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Experimental study on a light–heavy interface
evolution induced by two successive shock waves
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Richtmyer–Meshkov instability induced by two successive shock waves is experimentally
studied in a specific shock tube. To create two successive shock waves synchronously, a
driver section is added between the driver and driven sections of the standard shock tube,
and an electronically controlled membrane rupture equipment is adopted. The shock-tube
flow after the membranes rupture is well described by combining the shock relations,
isentropic wave relations with compatibility relations across the contact surface (region).
The new shock tube is capable of generating two successive shock waves with controllable
strengths and time interval, and provides a relatively ‘clean’ wave system. Then the
developments of single-mode light–heavy interfaces with different initial conditions
induced by two successive shock waves are investigated. The initial amplitudes are all
small enough such that the first-shocked interface is within the linear growth regime at the
arrival of the second shock. The results show that if the pre-second-shock perturbation
amplitude is small, the linear, nonlinear and modal evolutions of the double-shocked
interface can be reasonably predicted by the existing models proposed for predicting
the perturbation growth induced by a single shock. For the double-shocked interface,
the second shock provides an additional perturbation velocity field to the original one
introduced by the first shock impact. The validity of the linear superposition model
indicates that the linear superposition of these two perturbation velocity fields is satisfied.
Therefore, a double-shocked interface evolves similarly to a single-shocked interface
provided that their postshock amplitudes and linear growth rates are the same.
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1. Introduction

Richtmyer–Meshkov (RM) instability (Richtmyer 1960; Meshkov 1969) occurs when an
initially corrugated interface separating two fluids of different densities is impulsively
accelerated by shock waves. It has gained extensive attention for decades due to its crucial
role in various industrial and scientific fields such as inertial confinement fusion (ICF)
(Nuckolls et al. 1972; Lindl 1998; Betti & Hurricane 2016) and supernova explosion
(Arnett et al. 1989; Kuranz et al. 2018). One tremendous obstacle of ICF realization is
the occurrence of hydrodynamic instabilities (Lindl 1998), such as the RM instability
caused by an impulsive acceleration (generally a shock wave), and the Rayleigh–Taylor
(RT) instability (Rayleigh 1883; Taylor 1950) induced by a continuous acceleration. Note
that the RM instability occurs regardless of the shock direction, whereas the RT instability
can only occur when the continuous acceleration is directed from the light fluid to the
heavy one. The RM instability is generally served as the seed of the RT instability that
develops during the implosion phase (Goncharov 1999). The RM instability induced by
a single shock wave or shock waves propagating in the opposite directions, e.g. incident
shock and reflected shock, has been extensively studied (Brouillette 2002; Zhou 2017a,b;
Zhai et al. 2018b). In both conventional direct- and indirect-drive central ignition schemes
of ICF (Goncharov et al. 2003; Lindl et al. 2004), and most of the innovative ignition
schemes (Tabak et al. 1994; Murakami et al. 2006; Betti et al. 2007; Zhang et al. 2020),
to raise the drive pressure to a magnitude required for ignition while keeping the target
shell at a relatively low entropy, a multishock drive scheme is generally employed (Betti
& Hurricane 2016). However, the RM instability induced by successive shock waves
(SSS-RMI) was rarely investigated. How does a double-shocked interface evolve and
how to predict its development? What is the dependence of the physical process of the
SSS-RMI on the initial conditions? The hydrodynamic mechanisms and dependence on
initial conditions remain unclear. These issues motivate the present study.

The SSS-RMI was theoretically considered by Mikaelian (1985), and a simple model
which preserves the structure of the impulsive model (Richtmyer 1960) was proposed to
predict the linear growth of double-shocked interface. It was stated that if the growth rate
caused by the second shock exactly offsets the growth rate induced by the first shock,
a so-called ‘freeze-out’ phenomenon (the amplitude growth stagnates) may occur. The
interaction of two successive shock waves with a free surface of liquid aluminium was
numerically investigated (Charakhch’yan 2000). It was found that if the second shock
impact occurs in the linear growth regime of perturbation, the linear superposition model
(Mikaelian 1985) is valid. However, if the perturbation evolution is at the nonlinear
stage when the second shock arrives, the variation of the perturbation growth rate
depends weakly on the pre-second-shock amplitude and the initial wavelength. Then an
empirical model was proposed to predict the linear growth rate of the double-shocked free
surface, and the conditions for achieving the ‘freeze-out’ phenomenon were predicted.
The empirical model was verified to be applicable even under conventional shock-tube
conditions by considering the interaction of successive shock waves with either air–helium
or freon–air interface (Charakhch’yan 2001). Numerical studies on ejecta emanating
from twice shocked liquid metals were performed (Karkhanis et al. 2017; Karkhanis
& Ramaprabhu 2019). It was found that if the pre-second-shock bubble has reached a
nonlinear evolution state, it resembles a shape referred to as ‘flycut’ (semicircle). The
shape effects of such a non-sinusoidal interface can be described by using the concept
of effective wavelength (Cherne et al. 2015; Karkhanis et al. 2017, 2018; Karkhanis &
Ramaprabhu 2019). The development of a bubble (lighter fluids penetrating heavier ones)
can be predicted by the potential flow model proposed by Mikaelian (1998), while the
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empirical model proposed by Karkhanis et al. (2018) that considers both nonlinearity and
compressibility provides a good prediction to the terminal growth rate of spike (heavier
fluids penetrating lighter ones). Williams & Grapes (2017) considered the material spall in
the simulations of double-shock ejecta production, and found that pre-second-shock spall
failure would occur if the time interval between two shock-wave impacts is long enough.
The second shock would be disturbed by the irregular surfaces of the subsurface spalled
layers, which may have a significant effect on the development of the surface after it was
reshocked.

Experimentally, Dimonte et al. (1996) firstly observed the SSS-RMI phenomenon. In
their experiments, the first shock wave is generated by irradiating a beryllium ablator with
strong X-radiation. When the first shock encounters a heavy–light interface, backward
moving rarefaction waves are generated. When these rarefaction waves meet the ablation
front which is also a heavy–light interface, compression waves are generated and they
finally form the second shock which propagates in the same direction as the first shock
wave. However, the emphasis was on the high Mach number and high initial-amplitude
effects on the interface evolution but less attention was paid to the SSS-RMI. To investigate
the ejecta phenomenon on twice shocked metals, Buttler et al. (2014a,b) developed an
explosively driven tool that can generate two successive shock waves. Ejecta masses
and surface velocities induced by two successive shock waves were measured, and RM
bubble and spike dynamics were captured. It was found that mass ejections on twice
shocked materials can be attributed to two mechanisms: RM unstable mass ejections
and local spallation or cavitation. The tool developed by Buttler et al. (2014a,b) can
produce two successive shock waves that are strong enough to melt the metal and create
an environment with much higher energy density than that in conventional shock tube.
However, the explosive loading shock waves are ‘unsupported’ (Taylor waves), and,
therefore, the perturbation development would be affected by rarefaction waves. Also, the
development of interface is driven not only by RM instability, but also by the material
failure phenomenon (Karkhanis et al. 2017; Williams & Grapes 2017; Karkhanis &
Ramaprabhu 2019), which would disturb the second shock and pollute the flow field.
Specifically, due to the multiphysical processes involved, the strengths of the first and
second shock waves, as well as the time interval between them arriving at the metal target,
are difficult to precisely control. In addition, the complicated diagnostic techniques of
the experiment can only provide limited information, the interface properties immediately
preceding the second shock impact, which are crucial for studying the SSS-RMI, are
not available (Karkhanis & Ramaprabhu 2019). Until now, an experimental facility for
investigating the SSS-RMI is still lacking. As we know, the development of the RM
instability is highly sensitive to the initial conditions. Therefore, it is necessary to ensure
that the experimental approach is well reproducible in generating two successive shock
waves with controllable strengths and the time interval. These also motivate the current
study.

In this work, a specific shock tube which contains an additional driver section
between the driver and driven sections of the standard shock tube is firstly designed
and manufactured. Then shock tube flows without and with an interface are described.
The capability of the shock tube for generating two successive shock waves with
controllable strengths and time interval is verified experimentally. Finally, experiments
on the developments of single-mode light–heavy interfaces with different initial conditions
are conducted, and some typical models for predicting single-shocked perturbation growth
are examined.
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Figure 1. Sketch of the shock-tube facility for generating two successive shock waves.

2. Shock-tube design principle and realization

2.1. Design principle and shock-tube details
A sketch of the entire shock-tube facility is shown in figure 1, in which the scales do not
exactly reflect the real ones. The main bodies of all the sections of the shock-tube facility
are made of steel. To produce two successive shock waves, a driver section (I) together with
two identical transparent acrylic devices (acrylic devices I and II), is added between the
driver section (II) and the driven section of a standard shock tube. For the driver sections I
and II, the acrylic devices I and II and the driven section, the inner cross-section is circular
with a radius of 30 mm. Gases in the driver sections II and I (the driver section I and the
driven section) are separated by a polyester membrane embedded in the acrylic device II
(I). Note that in this work, the gases in all regions are air unless specifically defined. The
distance between the polyester membrane embedded in the acrylic device II and the inner
end wall of the driver section II and the distance between two polyester membranes are
1750 and 700 mm, respectively. The distance between the polyester membrane embedded
in the acrylic device I and the right-hand end of the driven section is 1470 mm. To
avoid confusion, the region between the polyester membrane embedded in the acrylic
device II and the end wall of the driver section II, and the region between two polyester
membranes are hereinafter referred to as the driver section II and the driver section I,
respectively.

To precisely control the initial Mach numbers of two shock waves, i.e. the initial
pressures in two driver sections, and to achieve the synchronous generation of two shock
waves, i.e. the synchronization of the rupture of membranes, an electronically controlled
membrane rupture equipment (ECMRE) is adopted. The ECMRE is generally used to
produce a high-voltage electrical pulse to heat the resistance wire in contact with the
membrane, resulting in localized melting of the membrane, reducing its pressure-bearing
capacity and thus achieving the rupture of the membrane. Compared with the traditional
membrane rupture method, i.e. rupture the membrane directly through the pressure
difference across it, an active rupture of the membrane can be realized by the ECMRE, and
thus the timing of the membrane rupture and the pressures on both sides of the membrane
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when it ruptures can be precisely controlled. When the current through the resistance wire
is high enough, the resistance wire will explode and the rupture of the membrane with
a high quality can generally be achieved. If the blast wave generated by the explosion of
the resistance wire is strong, it may introduce additional disturbances to the flow. The
ECMRE adopted in the present work can produce two synchronous high-voltage electrical
pulses, with output voltage up to 500 V and output current up to 2000 A. To illustrate the
experimental set-up more clearly, an enlarged view of the acrylic device II is shown in
figure 1. The polyester membrane is placed between the two parts of the acrylic device
II and is held by the rubber sealing ring during the experiment. The thickness of the
membrane depends on the preset pressure difference across it. Generally, to ensure the
success and the repeatability of the experiment, it is desirable that the pressure-bearing
capacity of the membrane is close to the preset pressure difference across it. A nichrome
resistance wire with its ends connecting to the copper wires of very low resistance
is in contact with the membrane. Before each experimental run, we first charge the
energy-storage capacitor of the ECMRE to the required voltage. Since the resistances of
the nichrome resistance wires attached to the polyester membranes are low (approximately
0.26�) and they are connected in parallel, the voltage selected in experiments is 250 V
to avoid the damage to the ECMRE due to the excessive current. Then the ECMRE
is triggered to produce two synchronous electrical pulses, causing the explosion of the
nichrome resistance wires. When the polyester membranes rupture, two shock waves, two
contact surfaces and two rarefaction waves are generated. These shock waves propagate
from the driven section to the stable section with a rectangular cross-section of 140 mm ×
20 mm through a transitional section with a length of 230 mm. Note that in the transitional
section where the cross-section changes from circular to rectangular, the cross-section area
changes from 2827 to 2800 mm2. The area change is negligible and the transition of the
cross-section is smooth, which ensure that the intensities of the shock waves would not be
significantly affected. The stable section with a length of 1050 mm is adopted to stabilize
the shock waves before they enter the test section. In this work, the soap-film technique is
adopted to create the initial single-mode interface. A single-mode soap-film interface has
a minimum-surface feature (Luo, Wang & Si 2013) and its three-dimensionality is highly
related to its height. For investigating a quasi-two-dimensional SSS-RMI phenomenon,
the cross-section is changed from 140 mm × 20 mm to 140 mm × 6 mm at the junction
of the stable section with the test section to weaken the three-dimensionality of the
soap-film interface generated in experiments. Inevitably, the cross-section truncation
will have some effects on the shock intensities and the flow. This will be discussed in
Appendix A.

As shown in figure 1, the test section mainly consists of four parts: the steel main body;
the glass observation window; the transparent acrylic test chamber; and the aluminium
drawer. The length of the test section is 815 mm, which ensures that the rarefaction waves
generated when the first shock wave exits the open end of the test section would not affect
the development of the interface. The observation window made of K9 optical glass has a
width of 95 mm and a length of 275 mm, and its left-hand side is 75 mm away from the
junction of the stable section with the test section. The transparent acrylic test chamber is
served as the interface formation device when performing experiments with the soap-film
interfaces. For the soap-film technique, readers can find more details in our previous works
(Liu et al. 2018; Liang et al. 2019).

To investigate the SSS-RMI, there are three key objectives of designing the shock-tube
facility. The first is the reliable and repeatable generation of two successive shock waves.
The second is the controllable variations of the shock intensities and the time interval
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between two shock waves arriving at a given position, which are necessary to investigate
the effects of different initial conditions on the flow. Intuitively, the shock intensities can be
manipulated by changing the pressure ratios across the membranes, and the time interval
can be regulated by varying the distance between the initial positions of two shock waves,
the distance from the initial position of the first shock to the test section and the intensities
of two shock waves. The third is the generation of a relatively ‘clean’ flow field, which
means that the interface is accelerated by two shock waves but is not significantly affected
by other waves. Note that although the flow just after the rupture of the membranes can be
considered as a combination of two standard shock-tube flows, waves and contact surfaces
would then interact with each other, making the flow field far complicated than that in
a conventional shock tube. As a result, the flow in such a shock tube must be at least
qualitatively well understood.

2.2. Shock-tube flow analysis
We first consider the one-dimensional (1-D) shock-tube flow. Figure 2 shows the
distributions of flow regions before and after the membranes rupture. Gases in all sections
are air. After the membranes rupture, as indicated in figure 2 at t = t1, two shock waves
(SW1 and SW2), two contact surfaces (CS1 and CS2) and two rarefaction waves (RW1 and
RW2) are generated, and the flow can be divided into seven regions. In fact, the flow in this
shock tube at t = t1 can be considered as a combination of two standard shock-tube flows.
Therefore, given the initial parameters, including the pressure (p) and the temperature (T)
in the driven section (region 1), the driver section I (region 2) and the driver section II
(region 3), the initial intensities of the two shock waves can be obtained by shock-tube
theory (Glass & Hall 1959; Owczarek 1964; Han & Yin 1993)

ph

pl
=

[
1 + 2γl

γl + 1
(M2

s − 1)
] [

1 − γh − 1
γl + 1

cl

ch

(
Ms − 1

Ms

)](−2γh)/(γh−1)

, (2.1)

where subscript ‘h’ (‘l’) denotes the flow region with higher (lower) pressure, Ms is the
Mach number of the shock generated. Here γ and c are the specific heat ratio and sound
speed, respectively. Once the shock Mach numbers are known, the flow parameters in
regions 4 and 6 (behind the shock waves) can be calculated by normal shock relations
((B1)–(B5) in Appendix B). The flow Mach numbers (M′) in regions 5 and 7 (behind the
rarefaction waves) can also be calculated by shock-tube theory

M′ =
[

ch

cl

(γl + 1)Ms

2(M2
s − 1)

− γh − 1
2

]−1

, (2.2)

and other flow parameters such as pressure p′, density ρ′, temperature T ′, speed of sound
c′ and velocity u′ can be easily deduced by (B6)–(B10) in Appendix B. Superscript ‘′’
denotes the flow region between rarefaction waves and contact surface.

However, as time proceeds, the flow in our new facility becomes far more complicated
than that in the standard shock tube because there are many wave–wave and wave–contact
surface interactions. We first assume that the driver section II is long enough, which allows
the first three of four interactions considered below to occur before they are affected by the
reflected rarefaction waves (RWr

2) of RW2 from the end wall.
(I) The interaction of the SW2 with the RW1 generates a transmitted shock (SWt

2),
transmitted rarefaction waves (RWt

1) and a contact region (CR), as shown in figure 2 at
t = t2. The corresponding x–t diagram is shown in figure 3(a). The intensity of the RWt

1
is weaker than that of the RW1, while the intensity of the SWt

2 increases gradually during
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Figure 2. Distributions of flow regions before and after the rupture of membranes. Here SW refers to shock
wave, CS or CR refers to contact surface or contact region and RW refers to rarefaction waves. Superscripts ‘r’
and ‘t’ denote reflected and transmitted, respectively. Here t0 and t1 are the moments before and shortly after
the membranes rupture, respectively; t2 is the moment after the shock SW2 interacts with the rarefaction waves
RW1; t3 is the moment after the shock SWt

2 interacts with the contact surface CS1, and after the rarefaction
waves RWt

1 interact with the contact surface CS2, and after the rarefaction waves RW2 reflect from the end
wall. The shade of the colour generally indicates the magnitude of pressure.

the interaction. As a result, a non-isentropic contact region CR, rather than a contact
surface, is generated between the SWt

2 and the RWt
1. From region 2 to region 6,

the variations of flow parameters satisfy the normal shock relations ((B1)–(B5) in
Appendix B), and from region 6 to region 9, the variations of parameters satisfy the
isentropic wave relations ((B11)–(B12) in Appendix B). From region 2 to region 5 and
from region 5 to region 8, the variations of the flow parameters similarly satisfy the
isentropic wave relations and the normal shock relations, respectively. In addition, the
pressures and flow velocities at both sides of CR, i.e. regions 8 and 9, are the same.
By combining these relations, the intensities of both the SWt

2 and the RWt
1 and the flow

parameters in regions 8 and 9 can finally be determined.
(II) As the SWt

2 moves forward, it interacts with the contact surface CS1, generating
a transmitted shock (SWtt

2) and reflected rarefaction waves (RW3), as shown in figure 2
at t = t3. The corresponding x–t diagram is presented in figure 3(b). From region 4 to
region 10 (region 8 to region 11), the variations of flow parameters satisfy the normal
shock relations (the isentropic wave relations). Combining these normal shock relations,
isentropic wave relations with the compatibility relations, the intensities of both the SWtt

2
and the RW3 and the flow parameters in regions 10 and 11 can be solved.

(III) As shown in figure 2 at t = t3, because the driver section II is long enough, the
CS2 would interact with the RWt

1 before it is affected by the RWr
2. The corresponding

x–t diagram is presented in figure 3(c). This interaction forms reflected rarefaction
waves (RWrt

1 ) and transmitted rarefaction waves (RWtt
1). It is the head of the RWrt

1
(hRWrt

1 ) that may first overtake the SWtt
2 , and its trajectory needs to be determined.

As the hRWrt
1 propagates forward, it will interact with the RWt

1, CR, RW3 and CS1
sequentially. These interactions can be solved by combining the isentropic wave relations
with the compatibility relations across the contact surface or contact region. Although the
hRWrt

1 would be influenced by contact surfaces and waves after it is generated, it is still
represented by this symbol in the following text for simplicity.
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Figure 3. The x–t diagrams of interactions. The interaction of the shock SW2 with the rarefaction waves
RW1 (a); the interaction of the transmitted shock SWt

2 with the contact surface CS1 (b); the interaction of the
transmitted rarefaction waves RWt

1 with the contact surface CS2 (c) and the rarefaction waves RW2 reflection
from the end wall (d).

(IV) The x–t diagram of the reflection process of the RW2 on the end wall is given in
figure 3(d). This process can be solved by combining the isentropic wave relations with
the boundary conditions of the end wall.

In this work, unless otherwise specified, the lengths of the driver section I (LI) and
driver section II (LII) are 700 and 1750 mm, respectively. Provided that the initial flow is
stationary, the initial temperature is 293.15 K and the initial pressures in regions 1–3 are
101.325, 202.650 and 379.969 kPa, respectively, the shock-tube flow is solved and its x–t
diagram is presented in figure 4. Here, the position of the junction of the driver section I
with the driven section is defined as x = 0 mm, and the moment when the membranes
rupture is defined as t = 0 μs. The Mach numbers of SW1 (Ms1), SW2 (Ms2), SWt

2 (Mt
s2)

and SWtt
2 (Mtt

s2) are 1.160, 1.144, 1.152 and 1.144, respectively. According to the 1-D gas
dynamics theory, the Mach number of the downstream-travelling shock wave (SW2) would
increase after it interacts with the upstream-travelling rarefaction waves (RW1), and would
decrease after it interacts with the downstream-travelling contact surface (CS1). This leads
to the very limited difference between the Ms2 and the Mtt

s2. It is found that the flow can be
correctly described by figure 2. Under the given conditions, SWtt

2 would not be overtaken
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Figure 4. Shock-tube flow without interface. Only partial regions are involved for simplicity.

by hRWrt
1 before it meets SW1. The interaction of SWtt

2 with SW1 occurs at x = 3388 mm
when t = 8495 μs. As a result, to investigate the SSS-RMI, the initial interface should be
located in front of x = 3388 mm. The initial interface in our experiments is positioned at
x = 2918 mm, and the time interval of two successive shock waves moving to this specific
position is approximately 235 μs.

Provided that the initial flow parameters and the length of the driver section I are
identical to those shown in figure 4, if the driver section II is shorter than 1750 mm but still
longer than 267 mm, the CS2 would still be affected first by the RWt

1, and the shock-tube
flows are identical to those shown in figure 4. However, if the driver section II is shorter
than 267 mm, the CS2 would be affected first by the RWr

2 instead of the RWt
1. If the

driver section II is even shorter than 17 mm, the SW2 would be overtaken by the RWr
2

before it meets the RW1. Even so, the flow field can still be solved by combining the
normal shock relations, the isentropic wave relations, the compatibility relations across
the contact surface or contact region with the wall boundary conditions, although some
tedious calculations are sometimes required.

2.3. Experimental results of shock-tube flow
Furthermore, generation of two successive shock waves is realized in the specially
designed shock tube as described above. The flow field is monitored using high-speed
schlieren photography. The schlieren optical arrangement adopted is identical to the one
illustrated in the previous work (Guo et al. 2022), where readers can find more details.
The frame rate of the high-speed video camera (FASTCAM SA5, Photron Limited) is
50 000 f.p.s. with a shutter time of 1 μs. The spatial resolution of the schlieren images is
0.38 mm pixel−1.

Three experimental runs (runs 1, 2, 3) with the same initial parameters as those
adopted in the theoretical analysis except the ambient temperature are first performed.
The relevant experimental parameters are provided in table 1. The membranes embedded
in the acrylic devices I and II have thicknesses of 25 and 30 μm, respectively, and
their pressure-bearing capacities (approximately 125 and 225 kPa, respectively) are
close to the corresponding pressure differences across them (approximately 100 and
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Run p1:p2:p3 MTI PBCI MTII PBCII LI LII T Ms1 Mtt
s2 δt

(μm) (kPa) (μm) (kPa) (mm) (mm) (K) (μs)

1 1.00:2.00:3.75 25 125 30 225 700 1750 297.2 1.179 1.111 629.1
2 1.00:2.00:3.75 25 125 30 225 700 1750 297.4 1.181 1.110 687.9
3 1.00:2.00:3.75 25 125 30 225 700 1750 297.5 1.184 1.100 628.4

4 1.00:2.00:3.75 25 125 30 225 500 1750 296.7 1.178 1.097 362.3
5 1.00:2.00:3.75 25 125 30 225 500 1750 296.6 1.191 1.089 342.8
6 1.00:2.00:3.75 25 125 30 225 500 1750 296.5 1.184 1.095 447.3

7 1.00:2.00:5.00 25 125 38 350 700 1750 295.6 1.185 1.184 118.1
8 1.00:2.00:5.00 25 125 38 350 700 1750 295.8 1.168 1.215 116.0
9 1.00:2.00:5.00 25 125 38 350 700 1750 296.2 1.176 1.200 107.5

Table 1. Initial parameters and results of experiments without interface. Here MTI and PBCI (MTII and PBCII)
are the thickness and the pressure-bearing capacity of the membrane embedded in the acrylic device I (II),
respectively.

175 kPa, respectively). Because the qualitative differences among different runs are very
subtle, only the schlieren photographs from the run 1 are provided, as shown in figure 5(a).
The definition of the spatial origin is the same as that in the theoretical calculation, whereas
the temporal origin is defined as the moment when SW1 reaches the preset interface
position, i.e. x = 2918 mm from the junction of the driver section I with the driven section.
From the schlieren images, the SW1 is quite planar but the SWtt

2 is slightly convexly
curved (t = 616 μs) due to the effect of boundary layer behind the SW1. In experiments,
because the SWtt

2 moves behind the SW1, the boundary layer always exists, and makes the
SWtt

2 convexly curved. Note that a curved shock wave has the characteristic of recovering
a flat shape as it moves through a tunnel with a constant cross-section (Ishizaki et al.
1996; Bates 2004), and this characteristic can be referred to as the self-recovery effect
of shock wave. Induced by the self-recovery effect, the amplitude of a curved shock is
oscillated, and finally tends to zero if the boundary layer is absent (Ishizaki et al. 1996;
Bates 2004). In other words, the SWtt

2 may be convexly curved, planar or concavely curved
during its propagation. For these three experimental runs, due to the size limitation of the
visualization window and the long time interval between two shock waves arriving at the
test section, the two shock waves do not display in the schlieren photographs at the same
time.

The x–t diagrams of the SW1 and the SWtt
2 from three different runs are shown in

figure 6(a). It can be found that the two shock waves move linearly, indicating that their
intensities are stable. The Mach numbers of the two shock waves (Ms1 and Mtt

s2), as well
as the time interval between the two shock waves arriving at the preset interface position
(δt) are measured as shown in table 1. The experimental Ms1 (1.182 ± 0.003 with 0.003
corresponding to the maximum deviation of these shock Mach numbers from the average)
is slightly larger than its theoretical counterpart (1.160), which is ascribed to the reduction
of the cross-sectional area. The effects of the cross-section truncation on the intensities of
two shock waves are discussed in Appendix A. The experimental Mtt

s2 (1.106 ± 0.006) is
slightly smaller than its theoretical counterpart (1.144), which should be attributed to the
boundary-layer effect and the effect of the shock wave generated by the reflection of SW1
from the junction of the stable section with the test section. The time interval δt varies
within the range of 658 ± 30 μs in different runs, because the complete synchronization
of the rupture of membranes is difficult to achieve in experiments. The attenuation of the
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Figure 5. Experimental schlieren photographs of the propagation of two successive shock waves. Numbers
represent the time in μs, and the temporal origin is defined as the moment when SW1 reaches the preset
interface position, i.e. x = 2918 mm from the junction of the driver section I with the driven section.

SWtt
2 and the enhancement of the SW1 result in a larger δt in experiment than that in the

theoretical prediction.
In the studies of SSS-RMI, the time interval δt, which is related to the two shock Mach

numbers and the lengths of sections, is crucial. For given LI/LII and the initial pressures
and temperatures in sections, the inviscid shock-tube flow is self-similar, i.e. the spatial
and temporal coordinates of waves, contact surfaces and contact region are linearly related
to LI or LII , which indicates that δt can be varied by changing LI while maintaining the
other initial parameters constant. To verify this approach, three additional experiments
(runs 4, 5, 6) with the same initial parameters as those in runs 1, 2, 3 except LI and T
are conducted. The membranes adopted here are the same as those in the runs 1–3. The
schlieren images from run 4 and the x–t diagrams of the shock waves from three different
runs are provided in figures 5(b) and 6(b), respectively. Both two shock waves can be
observed in the same image at t = 273 μs and the intensities of two shock waves are stable.
The curvature of the shock SWtt

2 in the run 4 is more significant than that in the run 1,
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Figure 6. The x–t diagrams of shock waves from experiments without interface: (a), runs 1, 2, 3; (b), runs 4,
5, 6; (c), runs 7, 8, 9.

and it increases gradually within the experimental observation area. Note that due to the
limitations of the temporal resolution and the length of the experimental observation area,
it is hard to observe all the transition processes of the SWtt

2 shape variation. As shown
in table 1, the Mach numbers of two shock waves (Ms1 and Mtt

s2) in different runs are
measured as 1.185 ± 0.007 and 1.093 ± 0.004, respectively, while δt varies within the
range of 395 ± 53 μs. The run 6 seems to produce a significantly different δt. Note that
for different experimental runs, although the initial pressures in sections and the voltages
of the electrical pulses are constant, there are subtle differences in the properties of the
membranes (or the resistance wires), such as the thickness (or the resistance), resulting in
the slight differences in the time interval and shock Mach numbers among different runs.
Given the complexity of the membrane rupture process, the difference in time intervals
among different runs is acceptable. As a result, the shock-tube facility is capable of varying
δt by changing LI while fixing the other parameters constant.

Moreover, through changing the pressure in the driver section II, the variation of the
shock intensity is examined. Three additional experiments (runs 7, 8, 9) are carried out,
in which the initial parameters are the same as those in runs 1, 2, 3 except p3 and T , as
shown in table 1. The membrane embedded in the acrylic device I is the same as that in
the runs 1–6, whereas the membrane embedded in the acrylic device II has a thickness of
38 μm with a pressure-bearing capacity of approximately 350 kPa. The schlieren images
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from run 7 and the x–t diagrams of the shock waves are provided in figures 5(c) and
6(c), respectively. The two shock waves can be observed in the same images from t =
84 μs to t = 264 μs and their intensities are stable. In this case, the observed shock SWtt

2
maintains nearly flat. The Mach numbers of two shock waves (Ms1 and Mtt

s2) in different
runs are measured as 1.176 ± 0.009 and 1.199 ± 0.016, respectively, while δt varies within
the range of 113 ± 6 μs. Therefore, the variation of Mtt

s2 is realized while maintaining the
Ms1 almost unvaried. Relative to the runs 1–6, the uncertainties of the Mtt

s2 values are
increased in the runs 7–9. Two reasons may account for this disparity. First, the membrane
used to separate the gases in the driver sections II and I in the runs 7–9 is thicker than
that in the runs 1–6 (see table 1), which increases the uncertainty of the membrane rupture
process and thus the uncertainty of the Mtt

s2. Second, because the initial intensity of the
second shock in the runs 7–9 is stronger than that in the runs 1–6, and the flow behind the
first shock is slightly different for runs due to the uncertainty of the first shock intensity,
the interactions of the second shock with the contact surface, waves and the boundary layer
would introduce a greater uncertainty of the Mtt

s2. Even so, we can conclude that the shock
intensities and the δt can be manipulated by changing the pressures in the driver sections
and the lengths of the sections, and the first two key objectives of designing the shock-tube
facility are achieved.

3. Shock-tube flow with a flat interface

The shock-tube flow with a flat interface is then considered. The initially flat air–SF6
interface is positioned at x = 2918 mm. The values of γ for air and SF6 are 1.4 and
1.094, respectively. The initial pressure and temperature of SF6 gas are set as 101.325 kPa
and 293.15 K, respectively, and other initial parameters are the same as those adopted in
§ 2.2. Before the shock–interface interaction occurs, the shock-tube flow with an interface
is identical to that without an interface, as shown in figure 4. Therefore, we will focus
on the shock–interface interaction here. The distributions of flow regions shortly before
and after the shock–interface interaction occurs are provided in figure 7, and the x–t
diagram showing the details of shock–interface interactions is presented in figure 8.
As the SW1 meets the initial interface (II), a downstream-moving transmitted shock
(SWt

1) and an upstream-moving reflected shock (SWr
1) are generated. Meanwhile, the

single-shocked interface (SSI) starts to move downstream. When the SWtt
2 meets the SWr

1,
two transmitted shock waves (SWttt

2 and SWtr
1 ) and a contact surface (CS3) are formed.

Under the conditions considered, the shock intensities are limited, the flow parameters on
both sides of the CS3 (regions 18 and 19) are therefore similar. Therefore, the interactions
between the CS3 and the waves are ignored, i.e. regions 18 and 19 are regarded as one
region. When the SWttt

2 impacts the interface, a transmitted shock (SWtttt
2 ) and a reflected

shock (SWrttt
2 ) are generated. The SWtttt

2 will finally overtake the SWt
1, forming a shock

wave, a contact surface and rarefaction waves (RW4). Besides, the hRWrt
1 will sequentially

interact with the SWtr
1 and the SWrttt

2 . It is the head of the RW4 (hRW4) or the hRWrt
1 that

may first influence the double-shocked interface (DSI) movement. The shock-tube flow
with an interface is solved by combining the normal shock relations, the isentropic wave
relations with the compatibility relations across the contact surface (region). The Mach
number of the SWttt

2 (Mttt
s2) is 1.141 and the time interval Δt between the two shock waves

impacting the interface is approximately 271 μs. Note that the Δt here is slightly different
from the δt in § 2.2. Because the interface has a velocity after the first shock impact, the
Δt is generally greater than the δt. Under the conditions considered, it is the hRW4 that
first encounters the interface at x = 3040 mm when t = 8569 μs.
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Figure 7. Distributions of flow regions before and after the first shock–interface interaction occurs. Here tn
and tn+1 are the moments shortly before and after SW1 collides with the initial interface (II), respectively; tn+2
is the moment after SWtt

2 interacts with SWr
1; tn+3 is the moment after SWttt
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Figure 8. The x–t diagram showing the details of the shock–interface interactions.

Furthermore, three experiments (runs 10, 11, 12) on the interaction of two successive
shock waves with a planar air–SF6 interface are performed. The experimental parameters
are the same as those in the theoretical prediction except the gas concentrations on both
sides of the interface and ambient temperature. The ambient temperatures for these three
runs are 297.0, 297.1 and 297.3 K, respectively. The soap-film technique (Liu et al. 2018;
Liang et al. 2019, 2021) is adopted to generate the planar air–SF6 interface, and the details
of this interface formation method are ignored. Note that the soap-film interface has a
discontinuous feature relative to membrane-free interface (Motl et al. 2009), and it is easily
broken relative to the interface formed by the jelly membrane (Meshkov & Abarzhi 2019).
The experimental schlieren photographs from the run 10 are shown in figure 9. Here, the
temporal origin is defined as the moment when the SW1 reaches the mean position of
the interface, and similarly hereinafter. The initial interface appears to be thicker due to
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Figure 9. Experimental schlieren photographs of the interaction of two successive shock waves with an
undisturbed air–SF6 interface.

the presence of the constraint strips used to restrict the soap-film interface (−117 μs). We
have concluded in our previous work (Wang et al. 2022) that the presence of the constraint
strips will introduce non-uniform pressure and velocity fields behind the shock, and inhibit
the amplitude growth. The effects of the constrain strips are more pronounced as their
heights increase. When the heights of the constrain strips protruding into the flow field are
generally less than 10 % of the height of the flow field, the effects of the constrain strips on
the shocked flow are limited and can be ignored. In this work, the heights of the constrain
strips protruding into the flow field are approximately 6.7 % of the height of the flow field
(the height of the constraint strip at each side protruding into the flow is approximately
0.2 mm, and the flow field height is 6 mm), and, therefore, their effects can be ignored.
After the SW1 encounters the initial interface, the planar SWt

1, SWr
1 and SSI are generated

(43 μs). Due to the boundary-layer effect, the SSI gradually becomes slightly convexly
curved (603–703 μs). Behind the SSI, a planar SWttt

2 can be observed (603–703 μs). After
the SWttt

2 impacts the SSI, the DSI and the SWtttt
2 can be clearly observed (943 μs), whereas

the SWrttt
2 can be barely observed due to its weak intensity. The DSI is thicker than the SSI,

which can probably be attributed to the development of the small random perturbations on
the initial interface and the diffusion of the soap droplets.

The x–t diagrams of interface and shock waves including SW1, SWt
1, SWr

1, SWttt
2 and

SWtttt
2 from experimental runs 10–12, denoted by black, red and blue symbols, respectively,

are shown in figure 10(a). All shock waves move linearly, indicating that the intensities
of shock waves are stable, although there is a slight difference in Δt. Besides, the
nearly linear movements of the SSI and the DSI indicate that the interface is not heavily
affected by additional waves other than SW1 and SWttt

2 throughout the experiment, i.e.
the flow field is rather ‘clean’, which is crucial for studying the SSS-RMI. As a result,
the third key objective of designing the shock-tube facility is achieved. To theoretically
calculate the interface velocities, the gas composition at the right-hand side of the initial
interface should be determined (the air at the left-hand side of interface is considered as
pure). For different experimental runs, the velocities of SW1 (us1 = 406.3 ± 1.8 m s−1)
and SWt

1 (ut
s1 = 176.9 ± 0.4 m s−1) are firstly measured. Given the ambient temperature

(T = 297.1 ± 0.2 K), the volume fraction of SF6 at the right-hand side of the interface
(VSF6 = 0.93 ± 0.01) can be determined by matching the ut

s1 according to the 1-D gas
dynamics theory. Then the velocity of the SSI (ussi) can be theoretically calculated by
combining the normal shock relations ((B1)–(B5) in Appendix B) with the compatibility
relations across the contact surface. The values of ussi measured from experiments
and predicted by 1-D theory are 61.3 ± 1.1 and 62.3 ± 1.5 m s−1, respectively.
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Figure 10. The x–t diagrams of shock waves and interface from experiments on the interaction of successive
shock waves with planar interface (a) and single-mode interface (b).

Subsequently, by giving the experimental velocity of SWttt
2 (uttt

s2 = 478.1 ± 0.8 m s−1) and
the flow parameters on both sides of the SSI, the velocities of SWtttt

2 (utttt
s2 ) and DSI (udsi)

can also be theoretically obtained. The theoretical and experimental values of utttt
s2 (udsi) are

232.0 ± 0.3 and 229.4 ± 1.8 m s−1 (108.4 ± 0.2 and 106.8 ± 1.0 m s−1), respectively. The
Mach numbers Ms1 and Mttt

s2 in different experimental runs are measured as 1.173 ± 0.005
and 1.121 ± 0.004, respectively, and Δt varies within the range of 769 ± 42 μs. The
reasons for the discrepancy between theoretical and experimental results are the same as
those given in § 2.3.

For the SSS-RMI, Ms1, Mttt
s2 and Δt are three critical factors to the interface

development. The analysis above does not cover all possibilities of this shock-tube facility
in varying these factors. If the gas species in both driver sections and driven section
are fixed, the variation of Ms1 is quite straightforward by changing p2/p1 provided that
SW1 would not be affected by waves behind before it encounters the interface. As shown
in figures 4 and 8, the second shock would sequentially interact with RW1, CS1 and
SWr

1 before it encounters the interface. Therefore, Mttt
s2 is related to p3/p2, p2/p1 and

interface properties. The variation of Δt is related to many factors, such as p3/p2, p2/p1,
LI and the interface position. In summary, the parameters of the shock-tube facility can be
conveniently changed to create different initial conditions for studying the SSS-RMI.

4. The SSS-RMI on a single-mode air–SF6 interface

Developments of a single-mode air–SF6 interface induced by two successive shock
wave are investigated experimentally. Four single-mode interfaces with different initial
amplitudes (a0) and wavenumbers (k) are adopted, and ka0 in all cases is small enough
such that the perturbation amplitude is still within the linear growth regime at the arrival of
the second shock. The detailed experimental parameters for each case (denoted by λ-ka0,
where λ is the wavelength with units of millimetres) are listed in table 2, where A+

1 and
A+

2 are the post-first-shock and post-second-shock Atwood numbers, respectively.

4.1. Flow features and x–t diagrams
The wave configurations and the developments of the single-mode interfaces accelerated
by two successive shock waves are shown in figure 11. We take the case 40-0.100
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Case us1 T ut
s1 VSF6 ussi A+

1 uttt
s2 utttt

s2 udsi A+
2 Ms1 Mttt

s2 Δt

40-0.075 408.2 296.2 178.4 0.93 64.3 0.680 473.0 228.3 100.9 0.695 1.181 1.099 846
40-0.100 403.5 294.9 177.0 0.91 60.8 0.674 476.2 228.3 105.4 0.693 1.170 1.124 762
40-0.125 407.0 296.9 174.5 0.97 62.0 0.689 475.3 226.4 102.3 0.706 1.176 1.111 798
60-0.100 405.0 294.1 177.7 0.91 59.8 0.676 477.8 227.4 105.3 0.694 1.176 1.123 777

Table 2. Experimental parameters of interaction of successive shocks with single-mode air–SF6 interfaces.
Here A+

1 and A+
2 are the post-first-shock and post-second-shock Atwood numbers, respectively. The units of

velocity, ambient temperature and time are m s−1, K and μs, respectively. The different cases are classified by
λ-ka0, where λ is the wavelength with the unit of mm.

as an example to illustrate the detailed process. When the SW1 encounters the initial
interface, both disturbed SWt

1 and SWr
1 are generated. As the SSI moves downward, its

amplitude continuously increases induced by baroclinic vorticity and pressure perturbation
(86–746 μs). The SSI still maintains a quasi-single-mode shape at the arrival of SWttt

2
(746 μs), indicating that the perturbation growth is within the linear regime. After the
second shock impact, the DSI and the disturbed SWtttt

2 can be clearly observed (906 μs).
For SSS-RMI on a light–heavy interface, the perturbation growth rates induced by the
first and second shock waves have the same sign. Therefore, the post-second-shock
interface perturbation evolves significantly faster than the pre-second-shock one. As
time proceeds, the high-order modes are generated on the interface and the nonlinearity
becomes prominent, causing the asymmetry of the interface (906–1206 μs). For the cases
with a small ka0 (40-0.075) or small k (60-0.100), the asymmetry of the interface is less
significant in the late stages. For the case with a large ka0 (40-0.125), the interface becomes
highly asymmetrical in the late stages, and both the spike and bubble structures are
preliminarily formed (1305 μs). These high-quality experiments provide a rare opportunity
to examine the linear superposition model and to explore the similarity and difference
between single-shocked and double-shocked interfaces in the early nonlinear stages.

The x–t diagrams of shocked interface and shock waves including SW1, SWt
1, SWr

1,
SWttt

2 and SWtttt
2 from different experimental runs are shown in figure 10(b), in which the

results of cases 40-0.075, 40-0.100, 40-0.125 and 60-0.100 are denoted by black, red, blue
and magenta symbols, respectively. The shock waves and shocked interface move almost
linearly, indicating that the intensities of shock waves are stable and the interface is not
heavily accelerated or decelerated by additional waves other than the SW1 and the SWttt

2
throughout the experiment. Relative to the previous experiments (Buttler et al. 2014a,b),
a rather ‘clean’ flow field is provided in our experiments, and the interface properties
immediately preceding the second shock impact and the temporal evolution of the DSI can
be obtained. This provides us an opportunity to theoretically analyse the DSI development.

4.2. Linear and nonlinear growths of single- and double-shocked interfaces
Temporal variations of the pre- and post-second-shock perturbation amplitude (a) for
different cases are shown in figure 12(a) in dimensional form, since there is no
proper method to simultaneously normalize the pre- and post-second-shock perturbation
amplitudes. In all cases, the amplitude of the SSI grows almost linearly with only small
fluctuation caused by the start-up process (Richtmyer 1960; Yang, Zhang & Sharp 1994;
Lombardini & Pullin 2009) and measurement errors. In addition, the pre-second-shock
amplitude (a−

2 ) is smaller than 0.1λ, as shown in table 3. In other words, the perturbation
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Figure 11. Experimental schlieren photographs of the interaction of two successive shock waves with
single-mode air–SF6 interfaces: (a) case 40-0.075; (b) case 40-0.100; (c) case 40-0.125; (d) case 60-0.100.

amplitude of the SSI is within the linear growth regime at the arrival of the second shock.
In order to predict the perturbation growth rate, the initial amplitude of the interface
is crucial. As indicated by Wu, Liu & Xiao (2021), the effective initial amplitude of
soap-film interface may be slightly smaller than the initial setting value, which should
be caused by the minimum-surface feature of the soap-film interface (Luo et al. 2013). For
a minimum surface, the perturbation amplitude on its symmetry plane (as

0) is smaller than
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Figure 12. Temporal variations of pre- and post-second-shock interface perturbation amplitude (a).
Comparisons between experimental and theoretical results of dimensionless amplitude of the DSI (b) and
dimensionless amplitudes of bubble and spike (c).

the amplitude on the upper and lower boundaries. In this work, the three-dimensionality
of the interface is weak because the ratio of the interface height (6 mm) to its perturbation
wavelength is small, and the average value of a0 and as

0 is approximately considered as
the effective initial amplitude (aeff

0 = (a0 + as
0)/2). After the aeff

0 is known, the impulsive
model (Richtmyer 1960), which has been verified in predicting the linear development of
single-mode light–heavy interfaces with small ka0 (Liu et al. 2018), is adopted to predict
the linear perturbation growth rate of the SSI (ȧ1),

ȧt
1 = C1kaeff

0 A+
1 ussi, (4.1)

where C1 (= 1 − ussi/us1) is the first shock compression factor. The parameters of the
initial interface, and the experimental and theoretical results of ȧ1 are listed in table 3. The
impulsive model provides a good prediction to the experimental growth rate (ȧe

1) because
kaeff

0 in experiments is small enough.
After the second shock impact, the interface perturbation first grows at an increasing rate

due to the start-up process (Richtmyer 1960; Yang et al. 1994; Lombardini & Pullin 2009),
and then enters a short linear growth period until the nonlinearity becomes pronounced.
To predict the linear perturbation growth rate of the post-second-shock interface DSI
(ȧ2), the linear superposition model proposed by Mikaelian (1985) and Brouillette &
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Case a0 as
0 aeff

0 ȧe
1 ȧt

1 a−
2 ka−

2 ȧe
2 ȧt

2 Cr ȧmt
2

40-0.075 0.478 0.429 0.453 2.50 ± 0.18 2.62 2.089 0.328 9.49 ± 1.18 10.23 0.950 9.85
40-0.100 0.637 0.572 0.604 3.00 ± 0.31 3.31 2.274 0.357 12.72 ± 1.26 13.16 0.945 12.61
40-0.125 0.796 0.715 0.755 4.21 ± 0.18 4.30 3.370 0.529 16.14 ± 0.82 17.89 0.910 16.67
60-0.100 0.955 0.910 0.932 3.29 ± 0.16 3.37 2.968 0.311 11.49 ± 1.44 12.11 0.954 11.71

Table 3. Experimental and theoretical results of the interaction of successive shock waves with single-mode
air–SF6 interfaces.

Sturtevant (1989) is adopted, which can be described as

ȧt
2 = ȧt

1 + C2ka−
2 A+

2 Δu2, (4.2)

where C2 (= 1 − Δu2/(uttt
s2 − ussi)) is the second shock compression factor with Δu2 =

udsi − ussi being the velocity jump of interface induced by the second shock. The
parameters of the pre-second-shock interface, and the experimental and theoretical results
of ȧ2 are listed in table 3. The linear superposition model slightly overestimates the
experimental values. Note that although the SSI perturbation is still within the linear
growth regime when the second shock impact occurs, ka−

2 is larger than 0.1. Therefore, the
high-amplitude effect of pre-second-shock interface should be considered, and the linear
superposition model can be modified as

ȧmt
2 = ȧt

1 + CrC2ka−
2 A+

2 Δu2, (4.3)

where superscript ‘mt’ denotes modified theoretical results, Cr (= 1/[1 + (ka−
2 /3)

4/3])
is the reduction factor introduced by the high-amplitude effect (Dimonte & Ramaprabhu
2010). The results show that the modified linear superposition model well predicts the
linear perturbation growth rate of the post-second-shock interface.

As nonlinearity becomes significant, the perturbation growth rate of the DSI starts to
decrease gradually. Up to now, SSS-RMI still lacks rigorous nonlinear theory, and only
a few attempts have been made on extending the nonlinear theory of single-shocked
interface to double-shocked interface (Karkhanis et al. 2017; Karkhanis & Ramaprabhu
2019). These attempts provide an opportunity to explore the similarity and difference in
the nonlinear evolution law between single-shocked and double-shocked interfaces. The
model proposed by Zhang & Guo (2016) (ZG model) has been verified to be applicable
for predicting the nonlinear evolution of single-shocked single-mode light–heavy interface
with small ka0 (Liu et al. 2018). In this work, the ZG nonlinear model is adopted to predict
the nonlinear perturbation growth rate of the DSI, which is written as

ȧZG
b/s(t) = ȧe

2
1 + θb/skȧe

2t
, (4.4)

where

θb/s = 3
4

(1 ± A+
2 )(3 ± A+

2 )

[3 ± A+
2 + √

2(1 ± A+
2 )

1/2]

[4(3 ± A+
2 )+ √

2(9 ± A+
2 )(1 ± A+

2 )
1/2]

[(3 ± A+
2 )

2 + 2
√

2(3 ∓ A+
2 )(1 ± A+

2 )
1/2]

, (4.5)

with subscripts ‘b’ and ‘s’ denoting the bubble and spike, respectively. Note that although
the SSI is no longer a single-mode interface strictly when the second shock impact occurs,
its perturbation is still within the linear growth regime, i.e. the high-order harmonics have
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negligible effects on the interface development in the weakly nonlinear stages (Liang
et al. 2019). Therefore, the ZG model is still applicable. The temporal variations of
perturbation amplitude of the DSI in dimensionless form for different cases are shown
in figure 12(b). The amplitude and time are normalized as α = k(a − a∗

2) and τ = kȧe
2(t −

t∗), respectively, where t∗ is the moment when the amplitude linear growth of the DSI
starts, and a∗

2 is the corresponding amplitude of the DSI at t = t∗. Only one theoretical
line is shown because the predictions for different cases are almost identical. It is shown
that the ZG model provides an excellent prediction to the perturbation development of the
DSI, i.e. the model for single-shocked interface is capable of predicting the evolution of
double-shocked interface. Moreover, the temporal variations of the amplitudes of both
the bubble (αb) and spike (αs) in dimensionless form obtained from experiments and
predictions from ZG model are compared, as shown in figure 12(c). Still, the ZG model
provides good predictions for the amplitude variations of both the bubble and spike.

4.3. Modal analysis
To further explore the similarity between single-shocked and double-shocked interfaces
in the weakly nonlinear evolution stages, modal analysis is performed (Liu et al. 2018;
Liang et al. 2019). Firstly, the contours of pre-second-shock interface are extracted from
the experiments. Since the pre-second-shock perturbation is still within the linear growth
regime, the magnitudes of the third harmonic and the other high-order harmonics relative
to that of the first harmonic are very small and negligible, and only the amplitudes of the
first and second harmonics are provided,

y40−0.075 = 2.081 cos(kx)− 0.244 cos(2kx) · · · .
y40−0.100 = 2.219 cos(kx)− 0.226 cos(2kx) · · · .
y40−0.125 = 3.476 cos(kx)− 0.487 cos(2kx) · · · .
y60−0.100 = 2.894 cos(kx)− 0.232 cos(2kx) · · · .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.6)

It can be found that the amplitude of the second harmonic is much smaller than that
of the first harmonic, i.e. the fundamental mode still dominates, which further proves
that the pre-second-shock interface can be approximately regarded as a single-mode
one. Then, the contours of the double-shocked interface before the roll-up structure
appears are extracted from the schlieren photographs, and Fourier analysis of the interface
contours is performed. Figure 13 shows the temporal variations of the amplitudes
of the first and second harmonics. For the cases with a small ka−

2 (cases 40-0.075,
40-0.100 and 60-0.100), the first harmonic amplitude grows almost linearly whereas the
second harmonic amplitude grows very slowly at early times, which are similar to the
single-shocked interface with a small ka0 (Liu et al. 2018). When the nonlinearity becomes
significant, the growth rate of the first (second) harmonic amplitude becomes smaller
(larger). For the case with a relatively large ka−

2 (case 40-0.125), the amplitude of the
second harmonic grows faster than that in the cases with a small ka−

2 .
The nonlinear perturbation solutions proposed by Zhang & Sohn (1997) (ZS model)

have been proved to be reliable for predicting the amplitude evolutions of the first two
harmonics of single-shocked interface with a small ka0 (Liu et al. 2018). The amplitudes
of the first two harmonics in ZS model can be written as

a(1) = C2a−
2 + ȧe

2t − 1
24 (kȧe

2)
2
{

[4(A+
2 )

2 + 1]ȧe
2t3 + 3C2a−

2 t2
}
, (4.7)

a(2) = −1
2 A+

2 k(ȧe
2t)2 + 1

12 k3(ȧe
2)

2[4(A+
2 )

3(ȧe
2)

2t4 + 3A+
2 (C2a−

2 t)2], (4.8)
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Figure 13. Temporal variations of the perturbation amplitudes of the first and second harmonics. Lines
‘ZS-Small’ denote the predictions of ZS model for the cases 40-0.075, 40-0.100 and 60-0.100, while lines
‘ZS-Large’ denote the predictions of ZS model for the case 40-0.125.

where superscript ‘(i)’ denotes the ith harmonic. The predictions from the ZS model
are given in figure 13 for comparison. Note that for the cases with a small ka−

2 , the
predictions are almost identical, and only the predictions for the case 40-0.075, denoted as
‘ZS-Small’ in figure 13, are shown to avoid confusion. It can be found that the ZS model
reasonably predicts the amplitude developments of the first two harmonics, especially
at the early times. For the case 40-0.125 with a large ka−

2 , the predictions denoted
as ‘ZS-Large’ deviate from the experimental counterparts throughout the experiment.
As we know, the ZS model was derived based on the assumption that the postshock
perturbation amplitude is small. In other words, the accuracy of the ZS model is sensitive
to the postshock perturbation amplitude (Zhang & Sohn 1997). The post-second-shock
perturbation amplitude in the case 40-0.125 is relatively larger (C2ka−

2 = 0.478) than that
in other three cases (C2ka−

2 ∼ 0.3). As a result, the ZS model provides a worse prediction
of the experimental results for the case 40-0.125 than other three cases.

In summary, for the SSS-RMI on a light–heavy interface, provided that the second
shock impact occurs when the first-shocked interface perturbation is still within the
linear growth regime, the linear superposition model, the ZG and ZS models are still
reliable to predict the linear, nonlinear and modal evolutions of the double-shocked
interface, respectively, when the pre-second-shock interface perturbation is small. When
the pre-second-shock perturbation is relatively large, the linear superposition model
considering the high-amplitude effect and the ZG model are still valid. However, the
ZS model provides relatively poor predictions to the modal evolution. These results
indicate that if the first-shocked interface perturbation is within the linear growth regime
at the arrival of the second shock, the double-shocked interface behaves similarly to the
single-shocked single-mode interface provided that the latter has the same postshock
amplitude and the linear growth rate as the former. For double-shocked interface, the
second shock provides an additional perturbation velocity field to the original perturbation
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velocity field introduced by the first shock impact. The validity of the linear superposition
model indicates that the linear superposition of these two perturbation velocity fields is
satisfied. As a result, a double-shocked interface evolves similarly to a single-shocked
interface as long as their postshock amplitudes and linear growth rates are the same.

5. Conclusions

A specific shock-tube facility that can produce two successive shock waves is firstly
designed. An additional driver section is placed between the driver and driven sections of
the standard shock tube to produce an additional shock wave. An electronically controlled
membrane rupture equipment is adopted to achieve the synchronous generation of two
shock waves and to control the shock intensities. After the membranes rupture, the
flows without and with an interface are theoretically solved by combining the shock
relations, the isentropic wave relations with the compatibility relations across the contact
surface (region). Besides, shock-tube experiments without and with a plane interface are
performed. The results show that the initial intensities of two shock waves and the time
interval between them can be well controlled. The plane interface moves linearly before
and after the second shock impact, indicating that the interface is not heavily affected by
additional waves other than two primary shock waves. In other words, the flow field is
‘clean’, which is crucial to investigate the RM instability induced by two successive shock
waves.

Then shock-tube experiments on the development of a single-mode interface accelerated
by two successive shock waves are performed. Four single-mode interfaces with different
initial amplitudes (a0) and wavenumbers (k) are adopted, and ka0 in all cases is small
enough to ensure that the first-shocked perturbation amplitude is within the linear growth
regime at the arrival of the second shock. The schlieren images obtained by the high-speed
video camera clearly show the wave configurations and interface morphologies. The
perturbation growth after the first and second shock impacts are obtained. When the
pre-second-shock perturbation amplitude (a−

2 ) is small, the linear perturbation growth
rate after the second shock impact can be well predicted by the linear superposition
model. If a−

2 is relatively large, the linear perturbation growth rate of the double-shocked
interface can also be predicted by the modified linear superposition model considering the
high-amplitude effect. In the weakly nonlinear stages, the nonlinear growth rate can be well
predicted by the model proposed by Zhang & Guo (2016), no matter a−

2 is small or large.
Through the modal analysis, the model proposed by Zhang & Sohn (1997) only provides
a good prediction to the modal evolution when a−

2 is small. These results indicate that if
the first-shocked perturbation amplitude is within the linear growth regime at the arrival
of the second shock, the double-shocked interface behaves similarly to the single-shocked
single-mode interface provided that the latter has the same postshock amplitude and the
linear growth rate as the former, because the perturbation velocity fields induced by two
primary shock waves can be linearly superimposed.

In following studies, we will focus on the perturbation growth when the second
shock impact occurs in the nonlinear growth regime of the first-shocked single-mode
interface. In addition, the development of a heavy–light perturbed interface accelerated
by two successive shock waves will be investigated. Because phase inversion exists for
a heavy–light arrangement after a single shock impact, diversified phenomena will be
introduced, depending upon the moment of the second shock impact and the relative
intensities of two shock waves. Moreover, the shock intensities are weak in the present
work, and the dependence of SSS-RMI phenomenon on the shock intensities will be
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Figure 14. Computational domain for simulating the shock-tube flow with the cross-section truncation.

investigated by using electronically controlled membrane rupture equipment with a higher
output current for manipulating the shock intensities.
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Appendix A. Effects of the cross-section truncation on the shock waves and flow

The cross-section truncation from 140 mm × 20 mm to 140 mm × 6 mm will inevitably
have some effects on the shock intensities and the time interval. In this Appendix, to
explore the effects of the cross-section truncation on the shock waves and the flow, the
inviscid numerical solver VAS2D (two-dimensional vectorized adaptive solver) (Sun &
Takayama 1999), which has been well validated in shock–body interactions (Zhang et al.
2016; Wang et al. 2017; Wang, Zhai & Luo 2021) and shock–interface interactions (Zhai
et al. 2011, 2014, 2018a; Zhai, Ou & Ding 2019), is adopted to simulate the shock-tube
flow with the cross-section truncation. By comparing the numerical results with the 1-D
theoretical results, the effects of the cross-section truncation can be highlighted. The
computational domain is shown in figure 14, in which z-axis represents the direction
perpendicular to the observation window. The inlet (outlet) condition is applied to the
left-hand (right-hand) boundary, while the solid-wall conditions are applied to the other
boundaries. The scales in the figure do not reflect the real ones. Since the complete
simulation of the entire shock-tube flow is very time consuming, only part of the flow
region from x = 2250 to x = 3565 mm (the end of the test section) is numerically
simulated, and the numerical simulation is initialized based on the 1-D theoretical results
at t = 6800 μs. Note that the experimental observation area ranges from x = 2850 to
x = 3050 mm, and the cross-section truncation is positioned at x = 2750 mm. The initial
postshock flow is regarded as uniform. According to the grid convergence validation in our
previous works (Wang & Zhai 2020; Wang et al. 2021), the initial mesh size of 0.2 mm
and the finest mesh size of 12.5 μm in the positions where greater density gradient exists
are applied. For the shock-tube flow without interfaces, the gas in all regions is air. For
the shock-tube flow with an air–SF6 interface, the gas in the regions with x < 2918 mm
(x > 2918 mm) is air (SF6).

We first consider the shock-tube flow without interfaces. Figure 15 shows the numerical
schlieren images (top half) and the corresponding pressure contours (bottom half) in the
vicinity of the cross-section truncation (from x = 2725 to x = 2775 mm). When the SW1

953 A15-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

94
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-6497-6673
https://orcid.org/0000-0002-6497-6673
https://orcid.org/0000-0002-0094-5210
https://orcid.org/0000-0002-0094-5210
https://orcid.org/0000-0002-4303-8290
https://orcid.org/0000-0002-4303-8290
https://doi.org/10.1017/jfm.2022.945


Light-heavy interface evolution induced by successive shocks

6870 6900 6955

7195 7230 7270

SW1 SW1
RS1 RS1

SW2
tt RS2 RS2

SW1

SW2
tt

SW2
tt

110 000 120 000 130 000 140 000 150 000 160 000 170 000 180 000 190 000 200 000 110 000 120 000 130 000 140 000 150 000 160 000 170 000 180 000 190 000 200 000110 000 120 000 130 000 140 000 150 000 160 000 170 000 180000 190 000 200 000

120 000 135 000 150 000 165 000 180 000 195 000 210 000 225 000 240 000 255 000 120 000 135 000 150 000 165 000 180 000 195 000 210 000 225 000 240 000 255 000 120 000 135 000 150 000 165 000 180 000 195 000 210 000 225 000 240 000 255 000

Figure 15. The numerical schlieren images (top half) and the corresponding pressure contours (bottom half)
in the vicinity of the cross-section truncation from x = 2725 to x = 2775 mm.

reaches the position of the cross-section truncation, a reflected shock (RS1) is generated.
Although the wavefront of the SW1 quickly recovers to a planar one, the pressure field
behind it is non-uniform (6900–6955 μs). When the SWtt

2 just enters this region (7195 μs),
it is quite flat, indicating that the flow in front of it is relatively uniform. When the
SWtt

2 passes across the position of the cross-section truncation, a reflected shock (RS2)
is generated, and the wavefront of the SWtt

2 is significantly disturbed (7230 μs) and has
not recovered to a flat shape before it exits (7270 μs). Besides, the pressure field behind
it appears to be rather non-uniform (7230–7270 μs). To illustrate the states of the SW1
and the SWtt

2 after they enter the experimental observation area, the numerical schlieren
images (top half) and the corresponding pressure contours (bottom half) at three different
positions in the experimental observation area are provided in figure 16. It can be found
that both the SW1 and the SWtt

2 are quite flat. Although the pressure fields behind the
SW1 and the SWtt

2 are non-uniform, the pressure variations are small relative to the mean
postshock pressures.

Comparison of the x–t diagrams of the shock-tube flow without interfaces between
the numerical simulation considering the cross-section truncation and the 1-D theory is
shown in figure 17, in which the solid and dashed lines represent the numerical and 1-D
theoretical results, respectively. Note that the average values at the upper boundary and the
symmetry plane of the computational domain are provided in the numerical simulation.
The SW1 in the numerical simulation moves faster than that in the 1-D flow after it passes
through the position of the cross-section truncation, which indicates that the intensity of
the SW1 is enhanced. The SWtt

2 in the numerical simulation moves slower than that in
the 1-D flow before it reaches the position of the cross-section truncation, because it is
decelerated by the RS1. Due to the mass conservation, the flow velocity at the right-hand
side of the cross-section truncation is larger. As a result, the velocity of the SWtt

2 in the
numerical simulation suddenly increases, and becomes larger than that in the 1-D flow
after it passes through the position of the cross-section truncation. In the experimental
observation area, both the SW1 and the SWtt

2 in the numerical simulation move almost
linearly, which is consistent with the experimental observations. Although both the SW1
and the SWtt

2 in the numerical simulation move faster than those in the 1-D flow, the
time interval between two shock waves arriving at the preset interface position (δt) in the
numerical simulation (238 μs) is only slightly longer than that in the 1-D flow (235 μs).
As a result, the cross-section truncation will not induce a great disparity of δt between
experiments and the 1-D theory in this work.
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Figure 16. The numerical schlieren images (top half) and the corresponding pressure contours (bottom half)
when the shock waves SW1 (a) and SWtt

2 (b) reach three different positions in the experimental observation
area.
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Figure 17. Comparison of the x–t diagrams of the shock-tube flow without interfaces between the numerical
simulation considering the cross-section truncation and the 1-D theory.

Furthermore, a parameter φ = Mtrun − M1-D is introduced to quantify the effects of
the cross-section truncation on the intensities of shock waves, where Mtrun and M1-D

denote the shock Mach numbers in the numerical simulation and the 1-D flow, respectively.
Here φ1 (φ2) corresponds to the Mach number difference of the SW1 (SWtt

2) between the
numerical simulation and the 1-D flow. As shown in figure 18(a), both the SW1 and the
SWtt

2 in the numerical simulation are enhanced due to the cross-section truncation, and the
intensity of the SW1 is promoted more significantly. Note that the intensities of the SW1
and the SWtt

2 in the numerical simulation are continuously varied in small magnitudes.

953 A15-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

94
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.945


Light-heavy interface evolution induced by successive shocks

0.10 0.06

0.04

0.02

–0.02

–0.04

–0.06

0

0.08

0.06

0.04

0.02

2850 2900 2950

x (mm) x (mm)
3000 3050 2850 2900 2950 3000 3050

0

φ1

φ ψ

φ2

ψ1

ψ2
i

ψ2
b

(a) (b)

Figure 18. Variations of φ (a) and ψ (b) within the experimental observation area for the shock-tube flow
without interfaces.

Because the SW1 (SWtt
2) in the numerical simulation has already become quite planar

when it enters the experimental observation area, the variation of its Mach number should
be caused by the non-uniform pressure field behind (in front of and behind) it. To illustrate
the non-uniformity of the pressure field, a parameter ψ = ( p − pave)/pave is introduced
to measure the variation of the pressure, where p is the pressure in front of or behind the
shock wave and pave is the average value of the corresponding maximum and minimum
pressures in the experimental observation area. Figure 18(b) provides the variations of
the pressures behind the SW1, in front of and behind the SWtt

2 , denoted by ψ1, ψ i
2 and

ψb
2 , respectively. In the numerical simulation, although the pressure field is non-uniform,

the relative magnitudes of the pressure fluctuations are small (less than 2 %). Therefore,
the flow fields in the vicinity of the SW1 and the SWtt

2 can be approximately regarded as
uniform.

Comparison of the x–t diagrams of the shock-tube flow with an air–SF6 interface
within the experimental observation area between the numerical simulation considering
the cross-section truncation and the 1-D theory is shown in figure 19. Although the
cross-section truncation would affect the intensities of shock waves and thus affect
when and where the shock–shock and shock–interface interactions occur, the main flow
characteristics between the numerical simulation and the 1-D theory are consistent. The
shock waves and interface in numerical simulation move almost linearly, which are
consistent with the observations in experiments.

Similarly, φ is adopted to quantify the effects of the cross-section truncation on the
intensities of shock waves. φ1 (φ2) corresponds to the Mach number differences of the
SW1 and the SWt

1 (SWtt
2 , SWttt

2 and SWtttt
2 ) between the numerical simulation and the

1-D theory. The variations of φ within the experimental observation area are shown in
figure 20(a). The interaction of the SWtt

2 with the SWr
1 has limited effect on the magnitude

of φ2. For the interaction of a shock with an air–SF6 interface, the Mach number of
the transmitted shock is higher than that of the incident shock. Therefore, the difference
between shock intensities would be amplified due to the interaction of the shock with the
interface. However, the magnitude of the variation is limited. Moreover, ψ is adopted
to illustrate the non-uniformity of the pressure field. The variations of ψ within the
experimental observation area are shown in figure 20(b), in which ψ1, ψ i

2, ψb
2 and ψin

denote the pressures behind the first shock (SW1 and SWt
1), in front of and behind the

second shock (SWtt
2 , SWttt

2 and SWtttt
2 ) and at the interface (SSI and DSI), respectively.
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Figure 19. Comparison of the x–t diagrams of the shock-tube flow with an air–SF6 interface within the
experimental observation area between numerical simulation considering the cross-sectional area truncation
and the 1-D theory.
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Figure 20. Variations of φ (a) and ψ (b) within the experimental observation area for shock-tube flow with
an air–SF6 interface.

Although the pressures in the vicinity of the shock waves and the interface vary
continuously, the relative magnitudes of the pressure fluctuations are small (less than 2 %).
Therefore, the flow fields in the vicinity of shock waves and interface can be approximately
regarded as uniform.

Appendix B. Common theories

Normal shock relations:

uj = ui ± 2ci

γi + 1

(
Ms − 1

Ms

)
, (B1)

pj = pi

(
2γi

γi + 1
M2

s − γi − 1
γi + 1

)
, (B2)

ρj = ρi
(γi + 1)M2

s

(γi − 1)M2
s + 2

, (B3)
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Tj = Ti
[2γiM2

s − (γi − 1)][(γi − 1)M2
s + 2]

(γi + 1)2M2
s

, (B4)

cj = ci

(
Tj

Ti

)1/2

, (B5)

where subscript ‘j’ (‘i’) denotes the flow region behind (in front of) the shock wave.
Shock-tube theory:

p′ = ph

(
1 + γh − 1

2
M′

)(−2γh)/(γh−1)

, (B6)

ρ′ = ρh

(
1 + γh − 1

2
M′

)(−2)/(γh−1)

, (B7)

T ′ = Th

(
1 + γh − 1

2
M′

)−2

, (B8)

c′ = ch

(
1 + γh − 1

2
M′

)−1

, (B9)

u′ = M′c′. (B10)

Isentropic wave relations:

uJ − uI

cI
= ± 1

γβ

[(
pJ

pI

)β
− 1

]
, (B11)

cJ

cI
=

(
pJ

pI

)β
, (B12)

where subscript ‘J’ (‘I’) denotes the flow region behind (in front of) the isentropic wave.
β = (γ − 1)/2γ .
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