
The Journal of Symbolic Logic

Volume 81, Number 4, December 2016

THE COMPLEXITY OF INDEX SETS OF CLASSES OF COMPUTABLY
ENUMERABLE EQUIVALENCE RELATIONS

URI ANDREWS AND ANDREA SORBI

Abstract. Let ďc be computable the reducibility on computably enumerable equivalence relations (or
ceers). We show that for every ceer R with infinitely many equivalence classes, the index sets ti : Ri ďc Ru
(with R nonuniversal), ti : Ri ěc Ru, and ti : Ri ”c Ru are Σ03 complete, whereas in case R has only
finitely many equivalence classes, we have that ti : Ri ďc Ru is Π02 complete, and ti : Ri ěc Ru (with
R having at least two distinct equivalence classes) is Σ02 complete. Next, solving an open problem from [1],
we prove that the index set of the effectively inseparable ceers is Π04 complete. Finally, we prove that the
1-reducibility preordering on c.e. sets is a Σ03 complete preordering relation, a fact that is used to show that
the preordering relation ďc on ceers is a Σ03 complete preordering relation.

§1. Introduction. Given equivalence relations R and S on the set � of natural
numbers, we say that R is reducible to S (in symbols: R ďc S), if there exists a
computable function f such that

p@x, yqrx R y ô fpxq S fpyqs.
Given a class A of equivalence relations on �, one says that R is A complete, if
R P A, and S ďc R, for every S P A. This reducibility, and this notion of com-
pleteness, have turned out to be very useful tools for measuring the complexity of
equivalence relations naturally arising in mathematics, and, in particular, in com-
putable model theory and in computability theory (where equivalence relations on
structures can be viewed as relations on numbers via identification of structures
with numbers, thanks to suitable indexings). For instance, Fokina, S. Friedman,
Harizanov, Knight, McCoy, and Montalbán [8] show Σ11 completeness of the iso-
morphism relations for various familiar classes of computable structures, including
computable groups, computable torsion abelian groups, computable torsion-free
abelian groups, and abelian p-groups. On the other hand, Fokina, S. Friedman, and
Nies [7] show that other familiar equivalence relations arising from computability
are Σ03 complete, including computable isomorphism of c.e. sets. (In Corollary 4.11
we give another proof of this result.) Other interesting mathematical applications
of the reducibility ďc appear in [4], [9], [11], [12].
Received March 14, 2015.
2010Mathematics Subject Classification. 03D25.
Key words and phrases. computably enumerable equivalence relation, computable reducibility on

equivalence relations

c© 2016, Association for Symbolic Logic
0022-4812/16/8104-0008
DOI:10.1017/jsl.2016.26

1375

https://doi.org/10.1017/jsl.2016.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2016.26


1376 URI ANDREWS AND ANDREA SORBI

The reducibility ďc , as well as the notion of A-completeness, can obviously be
extended to preordering relations on�. Ianovski, R.Miller, Ng, andNies [13] char-
acterize the arithmetical complexity of several preorders of interest to computability
theory, for instance showing that almost inclusion Ď˚ of c.e. sets is Σ03 complete andďT on c.e. sets is Σ04 complete.
There is already a nontrivial literature concerning the restriction of ďc to com-
putably enumerable equivalence relations (abbreviated as ceers): pioneering papers
in this regard include (in chronological order) Ershov [5], Bernardi and Sorbi [2],
Montagna [15], Lachlan [14], Gao and Gerdes [10], Andrews, Lempp, Miller, Ng,
San Mauro, and Sorbi [1]. These papers study Σ01 complete equivalence relations
(also called universal ceers), and the degree structure of ceers underďc. We investi-
gate and classify the arithmetical complexity of some index sets of ceers. Throughout
the paper, we refer to some fixed universal computable numbering tRi : i P �u of
all ceers (see [1]), where “computable” means that the set txi, x, yy : x Ri yu is c.e.,
and “universal” means that for every such computable numbering tSi : i P �u
of all ceers, there exists a computable function f such that Si “ Rfpiq, for all i .
Extending results in [10], we give complete characterizations in the arithmetical
hierarchy of the complexity of the index sets ti : Ri ďc Ru (with R nonuniversal),
ti : Ri ěc Ru, and ti : Ri ”c Ru: if R has infinitely many equivalence classes
then all these sets are Σ03 complete, whereas if R has only finitely many equivalence
classes, we have that ti : Ri ďc Ru is Π02 complete, and ti : Ri ěc Ru (with R
having at least two distinct equivalence classes) is Σ02 complete. Solving a problem
in [1], we prove that the index set of the effectively inseparable ceers is Π04 complete.
In the last section of the paper we consider ďc on preordering relations on
�. The literature regarding the restriction of ďc (as a reducibility on preorders)
to computably enumerable preorders, includes, among others, the papers Pour El
and Kripke [18], Montagna and Sorbi [16], and Ianovski, R. Miller, Ng, and Nies
[13]: these papers are mainly dedicated to the investigation of Σ01 complete preorders
naturally arising in logic.We prove that the preordering relationďc on ceers (viewed
as a preorder on their indices) is a Σ03 complete preordering relation. The proof goes
through first showing that the 1-reducibility preordering on c.e. sets is a Σ03 complete
preordering relation.

1.1. Background. The reader is referred to [20] for all computability theoretic
notions that are used, but not explicitly introduced, in this paper. For more infor-
mation on ceers, their structure underďc , bibliography, and even history, our basic
reference is [1]. Given a ceer E, we say that a sequence tEs : s P �u of equiva-
lence relations on � is a computable approximation to E, if the following conditions
hold: the set txx, y, sy : x Es yu is computable; E0 is the identity equivalence rela-
tion; for all s , Es Ď Es`1; the equivalence classes of Es are finite; there exists at
most one pair rxsEs , rysEs of equivalence classes, such that rxsEs X rysEs “ H, but
rxsEs`1 “ rysEs`1 (we say in this case that the equivalence relation E collapses x
and y at stage s ` 1); if E collapses x and y at stage s ` 1, then x, y ď s ; and
finally E “ Ť

t Et . Every ceer has computable approximations; in fact we can show
(see [1]) that there exists a uniform sequence tRi,s : i, s P �u of equivalence relations
such that the set txi, x, y, sy : x Ri,s yu is computable, and for every i , the sequence
tRi,s : s P �u is a computable approximation to Ri .
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§2. Computing the complexity of index sets of ceers above, below, or equivalent to
a given ceer. Index sets of classes of ceers of natural computability theoretic interest
have been investigated for the first time by Gao and Gerdes [10]. Index sets of the
form ti : Ri ďc Ru, ti : R ďc Riu, ti : Ri ”c Ru, for particular choices of R,
are classified in [10] to be Σ03 complete: for instance, this is the case when R is the
identity relation on the natural numbers. In this section we completely classify all
index sets of this type, thus showing for instance (see Corollary 2.6) that if R is a
ceer with infinitely many equivalence classes then ti : R ďc Riu, ti : Ri ”c Ru are
always Σ03 complete, and if R has infinitely many classes and is not universal thenti : Ri ďc Ru is always Σ03 complete.
Theorem 2.1. Let R be a nonuniversal ceer with infinitely many classes. Then

pΣ03,Π03q ď1 pti | Ri ”c Ru, ti | Ri ęc R&Ri ğc Ruq (where pΣ03,Π03q ď1 pA,Bq
means that for every Σ03 set C , there is a computable function which 1-reduces C to A,
and the complement of C to B: see [20, p. 66] for this notation).
Proof. Fix a Σ03 complete set S :“ ti | pDlqrWgpi,lq “ �su, where g is a com-
putable function (the fact that every Σ03 set can be expressed in this way is an easy
consequence of the proof of [20, Corollary IV.3.7]). We construct a function which,
on input i , outputs an index of a ceer E so that if i P S then E ”c R, and if i R S
then E and R are ďc-incomparable. This provides an m-reduction, which can be
turned into a 1-reduction via padding.
Given i , we describe the enumeration of the ceer E based on the enumeration of
the setsWgpi,lq for various l . It will be clear from the construction that an index for
E can be uniformly found in i .
Requirements and Their Strategies. Given i , we have three kinds of
requirements:

Ql :Wgpi,lq “ � ñ E ”c R.
Nj : p@l ă jqrWgpi,lq ‰ �s ñ ϕj does not give a reduction witnessing E ďc R.
Pk : p@l ă kqrWgpi,lq ‰ �s ñ ϕk does not give a reduction witnessing R ďc E.
Let us fix some computable priority ordering on the requirements. We first
describe the action taken by each requirement individually.

Q-requirements. A Ql -requirement acts as follows: When initialized, Ql is given
a finite set of distinct E-equivalence classes rb1sE, . . . , rbnsE of numbers created due
to higher priority requirements (we will formally define a number being created by
a requirement below). Ql is also given a finite set of elements c1, . . . , cn. Ql works
under the assumption that the classes rbisE are pairwise distinct, and the rcisR
are pairwise distinct. If either of these assumptions becomes incorrect, Ql will be
re-initialized. Ql collapses all remaining elements (those created for lower priority
requirements) into one class rd sE , and, beginningwith that one class, copiesR, using
a computable coding function x ÞÑ apxq. At every stage wherein minp� �Wgpi,lqq
increases, Ql again E-collapses every new element which is created due to a lower
priority requirement, to d , and continues building its copy ofR,E-collapsing codes
of elements exactly as the corresponding elements are collapsed by R. If no higher
priority requirement acts ever again and in fact tc1, . . . , cnu are nonequivalent in
R, and Ql acts infinitely often (as Wgpi,lq “ �), then we will argue that E ”c R.
Whenever Ql acts, it restrains all elements created so far.
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N -requirements. An Nj requirement acts as follows: We fix a universal ceer T .
When initialized, Nj selects new elements ap0q, ap1q P �, and E-collapses these
elements if and only if 0 and 1 collapse in T . If at some stage, ϕjpap0qq and
ϕjpap1qq converge, and

0 T 1ô ϕjpap0qqR ϕjpap1qq,
thenNj selects a new element ap2q, E-collapsing (form, n ď 2) apmq to apnq if and
only if m T n. If at a later stage, ϕjpap2qq converges and

p@n,m ď 2qrn T m ô ϕjpapnqq R ϕjpapmqqqs,
then Nj selects a new element ap3q. The construction proceeds as such. We will
argue that if no higher priority requirement re-initializes Nj , then Nj can choose
only finitely many elements tapiq : i ď ku, otherwise, we would have T ďc R via
the map i ÞÑ ϕjpapiqq, which contradicts nonuniversality of R. Thus, ϕj cannot be
a reduction of E to R. Whenever Nj chooses an element apkq, by initialization it
restrains all elements ď apkq.
P-requirements. A Pk-requirement acts as follows: Pk searches for elements x ă
y P � so thatϕk converges on all inputsď y, ϕkpxq andϕkpyq are not restrained by
higher priority requirements (so that it is allowed to E-collapse ϕkpxq and ϕkpyq),
and x�R y. If such are found, then Pk collapses ϕkpxq and ϕkpyq in E. If, at a
later stage, x R y, then Pk is injured and begins again. If, in fact, there are only
finitely many elements restrained by higher priority requirements, then some pair of
elementsx, y will eventually be found so thatx�Ry, and either alreadyϕkpxqEϕkpyq,
or ϕkpxq and ϕkpyq are not restrained by higher priority requirements (since R has
infinitely many classes). But thenwe causeϕkpxqEϕkpyq. This contradictsϕk being
a reduction of R to E after all. As Pk never minds things collapsing, it places no
restraints.

Environments for the requirements. A Ql -requirement uses a parameter �l psq “
xc1, . . . , cny, and values of a finite function, aQl px, sq, which approximates the func-
tion x ÞÑ apxq described in the above informal discussion for Q-requirements. An
Nj -requirement uses a parameter aNj px, sq, which approximates the numbers apxq
described in the above informal discussion forN -requirements. In the following, we
will often omit the superscripts Q, or N , when the exact choice will be clear from
the context. A Pk-requirement uses parameters xkpsq, ykpsq, which approximate
the numbers x, y, described in the above informal discussion for P-requirements.
If R is either a Q-requirement or an N -requirement, the construction also uses a
parameter �Rpsq to record the elements thatR wants to restrain.
Construction. To tackle N -requirements, we fix a universal ceer T , with com-
putable approximations tTsusP� . At stage s , to initialize a requirement R means
one of the following:

• if R “ Ql , then we set �l psq, al px, sq to be undefined for all x; and we set
�Ql psq “ H;

• ifR “ Nj , then we set ajpx, sq to be undefined for all x andwe set �Nj psq “ H;
• if R “ Pk , then we set xkpsq and ykpsq to be undefined.
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At stage s ą 0 we say that a requirement R requires attention if either R is
initialized, or

• R “ Ql and s is xi, ly-expansionary, i.e., minp� � Wgpi,lq,s q ą minp� �

Wgpi,lq,s´1q, or
• R “ Nj and ϕj,s pajpx, sqq converges, where x is the greatest number in the
domain of ajp , sq, and

p@n,m ď xqrn Ts m ô ϕj,spajpn, sqqRs ϕj,s pajpm, sqqqs,
or

• R “ Pk , and ϕk,s converges on all z ď ykpsq, and either xkpsq Rs ykpsq or
xkpsq�Rs ykpsq and ϕk,spxkpsqq�Es ϕk,s pykpsqq.
At stage s ą 0 a number z is said to have been created by a requirement R, if
• R “ Ql , and z is Es -equivalent to some ci , where �l ptq “ xc1, . . . , ci , . . . cny, or
to some alpx, tq, for some t ď s ;

• R “ Nj , and z is Es -equivalent to some ajpx, tq, for some t ď s ;
a number is new at s , if it is bigger than all numbers (that are Es -equivalent to
numbers) so far mentioned in the construction.
We are now ready to give the construction.

Step 0. Initialize all requirements.

Step s ` 1. Let R be the highest priority requirement that requires attention
at stage s ` 1. We say that R acts at s ` 1. Notice that there always exists such
a requirement, as at each stage infinitely many requirements are initialized. We
distinguish the following cases. (For simplicity, when describing various parameters,
or various approximations to the equivalence relations, or to partial computable
functions, we omit to mention the stage s : thus for instance, x�R y has to be read
as x�Rs y, and so on.)

(1) IfR “ Ql , then we take action as follows:
(a) if Ql is initialized, then let n be the number of the distinct equivalence
classes created by E, up to step s , as the result of the actions taken by
the higher priority requirements, and let tb1, . . . , bnu be representatives
of these equivalence classes. Choose �l “ pc1, . . . , cnq to be the least (by
code) n-tuple of numbers that are currently pairwise nonequivalent in R
and define al pciq “ bi for each i ď n;

(b) if there exist 1 ď i, j ď n, i ‰ j, such that ci R cj (where ci and cj are
the i-th and j-th components, respectively, of �l ), then initialize Ql ;

(c) if neither of the previous two cases holds then:
(i) take the least number x for which al pxq is not defined, and define
al pxq to be a new number;

(ii) for every z ď al pxq such that z�E bi for each bi , and z�E al pyq for
each existing al pyq, then E-collapse z and alp0q;

(iii) E-collapse existing al pyq and al pzq if y R z;
put into �Ql ps ` 1q all numbers bi , 1 ď i ď n, and al pyq, y ď x, where x is
the greatest number for which al p q is defined.

(2) IfR “ Nj then we act as follows:
(a) if Nj is initialized then we appoint new elements ajp0q and ajp1q;
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(b) otherwise, let x be the greatest number such that ajp q is defined: for
every y, z ď x, E-collapse ajpyq and ajpzq if y T z; finally, appoint a
new ajpx ` 1q;

put in �Nj ps ` 1q all numbers ajpiq, i ď x, where x is the greatest number
for which ajp q is defined.

(3) IfR “ Pk then we act as follows:
(a) if Pk is initialized then appoint xk and yk so that xxk, yky is the least
pair xx, yy for which x ă y, x�Ry, and xx, yy ą xxkptq, ykptqy, for every
t ď s ;

(b) if xk�Ryk and ϕkpxkq�E ϕkpykq, but both ϕkpxkq and ϕkpykq are already
E-equivalent to restrained elements, i.e., elements belonging to the set

Spsq :“ tz : pDRqrR has higher priority than Pk & z P �Rpsqsu
then initialize Pk ;

(c) if xk�R yk and ϕkpxkq�E ϕkpykq, and at least one of ϕkpxkq or ϕkpykq
has not as yet been E-collapsed to a restrained element, then E-collapse
ϕkpxkq and ϕkpykq;

(d) if xk R yk , then initialize Pk .

After acting, end the stage, and initialize all lower priority requirements.

Verification.We now check that the construction works.

Lemma 2.2. If every higher priority requirement acts only finitely often, then Pk
acts only finitely often.

Proof. Assume that every higher-priority requirement acts only finitely often,
and suppose, towards a contradiction, that Pk acts infinitely often. Let s be the last
stage at which a higher-priority requirement acts. Let S be the set of all elements
E-equivalent to some element in Spsq which is the finite set restrained by higher
priority actions by stage s , as in (3b) of step s ` 1. Thus S is the union of finitely
many E-equivalence classes. For Pk to act infinitely often, we must have ϕk total,
and by (3a) and (3d), we test all possible choices of xk, yk , with xk ă yk and
xk�R yk : for each one of these pairs (by definition of Pk requiring attention) we
have that ϕkpxkq, ϕkpykq P S, and ϕkpxkq �E ϕkpykq. But this would imply that
there exists a 1-1 function from the infinitely many distinct equivalence classes
of R to the finitely many equivalence classes in S. Therefore, we must have that
either Pk eventually does not require attention because ϕk is not total; or we
find xk, yk such that xk�R yk , ϕkpxkq, ϕkpykq P S, and ϕkpxkq E ϕkpxkq; or (3c)
applies. %
Lemma 2.3. If every higher priority requirement acts only finitely often, then Nj
acts only finitely often.

Proof. Suppose, towards a contradiction, that Nj acts infinitely often. Let s be
the last stage at which a higher priority requirement acts, i.e., Nj is initialized for
the last time at stage s . We consider the assignments of ajpkq after stage s . Then
for each n,m,

n T m ô ϕjpajpnqqR ϕjpajpmqq.
Thus the function i ÞÑ ϕjpajpiqq gives a reduction of T to R. This yields a
contradiction since R is nonuniversal, showing thatNj acts only finitely often. %
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Lemma 2.4. Suppose thatWgpi,lq is finite for each l . Then E is ďc-incomparable
to R.
Proof. By assumption, eachQl acts only finitely often, so byLemmas 2.2 and 2.3,
every requirement acts only finitely often.
We now argue that since each requirement acts only finitely often, each suc-
ceeds. Since every requirement acts only finitely often, we can consider the final
assignments of ajpkq for the requirement Nj . Either ϕj is not total or for some
ajpnq, aj pmq,

ajpnq E ajpmq ô n T m,
but not

n T m ô ϕjpajpnqqR ϕjpajpmqq.
Thus ϕj is not a reduction of E to R, andNj is satisfied. Since Pk acts only finitely
often and R has infinitely many classes, either ϕk is not total or there are xk, yk so
that xk�R yk but ϕkpxkq E ϕkpykq. Thus ϕk is not a reduction of R to E, and Pk is
satisfied. %
Lemma 2.5. Suppose that for some l ,Wgpi,lq “ �. Then E ”c R.
Proof. Let Ql be of highest priority so that Wgpi,lq “ �. By Lemmas 2.2 and
2.3, every higher priority requirement acts only finitely often. Consider the least
stage t at which every higher priority action stops acting, giving n distinct equiv-
alence classes. Further, consider a stage s ą t where Ql has found (through (1a)
and (1d)) the appropriate choice of n R-non-equivalent elements, thus choosing
the final �l . After this stage s , every time Ql picks a number al pxq, then this is
the final value of al px, sq, and Ql creates a class rd s, with d “ al p0q, which con-
tains all elements previously created for all lower priority requirements, and it will
also contain all elements later created for lower priority requirements (when Ql
acts again, it will E-collapse them to d ). We now provide reductions witnessing
that E ”c R.
The map alp´q gives a reduction of R to E. By the action 1cii, this is onto the
classes in E, so the map sending x to the first y so that we see x E al pyq yields a
reduction of E to R. %
Corollary 2.6. The following hold :
(1) IfR is any ceer with infinitely many classes, then ti | Ri ”c Ru is Σ03 complete.
(2) IfR is any ceer with infinitely many classes, then ti | Ri ěc Ru is Σ03 complete.
(3) IfR is any nonuniversal ceer with infinitely many classes, then ti | Ri ďc Ru is
Σ03 complete.

(4) If R is universal, then ti | Ri ďc Ru “ �, thus is decidable.
(5) If R has only finitely many classes, then ti | Ri ďc Ru is Π02 complete.
(6) IfR has finitely many, but at least 2, classes, then ti | Ri ěc Ru is Σ02 complete.
(7) If R has only one class, then ti | Ri ěc Ru “ �, thus is decidable.
(8) If R has finitely many, but at least 2, classes, then ti | Ri ”c Ru is d-Σ02
complete (i.e., ti | Ri ”c Ru is the intersection of a Σ02 and aΠ02 set, and ifX is
any set which is the intersection of a Σ02 and aΠ

0
2 set, thenX ď1 ti | Ri ”c Ru).

Proof. It is straightforward to check that the proposed sets lie in the appropriate
level of the arithmetical hierarchy. To show hardness, we prove the items one by
one.
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(1) There are two cases. If R is universal, this is exactly Theorem 5.1 in [1]. If R
is nonuniversal, this follows directly from the previous theorem.

(2) If R is universal, then the claim follows from (1). If not, then it follows from
the previous theorem.

(3) This follows from the previous theorem.
(4) Trivial.
(5) Note that if R has k classes, then E ď R if and only if E has ď k classes. It
is easy to show that havingď k classes is a Π02 complete property: E hasď k
classes if and only if

p@x0, . . . , xkqpDi, j ď kqri ‰ j &xi E xjs.
Let us now show that this property is Π02 hard. It is known that Inf “ ti |
Wi infiniteu isΠ02 complete: it is easy to see that there is a computable function
f such that, for every i , Efpiq is a ceer satisfying:

i P Infñ r0sEfpiq “ �,
i R Infñ pDxqp@y ě xq “rysEfpiq “ tyu‰

.

(6) If R has k ě 2 classes, then E ěc R holds if and only if E ęc S, where S
has k ´ 1 classes. Thus, by (5), this is Σ02 complete.

(7) Trivial.
(8) By combining the arguments in (5) and (6). Note that if R has exactly one
class, then ti | Ri ”c Ru “ ti | Ri ďc Ru is Π02 complete by (5). %

§3. The index set of the effectively inseparable ceers. A pair of disjoint sets A,B
is effectively inseparable (shortly, e.i.) if there exists a partial computable function
� (called a productive function for the pair) such that, for every pair of c.e. indices
u, v,

A ĎWu &B ĎWv &Wu XWv “ H ñ �pu, vq Ó &�pu, vq RWu YWv.
It is not difficult to see:

Lemma 3.1. Every e.i. pair of c.e. sets has a total productive function.

Proof. The proof is similar to the one showing that every productive set has a
total productive function, see e.g., [20, p. 41]. %
A ceer R is called effectively inseparable (shortly, e.i.), see [1], if every pair of
distinct equivalent classes rasR, rbsR is e.i. If indices for productive functions for
the various pairs of equivalence classes can be found uniformly (i.e., there exists
a computable function g such that, for every pair a, b, if a�R b then ϕgpa,bq is a
productive function for the pair rasR, rbsR), then R is said to be uniformly effec-
tively inseparable (or, shortly, u.e.i.), [1]. It is proved in [1] that the index set
of the u.e.i. ceers is Σ03 complete, and is posed as an open question whether the
index set of the e.i. ceers is Π04 complete. In the following theorem we answer this
question.

Theorem 3.2. The index set of the e.i. ceers is Π04 complete.

Proof. It is straightforward to check that the index set of the e.i. ceers is Π04.
Now, every Π04 set S can be described as S “ ti : p@jqrWgpi,jq is cofinitesu: this is
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an easy consequence of the fact that the index set ti :Wi is cofiniteu is Σ03 complete
(see e.g., [20, p. 66]). Therefore, we can fix a recursive function gpi, jq so that
S :“ ti | p@jqrWgpi,jq is cofinitesu is a Π04 complete set. We now produce a function
which, on input i , uniformly produces a ceer E so that E is e.i. if and only if i P S.
In what follows, we describe the enumeration of E for a given i .
Given a set X let X r2s denote the collections of all subsets of X consisting of
exactly two elements. We fix a pair of recursive bijections m : �r2s Ñ � and
n0 : p2�qr2s Ñ �, where 2� is the set of even elements of �. We then define
n : �r2s Ñ � so that npxq “ n0pxq if x P p2�qr2s, and npxq “ mpxq otherwise.
Requirements and Strategies. We have the following requirements, where
a ă b, i.e., ta, bu P �r2s.

Pa,bj :rj,8q ĎWgpi,mpa,bqq XWgpi,npa,bqq & a�E b ñ fa,bj
is a productive function for rasE, rbsE ,

(where fa,bj is a computable function being constructed by this requirement)

Na,bj :rj,8q ĘWgpi,mpa,bqq XWgpi,npa,bqq & a, b P p2�qr2s ñ ϕj
is not a total productive function for rasE, rbsE.

The requirements are partitioned, in the obvious way, into P-requirements and
N -requirements.

Remark 3.3. If i P S then for every r,Wgpi,rq is cofinite, and thus for every a ‰ b
there is ja,b such that rja,b ,8q Ď Wgpi,mpa,bqq XWgpi,npa,bqq: hence if a�E b, and we
satisfy Pa

1,b1
ja1 ,b1 , where a

1 and b1 are the least elements in the E-equivalence classes of
a and b, respectively, then we guarantee that fa

1,b1
ja1 ,b1 is a productive function for the

pair rasE, rbsE .
Vice versa, if i R S, then there is r such that Wgpi,rq is not cofinite, nor is any
Wgpi,r1q XWgpi,rq, and thus if a, b P 2�, a ‰ b, are such that npa, bq “ r, then
for every j, one has rj,8q Ę Wgpi,mpa,bqq XWgpi,npa,bqq. In this case, if we satisfy
all Na,bj -requirements, then we guarantee that the pair rasE, rbsE is not effectively
inseparable.

We will never cause nonequal even elements a, b to become E-equivalent,
and in fact each even number will be the least element in its equivalence class.
Na,bj -requirements will only pose restraints asking that two elements not become
equivalent, but will never cause E-collapse.
We fix any priority ordering of order type � in which if j ă j 1 then Pa,bj ă Pa,bj1 .
We first describe the actions of each requirement separately. The reader should
think of a, b as the least numbers in their respective equivalence classes, and a ‰ b.
P-requirements. A Pa,bj -requirement performs the standard effective insepara-

bility strategy: it builds a computable function f “ fja,b as follows. For the least
(by code) pair u, v, on which fpu, vq is still undefined, define fpu, vq to be an odd
numbery larger than any number considered so far: ify is observed to be enumerated
intoWu , cause yEb; if y is observed to be enumerated intoWv , then cause yEa. The
strategy forPa,bj acts every time the least element of rj,8q�Wgpi,mpa,bqq XWgpi,npa,bqq
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entersWgpi,mpa,bqq XWgpi,npa,bqq, i.e., when there is evidence that eventually rj,8q Ď
Wgpi,mpa,bqq XWgpi,npa,bqq: we say that in this case the strategy Pa,bj takes the infinite
outcome; otherwise Pa,bj takes the finite outcome. It is clear that either P

a,b
j takes the

infinite outcome infinitely many times (we say that in this case thatPa,bj has outcome

8), or from some point on, Pa,bj always takes the finite outcome (we say that in this
case that Pa,bj has outcome f ).
We summarize as follows:

outcome8 : rj,8q ĎWgpi,mpa,bqq XWgpi,npa,bqq;
outcome f : rj,8q ĘWgpi,mpa,bqq XWgpi,npa,bqq.

N -requirements. An Na,bj -requirement acts only if, and immediately after, P
a,b
j

has taken the finite outcome, and its action is as follows: Choose a pair u, v so
that we (via the Recursion Theorem) control the enumeration ofWu andWv . Let
Wu enumerate rasE and Wv enumerate rbsE , and wait for a stage when ϕjpu, vq
converges to a value, say y. If y P rasE Y rbsE , then the requirement does nothing
further. Otherwise, we distinguish:
Case 1: y is an odd number chosen as fa

1,b1
j1 pu1, v1q for some j 1, a1, b1 with a1, b1

least numbers in their equivalence classes, and a1 ‰ a (if a1 “ a and b1 ‰ b, the
requirement acts symmetrically). In this case, we enumerate y intoWv . We place a
restraint for y to never enter ras.
Case 2: Not case 1. In this case, we enumerate y intoWu and place a restraint for
y to never enter rbs.
Every time the least element of rj,8q X Wgpi,mpa,bqq X Wgpi,npa,bqq enters
Wgpi,mpa,bqq XWgpi,npa,bqq,Na,bj will be injured, so if rj,8q ĎWgpi,mpa,bqq XWgpi,npa,bqq,
then N will not prevent effective inseparability of the pair ras, rbs.
The Recursion Theorem. In carrying on the strategies for theN -requirements, we
use indices that we control by the Recursion Theorem, or, more precisely, we make
use of a computable sequence of fixed points. Equivalently, we fix a single index
e so that we control ϕe by the Recursion Theorem, and we then take a countable
sequence of indices peiqiP� for the columns ϕei pjq “ ϕepxi, jyq. We can then make
choices about convergence and values of each of the ϕei in any order we wish, as we
are simply controlling the single function ϕe .
Alternatively, since a computable sequence of indices can be viewed as the rangeof
a computable functionf, a formal justification to this argument is also provided by
the Case Functional Recursion Theorem, see [3]: see also [17] for useful comments
about this theorem.
Lemma 3.4 (Case Functional Recursion Theorem). Given a partial computable
functional F , there is a total computable function f such that, for every e, x,

F pf, e, xq “ ϕfpeqpxq.
The tree of strategies. We organize the construction on a tree T , which is a
set of strings on the alphabet tg,8, fu. With respect to the above discussion of
requirements and their outcomes, it is convenient to use also an additional outcome
g, which for a requirement Pa,bj orN

a,b
j , will record the fact that at least one among

a, b is not the least number in its equivalence class.
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The tree T , and the function

R : T ÝÑ Requirements,

assigning requirements to the nodes of T , are defined as follows, where � denotes
the empty string.

Definition 3.5. � P T , andRp�q is the highest priority P-requirement.
• If � P T , and Rp�q “ Pa,bj is a P-requirement, then �pxoy P T , for o P

tg,8, fu:
– all requirementsPa,bj1 for j 1 ą j are declared to be cancelled by �px8y. (Since
if rj,8q ĎWgpi,mpa,bqq XWgpi,npa,bqq, then rj 1,8q ĎWgpi,mpa,bqq XWgpi,npa,bqq
for all j 1 ě j, thus the requirement Pa,bj1 need not be considered again below
�px8y.)Rp�px8yq is the highest priorityP-requirement not assigned to any
	 Ď � and not cancelled by any 	 Ď �px8y.
– If a, b are both even, then Rp�pxfyq “ Na,bj ; otherwise Rp�pxfyq is the
highest priority P-requirement not assigned to any 	 Ď � and not cancelled
by any 	 Ď �.
– Rp�pxgyq is the highest priority P-requirement not assigned to any 	 Ď �
and not cancelled by any 	 Ď �.

• If � P T , andRp�q is anN -requirement, then �pxfy P T (by construction, a, b
will be the least elements in their respective equivalence classes, so we do not
consider the g outcome); Rp�pxfyq is the highest priority P-requirement not
assigned to any 	 Ď � and not cancelled by any 	 Ď �.

• No other string on t8, f, gu lies in T .
The elements of T are ordered by the lexicographical order ď, generated by the
ordering on the alphabet, for which g ă 8 ă f: thus � ď 	 if � Ď 	 or, for the least
i such that �, 	 are both defined on i , and �piq ‰ 	piq, we have that �piq ă 	piq: in
this latter case we also write � ăL 	.
The environments of the strategies. Notice that the functionR, assigning require-
ments to nodes, is computable. For every �, we also call Rp�q a strategy. Each
strategy has several parameters: if Rp�q “ Pa,bj then it uses the parameter f�,s
(approximating the function fa,bj of the above informal description), whereas if
Rp�q is an N -requirement, then it uses the parameters u�psq, v�psq, and y�psq
(approximating u, v, y of the above informal description).

The Construction.At stage s we define a finite string 
s of length |
s | ď s , which
approximates the true path at stage s . The string 
s is defined by substages: at sub-
stage n, we define �n “ 
sæn. A number is new at any substage of stage s ą 0 if it is
bigger than all numbers alreadyE-collapsed to numbers so farmentioned in the con-
struction. If � “ �n andRp�q “ Pja,b is aP-strategy, then a stage s is �-expansionary
if for no t ă s did we have � Ď 
t , or min

`rj,8q � pWgpi,mpa,bqq,s XWgpi,npa,bq,s q
˘

has increased since the last stage t ă s which was �-true, i.e., at which � Ď 
t .
A number z is created by Rp�q at s , if z is in the range of f�,s ; or, z is appointed
as u�psq or v�psq, or y�psq. At stage s , we initialize a strategy Rp�q if we set
f�,s “ H and we set u�psq, v�psq, and y�psq to be undefined. If y has been created
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by Rp�q “ Pa,bj , by stage s , then y is active at s if Rp�q has not been initialized
after y has been created, andRp�q has not as yet E-collapsed y to either a or b.
Stage 0. Initialize all strategiesRp�q.
Stage s ` 1. Proceed according to the following substages (as in the proof of
Theorem 2.1, when describing the various parameters, or the various approxi-
mations to c.e. sets, partial computable functions, or E, we omit mentioning the
stage s):

Substage 0. Let 
s`1æ0 “ �.
Substage n ` 1. If n “ s then go to next stage. Otherwise, take the first relevant
case that applies below:
(1) Suppose thatRp�nq “ Pa,bj .
(a) If one among a, b is not the least element of itsE-equivalence class, then
let �n`1 “ �npxgy.

(b) If s is a �n-expansionary stage, let �n`1 “ ��n x8y. Then extend f�n by
considering the least (by code) pair pu, vqonwhichf�n is not defined, and
definef�npu, vq “ y, for some new odd y ą a, b. Also, iff�n pu1, v1q “ y1
has been already defined, and up to now y1 has been active, but currently
y1 PWu1 YWv1 , then
(i) if y1 PWu1 then E-collapse y1 and b;
(ii) if y1 PWv1 then E-collapse y1 and a.

(c) Otherwise, let �n`1 “ ��n xfy.
(2) If Rp�nq “ Na,bj , then let �n`1 “ ��n xfy. We act according to the first
applicable case among the following:
(a) Rp�nq is initialized: assume by the Recursion Theorem that u and v
are indices that we control, such that u and v are new numbers; let
u�ps ` 1q “ u, v�ps ` 1q “ v;

(b) ϕjpu, vq converges to some number y (where u “ u�psq, v “ v�psq, and
we define y�ps ` 1q “ y);
(i) if s ` 1 is the first �n-true stage at which ϕjpu, vq converges, then
end the stage (thus initializing all strategies of lower priority).

(ii) if y is E-equivalent to some active f	pu1, v1q created by Rp	q “
Pa

1 ,b1
j1 , with 	�x8y Ď �n, and ta1, b1u ‰ ta, bu, then if a1 ‰ a,
enumerate y intoWv ; otherwise (i.e., a1 “ a, but b1 ‰ b), enumerate
y into Wu; (notice that by the way requirements are assigned to
strings in T , there is no 	�x8y Ď �n with Rp	q “ Pa,bj1 , any j 1).
Also, enumerate rasE intoWu and rbsE intoWv .

(iii) if y P rasE Y rbsE then enumerate rasE into Wu , and enumerate
rbsE intoWv .

(iv) otherwise, enumerate rasE Y tyu inWu , and rbsE inWv .
At the end of the stage, initialize all strategies Rp	q, with 	 ě 
s`1. Define Es`1
to be the least equivalence relation generated by Es plus the pairs E-collapsed at
stage s ` 1. This ends Stage s ` 1.
Finally, let

E “ Ei “
ď
s

Es .
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The Verification. The following holds:

Lemma 3.6. There exists an infinite path tp through the treeT such that, for every n,

tpæn “ lim inf
s

sæn,

(where the lim inf is taken with respect to the lexicographical order of strings of T ),
and tpæn eventually does not end the stage.
Proof. The proof is by induction on n. Suppose that the claim is true of n,
and let s0 be the least stage such that there is no �-true stage s ě s0 for any
� ăL tpæn, and tpæn does not end the stage at s : thus s0 ą n. If there is a
stage s1 ě s0 such that tpæn�xgy Ď 
s1 , then for every tpæn-true s ě s1 we have
tpæn�xgy Ď 
s , and if s ą n ` 1 then tpæn�xgy does not end the stage, and
clearly tpæn ` 1 “ tpæn�xgy. If for almost all true tpæn-true stages s ě s0 we have
tpæn�xfy Ď 
s , then tpæn ` 1 “ tpæn�xfy, and tpæn ` 1 ends the stage at most
twice, at any such s : namely, if s “ n`1, and when we act through (2bi) of the con-
struction. Otherwise there exist infinitely many true tpæn-true stages s ě s0 at which
tpæn�x8y Ď 
s : thus tpæn`1 “ tpæn�x8y and tpæn`1 does not end the stage at any
such s ą n ` 1. %
Lemma 3.7. Let � be so that � Ă tp and ��xgy Ć tp. If � is an Na,bj or Pa,bj
strategy, then a and b are the least numbers in their respective equivalence classes.

Proof. Immediate. %
Lemma 3.8. At every stage s , in any equivalence class rcsEs there is at most one
element which is even or active. If, at some stage s where c is not new, the class rcsEs
contains no even or active element, then for all t ą s , rcsEt contains no even or active
element. Similarly, if at some stage s where c is not new, rcsEs contains no element
active for requirement Pa,bj , then at no stage t ą s does rcsE contain an element active
for requirement Pa,bj .

Proof. We prove the first claim by induction. This is clearly true at stage 0 where
every equivalence class has size 1. When we activate a new number, we choose it to
be a new odd element, thus is inequivalent to any even or active number. When we
collapse classes ras and rys, it is because some element y1 in rys is active and equals
f�pa1, b1q for some a1 P ras and some b1 (or symmetrically, it equals f�pc1, a1q for
some a1 P ras and some c1). We then make y1 inactive and collapse rys to ras.
Thus there is still at most one even or active element in the class ras. The second
statement is proved analogously: Any element which becomes active is new, thus is
not E-equivalent to c, and the property of not containing an even or active element
is preserved when a second class collapses with rcs. The last statement is similar. %
Lemma 3.9. Every even number is the least number in its E-equivalence class.

Proof. By the previous lemma, no two even numbers are ever equivalent.
We now show that if a is even, then a is the least number in its equivalence class.
By the previous conclusion, it is enough to show that for every s , and odd number
y, if y is E-collapsed to a at s , then y ą a. Assume that the claim is true of all
odd numbers y1 already E-collapsed to a at stages s 1 ă s . An odd number y can be
moved to rasEs at s , either because (1bi) or (1bii) for some Pa,bj , but then y ą a, by
choice of y ą a, b in (2); or y isE-collapsed, through (1bi) or (1bii) for some Py1,b1

j1 ,
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to some some odd number y1 previously E-collapsed to a, but then by induction
and, again, choice of y by (1b) of the construction, we have y ą y1 ą a. %
Lemma 3.10. If i P S then for every a, b, if a�E b, the pair rasE, rbsE is e.i.. On the
other hand, if i R S then there are even numbers a, b such thatWgpi,npa,bqq is co-infinite,
and the pair rasE, rbsE is not e.i..
Proof. If i P S, then (see Remark 3.3) for every a, b there exists aminimal j, such
that rj,8q ĎWgpi,mpa,bqq XWgpi,npa,bqq. Now, if a�E b, and a, b are the least numbers
in their respective equivalence classes, then there exists n such thatRptpænq “ Pa,bj
and tpæpn`1q “ tpæn�x8y. (Notice that, under these assumptions, for every j 1 ă j
there is a node 	j1 such that Rp	j1 q “ Pa,bj1 , and 	�j1 xfy Ă tp, and for every j 1 ą j
there is no node 	 Ă tp such thatRp	q “ Pa,bj1 .) It is clear by the construction that
ftpæn is a computable function witnessing that the pair rasE, rbsE is e.i.. Thus every
pair of distinct E-equivalence classes is e.i., as on the true path the corresponding
requirement relative to the least numbers in the classes, is satisfied.
Assume now that i R S. Then, by surjectivity of the function n0, there exists a pair
a, b of distinct even numbers such that, for every j, rj,8q ĘWgpi,mpa,bqqXWgpi,npa,bqq.
By Lemma 3.9, for every j there is a (unique) node 	j Ă tp such thatRp	jq “ Pa,bj
and 	�j xfy Ă tp.We show that, for every j, ϕj can not be a total productive function
for the disjoint pair rasE, rbsE . Let s0 be the least stage such that there is no 	-true
stage s ě s0 for any 	 ăL 	�j xfy, and no 	 Ď 	j ends the stage after s0. At the
least 	�j xfy-stage following s0 we appoint the last choice of u “ u	�j xfypsq, and
v “ v	�j xfypsq. If we do not find y as in (2b) of the construction, then ϕj is not
total. So assume that ϕjpu, vq converges to y, which is the final value of y	�j xfypsq.
We claim that rasE Ď Wu , rbsE Ď Wv ,Wu XWv “ H, but y P Wu YWv , which
implies that ϕj is not a productive function. Now, it is clear that rasE Ď Wu ,
rbsE Ď Wv , since there are infinitely many stages s at which we enumerate rasEs
intoWu and rbsEs intoWv . It is also clear that y PWu YWv . It remains to see that
Wu XWv “ H. Assume that Rp	�j xfyq enumerates y into Wu : the case in which
Rp	�j xfyq enumerates y intoWv is similar.
By initialization in (2a) and Lemma 3.8, the number y will never be equivalent
to an element active for a 	 ą 	�j xfy.
For y to eventually become E-equivalent to a or b, it must be equivalent at stage
s0 to some active element d for some Rp	q “ Pa1,b1

j1 with 	�x8y Ď 	j . By our use
of the outcome g, a1, b1 are the least numbers in their equivalence classes (and so
are a and b), and since there is no such 	 with 	�x8y Ď 	j and Rp	q “ Pa,bj1 , any

j 1, we may conclude that ta1, b1u ‰ ta, bu. If a1 ‰ a, then Rp	�j xfyq enumerates
y PWv , contrary to assumption. Therefore a “ a1 and b ‰ b1. If d remains active
at all future stages, then y cannot be equivalent to any even number by Lemma 3.8.
Otherwise, y collapses with a1 or b1. In either case, it cannot in the future collapse
with b, since all three of a1, b1, b are the least elements of their equivalence classes
and b R ta1, b1u. %
This concludes the proof of the theorem. %
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It is proved in [1] that the class of u.e.i. ceers is properly contained in the class of
e.i. ceers (by showing that there is an e.i. ceer that is not universal, whereas all u.e.i.
ceers are universal). This conclusion is also a consequence of the previous theorem:
Corollary 3.11. The u.e.i. ceers form a proper subclass of the e.i. ceers.
Proof. The claim follows immediately by the fact that the index set of the u.e.i.
ceers is Σ03, whereas the index set of the e.i. ceers is Π

0
4 complete. %

§4. The complexity of ďc itself. An obvious generalization of computable
reducibility from equivalence relations to preorders is the following: Given pre-
orders R,S on the natural numbers, we say that R is computably reducible (or,
simply, reducible) to S (notation:R ďc S) if there is a computable function f such
that, for all x, y, x R y if and only if fpxq S fpyq. Recently Ianovski, Miller, Nies
andNg [13] haveused this reducibility to classify the complexity of several preorders
which appear in mathematics and computability theory. For instance they show that
the preorder ď, where i ď j ifWi ďT Wj , is Σ04 complete.
In this section we prove that the reducibility ďc on ceers induces a Σ03 complete
preorder on numbers, where we write i ďc j if Ri ďc Rj . This will follow from
the next result, which in turn shows that the preordering relation ď1 on numbers
induced by 1-reducibility on c.e. sets (for which we write i ď1 j ifWi ď1 Wj) is Σ03
complete.
Theorem 4.1. ď1 is a Σ03 complete preorder: in fact, for any given Σ03 preorder ĺ,
there is a computable function f so thatWfpiq is infinite for all i and

p@i, jqri ĺ j ôWfpiq ď1 Wfpjqs.
Proof. It is straightforward to check that ď1 is Σ03. Let ĺ be a Σ03 complete
preorder. We construct a uniform enumeration of Vap“ Wfpaqq for each a as
follows. Since ĺ is Σ03, as in the proof of Theorem 2.1, we can fix a recursive g so
that

a ĺ b ô pDkqrWgpa,b,kq “ �s.
Requirements and Their Strategies.We have requirements:

Qkij :Wgpi,j,kq “ � ñ Vi ď1 Vj ;
Pkij : p@l ď kqrWgpi,j,lq ‰ �s ñ rϕk does not m-reduce Vi to Vjs;
I ki : the set Vi contains at least k elements.

Let us fix a priority ordering on the requirements. We now outline the strategies
to meet the requirements.

Q-requirements. AQkij -requirement builds a computable setA
k
i,j as follows:when-

ever minp� �Wgpi,j,kqq increases, it adds a new element a to Aki,j . At such stages, if
this is the mth element (i.e., a “ aki,jpmq, where we write aki,jpnq for the nth element
of Aki,j), and some n ă m is enumerated into Vi , then the strategy enumerates
aki,jpnq into Vj . Qkij restrains lower priority requirements from putting akijpnq into
Vj without also putting n into Vi , for each n ď m. As such, if there are infinitely
many stages where minp��Wgpi,j,kqq increases (and no higher priority requirement
ruins the coding), then n ÞÑ aki,jpnq is a 1-reduction of Vi to Vj .
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P-requirements. A Pkij -requirement acts as follows: to diagonalize and ensure
that ϕk is not anm-reduction, we pick x larger than any element mentioned before.
We wait forϕkpxq to converge. If it converges to an element which lies already inVj ,
then we restrain x out ofVi . If it converges to an element not restrained out ofVj by
any higher priority requirement, we enumerate ϕkpxq intoVj and do not enumerate
x into Vi (again, we place a restraint against this). We now suppose that ϕkpxq is
restrained out of Vj for a higher-priority requirement: suppose it is restrained due
to being a witness chosen for a higher priority P-requirement. Then Pki,j simply
enumerates x into Vi . If, later, ϕkpxq is enumerated into Vj , then that higher-
priority P-requirement will have injured Pkij , which we allow. Now suppose ϕkpxq
is restrained due to being in the set Ak

1
i1 ,j for a higher-priority Q

k1
i1 ,j -requirement.

Suppose it is the nth element of the set Ak
1
i1 ,j , i.e., ϕkpxq “ ak1

i1jpnq, and n ‰ x or
i 1 ‰ i . We then put ϕkpxq into Vj and n into Vi1 , and we restrain x out of Vi . In a
subsequent paragraph we will analyze in more detail how Pkij interacts with several
higher priority requirements, and how to deal with the case n “ x and i 1 “ i .
I -requirements. An I ki requirement simply selects new unrestrained elements and
enumerates them into Vi to ensure Vi has size at least k.

The environments. At stage s of the construction, we use several parameters.
A Q-requirement Qki,j uses the parameters A

k
i,jpsq, aki,jpn, sq, approximating respec-

tively the setAki,j and the witness, coding whether or not n is inVi , as in the informal
description of the strategy for Qki,j ; in other words, the mapping n ÞÑ aki,jpn, sq
approximates a computable function that 1-reduces Vi to Vj . After the last ini-
tialization of Qki,j (if eventually it stops being re-initialized), whenever we define
aki,jpm, sq, for some m, then this will be also the last value aki,jpmq “ aki,jpm, sq.
Notice that without loss of generality we may assume

n ă aki,jpn, sq.
A P-requirement Pki,j uses the parameter x

k
i,jpsq, which approximates the witness x,

as described in the above description of the strategy forPki,j . For each i, j, k,P
k
i,j also

uses a parameter Ski,jpsq, which is a finite set of numbers representing the restraint
that these numbers not enter Vi . For every i , in the construction below we build Vi
in stages, so that tVi,s | s P �u is a computable approximation to Vi .
Interaction of Pki,j with more than one requirement. We now need to analyze in
detail what happens when we want to act for Pki,j at a stage when ϕkpxq, with
x “ xki,j , has not as yet been enumerated into Vj , and in fact is restrained out of
Vj for a higher-priority requirement R. Assume that ϕkpxq converges to, say, y. If
R “ Pk0j,i0 , for some i0, k0, and we have that y “ xk0j,i0 , then, as already observed,
the conflict is just solved by priority: we enumerate x in Vi , and if R acts, then R
initializes Pki,j .

The problematic case is when there are j1, k1
0, and y1, such that R “ Qk1

0
j1,j
, and

y “ ak1
0
j1,j

py1q: then we are able to act as desired, i.e., enumerate y into Vj , but
at the same time keeping correctness of ak

1
0
j1,h

py1q, only if there is no restraint in
enumerating also y1 into Vj1 .
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Now in turn, a restraint on y1 can have been put either by a higher priority P
k1
j1 ,i1
,

if y1 “ xk1j1,i1 , but then again the conflict is solved, as above, by priority; or, y1 is
restrained by a higher priority Qk

1
1
j2,j1
, if y1 is of the form y1 “ ak1

1
j2,j1

py2q.
This suggests the following definition:

Definition 4.2. Define the sequence y0, y1, . . . , yh, . . . by steps:

Step 0: Let y0 “ y, and j0 “ j.
Step 1: If there is no restraint on y0, or there are unique i0, k0 such that y0 “ xk0j0 ,i0 ,
then y1 is undefined; otherwise there exist unique j1, k1

0, y1 such that y0 “ ak1
0
j1 ,j0

py1q.
Step h ` 1: If there is no restraint on yh , or there are unique ih , kh such that
yh “ xkhjh ,ih then yh`1 is undefined; otherwise there exist unique jh`1, k1

h , yh`1 such
that yh “ ak1

h

jh`1,jh pyh`1q.
Notice that at each step of the above inductive definition, the various disjuncts
are exclusive: this claim (and the claims on uniqueness of jh , ih , kh, k1

h) are justified
(see Lemma 4.4) by the fact that strategies for different requirements use disjoint
sets of witnesses and numbers.

Lemma 4.3. The sequence y0, y1, . . . , yh, . . . is finite.

Proof. For every r, if

yr “ ak1
r

jr`1,jh pyr`1q
then yr`1 ă yr . Thus the sequence must terminate. %
As currently y R Vj , and assuming correctness of the various functions ak

1
r

jr ,ir
p q

relative to higher priority requirements, we have that, for every r, yr R Vjr . So the
strategy for Pki,j in relation to restraints posed by higher priority requirements is the
following:

(1) if the last entry of the sequence is yh with yh P Sk1
j1 ,i1 where P

k1
j1 ,i1 has higher

priority, then enumerate xki,j intoVi ; we havex
k
i,j P Vi , but y “ ϕkpxki,jq R Vj ,

unless Pk
1
j1 ,i1 acts and places yh into Vj1 , but in this case all requirements of

lower priority than Pk
1
j1 ,i1 , including P

k
i,j , are initialized.

(2) if the last entry of the sequence is yh`1 with yh “ ak1
h

jh`1,jh pyh`1q where yh`1
is not restrained by higher priority requirements and either jh`1 ‰ i or
yh`1 ‰ xki,j , then enumerate each yr with r ď h ` 1 into Vjr . We have, as
desired, y “ ϕkpxki,jq P Vj , but xki,j R Vi ; our action has not injured the
higher priority requirements (in this case, only Q-requirements) since all
relative 1-reductions have been corrected, having (for all r ď h)

yr`1 P Vjr`1 ô akrjr`1,jr pyr`1q “ yr P Vjr .
In this case, we keep xki,j in S

k
i,j to restrain lower priority requirements from

ever causing xki,j to enter Vi .

(3) if the last entry of the sequence is yh`1 with yh “ ak1
h

jh`1,jh pyh`1qwhere jh`1 “
i and yh`1 “ xki,j , then we cannot keep xki,j out of Vi while enumerating y
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into Vj , due to higher priority Q-requirements. In this case, Pki,j adds x
k
i,j

to Ski,j and then unassigns x
k
i,j (and will thus choose a new x

k
i,j when acting

next). We will argue below, using the fact that ĺ is a preorder, that if xki,j is
unassigned infinitely often in this way, then i ĺ j.

Construction. At stage s ` 1 we may enumerate new elements into some of
the sets tVi,s : i P �u, thus obtaining their new approximations tVi,s`1 : i P �u. We
may also update the definition of some of the parameters. It is understood that ifVi ,
or a parameter, is not updated then its value is the same as at the previous stage.
At the end of a given stage s , we may initialize a requirement R: For this, if

R “ Qki,j , then we set Aki,jpsq “ H, and each aki,jpn, sq to be undefined; if R “ Pki,j ,
then we set xki,jpsq to be undefined and Ski,jpsq “ H.
We say that a requirement R requires attention at stage s ą 0, if R has not acted
since last being initialized, or
(1) R “ Qki,j and s is xi, j, ky-expansionary, i.e., minp�zWgpi,j,kq,s q ą minp� �

Wgpi,j,kq,�q where � is the last stage where Qki,j acted; or
(2) R “ Pki,j and either xki,jpsq is not defined or ϕk,s pxki,jpsqq converges and

xki,jpsq P Vi,s ô ϕk,spxki,jpsqq P Vj,s .
At odd stages, we take care of P-requirements and Q-requirements. At nonzero
even stages, we take care of the I -requirements.

Stage 0. Initialize all requirements.

Stage 2s ` 1. LetR be the least P-requirements or Q-requirement that requires
attention. (Notice that cofinitely many such requirements have never acted.) We say
thatR acts at 2s`1. For simplicity in the following, when writing down the various
parameters, we do not explicitly mention the stage s .
(1) IfR “ Qki,j , then pick a new element a and place it into Aki,j : if a is the m-th
element ofAki,j in order of magnitude then define a “ aki,jpmq. For all n ă m,
if n P Vi , then enumerate aki,jpnq into Vj .

(2) IfR “ Pki,j then
(a) if xki,j is not defined, then define it to be a new element and add x

k
i,j to

Ski,j ;
(b) if ϕkpxki,jq converges and ϕkpxki,jq R Vj , then consider the sequence
y0, y1, . . . , yh , . . . of Definition 4.2 (approximated at stage 2s ` 1):
(i) if the last entry of the sequence is yh “ xk1

i1 ,j1 with yh P Sk1
i1 ,j1 where

Pk
1
i1 ,j1 has higher priority, then enumerate xki,j into Vi , remove x

k
i,j

from Ski,j , and initialize all lower priority requirements;

(ii) if the last entry of the sequence is yh`1 with yh “ ak1
h

jh`1,jh pyh`1q
where jh`1 ‰ i oryh`1 ‰ xki,j , then enumerate eachyr with r ď h`1
into Vjr and initialize all lower priority requirements;

(iii) if the last entry of the sequence is yh`1 with yh “ ak1
h

jh`1,jh pyh`1q
where jh`1 “ i and yh`1 “ xki,j , then unassign xki,j .

Go to Stage 2s ` 2.
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Stage 2s ` 2. If s “ xi, ky, and Vi has less than k elements, then choose new
numbers and enumerate them into Vi , so that the set has at least k elements.

This ends the construction.

Verification. It is left to verify that the construction works.
The following Lemma observes that in case (2bi), there is never any injury to
enumerating xki,j into Vi and in case (2bii), there is never any injury to enumerating
the yr into Vjr .

Lemma 4.4. For any i, j, j 1, k, k1, if pj, kq ‰ pj 1, k1q, then xki,j is never in Sk1
i,j1 .

There is never an element aki,jpyq in Sk1
j,j1 for any i, j, j 1, k, k1.

Proof. Each time xki,j is chosen, it is chosen to be a new number, and a number

enters Sk
1
i,j1 only after it has already been xk

1
i,j1 . Each time aki,jpyq is chosen and each

time xk
1
j,j1 is chosen, they are chosen to be new numbers, and no number enters Sk

1
j,j1

unless it has already been xk
1
j,j1 . %

Lemma 4.5. No P-requirement initializes lower-priority requirements infinitely
often.

Proof. Let R be a P-requirement. Suppose, by induction, none of the higher-
priority P-requirement initializes lower-priority requirements infinitely often. Let s
then be a stage after which R is never initialized by a higher-priority requirement.
If, after stage s ,R ever initializes lower-priority requirements, it is through case (2bi)
or (2bii). In either case, then R never acts again, so it can initialize lower-priority
requirements at most once after stage s . %
Lemma 4.6. If i ł j then Pki,j is satisfied.

Proof. Let s be a stage when Pki,j is never initialized by a higher-priority require-
ment after stage s . We first argue that Pki,j cannot enter case (2biii) infinitely often.
Suppose otherwise. Then, each time it enters case (2biii), consider the sequence
j0, j1, . . . , jh`1 where jh`1 “ i . Let a0, a1, . . . , an be a simple subpath (i.e., if jm
and jn are equal, then we replace the sequence j0, . . . , jm, . . . , jn, . . . , jh`1 by the
sequence j0, . . . , jm, jn`1, . . . , jh`1, and repeat this algorithm until all the elements
of the sequence are distinct). By the pigeonhole principle, infinitely many times,
this sequence a0, . . . , an is the same. But then, the requirements Qkmam`1,am are acting
infinitely often. Thus, using that ĺ is a preorder, am`1 ĺ am for each m ď n, and
thus i ĺ j.
Thus, we can consider a stage t ą s such that xki,j is never unassigned after stage t.
When Pki,j is next visited, it defines x “ xki,j to have its final value. Subsequently,
eitherϕkpxki,jq diverges, in which casePki,j does not act anymore, and is satisfied asϕk
is not total; or,ϕkpxki,jq converges. In this latter case, it either never acts, inwhich case
ϕkpxki,jq P Vj , but since xki,j P Ski,j , we have thatxki,j R Vi , soPki,j is satisfied; or it acts
oncemore through (2bi), inwhich casexki,j P Vi , butϕkpxki,jq R Vj ; or it acts through
(2bii): in this case we get xki,j R Vi , and ϕkpxki,jq P Vj . In all cases, Pki,j is satisfied.%
Lemma 4.7. If i ł j, then Vi does not m-reduce to Vj .
Proof. By Lemma 4.6, every Pki,j is satisfied. %
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Lemma 4.8. If i ĺ j, then Vi ď1 Vj .
Proof. Let k be the least number such thatWgpi,j,kq “ �. By Lemma 4.5, every
P-requirement of priority higher than Qki,j initializes Q

k
i,j only finitely often. After

the last time Qki,j is initialized, every time Q
k
i,j acts, it defines more and more values

of the coding function aki,jp q, and keeps it correct as a 1-reducibility, by putting
aki,jpnq into Vj if and only if n P Vi . %
Lemma 4.9. For every pair i, k, the requirement I ki is satisfied.
Proof. The proof is trivial. %

%
We are now ready to show that the preorderďc on indices of ceers is Σ03 complete.
Corollary 4.10. ďc is a Σ03 complete preorder.
Proof. It is straightforward to check thatďc is Σ03. Since for infinite c.e. setsX,Y ,
RX ďc RY if and only if X ď1 Y (where RX is the ceer where aRXb if and only if
a “ b or a, b P X . See e.g., [1, 4,6,10,19]) the above reduction allows us to reduce
ĺ into ďc as well. %
The following corollaries are immediate consequence of Theorem 4.1, the first of
which appears in [7]:

Corollary 4.11 ([7]). The equivalence relation ”1 is a Σ03 complete equivalence
relation.
Proof. Trivial by Theorem 4.1, since an equivalence relation is a symmetric
preordering relation. %
Corollary 4.12. ”c is a Σ03 complete equivalence relation.
Proof. Trivial by Corollary 4.10. %
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