluble

polymers. AIChE J. 44 (6), 1247–1255.
EGGERS, J. 2014 Instability of a polymeric thread. Phys. Fluids 26 (3), 033106.
ENTOV, V. M. & HINCH, E. J. 1997 Effect of a spectrum of relaxation times on the capillary

thinning of a filament of elastic liquid. J. Non-Newtonian Fluid Mech. 72 (1), 31–53.
EWOLDT, R. H., JOHNSTON, M. T. & CARETTA, L. M. 2015 Experimental challenges of shear

rheology: how to avoid bad data. In Complex Fluids in Biological Systems, pp. 207–241.
Springer.

FERMIGIER, M., LIMAT, L., WESFREID, J. E., BOUDINET, P. & QUILLIET, C. 1992 Two-dimensional
patterns in Rayleigh–Taylor instability of a thin layer. J. Fluid Mech. 236, 349–383.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

38
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.389


408 A. Gaillard, M. Roché, S. Lerouge, C. Gay, L. Lebon and L. Limat

GAILLARD, A. 2018 Flow and stability of a viscoelastic liquid curtain. PhD thesis, Université
Sorbonne Paris Cité.

GRAESSLEY, W. W. 1980 Polymer chain dimensions and the dependence of viscoelastic properties
on concentration, molecular weight and solvent power. Polymer 21 (3), 258–262.

GRAHAM, M. D. 2003 Interfacial hoop stress and instability of viscoelastic free surface flows. Phys.
Fluids 15 (6), 1702–1710.

GUGLER, G., BEER, R. & MAURON, M. 2010 Coatability of viscoelastic liquid curtain. In Proceedings
of the 15th International Coating Science and Technology Symposium, St. Paul, Minnesota.

HERRCHEN, M. & ÖTTINGER, H. C. 1997 A detailed comparison of various fene dumbbell models.
J. Non-Newtonian Fluid Mech. 68 (1), 17–42.

HUANG, D. C. & WHITE, J. L. 1979 Extrudate swell from slit and capillary dies: an experimental
and theoretical study. Polym. Engng Sci. 19 (9), 609–616.

KARIM, A. M., SUSZYNSKI, W. J., FRANCIS, L. F. & CARVALHO, M. S. 2018a Effect of viscosity
on liquid curtain stability. AIChE J. 64 (4), 1448–1457.

KARIM, A. M., SUSZYNSKI, W. J., GRIFFITH, W. B., PUJARI, S., FRANCIS, L. F. & CARVALHO, M. S.
2018b Effect of viscoelasticity on stability of liquid curtain. J. Non-Newtonian Fluid Mech.
257, 83–94.

KAWALE, D., MARQUES, E., ZITHA, P. L., KREUTZER, M. T., ROSSEN, W. R. & BOUKANY, P. E.
2017 Elastic instabilities during the flow of hydrolyzed polyacrylamide solution in porous
media: effect of pore-shape and salt. Soft Matt. 13 (4), 765–775.

KAYS, W. M., CRAWFORD, M. E. & WEIGAND, B. 2005 Convective Heat and Mass Transfer,
vol. 76. McGraw-Hill.

KESHAVARZ, B., SHARMA, V., HOUZE, E. C., KOERNER, M. R., MOORE, J. R., COTTS, P. M.,
THRELFALL-HOLMES, P. & MCKINLEY, G. H. 2015 Studying the effects of elongational
properties on atomization of weakly viscoelastic solutions using Rayleigh Ohnesorge jetting
extensional rheometry (ROJER). J. Non-Newtonian Fluid Mech. 222, 171–189.

LARSON, R. G. 1992 Instabilities in viscoelastic flows. Rheol. Acta 31 (3), 213–263.
LARSON, R. G. 1999 The Structure and Rheology of Complex Fluids (Topics in Chemical

Engineering), vol. 86, p. 108. Oxford University Press.
MACOSKO, C. W. 1994 Rheology: Principles, Measurements, and Applications. Wiley-VCH.
MATHUES, W., MCILROY, C., HARLEN, O. G. & CLASEN, C. 2015 Capillary breakup of suspensions

near pinch-off. Phys. Fluids 27 (9), 093301.
MCILROY, C. & HARLEN, O. G. 2014 Modelling capillary break-up of particulate suspensions. Phys.

Fluids 26 (3), 033101.
MCKINLEY, G. H. 2005 Visco-elasto-capillary thinning and break-up of complex fluids. Annu. Rheol.

Rev. 3, 1–48.
MCKINLEY, G. H., RAIFORD, W. P., BROWN, R. A. & ARMSTRONG, R. C. 1991 Nonlinear

dynamics of viscoelastic flow in axisymmetric abrupt contractions. J. Fluid Mech. 223,
411–456.

MILLER, E., CLASEN, C. & ROTHSTEIN, J. P. 2009 The effect of step-stretch parameters on capillary
breakup extensional rheology (CaBER) measurements. Rheol. Acta 48 (6), 625–639.

MIYAMOTO, K. & KATAGIRI, Y. 1997 Curtain coating. In Liquid Film Coating, pp. 463–494. Springer.
NIGEN, S. & WALTERS, K. 2002 Viscoelastic contraction flows: comparison of axisymmetric and

planar configurations. J. Non-Newtonian Fluid Mech. 102 (2), 343–359.
OLIVEIRA, M. S., YEH, R. & MCKINLEY, G. H. 2006 Iterated stretching, extensional rheology and

formation of beads-on-a-string structures in polymer solutions. J. Non-Newtonian Fluid Mech.
137 (1–3), 137–148.

PAPANASTASIOU, T. C., MACOSKO, C. W., SCRIVEN, L. E. & CHEN, Z. 1987 Fiber spinning of
viscoelastic liquid. AIChE J. 33 (5), 834–842.

PETRIE, C. J. S. 1979 Elongational Flows. Pitman.
PURNODE, B. & CROCHET, M. J. 1996 Flows of polymer solutions through contractions. Part 1.

Flows of polyacrylamide solutions through planar contractions. J. Non-Newtonian Fluid Mech.
65 (2–3), 269–289.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

38
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.389


Viscoelastic liquid curtains 409

RAMOS, J. I. 1996 Planar liquid sheets at low Reynolds numbers. Intl J. Numer. Meth. Fluids 22
(10), 961–978.

RICHARDSON, S. 1970 The die swell phenomenon. Rheol. Acta 9 (2), 193–199.
ROCHE, J. S., GRAND, N. L., BRUNET, P., LEBON, L. & LIMAT, L. 2006 Pertubations on a liquid

curtain near break-up: wakes and free edges. Phys. Fluids 18 (8), 082101.
RODD, L. E., SCOTT, T. P., BOGER, D. V., COOPER-WHITE, J. J. & MCKINLEY, G. H. 2005 The

inertio-elastic planar entry flow of low-viscosity elastic fluids in micro-fabricated geometries.
J. Non-Newtonian Fluid Mech. 129 (1), 1–22.

RODD, L. E., SCOTT, T. P., COOPER-WHITE, J. J., BOGER, D. V. & MCKINLEY, G. H. 2007
Role of the elasticity number in the entry flow of dilute polymer solutions in micro-fabricated
contraction geometries. J. Non-Newtonian Fluid Mech. 143 (2-3), 170–191.

RODD, L. E., SCOTT, T. P., COOPER-WHITE, J. J. & MCKINLEY, G. H. 2005 Capillary break-up
rheometry of low-viscosity elastic fluids. Appl. Rheol. 15 (1), 12–27.

ROTHSTEIN, J. P. & MCKINLEY, G. H. 1999 Extensional flow of a polystyrene boger fluid through
a 4: 1: 4 axisymmetric contraction/expansion. J. Non-Newtonian Fluid Mech. 86 (1), 61–88.

RUBINSTEIN, M. & COLBY, R. H. 2003 Polymer physics, vol. 23. Oxford University Press.
SATOH, N., TOMIYAMA, H. & KAJIWARA, T. 2001 Viscoelastic simulation of film casting process

for a polymer melt. Polym. Engng Sci. 41 (9), 1564–1579.
SATTLER, R., GIER, S., EGGERS, J. & WAGNER, C. 2012 The final stages of capillary break-up of

polymer solutions. Phys. Fluids 24 (2), 023101.
SATTLER, R., WAGNER, C. & EGGERS, J. 2008 Blistering pattern and formation of nanofibers in

capillary thinning of polymer solutions. Phys. Rev. Lett. 100 (16), 164502.
SAVVA, N. & BUSH, J. W. M. 2009 Viscous sheet retraction. J. Fluid Mech. 626, 211–240.
SEVILLA, A. 2011 The effect of viscous relaxation on the spatiotemporal stability of capillary jets.

J. Fluid Mech. 684, 204–226.
STELTER, M., BRENN, G., YARIN, A. L., SINGH, R. P. & DURST, F. 2002 Investigation of the

elongational behavior of polymer solutions by means of an elongational rheometer. J. Rheol.
46 (2), 507–527.

SÜNDERHAUF, G., RASZILLIER, H. & DURST, F. 2002 The retraction of the edge of a planar liquid
sheet. Phys. Fluids 14 (1), 198–208.

TANNER, R. I. 1970 A theory of die-swell. J. Polym. Sci. B 8 (12), 2067–2078.
TANNER, R. I. 2000 Engineering Rheology, vol. 52. Oxford University Press.
TANNER, R. I. 2005 A theory of die-swell revisited. J. Non-Newtonian Fluid Mech. 129 (2), 85–87.
TAYLOR, G. 1959 The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets. Proc. R.

Soc. Lond. A 313–321.
TIRTAATMADJA, V., MCKINLEY, G. H. & COOPER-WHITE, J. J. 2006 Drop formation and breakup

of low viscosity elastic fluids: effects of molecular weight and concentration. Phys. Fluids 18
(4), 043101.

VILLERMAUX, E. & CLANET, C. 2002 Life of a flapping liquid sheet. J. Fluid Mech. 462, 341–363.
VIRK, P. S. 1975 Drag reduction fundamentals. AIChE J. 21 (4), 625–656.
WHITE, J. L. & ROMAN, J. F. 1976 Extrudate swell during the melt spinning of fibersinfluence of

rheological properties and take-up force. J. Appl. Polym. Sci. 20 (4), 1005–1023.
WU, X. Y., HUNKELER, D., HAMIELEC, A. E., PELTON, R. H. & WOODS, D. R. 1991

Molecular weight characterization of poly(acrylamide-co-sodium acrylate). I. Viscometry. J. Appl.
Polym. Sci. 42 (7), 2081–2093.

ZELL, A., GIER, S., RAFAI, S. & WAGNER, C. 2010 Is there a relation between the relaxation time
measured in caber experiments and the first normal stress coefficient? J. Non-Newtonian Fluid
Mech. 165 (19), 1265–1274.

ZHANG, G., ZHOU, J. S., ZHAI, Y. A., LIU, F. Q. & GAO, G. 2008 Effect of salt solutions on chain
structure of partially hydrolyzed polyacrylamide. J. Central South University of Technology
15 (1), 80–83.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

38
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.389

	Viscoelastic liquid curtains: experimental results on the flow of a falling sheet of polymer solution
	Introduction
	Materials and methods
	Polymers and preparation of the solutions
	The hydraulic loop
	The die
	Flow visualisation
	Experimental limitation: the accessible range of f low rates

	Rheology of polymer solutions
	Shear rheology
	Extensional rheology
	Interpretation of the rheological data
	Mechanical degradation of polymer solutions and adequate protocols

	Observations
	A dramatic shift towards sub gravity accelerations
	Unstable f low for the most shear-thinning solutions
	The inf luence of the curtain length
	The inf luence of the flow rate
	The inf luence of the rheological properties
	Die swell

	Theoretical description of the curtain flow
	General overview of the problem
	A master curve for Newtonian curtains
	General force balance equation
	A master curve for viscoelastic curtains
	Inelastic viscous curtains versus low viscosity elastic curtains

	Elastic stress at the slot exit
	The die swell ratio
	Mean normal stress difference before and after swelling
	The inf luence of the die geometry

	Curtain stability
	Dynamics of hole opening
	Critical f low rate
	Minimum f low rate

	Summary and discussion
	Acknowledgements
	Appendix A. Interpretation of the rheological data in table 1
	Determination of the concentration regimes
	Discussion on the rheological parameters

	Appendix B. Rheology of curtain solutions
	References


