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THE COMPLEXITY OF INDEX SETS OF CLASSES OF COMPUTABLY
ENUMERABLE EQUIVALENCE RELATIONS

URI ANDREWS AND ANDREA SORBI

Abstract. Let <. be computable the reducibility on computably enumerable equivalence relations (or
ceers). We show that for every ceer R with infinitely many equivalence classes. the index sets {i : R; <. R}
(with R nonuniversal), {i : R; >, R}, and {i : R; =, R} are £J complete, whereas in case R has only
finitely many equivalence classes, we have that {i : R; <. R}is Hg complete, and {i : R; >, R} (with
R having at least two distinct equivalence classes) is 22 complete. Next, solving an open problem from [1],
we prove that the index set of the effectively inseparable ceers is Hg complete. Finally, we prove that the
1-reducibility preordering on c.e. sets is a 28 complete preordering relation, a fact that is used to show that
the preordering relation <. on ceers is a 22 complete preordering relation.

§1. Introduction. Given equivalence relations R and S on the set @ of natural
numbers, we say that R is reducible to S (in symbols: R <. S). if there exists a
computable function f such that

(Vx.y)[xRy <= f(x)S f(¥)]

Given a class A of equivalence relations on w, one says that R is A complete, if
R e A and S <. R, for every S € A. This reducibility, and this notion of com-
pleteness, have turned out to be very useful tools for measuring the complexity of
equivalence relations naturally arising in mathematics, and, in particular, in com-
putable model theory and in computability theory (where equivalence relations on
structures can be viewed as relations on numbers via identification of structures
with numbers, thanks to suitable indexings). For instance, Fokina, S. Friedman.,
Harizanov, Knight, McCoy, and Montalban [8] show ! completeness of the iso-
morphism relations for various familiar classes of computable structures, including
computable groups. computable torsion abelian groups, computable torsion-free
abelian groups, and abelian p-groups. On the other hand, Fokina, S. Friedman, and
Nies [7] show that other familiar equivalence relations arising from computability
are 2(3) complete, including computable isomorphism of c.e. sets. (In Corollary 4.11
we give another proof of this result.) Other interesting mathematical applications
of the reducibility <. appear in [4], [9]. [11]. [12].
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The reducibility <., as well as the notion of .4-completeness, can obviously be
extended to preordering relations on . lanovski, R. Miller, Ng. and Nies [13] char-
acterize the arithmetical complexity of several preorders of interest to computability
theory, for instance showing that almost inclusion =* of c.e. sets is 2(3) complete and
<r on c.e. sets is = complete.

There is already a nontrivial literature concerning the restriction of <, to com-
putably enumerable equivalence relations (abbreviated as ceers): pioneering papers
in this regard include (in chronological order) Ershov [5]. Bernardi and Sorbi [2].
Montagna [15], Lachlan [14], Gao and Gerdes [10], Andrews, Lempp, Miller, Ng.
San Mauro, and Sorbi [1]. These papers study X{ complete equivalence relations
(also called universal ceers), and the degree structure of ceers under <.. We investi-
gate and classify the arithmetical complexity of some index sets of ceers. Throughout
the paper, we refer to some fixed universal computable numbering {R; : i € w} of
all ceers (see [1]), where “computable” means that the set {(i, x,y): x R; y}isc.e..
and “universal” means that for every such computable numbering {S; : i € w}
of all ceers, there exists a computable function f such that S; = Rygy. for all ;.
Extending results in [10], we give complete characterizations in the arithmetical
hierarchy of the complexity of the index sets {i : R; <, R} (with R nonuniversal),
{i : R; =, R}, and {i : R; =, R}: if R has infinitely many equivalence classes
then all these sets are Eg complete, whereas if R has only finitely many equivalence
classes, we have that {i : R; <, R} is [1J complete, and {i : R; >, R} (with R
having at least two distinct equivalence classes) is £ complete. Solving a problem
in [1]. we prove that the index set of the effectively inseparable ceers is I1] complete.

In the last section of the paper we consider <, on preordering relations on
w. The literature regarding the restriction of <. (as a reducibility on preorders)
to computably enumerable preorders, includes, among others, the papers Pour El
and Kripke [18]. Montagna and Sorbi [16], and Ianovski, R. Miller, Ng, and Nies
[13]: these papers are mainly dedicated to the investigation of ) complete preorders
naturally arising in logic. We prove that the preordering relation <. on ceers (viewed
as a preorder on their indices) is a £ complete preordering relation. The proof goes
through first showing that the 1-reducibility preordering on c.e. sets is a £ complete
preordering relation.

1.1. Background. The reader is referred to [20] for all computability theoretic
notions that are used, but not explicitly introduced, in this paper. For more infor-
mation on ceers, their structure under <., bibliography. and even history, our basic
reference is [1]. Given a ceer E, we say that a sequence {E; : s € w} of equiva-
lence relations on w is a computable approximation to E, if the following conditions
hold: the set {(x, y.s): x E; y} is computable; Ey is the identity equivalence rela-
tion; for all s, E; € E,.1; the equivalence classes of E; are finite: there exists at
most one pair [x]g,, [y]e, of equivalence classes, such that [x]g, N [y]eg, = &. but
[x]e,,, = [¥]E,,, (we say in this case that the equivalence relation E collapses x
and y at stage s + 1): if E collapses x and y at stage s + 1, then x,y < s; and
finally E = | J, E,. Every ceer has computable approximations; in fact we can show
(see [1]) that there exists a uniform sequence {R;; : i, s € w} of equivalence relations
such that the set {{/, x, y,s) : x R;; y} is computable, and for every i, the sequence
{R;s : s € w} is a computable approximation to R;.
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§2. Computing the complexity of index sets of ceers above, below, or equivalent to
a given ceer. Index sets of classes of ceers of natural computability theoretic interest
have been investigated for the first time by Gao and Gerdes [10]. Index sets of the
form {i : R; <. R}. {i : R <. R;}, {i : R; =. R}, for particular choices of R,
are classified in [10] to be £ complete: for instance, this is the case when R is the
identity relation on the natural numbers. In this section we completely classify all
index sets of this type. thus showing for instance (see Corollary 2.6) that if R is a
ceer with infinitely many equivalence classes then {i : R <. R;}, {i : R; =, R} are
always 22 complete, and if R has infinitely many classes and is not universal then
{i : R; <, R} is always X} complete.

THEOREM 2.1. Let R be a nonuniversal ceer with infinitely many classes. Then
(.19 <1 ({i | Ri = R} {i | Ri £c R&R; *. R}) (where (£3.119) <; (4.B)
means that for every X3 set C, there is a computable function which 1-reduces C to A.
and the complement of C to B: see [20, p. 66] for this notation).

Proor. Fix a X9 complete set S := {i | (3/)[Wy() = w]}. where g is a com-
putable function (the fact that every £ set can be expressed in this way is an easy
consequence of the proof of [20, Corollary IV.3.7]). We construct a function which,
on input 7, outputs an index of a ceer E so thatif i € S then £ =, R, andifi ¢ S
then E and R are < -incomparable. This provides an m-reduction, which can be
turned into a 1-reduction via padding.

Given i, we describe the enumeration of the ceer E based on the enumeration of
the sets W, ;) for various /. It will be clear from the construction that an index for
E can be uniformly found in .

REQUIREMENTS AND THEIR STRATEGIES. Given i, we have three kinds of
requirements:

Q[ . Wg(,"[) =w=F = R.
Nj: (VI < j)[Wy(in # @] = @; does not give a reduction witnessing £ <. R.
P (VI < k)[Wy(in) # @] = @i does not give a reduction witnessing R <. E.

Let us fix some computable priority ordering on the requirements. We first
describe the action taken by each requirement individually.

Q-requirements. A Q;-requirement acts as follows: When initialized, Q; is given
a finite set of distinct E-equivalence classes [b1]g. ..., [bs]r of numbers created due
to higher priority requirements (we will formally define a number being created by
a requirement below). Q; is also given a finite set of elements c1.....c,. Q; works
under the assumption that the classes [b;]r are pairwise distinct, and the [¢;]r
are pairwise distinct. If either of these assumptions becomes incorrect, Q; will be
re-initialized. Q; collapses all remaining elements (those created for lower priority
requirements) into one class [d ] . and, beginning with that one class, copies R, using
a computable coding function x — a(x). At every stage wherein min(w ~ Wy(;))
increases, Q; again E-collapses every new element which is created due to a lower
priority requirement, to ., and continues building its copy of R, E-collapsing codes
of elements exactly as the corresponding elements are collapsed by R. If no higher
priority requirement acts ever again and in fact {c;,...,¢,} are nonequivalent in
R. and Q; acts infinitely often (as W,(;;) = w). then we will argue that E =, R.
Whenever Q; acts, it restrains all elements created so far.
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N -requirements. An N; requirement acts as follows: We fix a universal ceer 7.
When initialized. N; selects new elements «(0).a(l) € w, and E-collapses these
elements if and only if 0 and 1 collapse in 7. If at some stage. ¢;(a(0)) and
@;(a(l)) converge, and

0T 1< ¢;(a(0) Rep;la(l)),

then N; selects a new element a(2), E-collapsing (for m,n < 2) a(m) to a(n) if and
only if m T n. If at a later stage. ¢;(a(2)) converges and

(nm <[ T m < g, (an)) R, (a(m)].

then N; selects a new element «(3). The construction proceeds as such. We will
argue that if no higher priority requirement re-initializes N;, then N; can choose
only finitely many elements {a (i) : i < k}, otherwise, we would have T <. R via
the map i — ¢;(a(i)). which contradicts nonuniversality of R. Thus, ¢; cannot be
a reduction of E to R. Whenever N; chooses an element a(k), by initialization it
restrains all elements < a (k).

P-requirements. A Pj-requirement acts as follows: Pj searches for elements x <
¥ € w so that ¢, converges on all inputs < y. ¢ (x) and ¢ () are not restrained by
higher priority requirements (so that it is allowed to E-collapse ¢y (x) and ¢ (1)),
and x R y. If such are found. then P; collapses ¢y (x) and ¢ (y) in E. If. at a
later stage, x R y, then Pj is injured and begins again. If, in fact, there are only
finitely many elements restrained by higher priority requirements, then some pair of
elements x. y will eventually be found so that x K. and either already oy (x) E o ().
or ¢, (x) and ¢ () are not restrained by higher priority requirements (since R has
infinitely many classes). But then we cause ¢ (x) E ¢k (). This contradicts ¢, being
a reduction of R to E after all. As P never minds things collapsing, it places no
restraints.

Environments for the requirements. A Q,-requirement uses a parameter y;(s) =
{c1,....cuy, and values of a finite function, alQ (x. s), which approximates the func-
tion x — a(x) described in the above informal discussion for Q-requirements. An
Nj-requirement uses a parameter a}v (x, s), which approximates the numbers a(x)
described in the above informal discussion for N-requirements. In the following, we
will often omit the superscripts Q. or N, when the exact choice will be clear from
the context. A Pi-requirement uses parameters xx(s). yx(s), which approximate
the numbers x, y, described in the above informal discussion for P-requirements.
If R is either a Q-requirement or an N -requirement, the construction also uses a
parameter p”(s) to record the elements that R wants to restrain.

ConsTRUCTION. To tackle N-requirements, we fix a universal ceer 7', with com-
putable approximations {7 }c,. At stage s, to initialize a requirement R means
one of the following:

e if R = Q. then we set y;(s). a;(x,s) to be undefined for all x; and we set
[ — X
pe(s) = &:
e if R = N;.then weset a;(x, s) to be undefined for all x and we set pVi (s) = &;
e if R = Py. then we set x4 (s) and yx(s) to be undefined.
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At stage s > 0 we say that a requirement R requires attention if either R is
initialized, or
e R = O and s is (i.l)-expansionary. i.e.. min(w ~ Wy ) > min(w
We(in).s—1). Of
e R = N, and ¢;(a;(x.s)) converges, where x is the greatest number in the
domain of a;(-, s), and

(vn.m < x)[n Tom < pj5(a;(n.5)) Rs p1(a;(m.s))].

or

° R = Pi.and <Pks converges on all z < y(s), and either x;(s) Ry yx(s) or
/R(s yk dndSOks xk ES Pk.s yk( ))

At stage s > 0 a number z is sald to have been created by a requirement R, if

e R = Q;.and z is E -equivalent to some ¢;, where y; (1) = {c¢1....,¢i,...cy), OF
to some a;(x, ), for some ¢ < s:
e R = N;, and z is E,-equivalent to some «;(x. ), for some ¢ < s

a number is new at s, if it is bigger than all numbers (that are E,-equivalent to
numbers) so far mentioned in the construction.
We are now ready to give the construction.

STEP 0. Initialize all requirements.

STEP s + 1. Let R be the highest priority requirement that requires attention
at stage s + 1. We say that R acts at s + 1. Notice that there always exists such
a requirement, as at each stage infinitely many requirements are initialized. We
distinguish the following cases. (For simplicity, when describing various parameters,
or various approximations to the equivalence relations, or to partial computable
functions, we omit to mention the stage s: thus for instance, x R y has to be read
as x K y.and so on.)

(1) If R = Q. then we take action as follows:

(a) if Oy is initialized, then let n be the number of the distinct equivalence
classes created by E. up to step s. as the result of the actions taken by
the higher priority requirements, and let {b;.....b,} be representatives
of these equivalence classes. Choose y; = (c1,. .., ¢,) to be the least (by
code) n-tuple of numbers that are currently pairwise nonequivalent in R
and define a;(¢;) = b; foreach i < n;

(b) if there exist 1 < i, j < n.,i # j, such that ¢; R ¢; (where ¢; and ¢; are
the i-th and j-th components, respectively, of y;). then initialize Q;:

(c) if neither of the previous two cases holds then:

(i) take the least number x for which a;(x) is not defined, and define
a;(x) to be a new number;
(ii) for every z < a;(x) such that z £ b; for each b;, and z E a;(y) for
each existing @;(y), then E-collapse z and «;(0);

(iii) E-collapse existing a;(y) and a;(z) if y R z:
put into p2 (s + 1) all numbers b;. 1 < i < n, and a;(y). y < x. where x is
the greatest number for which «;(_) is defined.

(2) If R = N; then we act as follows:

(a) if N; is initialized then we appoint new elements a;(0) and a;(1):
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(b) otherwise, let x be the greatest number such that a;(_) is defined: for
every y.z < x. E-collapse a;(y) and a;(z) if y T z; finally. appoint a
new a;(x + 1);

putin pYi(s + 1) all numbers a; (i), i < x, where x is the greatest number

for which a;(_) is defined.

(3) If R = P; then we act as follows:

(a) if Py is initialized then appoint x; and yi so that {xj, y) is the least
pair {x, y) for which x < y, x Ry, and {x., y) > {xx (). yx (¢)). for every
t<s:

(b) if xi R yi and @y (xx) E @i (yk ). but both ¢ (x ) and @i (yx ) are already
E-equivalent to restrained elements, i.e., elements belonging to the set

S(s) := {z : (3AR)[R has higher priority than P, & z € p”™(s)]}

then initialize Py
(c) if xx K i and @i (xi) E @i (yx). and at least one of @ (xx) or ¢ (yk)
has not as yet been E-collapsed to a restrained element, then E-collapse
or (i) and ey (yi):
(d) if x; R yy. then initialize Py.
After acting, end the stage. and initialize all lower priority requirements.

VERIFICATION. We now check that the construction works.

LEMMA 2.2. If every higher priority requirement acts only finitely often, then Py
acts only finitely often.

PrOOF. Assume that every higher-priority requirement acts only finitely often,
and suppose, towards a contradiction, that Pj acts infinitely often. Let s be the last
stage at which a higher-priority requirement acts. Let .S be the set of all elements
E-equivalent to some element in S(s) which is the finite set restrained by higher
priority actions by stage s, as in (3b) of step s + 1. Thus S is the union of finitely
many E-equivalence classes. For P to act infinitely often, we must have ¢ total,
and by (3a) and (3d)., we test all possible choices of x.yx. with x; < y; and
xx K yy: for each one of these pairs (by definition of Pj requiring attention) we
have that o (xi). ok (vk) € S. and ¢ (xi) E i (yx). But this would imply that
there exists a 1-1 function from the infinitely many distinct equivalence classes
of R to the finitely many equivalence classes in S. Therefore, we must have that
either P eventually does not require attention because @, is not total; or we
find xi. y such that x; K yi. @i (xk). ok (i) € S. and @i (xx) E @r(x¢): or (3c)
applies. —

LemMA 2.3. If every higher priority requirement acts only finitely often, then N
acts only finitely often.

PRrOOF. Suppose, towards a contradiction, that N; acts infinitely often. Let s be
the last stage at which a higher priority requirement acts, i.e., N; is initialized for
the last time at stage s. We consider the assignments of a; (k) after stage s. Then
for each n, m,

nT m< @j(a;(n)) Re;(a;(m)).
Thus the function i — ¢;(a;(i)) gives a reduction of 7 to R. This yields a
contradiction since R is nonuniversal, showing that N; acts only finitely often.
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LemMA 2.4. Suppose that Wiy is finite for each |. Then E is <.-incomparable
to R.

ProoF. By assumption, each Q; acts only finitely often, so by Lemmas 2.2 and 2.3,
every requirement acts only finitely often.

We now argue that since each requirement acts only finitely often, each suc-
ceeds. Since every requirement acts only finitely often, we can consider the final
assignments of «;(k) for the requirement N;. Either ¢; is not total or for some
ay(n). a;(m).

aj(n)E aj(m)<nTm,
but not
nTm< gj(a;(n)) R gj(a;(m)).
Thus ¢; is not a reduction of £ to R, and N; is satisfied. Since P; acts only finitely
often and R has infinitely many classes, either ¢y is not total or there are x;, y; so
that x; R yi but o (x1) E @i (yx). Thus ¢y is not a reduction of R to E, and Py is
satisfied. —

LemMA 2.5, Suppose that for some I, Wy(; ;) = . Then E =, R.

PrOOF. Let O be of highest priority so that W,(;;) = w. By Lemmas 2.2 and
2.3, every higher priority requirement acts only finitely often. Consider the least
stage ¢ at which every higher priority action stops acting, giving n distinct equiv-
alence classes. Further, consider a stage s > ¢ where Q; has found (through (1a)
and (1d)) the appropriate choice of n R-non-equivalent elements, thus choosing
the final y;. After this stage s, every time Q; picks a number «;(x), then this is
the final value of @;(x, s), and Q; creates a class [d], with d = a;(0), which con-
tains all elements previously created for all lower priority requirements, and it will
also contain all elements later created for lower priority requirements (when Q;
acts again, it will E-collapse them to d). We now provide reductions witnessing
that £ =, R.

The map a;(—) gives a reduction of R to E. By the action Icii, this is onto the
classes in E, so the map sending x to the first y so that we see x E a;(y) yields a
reduction of E to R. —

COROLLARY 2.6. The following hold:

(1) If R is any ceer with infinitely many classes, then {i | R; =, R} is £3 complete.

(2) If R is any ceer with infinitely many classes, then {i | R; =, R} is £3 complete.

(3) If R is any nonuniversal ceer with infinitely many classes, then {i | R; <, R} is

29 complete.

) If R is universal, then {i | R; <. R} = w, thus is decidable.

) If R has only finitely many classes. then {i | R; <. R} is 19 complete.

) If R has finitely many. but at least 2, classes, then {i | R; =, R} is £3 complete.

) If R has only one class. then {i | R; >, R} = w, thus is decidable.

) If R has finitely many, but at least 2. classes, then {i | R; =. R} is d-X5
complete (i.e., {i | R; =. R} is the intersection of a X3 and a T1 set, and if X is
any set which is the intersection of a3 and a 119 set, then X <; {i | R; =. R}).
Proor. Itis straightforward to check that the proposed sets lie in the appropriate

level of the arithmetical hierarchy. To show hardness, we prove the items one by

one.
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(1) There are two cases. If R is universal, this is exactly Theorem 5.1 in [1]. If R
is nonuniversal, this follows directly from the previous theorem.

(2) If R is universal, then the claim follows from (1). If not. then it follows from
the previous theorem.

(3) This follows from the previous theorem.

(4) Trivial.

(5) Note that if R has k classes, then E < R if and only if E has < k classes. It
is easy to show that having < k classes is a I1 complete property: E has < k
classes if and only if

(Vxo.....xx) (31, j < k)[i # j&x; E x;].

Let us now show that this property is I3 hard. It is known that Inf = {i |
W; infinite} is T19 complete: it is easy to see that there is a computable function
f such that, for every i, E ;) is a ceer satisfying:

i€lnf= [O]E,(,) =,
i ¢ Inf = (3x)(Vy = x) [[V]g,, = {(v}]

(6) If R has k > 2 classes, then E >, R holds if and only if E £, S. where S
has k — 1 classes. Thus, by (5), this is £5 complete.

(7) Trivial.

(8) By combining the arguments in (5) and (6). Note that if R has exactly one
class. then {i | R; =, R} = {i | R; <. R} is I1$ complete by (5). =

83. The index set of the effectively inseparable ceers. A pair of disjoint sets A, B
is effectively inseparable (shortly, e.i.) if there exists a partial computable function
v (called a productive function for the pair) such that, for every pair of c.e. indices
u,v,

AW, &B W, & W, n W, = =wuv)| &wy(u.v)¢ W, v W,.

It is not difficult to see:
LEMMA 3.1. Every e.i. pair of c.e. sets has a total productive function.

Proor. The proof is similar to the one showing that every productive set has a
total productive function, see e.g., [20, p. 41]. —

A ceer R is called effectively inseparable (shortly, e.i.), see [1]. if every pair of
distinct equivalent classes [a]g. [b]r is ed. If indices for productive functions for
the various pairs of equivalence classes can be found uniformly (i.e., there exists
a computable function g such that, for every pair a.b. if a K b then Pg(ap) 1S @
productive function for the pair [a]g, [p]r). then R is said to be uniformly effec-
tively inseparable (or, shortly, u.e.i.). [1]. It is proved in [1] that the index set
of the u.ei. ceers is £ complete. and is posed as an open question whether the
index set of the e.i. ceers is T1 complete. In the following theorem we answer this
question.

THEOREM 3.2. The index set of the e.i. ceers is T complete.

PRrOOF. It is straightforward to check that the index set of the e.i. ceers is I1J.
Now. every IT§ set S can be described as S = {i : (V,j)[W,(; ) is cofinite]}: this is
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an easy consequence of the fact that the index set {i : W; is cofinite} is £ complete
(see e.g.. [20, p. 66]). Therefore, we can fix a recursive function g(i, j) so that
S = {i | (Vj)[Wg( is cofinite]} is a IT] complete set. We now produce a function
which, on input i, uniformly produces a ceer E so that E is e.i. if and only if i € S.
In what follows, we describe the enumeration of £ for a given i.

Given a set X let X2 denote the collections of all subsets of X consisting of
exactly two elements. We fix a pair of recursive bijections m : w[? — @ and
ny : (2w)? — . where 2w is the set of even elements of w. We then define
n: ol - wsothat n(x) = no(x) if x € 2w)P, and n(x) = m(x) otherwise.

REQUIREMENTS AND STRATEGIES. We have the following requirements, where
a<b.ie. {a.b}ewl?
Pf’b . 90) S Wetim(an)) O Wetin(an)) & a E b = ff’b
is a productive function for [a]g, [b]E.
(where f ;”b is a computable function being constructed by this requirement)
NP 2[.o0) & Wymar)) O Wetin(ap)) & a.b € 20)P = o;
is not a total productive function for [a]g, [b]E.

The requirements are partitioned, in the obvious way, into P-requirements and
N -requirements.

REMARK 3.3. Ifi € S then for every . Wy ;) is cofinite, and thus for every a # b
there is j, 5 such that [j,p5. ) S We(ims)) © Wein(ar)): hence if « £'b, and we

satisfy P;’/,‘i ", where a’ and b’ are the least elements in the E-equivalence classes of

a and b, respectively, then we guarantee that 1
pair [a]g. [b]E.

Vice versa, if i ¢ S. then there is r such that W, is not cofinite, nor is any
We(iry 0 We(ir). and thus if a.b € 2w, a # b, are such that n(a.b) = r. then
for every j. one has [j.00) & Wy(ims)) N We(in(an))- In this case, if we satisfy

a' b’

5., 1s a productive function for the
a .

all N ;"b -requirements, then we guarantee that the pair [a]g, [p]£ is not effectively
inseparable.

We will never cause nonequal even elements «,b to become E-equivalent,
and in fact each even number will be the least element in its equivalence class.
N ;"b-requirements will only pose restraints asking that two elements not become
equivalent, but will never cause E-collapse.

We fix any priority ordering of order type w in which if j < j’ then P;"'b < P;.’;b.

We first describe the actions of each requirement separately. The reader should
think of a. b as the least numbers in their respective equivalence classes, and a # b.

P-requirements. A P}I‘b-requirement performs the standard effective insepara-
bility strategy: it builds a computable function f = f 'Cf_b as follows. For the least
(by code) pair u, v, on which f (u,v) is still undefined, define f (u,v) to be an odd
number y larger than any number considered so far: if y is observed to be enumerated
into W,. cause yE b; if y is observed to be enumerated into W, then cause yE a. The
strategy for P_;”b acts every time the least element of [ /. 50) \ W (im(ab)) O We(in(ab))
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enters Wy (im(as)) N We(in(ap))- 1-6.. when there is evidence that eventually [ /. c0) <
Wetim(ar)) O We(in(ap)): We say that in this case the strategy P;l‘b takes the infinite
outcome; otherwise P}"b takes the finite outcome. It is clear that either P}"b takes the
infinite outcome infinitely many times (we say that in this case that P}"b has outcome
o0), or from some point on, P;’*b always takes the finite outcome (we say that in this

case that P;’*b has outcome f).
We summarize as follows:

outcome o : [/, 0) € Wy(im(ap)) N We(in(ab)):
outcome f: [/.90) & Wy(imar)) N We(in(ap))-

N-requirements. An N;”b -requirement acts only if, and immediately after, P;."b
has taken the finite outcome, and its action is as follows: Choose a pair u, v so
that we (via the Recursion Theorem) control the enumeration of W, and W,,. Let
W, enumerate [a]g and W, enumerate [b]g, and wait for a stage when ¢;(u.v)
converges to a value, say y. If y € [a]g U [b]£. then the requirement does nothing
further. Otherwise, we distinguish:

CaSE 1: y is an odd number chosen as f;.’,/‘b/(u’, v’) for some ', a’, b’ with a’, b’
least numbers in their equivalence classes, and a’ # a (if «’ = a and b’ # b. the
requirement acts symmetrically). In this case, we enumerate y into W,. We place a
restraint for y to never enter [a].

CASE 2: Not case 1. In this case, we enumerate y into W, and place a restraint for
y to never enter [b].

Every time the least element of [/, 0) N Wy(imn)) N We(in(as)) enters
Wetim(any) O We(intany) - N will beinjured. soif [/, 90) © Wy (im(as)) O We(in(ab))-
then N will not prevent effective inseparability of the pair [«], [b].

The Recursion Theorem. In carrying on the strategies for the N-requirements, we
use indices that we control by the Recursion Theorem, or, more precisely, we make
use of a computable sequence of fixed points. Equivalently, we fix a single index
e so that we control ¢, by the Recursion Theorem, and we then take a countable
sequence of indices (¢;)ee for the columns ¢, (j) = . ({i, j)). We can then make
choices about convergence and values of each of the ¢,, in any order we wish, as we
are simply controlling the single function ¢,.

Alternatively, since a computable sequence of indices can be viewed as the range of
a computable function /', a formal justification to this argument is also provided by
the Case Functional Recursion Theorem, see [3]: see also [17] for useful comments
about this theorem.

Lemma 3.4 (Case Functional Recursion Theorem). Given a partial computable
Sfunctional F, there is a total computable function f such that, for every e, x,

F(f.e.x) =@g@)(x).

The tree of strategies. We organize the construction on a tree 7, which is a
set of strings on the alphabet {g, o, f}. With respect to the above discussion of
requirements and their outcomes, it is convenient to use also an additional outcome
g. which for a requirement P}"b or Nj‘-l‘b, will record the fact that at least one among
a, b is not the least number in its equivalence class.
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The tree 7', and the function
R : T — Requirements,

assigning requirements to the nodes of 7', are defined as follows, where 4 denotes
the empty string.

DEerINITION 3.5. /€ T, and R(4) is the highest priority P-requirement.

e Ifg € T. and R(s) = P}l‘b is a P-requirement, then ¢ (o) € T, for o €
{g. 0. f}:

— all requirements P}’;b for j' > j are declared to be cancelled by ¢~(0). (Since
if [/.90) S We(im(ar)) O Welin(ap))- then [j.00) S We(im(an)) N We(inab))
forall j/ = j, thus the requirement P}‘;b need not be considered again below
o {(0).) R(c"{0)) is the highest priority P-requirement not assigned to any
7 € ¢ and not cancelled by any t < ¢ (0).

— If a.b are both even. then R(c"(f)) = N ;”b : otherwise R(c"(f)) is the
highest priority P-requirement not assigned to any 7 € ¢ and not cancelled
by any 7 € 0.

— R(a7{g)) is the highest priority P-requirement not assigned to any t < o
and not cancelled by any 7 < o.

e If o € T.and R(0) is an N-requirement, then ¢~ (f) € T (by construction, a, b
will be the least elements in their respective equivalence classes, so we do not
consider the g outcome); R(a (f)) is the highest priority P-requirement not
assigned to any 7 € ¢ and not cancelled by any 7 € o.

e No other string on {oo, f, g} lies in 7.

The elements of T are ordered by the lexicographical order <, generated by the
ordering on the alphabet, for which g < .o < f: thus ¢ < 7 if ¢ < 7 or, for the least
i such that g, 7 are both defined on i, and o (i) # 7(i), we have that ¢ (i) < 7(i): in
this latter case we also write ¢ <z, 7.

The environments of the strategies. Notice that the function R, assigning require-
ments to nodes, is computable. For every o, we also call R(o) a strategy. Each
strategy has several parameters: if R(g) = P}"b then it uses the parameter f,

(approximating the function f ;”b of the above informal description), whereas if
R(o) is an N-requirement, then it uses the parameters u,(s),v,(s). and y,(s)
(approximating u. v, y of the above informal description).

THE CONSTRUCTION. At stage s we define a finite string d, of length |d;| < s, which
approximates the true path at stage s. The string J; is defined by substages: at sub-
stage n, we define g, = d; [n. A number is new at any substage of stage s > 0 if it is
bigger than all numbers already E-collapsed to numbers so far mentioned in the con-
struction. If ¢ = 0, and R(¢) = P}, isa P-strategy. then a stage s is g-expansionary
if for no r < s did we have ¢ = &,, or min ([j. ) \ (Wg(im(ab)).s O We(in(ab)s))
has increased since the last stage ¢+ < s which was o-true, i.e.. at which ¢ < J,.
A number z is created by R(o) at s, if z is in the range of f,: or, z is appointed
as uy(s) or vs(s), or y,(s). At stage s, we initialize a strategy R(o) if we set
fos = & and we set u,(s), vy (s), and y,(s) to be undefined. If y has been created
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by R(o) = P;"b, by stage s. then y is active at s if R(c) has not been initialized
after y has been created, and R(c) has not as yet E-collapsed y to either a or b.

STAGE 0. Initialize all strategies R(a).

STAGE s + 1. Proceed according to the following substages (as in the proof of
Theorem 2.1, when describing the various parameters, or the various approxi-
mations to c.e. sets, partial computable functions, or £, we omit mentioning the
stage 5):

SUBSTAGE 0. Letd,. 10 = A.

SuBsTAGE n + 1. If n = s then go to next stage. Otherwise, take the first relevant
case that applies below:

(1) Suppose that R(a,) = P;-"b.

(a) If one among a. b is not the least element of its E-equivalence class, then
let o1 = 0,7 (g).

(b) If s is a o,-expansionary stage, let g, = g, (00). Then extend f,, by
considering the least (by code) pair (u, v) on which f,, isnot defined, and
define f,, (u,v) = y, forsome new odd y > a,b. Also. if [, (u',v") = )’
has been already defined. and up to now y’ has been active, but currently
y' € Wy u Wy, then

(i) if y’ € W, then E-collapse y’ and b:
(i) if y’ € W, then E-collapse 3’ and a.

(c) Otherwise, let g, 1 = a, (D).

(2) If R(o,) = N/“b then let 0,41 = g, {f). We act according to the first

applicable case among the following:

(a) R(oy,) is initialized: assume by the Recursion Theorem that u and v
are indices that we control, such that u and v are new numbers; let
Us(s + 1) =u, v,(s +1) = v;

(b) ¢;(u.v) converges to some number y (where u = u,(s). v = v,(s), and
we define y, (s + 1) = y):

(i) if s + 1 is the first g,-true stage at which ¢, (u,v) converges. then
end the stage (thus initializing all strategies of lower priority).

(ii) if y is E-equivalent to some active f.(u’,v’) created by R(r) =
P4 with () < g, and {a’.b'} # {a.b}. then if @’ # a.
enumerate y into W,,: otherwise (i.c.. a’ = a.butb’ # b), enumerate
y into W,: (notice that by the way requirements are assigned to
strings in 7', there is no t7(0) < g, with R(z) = P;l;b, any j').
Also, enumerate [a]g into W, and [b]g into W,. '

(iii) if y € [a]g U [b]e then enumerate [a]g into W,. and enumerate
[b] into W,.

(iv) otherwise, enumerate [a]g U {y}in W, and [b]g in W,.

At the end of the stage, initialize all strategies R(7), with © = ;4. Define E,
to be the least equivalence relation generated by E; plus the pairs E-collapsed at
stage s + 1. This ends Stage s + 1.

Finally, let

E = E; :UES.
S
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THE VERIFICATION. The following holds:
LEMMA 3.6.  There exists an infinite path tp through the tree T such that, for every n,

tpfn = liminf J; fn,

(where the im inf is taken with respect to the lexicographical order of strings of T).
and tp I n eventually does not end the stage.

ProoF. The proof is by induction on n. Suppose that the claim is true of n,
and let sy be the least stage such that there is no o-true stage s > sy for any
o <r tpln, and tpln does not end the stage at s: thus so > n. If there is a
stage s1 = 50 such that tpln~(g) < Jy,, then for every tpln-true s > s; we have

n~(g) < dy. and if s > n + 1 then tpln~(g) does not end the stage. and
clearly tpln + 1 =tpln~(g). If for almost all true tp [ n-true stages s > sp we have
tn~{fy € d;., then tpltn + 1 = tpln~{f), and tpln + 1 ends the stage at most
twice atany such s: namely, if s = n + 1. and when we act through (2bi) of the con-
structlon Otherwise there exist 1nﬁn1tely many true tp [ n-true stages s > so at which
tn~(o0) € d,:thustpln+1 = tpln~(w)yandtpn+1doesnotend the stage at any
such s>n+1. —

LemMA 3.7. Let o be so that ¢ < tp and a~{(gy & tp. If ¢ is an N;"b or P;"'b
strategy, then a and b are the least numbers in their respective equivalence classes.

Proor. Immediate. —

LEMMA 3.8. At every stage s, in any equivalence class [c¢]g, there is at most one
element which is even or active. If, at some stage s where ¢ is not new, the class [c],
contains no even or active element, then for all t > s, [¢]g, contains no even or active
element. Similarly, if at some stage s where c is not new, [c|g, contains no element
active for requirement P;”b, then at no stage t > s does || contain an element active

for requirement P;”b.

ProOF. We prove the first claim by induction. This is clearly true at stage 0 where
every equivalence class has size 1. When we activate a new number, we choose it to
be a new odd element, thus is inequivalent to any even or active number. When we
collapse classes [¢] and [y], it is because some element y’ in [y] is active and equals
fo(a'.b") for some a’ € [a] and some b’ (or symmetrically, it equals f,(c’, a’) for
some a’ € [a] and some ¢’). We then make y’ inactive and collapse [y] to [a].
Thus there is still at most one even or active element in the class [a]. The second
statement is proved analogously: Any element which becomes active is new, thus is
not E-equivalent to ¢, and the property of not containing an even or active element
is preserved when a second class collapses with [c¢]. The last statement is similar.

LemMA 3.9. Every even number is the least number in its E-equivalence class.

ProOF. By the previous lemma, no two even numbers are ever equivalent.

We now show that if a is even, then « is the least number in its equivalence class.
By the previous conclusion, it is enough to show that for every s, and odd number
y, if y is E-collapsed to a at s, then y > a. Assume that the claim is true of all
odd numbers y’ already E-collapsed to a at stages s’ < s. An odd number y can be
moved to [a]g, at s, either because (1bi) or (1bii) for some P}“b, but then y > a, by

choice of y > a, b in (2); or y is E-collapsed, through (1bi) or (1bii) for some P;’/l’bl,
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to some some odd number y’ previously E-collapsed to «. but then by induction
and, again, choice of y by (1b) of the construction, we have y > )’ > a. -

LemMA 3.10. Ifi € S then for every a.b. if a E b, the pair [a]g. [b]E is e.i.. On the
other hand. if i ¢ S then there are even numbers a, b such that Wy(; y(a»)) is co-infinite,
and the pair [a]g, [b]E is not e.i..

ProOF. Ifi € S, then (see Remark 3.3) for every a. b there exists a minimal ;. such
that [/, 0) S Wyiman)) O We(in(ab))- Now. if a E'b. and a. b are the least numbers
in their respective equivalence classes, then there exists # such that R(tp|n) = P;"b
andtpl(n+1) = tptn~(o0). (Notice that, under these assumptions, forevery j’ < j
there is a node ;- such that R(z;/) = P;’;b, and 7;,(f) < tp. and for every j’ > j
there is no node 7 < tp such that R(z) = P}’;b.) It is clear by the construction that
fiptn 18 @ computable function witnessing that the pair [a]g. [b] is ... Thus every
pair of distinct E-equivalence classes is e.i., as on the true path the corresponding
requirement relative to the least numbers in the classes, is satisfied.

Assume now thati ¢ S. Then, by surjectivity of the function ng, there exists a pair
a. b of distinct even numbers such that. forevery j. [j. 0) & Wy (iman)) O Wein(ab))-
By Lemma 3.9, for every j there is a (unique) node 7; < tp such that R(z;) = P;."b
and 77 (f) < tp. We show that, for every j, ¢; can not be a total productive function
for the disjoint pair [a]g, [b]g. Let so be the least stage such that there is no 7-true
stage s > s9 for any © <, 7} {f). and no = < 7; ends the stage after so. At the
least 7 (f)-stage following sy we appoint the last choice of u = u - <t>(s), and

! J
U = v~ (s). If we do not find y as in (2b) of the construction, then ¢, is not
total. So assume that ; (1. v) converges to y, which is the final value of y_~ <f>(s).
J
We claim that [a|g < W,. [b]lg < W,, W, n W, = &, but y € W, u W, which
implies that ¢; is not a productive function. Now, it is clear that [a]g = W,.
[b]g < W,. since there are infinitely many stages s at which we enumerate [a]g,
into W, and [b]g, into W,. Itis also clear that y € W, u W,. It remains to see that
W, n W, = ¢&. Assume that R(rj“<f>) enumerates y into W,: the case in which

R(z; (f)) enumerates y into W, is similar.

By initialization in (2a) and Lemma 3.8. the number y will never be equivalent
to an element active for a t > 7} (f).

For y to eventually become E-equivalent to a or b, it must be equivalent at stage
so to some active element d for some R(7) = P;.’,/‘b/ with t~(c0) € 7;. By our use
of the outcome g, a’, b" are the least numbers in their equivalence classes (and so
are a and b), and since there is no such = with t~(w0) < 7; and R(z) = P;-’;b, any
J'. we may conclude that {a’,b'} # {a.b}. If ' # a. then R(7; (f)) enumerates
y € W, contrary to assumption. Therefore « = @’ and b # b’. It d remains active
at all future stages, then y cannot be equivalent to any even number by Lemma 3.8.
Otherwise, y collapses with a’ or &’. In either case, it cannot in the future collapse

with b, since all three of a’, b’, b are the least elements of their equivalence classes
and b ¢ {a’,b'}. =

This concludes the proof of the theorem. —
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It is proved in [1] that the class of u.e.i. ceers is properly contained in the class of
e.i. ceers (by showing that there is an e.i. ceer that is not universal, whereas all u.e.i.
ceers are universal). This conclusion is also a consequence of the previous theorem:

COROLLARY 3.11. The u.e.i. ceers form a proper subclass of the e.i. ceers.

Proor. The claim follows immediately by the fact that the index set of the u.e.i.
ceers is X3, whereas the index set of the e.i. ceers is I1] complete. —|

84. The complexity of <, itself. An obvious generalization of computable
reducibility from equivalence relations to preorders is the following: Given pre-
orders R, S on the natural numbers, we say that R is computably reducible (or,
simply, reducible) to S (notation: R <. S) if there is a computable function f such
that, for all x, y, x R y if and only if f(x) S f (). Recently Ianovski, Miller, Nies
and Ng [13] have used this reducibility to classify the complexity of several preorders
which appear in mathematics and computability theory. For instance they show that
the preorder <. where i < j if W; <7 W;. is £} complete.

In this section we prove that the reducibility <. on ceers induces a £ complete
preorder on numbers, where we write i <. j if R; <. R;. This will follow from
the next result, which in turn shows that the preordering relation <; on numbers
induced by 1-reducibility on c.e. sets (for which we write i <; j if W; <; W;) is 2‘3)
complete.

THEOREM 4.1. <y is a £ complete preorder: in fact, for any given X3 preorder <.
there is a computable function f so that W ;) is infinite for all i and

(Vi. )i < j = Wray <t Wepl-

PrOOF. It is straightforward to check that <; is 9. Let < be a X} complete
preorder. We construct a uniform enumeration of V,(= W) for each a as
follows. Since < is X9, as in the proof of Theorem 2.1, we can fix a recursive g so
that

a<b<e (Elk)[Wg(u,bik) = a)]

REQUIREMENTS AND THEIR STRATEGIES. We have requirements:
0 We(ijuy) =@ = Vi <1 Vi
Pfj c (VI < k)[Wyi 1y # @] = [@x does not m-reduce V; to V;]:
I : the set V; contains at least k elements.

Let us fix a priority ordering on the requirements. We now outline the strategies
to meet the requirements.

. k . . k .
Q-requirements. A Q;;-requirement builds a computableset A7 ; as follows: when-

ever min(w . Wy(; ;1)) increases, it adds a new element a to Aff j'
¥.(m). where we write af; (n) for the n'™ element
of Af{ ]) and some n < m is enumerated into V;, then the strategy enumerates

af; (n) into V. o, restrains lower priority requirements from putting af[ (n) into
V'; without also putting 7 into V;, for each n < m. As such, if there are infinitely

many stages where min(w ~\ Wy; ;«)) increases (and no higher priority requirement

ruins the coding). then n — a¥ ;(n) is a l-reduction of V; to V;.

. At such stages, if
this is the m™ element (i.e.., a = a

https://doi.org/10.1017/js1.2016.26 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2016.26

1390 URI ANDREWS AND ANDREA SORBI

P-requirements. A P{‘j-requirement acts as follows: to diagonalize and ensure
that ¢y 1s not an m-reduction, we pick x larger than any element mentioned before.
We wait for ¢ (x) to converge. If it converges to an element which lies already in V.,
then we restrain x out of V;. If it converges to an element not restrained out of V'; by
any higher priority requirement, we enumerate ¢y (x) into ¥; and do not enumerate
x into V; (again, we place a restraint against this). We now suppose that ¢y (x) is
restrained out of V; for a higher-priority requirement: suppose it is restrained due
to being a witness chosen for a higher priority P-requirement. Then P¥ i simply
enumerates x into V;. If. later. ¢4 (x) is enumerated into ¥, then that higher-
priority P-requirement will have injured Pk which we allow. Now suppose o (x)
is restrained due to belng in the set Ak for a higher-priority Q <—requ1rement.
Suppose it is the n'" element of the set A b Llen o (x) = alk,j( n). and n # xor
i’ # i. We then put ¢, (x) into V; and n into V. and we restrain x out of V;. Ina
subsequent paragraph we will analyze in more detail how P{‘j interacts with several
higher priority requirements, and how to deal with the case n = x and i’ = i.

I-requirements. An I’ requirement simply selects new unrestrained elements and
enumerates them into V; to ensure V; has size at least k.

The environments. At stage s of the construction, we use several parameters.
A Q-requirement Q uses the parameters 4% i (5). al ;(n,s), approximating respec-

tively the set A% and the witness, coding whether ornotnisin V;, asin the informal

description of the strategy for Q, ;+ in other words, the mapping n ak (n,s)
approximates a computable function that I-reduces V; to V;. After the last ini-
tialization of Qk (if eventually it stops being re-initialized). whenever we define

af;(m.s). for some m. then this will be also the last value af,(m) = af;(m.s).
Notlce that without loss of generality we may assume

n<ak(ns)

A P-requirement P,k ; uses the parameter xi_,j (s). which approximates the witness x,
as described in the above description of the strategy for P¥ ;. Foreachi, j. k. P{f ;also

uses a parameter Slk ;(5). which is a finite set of numbers representing the restraint
that these numbers not enter V;. For every i, in the construction below we build V;
in stages, so that {V;; | s € w} is a computable approximation to V;.

Interaction of Pf ; with more than one requirement. We now need to analyze in
detail what happens when we want to act for P’V at a stage when ¢y (x), with
X = x, s has not as yet been enumerated into V. and in fact is restrained out of
V; for a higher-priority requirement R. Assume that ka( ) converges to, say, y. If

R = Pk0 for some iy, ko, and we have that y = xk 1,+ then, as already observed,
the conﬂrct is just solved by priority: we enumerate x in V;, and if R acts, then R
initializes Pf -

The problematic case is when there are ji, k), and y;, such that R = Qfl" ;- and
y = af]"i ;(»1): then we are able to act as desired, i.e., enumerate y into V;, but

at the same time keeping correctness of al;l"_’h (y1). only if there is no restraint in
enumerating also y; into V. '
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Now in turn, a restraint on y; can have been put either by a higher priority Pll‘l‘ i

if y; = x1 but then again the conﬂlct is solved, as above, by priority; or, y; is

jl i’
restrained by a higher priority Q] y+ i y1is of the form y; = a/‘z,n ().
This suggests the following definition: o

DEerFINITION 4.2. Define the sequence yg, yi,..., V;, ... by steps:

STeP 0: Let ygp = y, and jo = j.

STEP 1: If there is no restraint on yy, or there are unique iy, k¢ such that yo = x;‘r‘: o
then y; is undefined; otherwise there exist unique j;. k(. y1 such that y, = a jl. o ().

STEP h + 1: If there is no restraint on yy,, or there are unique iy, k; such that
= x]; 4, then yj 1 is undefined: otherwise there exist unique jj; 11, kj. ys+1 such

kl
that y = a;i, j, (V1)-

Notice that at each step of the above inductive definition, the various disjuncts
are exclusive: this claim (and the claims on uniqueness of jj. iy. kj. kj,) are justified
(see Lemma 4.4) by the fact that strategies for different requlrements use disjoint
sets of witnesses and numbers.

LEmMA 4.3. The sequence yg, y1, ..., Vp, ... IS finite.
Proor. For every r, if
k]
Yr=4j (Yre1)
then y,;1 < y,. Thus the sequence must terminate. -
As currently y ¢ V;. and assuming correctness of the various functions a];"ir ()
relative to higher priority requirements, we have that. for every r, y. ¢ V.. So the

strategy for P in relation to restraints posed by higher priority requirements is the
following:

(1) if the last entry of the sequence is y;, with y;, € S /i where P i+ has higher
priority, then enumerate x¥ jinto Vi we hdvex j € V,, buty = ka( ) EV
unless Pk// , acts and places yp into V., but in th1s case all requlrements of

/, i+~ including P, . are initialized.
. kil
(2) %f the last ent'ry of the §equenc§ 1s. Vil Wl.th = aj,j’%jh.(yhﬂ) where yj,1
is not restrained by higher priority requirements and either j,,; # i or
Vel # xffj, then enumerate each y, with r < 4 + 1 into V;,. We have, as

lower priority than P,

desired. y = @i (xf;) € V;. but xf, ¢ V;: our action has not injured the
higher priority requirements (in this case, only Q-requirements) since all
relative 1-reductions have been corrected, having (for all r < /)

k,
Yry1 € Vi/‘+l And aj,/+|<j,‘(yr+1) =y ev;.
In this case, we keep x - in Sk to restrain lower priority requirements from
ever causing x/; to enter V.

(3) if the last entry of the sequence is ;4.1 with yh = i‘/’H 5 (Vn1) where jpy1 =

i and y,,.1 = x¥.. then we cannot keep x ; out of V; while enumerating y

ij’
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into V;, due to higher priority Q-requirements. In this case, Pk- adds xk
to Sk and then wunassigns x (and will thus choose a new x* when actlng

next). We will argue below, usmg the fact that < is a preorder, that if xi, 1
unassigned infinitely often in this way, then i < j.

CONSTRUCTION. At stage s + 1 we may enumerate new elements into some of
the sets {V;; : i € w}, thus obtaining their new approximations { V; s+ : i € w}. We
may also update the definition of some of the parameters. It is understood thatif V.
or a parameter, is not updated then its value is the same as at the previous stage.

At the end of a given stage s, we may inilialize a requirement R: For this, if
R = QF,. then we set A¥;(s) = (. and each af; (n. s) to be undefined: if R = Pk
then we set xu( s) to be undeﬁned and S,’fj( s)=d.

We say that a requirement R requires attention at stage s > 0, if R has not acted
since last being initialized, or

(1) R = Q and s is (i. j. k )-expansionary. i.e.. min(w\ Wy ;1)) > min(w ~
We(ijk). z) where £ is the last stage where Q acted: or
(2) R = Pf; and either xf;(s) is not defined or gok,s( xf;(s)) converges and

xFi(5) € Vig < prs(xf;(5)) € Vi
At odd stages, we take care of P-requirements and Q-requirements. At nonzero
even stages, we take care of the /-requirements.

STAGE 0. Initialize all requirements.

STAGE 25 + 1. Let R be the least P-requirements or Q-requirement that requires
attention. (Notice that cofinitely many such requirements have never acted.) We say
that R acts at 25 + 1. For simplicity in the following, when writing down the various
parameters, we do not explicitly mention the stage s.

(1) If R = Of;. then pick a new element @ and place it into 4} : if @ is the m-th
element of 45 ; in order of magnitude then define a = af;(m). Foralln < m.
if n € V;. then enumerate af; (n) into ;.

(2) If R = P, then
(a) if x . is not defined, then define it to be a new element and add xk to

sty:
(b) if @i (x,k ;) converges and or (xk ;) ¢ V. then consider the sequence
Y0: V1« -s V- .. of Definition 4. 2 (approx1mated at stage 2s + 1)
(i) if the last entry of the sequence is y;, = xk, ;o with y, € S ;» Where
,, i has higher priority, then enumerate xi_,j into V;, remove x,k i

from Sk and initialize all lower priority requirements;

(ii) if the last entry of the sequence is yy4q with y;, = ath )
where j, | #i0ry,y ) # x ., then enumerate each y, withr < h+1
into V;, and initialize all lower priority requirements;

K}

(iii) if the last entry of the sequenee is ypy1 wWith y, = a;! . (yas1)
where jj41 = i and yj4; = x};. then unassign x/ .

Go to Stage 2s + 2.
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STAGE 2s + 2. If s = {(i.k), and V; has less than k elements, then choose new
numbers and enumerate them into V;, so that the set has at least k elements.

This ends the construction.

VERIFICATION. It is left to verify that the construction works.

The following Lemma observes that in case (2bi), there is never any injury to
enumerating x{f ; Into V; and in case (2bii), there is never any injury to enumerating
the y,. into V..

LemMA 4.4. For any i, . j' . k. k', if (j.k) # (j.k'), then xf/ is never in S,k;/
There is never an element affj (y)in S;f/j/for any i, j, j' k. k'

Proor. Each time xlk ; is chosen, it is chosen to be a new number, and a number
k.
ij
time xf /] is chosen, they are chosen to be new numbers, and no number enters S’f //
K. =

LemMmA 4.5. No P-requirement initializes lower-priority requirements infinitely
often.

ProoOF. Let R be a P-requirement. Suppose, by induction, none of the higher-
priority P-requirement initializes lower-priority requirements infinitely often. Let s
then be a stage after which R is never initialized by a higher-priority requirement.
If, after stage s, R ever initializes lower-priority requirements, it is through case (2bi)
or (2bii). In either case, then R never acts again, so it can initialize lower-priority
requirements at most once after stage s. —

Lemma 4.6. If'i X j then Pffj is satisfied.

PrOOF. Let s be a stage when P,k ; is never initialized by a higher-priority require-

enters Sff}, only after it has already been x{f},. Each time ;. (y) is chosen and each

unless it has already been x

ment after stage s. We first argue that P¥ ,; cannot enter case (2biii) infinitely often.
Suppose otherwise. Then, each time it enters case (2biii), consider the sequence
Jos j1s--.. jne1 where j,o1 = i. Let ag.ay.....a, be a simple subpath (i.e., if j,,
and j, are equal, then we replace the sequence jo,...., jm..--s ju--..»jar1 by the
Sequence jo,.... jm»> jntl----» jit1. and repeat this algorithm until all the elements
of the sequence are distinct). By the pigeonhole principle. infinitely many times.
this sequence ay. . .., a, is the same. But then, the requirements Q’g;;;%am are acting
infinitely often. Thus, using that < is a preorder, a,,.1 < a,, for each m < n, and
thusi < j.

Thus, we can consider a stage ¢ > s such that xlk ; s never unassigned after stage 7.
When P{f ; 1s next visited, it defines x = xff ; to have its final value. Subsequently,
either @y (x ;) diverges. in which case Pf; does not act anymore. and is satisfied as ¢
isnot total; or, ¢ (x,k j) converges. In this latter case, it either never acts, in which case
©r (xfi) € V;. butsince xfi € Sffi, we have that xfi ¢ Vi so P{f/ is satisfied: or it acts
once more through (2bi), in which case x* ;€ Vi,butpy (x,k ;) ¢ Vj:oritacts through
(2bii): in this case we get x*; ¢ V;. and ¢ (xf;) € V;. Inall cases. P} is satisfied.

LemMa 4.7. Ifi X j. then V; does not m-reduce to V.

ProoF. By Lemma 4.6, every P{f ; 1s satisfied. —
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LemMa 4.8. Ifi < j.then V; <1 V.
PROOF. Let k be the least number such that W,(; ;) = w. By Lemma 4.5, every
P-requirement of priority higher than Qf; initializes Qf; only finitely often. After

the last time Qf; is initialized. every time Qf; acts. it defines more and more values

of the coding function a¥(_). and keeps it correct as a 1-reducibility. by putting

ij
af;(n) into V; if and only if n € V;. =

LemMA 4.9. For every pair i. k., the requirement IF is satisfied.

ProoF. The proofis trivial. —
_{

We are now ready to show that the preorder <. on indices of ceers is £3 complete.

COROLLARY 4.10. <, is a X3 complete preorder.

PrOOF. Itis straightforward to check that <, is £J. Since for infinite c.e. sets X, Y,
Ry <. Ry ifand only if X <; Y (where Ry is the ceer where aRyb if and only if
a=borabeX.Seeeg.[1.4.6,10,19]) the above reduction allows us to reduce
< into <, as well. 4

The following corollaries are immediate consequence of Theorem 4.1, the first of
which appears in [7]:

COROLLARY 4.11 ([7]). The equivalence relation =1 is a 22 complete equivalence
relation.

Proor. Trivial by Theorem 4.1, since an equivalence relation is a symmetric
preordering relation. —

COROLLARY 4.12. =, is a X3 complete equivalence relation.
Proor. Trivial by Corollary 4.10. —
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