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We study the (1 : b) Maker–Breaker component game, played on the edge set of a d-regular

graph. Maker’s aim in this game is to build a large connected component, while Breaker’s

aim is to prevent him from doing so. For all values of Breaker’s bias b, we determine

whether Breaker wins (on any d-regular graph) or Maker wins (on almost every d-regular

graph) and provide explicit winning strategies for both players.

To this end, we prove an extension of a theorem of Gallai, Hasse, Roy and Vitaver

about graph orientations without long directed simple paths.

2010 Mathematics subject classification: Primary 91A24

Secondary 05C57

1. Introduction

Let X be a finite set, let F ⊆ 2X be a family of subsets of X, and let m, b be two

positive integers. In the (m : b) Maker–Breaker game (X,F), two players, called Maker

and Breaker, take turns at claiming previously unclaimed elements of X. On his move,

Maker claims m elements of X, and Breaker, on his move, claims b elements. The player

who makes the very last move may not be able to complete m (or b) steps, so he stops

after claiming all remaining elements. The game ends when all of the elements have been

claimed by either of the players. The description of the game is completed by stating

which of the players is the first to move, though usually it makes little difference. Maker

wins the game (X,F) if by the end of the game he has claimed all the elements of some

F ∈ F; otherwise Breaker wins. For convenience, we typically assume that F is closed
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upwards, and specify only the inclusion-minimal elements of F . Since these are finite,

perfect information games with no possibility of a draw, for each set-up of F , m, b and

the identity of the first player, one of the players has a strategy to win regardless of the

other player’s strategy. Therefore, for a given game we may say that the game is Maker’s

win, or alternatively that it is Breaker’s win. The set X is referred to as the board of the

game, and the elements of F are referred to as the winning sets.

When m = b = 1, we say that the game is unbiased ; otherwise it is biased, and the

positive integers m and b are called the bias of Maker and Breaker, respectively. Maker–

Breaker games are bias monotone. It means that if Maker wins some game with bias

(m : b), he also wins this game with bias (m′ : b′), for every m′ � m, b′ � b. Similarly, if

Breaker wins a game with bias (m : b), he also wins this game with bias (m′ : b′), for every

m′ � m, b′ � b. Indeed, suppose that some player has a winning strategy with bias c, and

now he plays with bias c′ > c. He can use his old strategy and in addition claim arbitrarily

c′ − c extra elements per move and pretend he did not claim them; whenever his strategy

tells him to claim some element he has previously claimed he just claims arbitrarily some

unclaimed element. Similarly, if his opponent claims fewer elements, he can assign (in his

mind) some extra elements to his opponent in each move, and continue with his strategy.

The same reasoning shows that it is never a disadvantage in a Maker–Breaker game to

be the first player, and a winning strategy as a second player can be used as a winning

strategy as a first player. This bias monotonicity allows us to define the threshold bias:

for a given game F , the threshold bias b∗ is the value for which Maker wins the game F
with bias (1 : b) for every b � b∗, and Breaker wins the game F with bias (1 : b) for every

b > b∗.

In this paper, our attention is dedicated to the (1 : b) Maker–Breaker s-component

game on regular graphs; that is, the board is the edge set of some d-regular graph G on

n vertices and the winning sets are connected components of G with s vertices.

1.1. Previous results

A natural case to consider is s = n; that is, the winning sets are the spanning trees of G.

This (1 : b) n-component game is also known as the connectivity game.

The unbiased game was completely solved by Lehman [15], who showed that Maker

wins the (1 : 1) connectivity game on a graph G if and only if G contains two edge-disjoint

spanning trees. It follows easily from [18, 21] that if G is 2k-edge-connected then it contains

k pairwise independent spanning trees; thus, Maker wins the (1 : 1) connectivity game on

4-regular 4-edge-connected graphs, whereas Breaker trivially wins the (1 : 1) connectivity

game on graphs with less than 2n − 2 edges, i.e., average degree under 4 − O(1/n).

For denser graphs, since Maker wins the unbiased game by such a large margin,

it only seems fair to even out the odds by strengthening Breaker, giving him a bias

b � 2. First and most natural board to consider is the edge set of the complete graph

Kn (i.e., d = n − 1). Chvátal and Erdős [5] showed that
(

1
4

− o(1)
)
n/ log n � b∗(Kn) �

(1 + o(1))n/ log n; the upper bound was proved to be tight by Gebauer and Szabó [9];

that is, b∗(Kn) = (1 + o(1))n/ log n. The doubly biased connectivity game (m : b) on Kn was

considered by Hefetz, Mikalački and Stojaković [12], where the winner was determined

for almost all values of m and b.
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Another natural board to consider is the edge set of a random graph. Stojaković and

Szabó [20] considered the well-known Erdős–Rényi random graph Gn,p, in which each of

the
(
n
2

)
possible edges appears independently with probability p. They showed that almost

surely b∗(Gn,p) = Θ(np/ log n), provided that p � C log n/n for some constant C (note that

for p < log n/n, the graph Gn,p itself is almost surely not connected and so Breaker wins no

matter how he plays). It was later shown by Ferber, Glebov, Krivelevich and the second

author in [7] that in fact, if p = ω(log n/n) then b∗(Gn,p) = np/ log n almost surely.

A different random graph model, the random d-regular graph Gn,d on n vertices, was

considered by Hefetz, Krivelevich, Stojaković and Szabó [11]. They showed that almost

surely b∗(Gn,d) � (1 − ε)d/ log2 n for d = o(
√
n). Note that when d = Ω(

√
n), Gn,d is quite

close to Gn,p for p = d/n, by concentration of the binomial distribution. Moreover, they

showed that b∗(G) � max{2, d̄/ log n} for a graph G of average degree d̄, so the result is

asymptotically tight.

Breaker’s strategy in practically all results mentioned above is to deny connectivity by

isolating a single vertex. Much less is known, however, for the case s < n. It seems that

even if Breaker is able to isolate a vertex in a constant number of moves, it does little to

prevent Maker from winning the s-component game for s = Ω(n).

Instead of considering the threshold bias b∗, we shift the focus to the maximal

component size s achievable by Maker in the (1 : b) game, for a given bias b. Let us

denote this quantity by s∗
b(G). Bednarska and �Luczak considered in [3] the (1 : b) game

on the complete graph. They showed that s∗
b(Kn) undergoes a phase transition around

b = n; namely, that s∗
n+t(Kn) = (1 − o(1))n/t for

√
n � t � n but s∗

n−t(Kn) = t + O(
√
n) for

0 � t � n/100.

1.2. Our results

For d � 3, let

s∗
b(n, d) = max{s∗

b(G) : G is a d-regular graph on n vertices},

where s∗
b(G), as above, is the maximal component size s achievable by Maker in the (1 : b)

game on G.

For b � 2d − 2, Breaker can immediately isolate each edge claimed by Maker in the

(1 : b) game, so trivially s∗
b(G) = 2. Furthermore, Breaker can do something similar while

b > d − 2, as the following proposition shows.

Proposition 1.1. For any positive k, s∗
d−2+k(n, d) � 2	d/k
.

In the (1 : d − 2) game, Breaker can still restrict the size of Maker’s connected

components.

Theorem 1.2. s∗
d−2(n, d) � αd + βd log n, where αd and βd depend only on d.

Remark 1.3. Our proof yields αd = O(d2) and βd = O(d/ log log d).

The proof of Theorem 1.2 relies on the following combinatorial lemma, which may be

of independent interest.
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Lemma 1.4. Let G be a graph on n vertices with minimal degree δ � 3. Then, there exists

an orientation D of G such that every vertex has a positive out-degree and all simple directed

paths in D are of length at most χ(G) + κδ log n, where κδ = O(1/ log log δ).

Remark 1.5. Note that s∗
b(Tb+1(k)) � k, where Tr(k) is the complete k-level r-ary tree (i.e.,

every non-leaf vertex has r children), since Maker can easily build a path from the root

to some leaf. Completing Td−1(k) to a d-regular graph on n = (d − 1)k vertices thus shows

that s∗
d−2(n, d) � logd−1 n.

To complement Theorem 1.2, we prove that in the (1 : d − 3) game on almost every

graph, Maker can already build a very large connected component.

Theorem 1.6. Let Gn,d be the random d-regular graph on n vertices, where d � 3. Then,

s∗
d−3(Gn,d) � εdn almost surely, where εd > 0 depends only on d. In particular, s∗

d−3(n, d) � εdn.

Remark 1.7. A quick calculation shows that εd � poly(1/d).

When d is at most polylogarithmic in n, Theorems 1.2 and 1.6 show a phase transition

phenomenon that occurs at b = d − 2; instead of tiny, polylogarithmic-sized components,

Maker is suddenly able to build a giant, almost linear-sized component. When d is

constant, we even have a double-jump: from constant, through logarithmic, to linear-sized

components. This is summarized in Figure 1.

This behaviour is somewhat consistent with the so-called random graph intuition in

positional games: the outcome of a game between two intelligent players is often the same

as the outcome of that game between two players acting randomly. Consider the bond

percolation with parameter p (i.e., each edge is deleted independently with probability

1 − p). It is known (see, e.g., [2, 17]) that for well-expanding d-regular graphs, where d is

constant, the size of the largest connected component has a double-jump at p = 1
d−1

: it is

linear for p � 1+ε
d−1

, logarithmic for p � 1−ε
d−1

, and Θ(n2/3) for p = 1
d−1

.

Although the sizes of the components are different, both the bond percolation and

s∗
b(n, d) have a sharp threshold at the same point, since in a random play of a (1 : b)

game, Maker gets each edge with probability 1
1+b

= 1
d−1

(this random graph intuition is

not a formal argument, so we allow ourselves to neglect the dependence of these random

choices).

1.3. Notation

We use standard graph-theoretic terminology, and in particular use the following.

For a given graph G we let V (G) and E(G) denote the set of its vertices and the set of its

edges, respectively. We often just use V and E when there is no chance of confusion. For

two disjoint sets of vertices A,B ⊆ V we let E(A,B) denote the set of all edges (a, b) ∈ E

with a ∈ A and b ∈ B. For a connected component S in Maker’s graph, and for an edge

e ∈ E we say that e is incident to S if at least one of its endpoints belongs to S; if both
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s∗
b(n, d) =

⎧⎪⎪⎨
⎪⎪⎩

Θ(1) b > d − 2,

Θ(log n) b = d − 2,

Θ(n) b < d − 2.

(a) d = Θ(1)

s∗
b(n, d) =

{
Θ(poly log n) b � d − 2,

Θ(n/poly log n) b < d − 2.

(b) d = O(poly log n)

Figure 1. Phase transition phenomenon at b = d − 2.

endpoints of e belong to S , we say that e is inside S . When G is a directed graph, we say

that a vertex v is reachable from a vertex u if there is a directed path in G from u to v.

An unclaimed edge is called free. The act of claiming one free edge by one of the

players is called a step. Maker’s m (Breaker’s b) successive steps are called a move. A

round in the game consists of one move of the first player, followed by one move of the

second player. Whenever Maker claims a free edge, it becomes part of some connected

component of his; we then say he touched that component. If a connected component in

Maker’s graph has at least one free edge adjacent to it, we say it is a live component.

As mentioned before, if one of the players has a winning strategy as a second player, he

can use it to obtain a winning strategy as a first player. Hence, when we describe Maker’s

strategy we assume that he is the second player, implying that under the described

conditions he can win as either a first or a second player. The same goes for Breaker’s

strategy.

2. Maker’s strategy

Throughout this section we assume that the first player is Breaker.

In this section we describe and analyse a very basic strategy for Maker, to which we

refer throughout the paper as the tree strategy. Maker’s goal is to build a component of

size s, and his strategy is to build a single connected component T . He starts from a single

arbitrary vertex r, and in every move he adds a new vertex to T by claiming a free edge

e ∈ E(T ,V \ T ). If all edges in E(T ,V \ T ) have already been claimed by Breaker, and

Maker’s component is of size strictly less than s, he forfeits the game. Note that indeed T

is a tree throughout the game.

Definition. Let G = (V , E) be a graph on n vertices. For an integer k = 1, 2, . . . , �n/2�, we

define

ΨE(G, k) = min

{
|E(S, V \ S)|

|S | : S ⊆ V , 1 � |S | � k

}
.

Considered as a function of k, i.e., when G is fixed, ΨE is sometimes called the edge

isoperimetric profile.

The next proposition shows that if the graph has good expanding properties, then

Breaker cannot separate T from V \ T unless T is large enough.
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Proposition 2.1. Assume ΨE(G, k) > b. Then Maker is able to carry out the tree strategy

for at least k rounds in the (1 : b) game on the graph G.

Proof. Consider the moment before Maker’s jth move for some 1 � j � k. We have

|T | = j � k and thus |E(T ,V \ T )| > |T |b = jb. During j moves, Breaker could have

claimed at most jb edges, so some edge of E(T ,V \ T ) is still available for Maker to

claim.

Since we only need Maker’s connected component to span a constant fraction of the

graph, we can make use of the following result on the edge expansion of small sets in the

random d-regular graph.

Lemma 2.2 ([13], Theorem 4.16). Let d � 3 be an integer and let δ > 0. Then there exists

ε = ε(d, δ) > 0 such that ΨE(Gn,d, εn) > d − 2 − δ almost surely.

Taking δ = 1 in Lemma 2.2 and employing the tree strategy yields Theorem 1.6.

Remark 2.3. Lemma 2.2 is strong enough to render the tree strategy effective also in the

doubly biased (m : b) game, as long as b/m < d − 2. The proof is completely analogous to

the proof of Proposition 2.1 when Maker is the first player, and very simple adjustments

are needed when Breaker starts.

3. Breaker’s strategy

Throughout this section we assume that the first player is Maker.

3.1. Reactive strategies

Definition. A strategy of Breaker is called reactive if the following holds: in each of his

steps, if the connected component last touched by Maker is live, Breaker claims a free

edge incident to it.

Note that there can be many reactive strategies for Breaker, varying in the way that he

chooses which free edge to claim among those that are incident to Maker’s last touched

component. In this paper, we limit ourselves to reactive Breaker strategies; this allows

Breaker to control the number of free edges incident to Maker’s connected components,

as the following claim shows.

Claim 3.1. Let b, d be positive integers and let G be a d-regular graph. If Breaker uses a

reactive strategy, then throughout the (1 : b) Maker–Breaker game played on the edge set of

G, at the beginning of each round every connected component S in Maker’s graph is incident

to at most (d − 2 − b)|S | + b + 2 free edges.

Proof. The claim trivially holds at the beginning of the game, as every connected

component is a single vertex, and vertex degrees in G are all equal to d. In every move,

Maker either:
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(a) claims an edge inside some component; or

(b) merges two connected components, i.e., claims a free edge between two connected

components S1 and S2, creating a new connected component S of size |S | = |S1| + |S2|.
In the first case, the claim trivially holds no matter how Breaker plays. In the second case,

Si (for i = 1, 2) was incident before Maker’s move to at most (d − 2 − b)|Si| + b + 2 free

edges. As Maker has just claimed an edge incident to both S1 and S2, after Maker’s move

at most (d − 2 + b)|S | + 2(b + 2) − 2 free edges are incident to the merged component S .

Breaker in his next move claims b of these edges (or simply all of them, if there are fewer

than that), leaving at most (d − 2 − b)|S | + 2(b + 2) − 2 − b = (d − 2 − b)|S | + b + 2 free

edges incident to S , so the claim still holds.

We can now prove Proposition 1.1.

Proof of Proposition 1.1. By Claim 3.1 we get that by using any reactive strategy,

Breaker can make sure that every component S in Maker’s graph will have at most

−k|S | + k + d free edges incident to it. In particular, k + d > k|S | for any live component

S , or equivalently |S | < (d/k) + 1. This last inequality may be rewritten as |S | � 	d/k
.

Since every component in Maker’s graph was created by merging two live components,

the result follows.

Remark 3.2. For fixed d and k, the bound of Proposition 1.1 is tight for large enough n,

via the tree strategy on Gn,d.

Remark 3.3. Reactive strategies are effective for Breaker also in the doubly biased (m : b)

game, as long as b/m > d − 2. A proof very similar to the one above shows that Breaker

can limit Maker in the (m : m(d − 2) + k) game to connected components of size at most

(m + 1)	md/k
.

3.2. Playing against the tree strategy

Before presenting a fully fledged strategy for Breaker in the (1 : d − 2) game, let us first

consider a simplified version of it, which remains effective as long as Maker adheres to

the tree strategy of Section 2. Taking Claim 3.1 one step further, Breaker needs to make

sure that, before Maker’s tree T grows too much, the only free edges incident to it will

be edges inside T . This gives rise to the following definition.

Definition. Let G be a graph. A simple path p = v1v2 · · · vk in G is called self-colliding

if vk is adjacent to some vi for 1 � i � k − 2. We could also view p as a simple path

v1v2 · · · vi−1, which we call the tail, leading to a simple cycle vivi+1 · · · vkvi, which we call

the body. It is possible that the tail is empty, that is, p is a cycle of length k.

We use the following variation of the Moore bound on the girth of graphs with

minimum degree k.
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Lemma 3.4. Let G be a graph on n vertices with minimum degree δ(G) � k. Then, for

every edge (u, v) ∈ E, there is a self-colliding path p starting with (u, v) of length at most

2	logk−1 n
. In particular, g(G) � 2	logk−1 n
. Moreover, the distance along p from u to

every body vertex is at most 	logk−1 n
.

Proof. The number of non-backtracking walks of length j + 1 starting with the edge (u, v)

is (k − 1)j . Since the graph has only n vertices, there exist two distinct non-backtracking

walks of lengths i + 1 and j + 1 ending at the same vertex, where i � j � 	logk−1 n
.

Together, these walks form a (not necessarily simple) cycle of length at most 2	logk−1 n

passing through v. Now take any simple subcycle of it to be p’s body and connect it back

to u via a simple path.

We now describe Breaker’s strategy. After Maker’s first move, Breaker chooses arbitrar-

ily one of the two vertices Maker has just touched and denotes it by u. Breaker then uses

Lemma 3.4 to pick, for each neighbour v of u, a self-colliding path pv of length at most

2	logd−1 n
 beginning with the edge (u, v). Note that the paths chosen for two neighbours

v, v′ are not necessarily disjoint.

Now Breaker’s strategy is to allow Maker to claim only edges from P = ∪{pv : (u, v) ∈
E}; this would limit the size of Maker’s connected component to be at most |P | �
2d	logd−1 n
.

Proposition 3.5. In the (1 : d − 2) game on G, if Maker follows the tree strategy, Breaker

is able to carry out the counter-strategy.

Proof. We show that Breaker can ensure that before every move of Maker, the only free

edges in E(T ,V \ T ) are in P ; thus, Maker must claim an edge of P , advancing along

some pv . It is true at the beginning of the game as T = {u}. After Maker claims the

edge (vi−1, vi) ∈ pv , there are at most d − 2 free edges incident to vi in E(T ,V \ T ) \ P ,

since (vi−1, vi) has just been claimed and (vi, vi+1) ∈ P . Breaker can claim all of them (and,

if necessary, some arbitrary extra edges outside P ). Thus, after getting a spanning tree

T ⊂ P , Maker forfeits.

The counter-strategy is still effective when Maker builds a forest with many trees, as

long as one of the connected components merged is always a single vertex; nevertheless,

it breaks down when Maker builds up many small trees and connects them to one

another, avoiding getting to the collision at the end of the self-colliding paths. Breaker

could possibly deny a merge of two trees T and T ′ by forgoing the counter-strategy

and claiming the free edge between T and T ′, but this might let Maker escape from the

respective P or P ′.

3.3. Playing against any strategy

We now describe a global strategy for Breaker, which copes well with Maker merging

connected components of any size. Before starting the (1 : d − 2) game, Breaker uses

Lemma 1.4 to pick an orientation D of the graph G such that every vertex has a positive
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out-degree and all simple directed paths in D are of length at most d + κd log n. Note that

Breaker may as well reveal D to Maker.

The strategy of Breaker goes as follows. Without loss of generality we may assume that

Maker’s strategy is always to build a forest, since claiming an edge within a connected

component does not help Maker (formally, Maker claims edges inside his connected

components only when all remaining free edges are such; by this time, the outcome of the

game has already been determined). Thus, on each move Maker merges two trees T1 and

T2 to a single tree T by claiming a free edge from T1 to T2. Breaker then claims d − 2

free edges according to the following priorities:

(1) E(V \ T ,T2),

(2) E(V \ T ,T1),

(3) E(T ,V \ T ).

In each step, Breaker claims an arbitrary free edge from the set with the smallest index.

If there is no free edge among these sets, he just claims an arbitrary free edge.

Claim 3.6. Each tree T in Maker’s graph is a directed tree in D; that is, there is some

r ∈ T – which we call the root of T – such that every vertex in T is reachable from r.

Moreover, at the beginning of each round (i.e., after Breaker’s move), no free edges enter

T \ {r}.

Proof. The claim is trivially true at the beginning of the game, as the initial connected

components are single vertices, so every vertex is the root and only member of its own

directed tree. Suppose now that Maker merged T1 and T2, two trees with roots r1 and r2,

respectively, by claiming an edge from T1 to T2. By our assumption, before the merge the

only free edges entering T1 and T2 were into r1 and r2, respectively. Hence, Maker must

have claimed an edge into r2. Clearly, the merged component is a directed tree, and all

vertices in T1 ∪ T2 are now reachable from r1, which becomes the root of the new tree.

Furthermore, the in-degree of every vertex in D, and in particular of r2, is at most d − 1,

so Breaker’s preference towards E(V \ T ,T2) ensures that all the edges entering r2 are

claimed after Breaker’s move (one by the merge and all the rest by Breaker), and so all

the free edges entering the new tree enter its root.

It is beneficial to classify Maker’s trees by the number of free in-edges.

Definition. The type of a tree T in Maker’s graph is the number of free edges in

E(V \ T ,T ).

By Claim 3.6, the type of a tree is bounded by the in-degree of its root, so the possible

types are 0, 1, . . . , d − 1. Claim 3.6 also enables us to partially order the vertices in each

tree, giving rise to the following definition.

Definition. Let T be a tree in Maker’s graph. The height of a vertex v ∈ T , denoted by

h(v), is the length of the (unique) path r � v in T , where r is the root of T ; the height
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of an edge (u, v) ∈ E(T ,V \ T ) is h(u, v) = h(u); the height of T , denoted by h(T ), is the

maximum height over all v ∈ T .

We wish to bound the size of Maker’s trees. By the choice of D, we know that the trees

are not too ‘high’, but we also need to ensure they do not become too ‘wide’.

For this, we refine Breaker’s strategy slightly. In the tree T just created by Maker,

Breaker claims in-edges from highest to lowest, and then out-edges from lowest to highest.

In more detail, in each step Breaker claims an incoming free edge (x, y) ∈ E(V \ T ,T )

such that h(y) is maximal, if possible; otherwise he claims an outgoing free edge (x, y) ∈
E(T ,V \ T ) such that h(x, y) = h(x) is minimal. In both cases, ties are broken arbitrarily.

Breaker’s preference of claiming low out-edges gives the following.

Claim 3.7. Let T be a tree in Maker’s graph. If the edge e ∈ E(T ,V \ T ) was claimed by

Breaker, then h(e′) � h(e) for every free edge e′ ∈ E(T ,V \ T ).

Proof. Note first that if Breaker has claimed an edge (u, v) ∈ E(T ,V \ T ) for some tree

T , then from that point until the end of the game u will only belong to trees of type zero.

Indeed, according to his strategy, Breaker has claimed (u, v) only since there were no free

edges entering T , so at that point T is of type zero. Furthermore, by Claim 3.6 we have

that at any point until the end of the game u will only belong to trees rooted at T ’s root,

implying that they will be of type zero as well. Therefore, Claim 3.7 trivially holds when

the type of T is positive, since that implies that Breaker has claimed only edges entering

T . We thus assume T is of type zero.

At the moment Breaker claims e, there is no edge lower than e among all free edges in

E(T ,V \ T ). In subsequent rounds, the only changes to E(T ,V \ T ) (and to T ) are when

Maker claims some edge e′ from T to another tree T ′. The height of all vertices of T ′ in

the merged tree, and thus also of all new edges in E(T ,V \ T ), is at least h(e′) + 1 > h(e).

Recall that in the counter-strategy to the tree strategy, Breaker only allowed Maker to

pursue self-colliding paths, so Maker’s final component consisted of d paths pv sharing a

root vertex. Here, similarly, Breaker’s strategy allows Maker to extend every free edge in

E(T ,V \ T ) to a directed path. This motivates the following definition of width.

Definition. Let T be a tree in Maker’s graph. The i-width of T , denoted wi(T ), is the

number of vertices in T of height i plus the number of free edges in E(T ,V \ T ) of height

strictly smaller than i. The width of T , denoted w(T ), is the maximum i-width in T , taken

over i = 0, 1, . . . , h(T ).

We are ready to prove the following proposition, which implies Theorem 1.2 since

|T | � 1 + h(T ) · w(T ).
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Proposition 3.8. Let T be a tree of type t in Maker’s graph. Then,

w(T ) �
{

d − t 1 � t � d − 1,

2d − 2 t = 0.

Proof. We prove this by induction on the number of rounds in the game. The proposition

holds for trivial trees. Assume Maker merges trees T1 and T2 of types t1 and t2, respectively,

by claiming the edge (u, v), where v is the root of T2. Then, the merged tree T has type

t = max(0, t1 + t2 − d + 1) after Breaker’s move. Note that necessarily t2 > 0.

The vertices of T1 maintain their height in T ; vertices that had height j in T2 now

have height h(u) + 1 + j in T . For i � h(u), we have wi(T ) = wi(T1) � w(T1); for i > h(v),

the now-claimed edge (u, v) no longer counts for the i-width of T , so

wi(T ) = wi(T1) − 1 + wi−h(u)−1(T2) � w(T1) + w(T2) − 1. (3.1)

If t1 > 0 then, by the induction hypothesis, w(T1) � d − t1 and w(T2) � d − t2, so

w(T ) � w(T1) + w(T2) − 1 � d − t1 + d − t2 − 1 = d − t.

If t1 = 0 then t = 0 too; by the induction hypothesis, w(T1) � 2d − 2 and w(T2) �
d − t2 � d − 1. For i � h(u), as before, we have wi(T ) � w(T1) � 2d − 2; for i > h(u),

assuming we show that wi(T1) � d, the same calculation as in (3.1) yields wi(T ) � wi(T1) +

w(T2) − 1 � d + (d − 1) − 1 = 2d − 2.

By the definition of wi(T1), there exist a set U ⊆ T1 of vertices of height i and a set

A ⊆ E(T ,V \ T ) of free edges of height less than i such that wi(T1) = |U| + |A|. For

every vertex x ∈ U, pick a leaf x′ ∈ T1 reachable (in T1) from x. The out-degree of

x′ in D is positive, so pick some edge e = (x′, y) ∈ E(D). If y ∈ T1, no one will ever

claim e; otherwise, e ∈ E(T ,V \ T ) so Maker has not yet claimed it. By Claim 3.7,

neither did Breaker since h(e) = h(x′) � h(x) = i > h(u) and (u, v) ∈ E(T1, V \ T1) was free

before Maker’s move. Altogether, we have a set A′ of |A′| = |U| free edges coming out

of T1, disjoint from A since edge heights in A′ are all at least i. By Claim 3.1, T1 is

incident to at most d free edges, so wi(T1) = |A| + |A′| = |A ∪ A′| � d, establishing the

proposition.

Remark 3.9. In the previous subsection, using the counter-strategy to the tree strategy,

Breaker could bound w(T ) by ensuring that, besides a single vertex of degree d, the

degrees of all vertices in T were at most two. With the strategy presented in this

subsection, Breaker cannot limit w(T ) by bounding the number of forks in T , i.e., the

number of vertices of out-degree at least 2. Indeed, already for d = 3, there exists a

positive out-degree orientation D of a cubic graph G and a strategy for Maker to build a

tree T with Ω(h(T )) forks in a (1 : 1) game on G.

4. Short graph orientations

In this section we discuss and prove Lemma 1.4. We begin by introducing the following

notation.
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Definition. For a directed graph D, we denote by l(D) the maximal length of a simple

directed path in D. For an undirected graph G and j ∈ {0, 1}, we denote by lj(G) the

minimum of l(D) over all orientations D of G such that every vertex has out-degree at

least j.

The case j = 0, that is, when we drop the positive out-degrees requirement, has been

considered by (at least) four independent works, by Gallai [8], Hasse [10], Roy [19] and

Vitaver [22].

Theorem 4.1 ([8, 10, 19, 22]). For every graph G, l0(G) = χ(G).

We mention here only the easy side of the proof, which will be used shortly. To see

that l0(G) � χ(G), colour G properly with the colours {1, 2, . . . , χ(G)} and orient each edge

{u, v} from u to v if and only if u’s colour is greater than v’s colour.

Returning to the case j = 1, we cannot expect an orientation D with positive out-degrees

for which l(D) is independent of n. Indeed, when every vertex has a positive out-degree,

D surely contains a directed cycle, so l1(G) � g(G). Known constructions of d-regular

graphs of high girth (see, e.g., [4, 6, 16]) yield families of graphs of order n, chromatic

number Ω(d/ log d) and girth Ω(logd−1 n). Thus, our best hope would be to show that

l1(G) = O(log n).

The main idea of the proof that follows is this: we find in G a set of disjoint short

cycles, which we orient cyclically, and we orient the rest of the edges ‘towards’ the cycles.

Lemma 3.4 will assist us in showing that simple directed paths outside the cycles are

necessarily short.

Proof of Lemma 1.4. Fix k = max(3, 	log δ/ log log δ
) and set

γδ = 	logδ−1 n
, γk = 	logk−1 n
.

Let C be a maximal collection of non-adjacent induced cycles of length at most 2γk .

That is, we begin with an empty collection C = ∅ and, as long as there exists an induced

cycle C in G of length |C| � 2γk whose vertices have no neighbours among VC , the vertices

of cycles in C, we add C to C. Note that C is non-empty since the girth of G is at most

2γδ � 2γk , by Lemma 3.4 (or the Moore bound).

Fix any cyclic orientation of the cycles in C, and orient the edges of E(VC , V \ VC)

into C. All edges incident to C are thus oriented, as the cycles in C are induced and

non-adjacent. Since no edges are leaving any cycle in C, once we orient the rest of the

graph, any simple directed path can contain at most 2γk vertices of VC , which form its

suffix.

We now fuse all the vertices of cycles in C to a single vertex s. Let G′ = (V ′, E ′) be the

resulting graph; make it simple by discarding loops and parallel edges incident to s.

For every vertex v ∈ V ′ we denote its distance from s by ρ(v). We claim that ρ(v) �
1 + γδ; indeed, v is within distance γδ of some short cycle C by Lemma 3.4 (specifically,

v is within distance γδ of any vertex on C), and C either intersects some cycle in C, is

adjacent to some cycle in C, or simply C ∈ C, by the maximality of C.
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For i ∈ {1, 2, . . . , 1 + γδ}, consider the level set V ′
i = {v ∈ V ′ : ρ(v) = i} and the subgraph

Gi ⊂ G′ it induces. As in the proof of Theorem 4.1, we orient edges between V ′
i and V ′

i+1

‘downwards’ (i.e., from V ′
i+1 to V ′

i ). This ensures all vertices except s have a positive

out-degree, via shortest paths to s.

By definition, every edge either lies inside a level set or connects two successive level

sets. Therefore, it only remains to orient edges between same height vertices, which will

be done using Theorem 4.1. For G1 we have l0(G1) = χ(G1) � χ(G) since G1 ⊂ G. By the

maximality of C, for all i > 1, Gi has no cycle of length at most 2γk . Apply Lemma 3.4

to deduce that Gi cannot have a subgraph with minimum degree k; in other words, Gi is

(k − 1)-degenerate, and, in particular, k-colourable.

Altogether, we have an orientation D′ of G′ satisfying

l(D′) �
1+γδ∑
i=1

l0(Gi) =

1+γδ∑
i=1

χ(Gi) � χ(G) + kγδ;

combined with the orientation of edges incident to C defined above, we get an orientation

D of G with positive out-degrees and l(D) � χ(G) + kγδ + 2γk . Therefore,

l1(G) � l(D) = χ(G) + O(log n/ log log δ),

as the lemma states.

5. Concluding remarks and open problems

Component games on other graphs. For the sake of simplicity, we have presented our

results in this paper only for regular graphs, but these stay put under the alternative

definition

s∗
b(n, d) = max{s∗

b(G) : G is a graph on n vertices and Δ(G) �d}.

It would be interesting to consider the component game on families of sparse graphs of

unbounded maximum degree. For instance, the Maker–Breaker component game on Gn,p

is considered in [14].

Doubly biased games. As shown in Remark 2.3, Theorem 1.6 can be easily extended

to the doubly biased game (m : b) for b/m < (d − 2); similarly, Remark 3.3 extends

Proposition 1.1 to the (m : b) game for b/m > (d − 2). However, the strategy presented

in Section 3.3 is inadequate in the (m : (d − 2)m) game. Indeed, already for m = 2, there

exists a positive out-degree orientation D of a d-regular graph G and a strategy for Maker

to build a connected component S of width Ω(dh(S )) in a (2 : 2d − 4) game on G. The key

step in Maker’s strategy is to merge connected components by claiming two out-edges

entering the same vertex, nullifying Claims 3.6 and 3.7, and thus Proposition 3.8 no longer

holds.

We believe that not all hope is lost for Breaker.

Conjecture 5.1. Let G be a d-regular graph on n vertices, where d � 3, and let m be a

positive integer. Then, in the (m : (d − 2)m) game on G, Breaker can force Maker to build

only connected components of size o(n), perhaps polylogarithmic (or even logarithmic) in n.
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Very large components. Recall the proof of Theorem 1.6 in Section 2, which combined the

tree strategy with edge expansion via Proposition 2.1. How far can Proposition 2.1 push

Maker? Can Maker use it to build a connected component of size �n/2�? The following

upper bound on the Cheeger constant of regular graphs, due to Alon [1], says that this

is only possible when the bias is well below d/2.

Theorem 5.2 ([1]). For every d-regular graph G, ΨE(G, �n/2�) � d/2 − Ω(
√
d).

Proposition 2.1 poses a sufficient, but obviously not a necessary, condition for the tree

strategy to succeed. It may be possible for Maker to build a connected component of size

�n/2� via the tree strategy or some other strategy, without relying on expansion.

Short orientations. The proof of Lemma 1.4 shows that l1(G) � χ(G) + O(log n/ log log d).

On the other hand, l1(G) � g(G) and l1(G) � l0(G) = χ(G) and thus constructions of d-

regular graphs of girth Ω(logd−1 n) and chromatic number Ω(d/ log d) (see, e.g., [4, 6, 16])

demonstrate that sometimes l1(G) � χ(G) + Ω(log n/ log d).

We suspect the correct behaviour of l1(G) is actually the lower bound, as the following

conjecture states.

Conjecture 5.3. Let G be a d-regular graph on n vertices, where d � 3. Then,

l1(G) = χ(G) + O(log n/ log d).

One can also ask about the value of lj(G) for j > 1.
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